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Preface

The aim of this book is to provide the reader with an introduction to quantum mechanics, a physical theory
which serves as the foundation for some of the most central areas of physics ranging from condensed matter
physics to astrophysics. The basic principles of quantum mechanics are explained along with important belonging
theorems. We then proceed to discuss arguably the most central equation in quantum mechanics in detail, namely
the Schrödinger equation, and how this may be solved and physically interpreted for various systems. A quantum
treatment of particle scattering and the harmonic oscillator model is presented. The book covers how to deal
with quantum mechanics in 3D systems and explains how quantum statistics and the Pauli principle give rise to
exchange forces. Exchange forces have dramatic consequences experimentally and lie at the heart of phenomena
such as ferromagnetism in materials. Finally, we apply quantum mechanics to the treatment of angular momentum
operators, such as the electron spin, and also discuss how it may be applied to describe energy bands in solids.

This book is primarily based on my lecture notes from teaching quantum mechanics to undergraduate students,
and the notes in turn are based on the book "Kvantemekanikk" by P. C. Hemmer which it follows closely in
terms of structure. I have also included additional topics and instructive examples which hopefully will allow the
reader to obtain a more thorough physical understanding of the material. This book is suitable as material for a
full-semester course in introductory quantum mechanics and serves well as a precursor to the book "Intermediate
Quantum Mechanics" which is also freely available to download on Bookboon.

It is my goal that students who study this book afterwards will find themselves well prepared to dig deeper into
the remarkable world of theoretical physics at a more advanced level. I welcome feedback on the book (including
any typos that you may find) and hope that you will have an exciting time reading it!

Jacob Linder (jacob.linder@ntnu.no)
Norwegian University of Science and Technology
Trondheim, Norway

http://bookboon.com/en/intermediate-quantum-mechanics-ebook
http://bookboon.com/en/intermediate-quantum-mechanics-ebook
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I. A BRIEF HISTORICAL NOTE ON THE ORIGIN OF QUANTUM MECHANICS

Learning goals. After reading this chapter, the student should:

• Be able to describe shortcomings of classical physics in describing experimentally observable behavior in
physical systems.

• Know specifically a few key experiments which paved the way for quantum mechanics becoming an accepted
physical theory.

Physics is, ultimately, an experimental science in the sense that what is true about the world around us is determined
by observation and measurements. However, that does not mean that theory is obsolete. Far from it, theoretical
physics is indispensible in the task of understanding the behavior of nature because it both (i) predicts new phenom-
ena which may subsequently be experimentally verified and (ii) explains new experimental measurements which
are not yet understood. A theory can only be regarded as (potentially) correct as long as it is consistent with ex-
perimental measurements. It was for this reason that the demise of classical physics (although it certainly still has
it uses on the macroscopic scale) started to become apparent at the end of the 19th century. A set of experimental
measurements were reported which were inconsistent with the predictions of classical physics. Hence, a need was
established for a new theory that would be consistent with the experimental observations. This was the seed that at
the beginning of the 20th century eventually would grow into the theory of quantum physics.

A. The insuffiency of classical physics

We here mention some of the experimental findings which provided the mounting evidence that classical physics
was insufficient to describe observable phenomena.

The photoelectric effect
This effect consists of electrons being knocked out of a material, typically a metal, by light hitting the material
surface. Classically, light is described as an electromagnetic field with an energy proportional to the intensity of the
field. However, what was observed experimentally was that the energy of the electrons excited from the material
was independent on the intensity of the light. Instead, the energy depended on the frequency ν of the light as long
as the frequency was larger than a threshold ν0. One found that the energy of the electron was described by:

Eelectron = h(ν − ν0), (1.1)

as long as ν > ν0. Here, h is Planck’s constant. This result could not be explained classically. Einstein, on the
other hand, suggested that the photoelectric effect could be explained if one assumed that light instead consisted
of discrete quanta of energy, namely photons, which each carried an energy E = hν. An electron on the surface of
the metal could then absorb a photon and increase its kinetic energy. If a sufficient amount of energy was absorbed
in this way, exceeding the threshold energy required to separate the electron from the metal, the electron would be
knocked out of the material, as shown in the figure.

Electron
Light (photon)

Metallic surface
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It is important to note that quantization of energy described above was in fact noted by Planck in 1900, prior to
Einstein, an achievement he received the Nobel prize in physics for in 1918. Planck had presented the idea of
energy quantization in the context of black body radiation, a bold idea which also resolved a discrepancy between
classical physics (which predicted a divergent release of energy for a black body) and experimental measurements.

Compton-effect
As if the quantization of the energy of light was not radical enough, an experiment conducted by Compton in
1923 demonstrated yet another surprising property of light: it could behave as a particle rather than a wave.
Using X-rays, Compton showed that the incident light would change direction after scattering on a thin sheet
of a material in such a manner that the interaction between light and the electrons in the material could be
interpreted as a collision between two particles. In other words, the experimental results could be explained by
treating light as a particle (photon) with energy E = hν and momentum p = hν/c and then simply using the
conservation laws for energy and momentum, as shown in the figure. One should emphasize that this results
does not invalidate the interpretation of light having wave nature, as is clearly demonstrated by e.g. diffraction
or interference experiments. However, it does show that light exhibits a particle-wave duality: depending on the
precise experimental setup, it can display the properties of a wave or a particle.

Incident photon

Scattered photon

Recoiling electron
Stationary
electron

The wavenature of electrons
Light, classically thought of as a wave, can behave as a particle. Is it then possible that an electron, classically
thought of as a particle, can behave as a wave? We noted above the momentum associated with the photon was
p = hν/c, meaning that its wavelength λ = c/ν relates to momentum according to λ = h/p. It was de Broglie who
suggested that this relation was not unique for photons, but that it was in fact universally valid even for particles.
This necessarily implied that massive particles, such as electrons, would also have an accompanying wavelength
λ determined by their momentum p. In his honor, this λ was named the de Broglie wavelength. Although an
interesting idea in itself, nothing less than clear experimental proof would be sufficient to confirm this hypothesis.
Remarkably, such an experiment was conducted by Davisson and Germer as well as Thomson (all who received
the Nobel prize in physics in 1937) which decisively proved the wavenature of electrons. The actual experiment
consisted of sending a beam of electrons toward thin films consisting of gold and observing the spatial distribution
of electrons emerging on the other side of the film. The scientists observed that the electron distribution pattern
was consistent with an interference of waves with a magnitude of the wavelength λ matching the prediction of
de Broglie. Mathematically, the interference pattern could be explained by assigning a wavefunction Ψ to the
electron:

Ψ(r, t) = Ψ0e
i(p·r−Et)/� (1.2)

where Ψ0 is the amplitude of the wave, r is position, t is time, E is the energy of the electron, p is its momentum,
and � = h/2π is Planck’s reduced constant. Moreover, later experiments verified that this effect did not depend
on having a large ensemble of electrons incident on a scattering target (such as a film). The electron interference
pattern also occurred when single electrons were allowed to scatter, one at a time. In this case, the only possible
physical interpretation is that the electron wavefunction actually interferes with itself! We shall later develop the
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mathematical formalism which shows precisely how this is possible.

Incident electrons

Crystal lattice

(thin film/foil)

Irradiance

Summarizing thus far, the fact that a number of experimental findings were found to be inconsistent with the
predictions of classical physics strongly motivated the need to develop a new theory capable of making correct
predictions. This is how quantum mechanics was born and consequently developed during the first part of the
20th century by many great physicists such as (in addition to those mentioned above) Bohr, Dirac, Heisenberg,
Schrödinger, and many others.

INSERT ADVERTISEMENT HERE
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II. FUNDAMENTAL PRINCIPLES AND THEOREMS IN QUANTUM MECHANICS

Learning goals. After reading this chapter, the student should:

• Understand some of the consequences of describing particles as waves and how this is done mathematically
in quantum mechanics.

• Know the basic postulates of quantum mechanics and how to set up and approach an eigenvalue problem for
a physical quantity F and its belonging operator F̂ .

• Understand how to compute probability densities and currents from wavefunctions ψ and interpret these
physically.

• Know how to compute the time-evolution of expectation values and how to explain Heisenberg’s uncertainty
principle.

Before establishing the fundamental axioms which quantum mechanics is based on, we will briefly motivate the
mathematical form of the Schrödinger equation - probably the most important equation in quantum mechanics.
One should also note that quantum mechanics can in fact be formulated in different representations such as the
position space representation or the momentum-space representation. To learn quantum mechanics, it is often
most convenient to use the position-space representation as it is easier to have an intuitive idea of what happens
in the regular position space that we live in rather than a more abstract type of space. However, there exists a
more general formulation of quantum mechanics which is both more elegant and powerful to work with, which is
covered in detail here.

A. Describing particles as waves

The diffraction experiments done with electron beams described in the previous chapter clearly demonstrated the
wavenature of electrons. But how do we describe this mathematically? The simplest type of waves are cosine
and sine functions, and it thus seems tempting to use a plane-wave such as Eq. (1.2) to represent a free particle
propagating through space. However, a plane-wave is completely delocalized because it extends over the entire
space: there is no part of the function which causes it to behave qualitatively different in one part of space com-
pared to another (for instance, being suppressed in one space and finite somewhere else). The very concept of a
particle is usually taken to mean an object which is localized in space. This can, however, be achieved by using a
superposition of plane-waves (a so-called wavepacket) such as those in Eq. (1.2). Namely, we may use

Ψ(r, t) = (2π�)−3/2

∫
ζ(p)ei(p·r−Et)/�dp. (2.1)

The prefactor of (2π�)−3/2 has been chosen for the purpose of convenience, as will become clear later on. The
energy for a non-relativistic, free particle is given by E = p2/2m and the function ζ(p) determines the "weight"
of the contribution from momentum p to the total wavefunction Ψ. It is also instructive to distinguish between the
phase-velocity vp and the group-velocity vg associated with the wavepacket in Eq. (2.1). The phase-velocity is
defined by

vp =
ω

k
(2.2)

where ω is the frequency of the wave while k is its wavenumber. Therefore, vp = ω/k = E/p = p/2m. The
group velocity, on the other hand, is in general different as it is defined via:

vg =
dω

dk
(2.3)

which means that vg = dω/dk = dE/dp = p/m.

http://bookboon.com/en/intermediate-quantum-mechanics-ebook
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The shape of ζ(p) determines the precise form of the wavefunction Ψ(r, t) that describes the particle under con-
sideration. Depending on the system which the particle is part of, and what type of interactions it is subject to,
we should expect Ψ(r, t) to look very different from a simple plane-wave. However, just as the behavior of vis-
cous fluids is determined by the Navier-Stokes equations regardless of the exact details of the system, it seems
reasonable that in the same way there should exist an equation governing the behavior of all such wavefunctions
Ψ. The precise form of Ψ should certainly depend on the specific system considered, but they should all have
in common that they satisfy some type of general quantum mechanical wave equation (just like viscous fluids all
have in common that they satisfy the Navier-Stokes equations). Which equation would this be, then? To see which
equation our Ψ satisfies, we first note that

∂Ψ

∂t
=

i

�
(2π�)−3/2 �2

2m
∇2

∫
ζ(p)ei(p·r−Et)/�dp

=
i

�
�2

2m
∇2Ψ. (2.4)

Here, we have introduced the Laplace-operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.5)

Therefore, our wavefunction Ψ satisfies the equation:

i�
∂Ψ

∂t
= − �2

2m
∇2Ψ. (2.6)

This equation is known as the Schrödinger-equation (abbreviated SE) for a free particle. An important quality
of this equation is that it is linear and first order in time. This means that is is sufficient for us to know Ψ at one
single instant t = t0 in order to determine Ψ at any later time t.

Moreover, we note that the ∇2 part of the equation arose because E = p2/2m was brought down from the exponent
as we differentiated with respect to time. Therefore, if we define the momentum operator

p̂ ≡ �
i
∇, (2.7)

so that for instance p̂x = (�/i)∂x, we can rewrite the SE for a free particle as

i�
∂Ψ

∂t
=

p̂

2m
Ψ. (2.8)

What about a particle that is not free? If the particle is moving in a potential V (r), it may for instance be bound
to a certain region if the potential is strongly attractive in that region of space. For a free particle, we know that
the Hamiltonian contains purely kinetic energy so that H = p2/2m. Now, we just established that for such a free
particle is Eq. (2.8), which may be rewritten as:

i�
∂Ψ

∂t
= HΨ.

If a potential energy V is now present, so that H = p2/2m + V (r). If you are not familiar with the concept of a
Hamiltonian, which is present also in classical physics, please have a look here for a detailed description. Based
on the above, it might be reasonable to suspect that the boxed equation is valid also when V is present so that
H can depend on r through V = V (r). Although we could not know a priori that this is the case, experiments
conclusively show that this is in fact true. A non-relativistic particle moving in a potential V (r), so that the full
Hamiltonian reads H = p2/2m + V , is described by a wavefunction that satisfies the boxed equation above.
Solving this equation for a number of scenarios will be our concern in the next chapter.

http://bookboon.com/en/introduction-to-lagrangian-hamiltonian-mechanics-ebook
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B. The postulates of quantum mechanics

We now deal with the fundamental postulates which quantum mechanics are based on. Their validity cannot be
proven, but must be tested against experimental facts. Quantum mechanics has withstood this test thus far.

Postulate 1. To any observable quantity F , there exists a quantum mechanical operator known as F̂ . Let q and
p be generalized coordinates and momenta in classical mechanics. If the observable quantity depends on these
coordinates, F = F (q1, q2, . . . p1, p2 . . .), the operator F̂ depends on the operators q̂ and p̂ defined as:

q̂n = qn, p̂n =
�
i

∂

∂qn
. (2.9)

Note that since p̂ acts on qn, the order in which the operators appear is important. The order of the operators
must be such that the operator F̂ is Hermitian. We shall return to what this means later. In most systems to be
considered in this book, qn may be taken to be a Cartesian coordinate whereas pn is the belonging momentum mq̇n.

Postulate 2. The physical state of a system is described by a wavefunction Ψ, which depends on the generalized
coordinates qn and time t. The wavefunction satisfies the Schrödinger equation

i�∂tΨ = ĤΨ (2.10)

where Ĥ is the Hamilton-operator of the system. The Hamilton-operator is constructed from the system’s classical
Hamiltonian H = H(qn, pn) by performing qn → q̂n and pn → p̂n. The classical Hamiltonian is generally
(although exceptions exist) a function which provides the energy of the system. Equation (2.10) is known as the
time-dependent SE, which distinguishes it from an equation we shall encounter later, namely the time-independent
SE.

INSERT ADVERTISEMENT HERE
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Postulate 3. The expectation value for an observable quantity F is computed via the integral:

〈F 〉 =
∫

Ψ∗F̂Ψdr. (2.11)

Here, Ψ∗ is the complex conjugate of Ψ whereas dr = dq1dq2 . . . is a generalized volume element so that the
integral is taken over all allowed values of the generalized coordinates qn. For instance, if the observable quantity
under consideration is the position of a particle moving in one dimension, we have F = x. We then find that

〈x〉 =
∫

x|Ψ(x)|2dx. (2.12)

The expectation value of a quantity is a statistical quantity: it may be thought of as the average value obtained
if one were to independently measure F many times. The expression for 〈x〉 above suggests that |Ψ|2 acts as a
function which weights how probable a particular value x is. This is precisely the probability interpretation of the
wavefunction Ψ put forward by Max Born in 1926, namely that:

The probability of locating a particle in a volume dr centered around position r at a time t is |Ψ(r, t)|2dr.

The probability density ρ is then ρ = |Ψ(r, t)|2, which clearly satisfies the requirement that such a probability
must be non-negative (ρ ≥ 0). Moreover, the total probability of finding the particle at some point in space must
be 1, so that

∫
|Ψ(r, t)|dr = 1. This can be ensured by normalizing the wavefunction properly, which we will

discuss in more detail later.

Postulate 4. Measuring an observable quantity F can only provide as a result one of the eigenvalues fn of the
operator F̂ . If one measures F and obtains the result fn, the system is immediately after the measurement in the
eigenstate ξn of F̂ which corresponds to the eigenvalue fn. This means that

F̂ ξn = fnξn (2.13)

where fn is a scalar.

Hermitian operators
Performing an experimental measurement on a physical quantity can only provide a real (as opposed to imaginary
or complex) number. Therefore, the expectation value of a physical quantity F must satisfy

〈F 〉 = 〈F 〉∗. (2.14)

We now show that this is equivalent to the corresponding operator F̂ being Hermitian. The definition of such an
operator is that

∫
Ψ∗

1F̂Ψ2dV =

∫
Ψ2(F̂Ψ1)

∗dV (2.15)

for any wavefunctions Ψ1,2. We immediately see that this is consistent with the expectation value of F being real
for a system described by a wavefunction Ψ since

〈F 〉 = 〈F 〉∗ →
∫

Ψ∗F̂ΨdV =

∫
Ψ(F̂Ψ)∗dV, (2.16)

which is satisfied for Ψ1 = Ψ2 in Eq. (2.15). In fact, one can show (try it!) that the definitions of a Hermitian
operator in Eq. (2.15) and Eq. (2.16), respectively, are in fact equivalent (show this by setting Ψ = Ψ1 + Ψ2e

iφ

with φ ∈ �).

A Hermitian operator is also referred to as a self-adjoint operator. In general, the adjoint operator to F̂ is denoted
F̂ † and is defined by

∫
Ψ∗

1F̂
†Ψ2dV =

∫
Ψ2(F̂Ψ1)

∗dV. (2.17)
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A self-adjoint operator satisfies F̂ = F̂ †, which is seen to be the case for a Hermitian operator. Using Eq. (2.17),
one can prove that the adjoint of a product of operators exchanges the order of them:

(ÂB̂)† = B̂†Â†. (2.18)

Example 1. Physical quantities and their operators. We have previously stated that the momentum operator in
one dimension is

p̂x =
�
i
∂x. (2.19)

To check whether or not p̂x is Hermitian, we note that
∫ ∞

−∞
Ψ∗

1

�
i
∂xΨ2dx =

�
i
[Ψ∗

1Ψ2]
∞
−∞ −

∫ ∞

−∞
Ψ2

�
i
∂xΨ

∗
1dx (2.20)

where we used a partial integration. Now, the second term on the right hand side of the above equation is zero if
the wavefunction vanishes at x → ±∞. A physically realizable wavefunction should satisfy this, and we may thus
set this so-called surface term to zero. By noting that −�

i ∂x = p̂∗x, we see that
∫

Ψ∗
1p̂xΨ2dx =

∫
Ψ2(p̂xΨ1)

∗dx. (2.21)

We have thus proven that p̂x is Hermitian, as it should be: p̂x = p̂†x. Note, however, that p̂∗x �= p̂†x. The adjoint
operation † is thus not the same as complex conjugation ∗ for operators, in general.

Any function of position alone, such as a potential energy V (r), can trivially be seen to satisfy the requirement of
a Hermitian operator. This is because V̂ = V (r) is a scalar (as opposed to an operator, such as p̂x), and scalars
commute with other scalars such as Ψ1,2.

As mentioned in Postulate 1, the order of quantum mechanical operators is important. We see that xp̂x �= p̂xx, as
can be verified by noting that

xp̂xF (x) = x
�
i
∂xF (2.22)

while

p̂xxF (x) =
�
i
∂x(xF ) =

�
i
(F + x∂xF ). (2.23)

It follows that when xp̂x − p̂xx acts on a function F , it has the same effect as multiplying F with i�:

xp̂x − p̂xx = i� (2.24)

This example demonstrates the importance of the order in which two quantum mechanical operators act on a
wavefunction. If the operators are such that the order does not matter, then the operators commute. Above, we
showed that x̂ and p̂x do not commute. The commutator between two operators x̂ and p̂x is written as

x̂p̂x − p̂xx̂ ≡ [x̂, p̂x]. (2.25)

Whereas we have shown that [x̂, p̂x] = i�, it can easily be verified that x̂ and p̂y commute. More generally, we
have that

[q̂m, p̂n] = i�δmn. (2.26)

Here, δmn is the Kronecker delta function which is equal to 1 if m = n whereas it is equal to 0 if m �= n. An
interesting point is that a particular combination of physical quantities, such as xpx, is not automatically Hermitian
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quantum mechanically if one simply represents it as x̂p̂x (try to verify this). The resolution to this apparent
dilemma is that although xpx = 1

2 (xpx + pxx) classically, since both px and x are scalars, the corresponding
operators are not equal quantum mechanically: x̂p̂x �= 1

2 (x̂p̂x + p̂xx̂). In fact, the combination 1
2 (x̂p̂x + p̂xx̂)

is indeed Hermitian and must therefore be the appropriate quantum mechanical operator corresponding to the
classical quantity xpx.

C. Eigenvalues and eigenfunctions

When an operator F̂ acts on a function ξ, the result is not in general proportional to the function ξ itself. If it is,
however, we say that ξ is an eigenfunction of the operator F̂ . More specifically, if

F̂ ξn = fnξn, (2.27)

then ξn is an eigenfunction of F̂ with a belonging eigenvalue fn. The spectrum of eigenvalues {fn} can be
either discrete or continuous, or even a mix. For instance, a free particle has a continuous energy eigenvalue
spectrum whereas the energy eigenvalues for the hydrogen atoms is a mixture of discrete and continuous. In order
to correspond to a physically acceptable eigenfunction, ξn has to satisfy certain mathematical requirements. A
central concept related to this is if ξ is quadratically integrable, in which case it satisfies

∫ ∞

−∞
|ξ|2dx < ∞. (2.28)
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This is of particular relevance for a discrete eigenvalue spectrum, because for an eigenvalue spectrum that is
continuous the eigenfunctions are not in general quadratically integrable. An example of this is the momentum
operator p̂x, which has the following eigenvalue equation:

p̂xξ =
�
i
∂xξ = fξ. (2.29)

The solution to this equation is straightforward to obtain:

ξ = ξ0e
ifx/�. (2.30)

Now, the eigenvalue f has to be real in order to avoid ξ diverging as x → ±∞. But in that case, |ξ|2 is not
quadratically integrable as can be verified by direct insertion into Eq. (2.28). Unlike the case of a discrete
eigenvalue spectrum, where we could have chosen the constant prefactor in a manner that normalizes the
wavefunction (meaning it satisfies

∫∞
−∞ |ξ|2dx = 1), we have to normalize the eigenfunction in Eq. (2.30) in a

different manner. We return to this issue a bit later in this chapter.

If a system is in an eigenstate Ψn of an operator F̂ with a belonging eigenvalue fn, then a measurement of the
physical quantity F will with certainty yield the result F = fn. First, recall that for a Hermitian operator (which all
physical quantities must be represented by), the eigenvalues fn are always real. Assume now that Ψn is normalized,
in which case:

∫
Ψ∗

nF̂Ψndr = fn

∫
Ψ∗

nΨndr = fn. (2.31)

We see that fn is the expectation value 〈F 〉 according to Postulate 3, but to prove that a measurement of F can
only yield fn as a result we have to show that there is no statistical variance around this expectation value. This is
proven by noting that

〈(F − 〈F 〉)2〉 = 〈(F − fn)
2〉 =

∫
Ψ∗

n(F̂ − fn)
2Ψndr =

∫
Ψ∗

n(F̂ − fn)(F̂ − fn)Ψndr = 0 (2.32)

since (F̂ − fn)Ψn = (fn − fn)Ψn = 0.

Another useful result is that eigenfunctions belonging to different eigenvalues are guaranteed to be orthogonal for
a Hermitian operator:

∫
Ψ∗

mΨn = 0. To see this, assume first that we consider two eigenvalues which are different,
fm �= fn. It follows that

∫
Ψ∗

nF̂Ψmdr =

∫
Ψm(F̂Ψn)

∗dr (2.33)

since F̂ is Hermitian. Moving the right hand side over to the left hand side of the above equation produces

(fm − fn)

∫
Ψ∗

nΨm = 0 (2.34)

since fn is real, which completes the proof. Generally, the integral
∫

Ψ∗
mΨn ≡ 〈Ψm,Ψn〉 (2.35)

is referred to as the scalar product of the functions Ψm and Ψn. The notation with the brackets on the right hand
side is often used in the literature to denote this particular integral, and direct inspection shows that we have for
instance 〈Ψn,Ψm〉∗ = 〈Ψm,Ψn〉.

In some systems, there are several independent eigenfunctions Ψ1,Ψ2, . . .Ψg associated with one particular
eigenvalue f . In that case, we have to revise the proof we sketched above regarding orthogonality of the wavefunc-
tions. The eigenvalue f is said to be degenerate with a degree of degeneracy g. Although the eigenfunctions {Ψi}
may not automatically be orthonormal (i.e. both normalized and orthogonal) according to

∫
Ψ∗

mΨn �= δmn, we
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can still create a set of linear combinations of these eigenfunctions {Ψ̃i} which are orthonormal. The procedure
which accomplishes this is a familiar method from linear algebra known as Gram-Schmidt orthogonalization.
The key point here is that even when an eigenvalue is degenerate, a set of orthonormalized eigenfunctions can be
obtained.

We previously stated that eigenfunctions associated with a continuous eigenvalue spectrum could not be normalized
using the Kronecker delta-function. This was the case for e.g. the eigenfunctions of the momentum operator p̂x,
which for an eigenvalue f could be written as Ψf = Ψ0e

ifx/� (we changed the notation from ξ to Ψ here,
but the choice of symbol naturally does not have any consequence physically). However, we can normalize the
eigenfunctions in a different manner, namely

∫
Ψ∗

f ′Ψfdr = δ(f − f ′) (2.36)

where we have introduced Dirac’s delta-function δ(x). This function can be thought of being infinitely thin, but
simultaneously infinitely large, in such a manner that its integral still is well-defined and normalized to 1:

∫ ∞

−∞
δ(x)dx = 1. (2.37)

In effect, δ(x) → ∞ for x = 0 and δ(x) = 0 for x �= 0. It also satisfies:

δ(cx) =
δ(x)

|c|
, δ(x) = δ(−x), xδ(x) = 0, xδ′(x) = −δ(x), (2.38)

where c is a scalar. Returning to the eigenfunctions for the momentum operator, we need to choose the integration
constant Ψ0 in a specific manner if we wish for Ψ to satisfy the normalization condition Eq. (2.36), namely
Ψ0 = 1/

√
2π�. This follows from the integral representation of the delta-function, which reads

δ(f − f ′) =
1

2π

∫ ∞

−∞
ei(f−f ′)xdx. (2.39)

We mention in passing that there also exist other ways to formally define the delta-function in terms of an integral.
We can now apply this procedure to a different operator which also has a continuous eigenvalue spectrum, namely
the position operator x̂ = x. The eigenvalue equation takes the form

xΨf (x) = fΨf (x) (2.40)

which is solved by Ψf (x) = cδ(x − f) where c is a constant. This can be verified using the property yδ(y) = 0
that we listed in Eq. (2.38) with y = x− f . The remaining task is to determine what c has to be in order for Ψf to
satisfy the Dirac delta-function normalization. Insertion yields:

∫
Ψ∗

f ′(x)Ψf (x)dx = |c|2
∫

δ(x− f ′)δ(x− f)dx = |c|2δ(f − f ′). (2.41)

Thus, any complex number c = eiγ with γ ∈ � will do the job (e.g. c = 1).

D. Expansion via eigenfunctions

In quantum mechanics, one often expands wavefunctions by using the eigenfunctions Ψn of a Hermitian operator,
for instance the eigenfunctions of the Hamilton operator Ĥ . We shall see examples of this later on in the book.
A prerequisite for this, however, is that one must assume that the eigenfunctions for a Hermitian operator form a
complete set. In practice, this means that any regular and quadratically integrable function ξ(r) can be written as
a superposition of the eigenfunctions Ψn:

ξ(r) =
∑
n

cnΨn(r). (2.42)
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Assume first that the functions Ψn form an orthonormal set and that the eigenvalue spectrum is discrete. To identify
what the expansion coefficients cn are, we make use of the orthonormality

∫
Ψ∗

mΨn = δmn by multiplying ξ(r)
with Ψ∗

m(r) and integrating over all of space:
∫

Ψ∗
m(r)ξ(r)dr =

∑
n

cn

∫
Ψ∗

mΨn =
∑
n

cnδmn = cm (2.43)

so that

cn =

∫
Ψ∗

n(r)ξ(r)dr. (2.44)

If we now insert Eq. (2.44) back into Eq. (2.42), we obtain the equation

ξ(r) =

∫
ξ(r′)

∑
n

Ψ∗
n(r

′)Ψn(r)dr
′ (2.45)

which can only be true if:
∑
n

Ψ∗
n(r

′)Ψn(r) = δ(r′ − r). (2.46)

This is the completeness relation for the eigenfunctions Ψn.
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We may proceed in an equivalent manner if the starting point is a continuous spectrum of eigenvalues, with the
exception that the arbitrary function ξ(r) must now be represented via an integral over the eigenfunctions rather
than a sum:

ξ(r) =

∫
c(n)Ψn(r)dn. (2.47)

The completeness relation in this case (try to show this using the same strategy as in the discrete spectrum case
above) reads:

∫
Ψ∗

n(r
′)Ψn(r)dn = δ(r′ − r). (2.48)

We verify directly that the eigenfunction set for the momentum operator p̂x indeed satisfies this completeness
relation, since

1

2π�

∫
e−ifx′/�eifx/�df = δ(x− x′). (2.49)

It is reasonable that the expansion coefficients cn (in the discrete case) and c(n) (in the continuous case) must
be chosen mathematically in a specific manner in order for the linear combination of eigenfunctions to reproduce
an arbitrary function ξ. But do the coefficients hold any deeper physical meaning? It turns out that they do.
Consider a physical quantity F in a system which is described by a quantum mechanical wavefunction Ψ. Assume
for concreteness that we are dealing with a discrete eigenvalue spectrum fn for the belonging operator F̂ . We
may then write the wavefunction Ψ describing the state as an expansion of the eigenfunctions of F̂ , called Ψn,
according to our previous treatment:

Ψ =
∑
n

cnΨn. (2.50)

The expectation value of the quantity F depends on the expansion coefficients cn, as seen via:

〈F 〉 =
∫

Ψ∗F̂Ψdr =
∑
nm

c∗mcn

∫
Ψ∗

mfnΨndr

=
∑
mn

c∗mcnfnδmn =
∑
n

|cn|2fn. (2.51)

Recall now Postulate 4 where we stated that a measurement of a quantity F can only yield one of the eigenvalues
fn of the operator F̂ . Since we have just shown that 〈F 〉 =

∑
n |cn|2fn, we can now offer a concrete physical

interpretation of the coefficients cn. The reason for this is that an expectation value is statistically defined as
〈F 〉 =

∑
n Pnfn where Pn is the probability for obtaining fn. It follows that Pn = |cn|2, so that

The probability that a measurement of F yields fn when the system is in the state Ψ is |cn|2 =
∣∣∣
∫

Ψ∗
nΨdr

∣∣∣
2

.

As a limiting case, we see that if Ψ is in fact a one particular eigenstate of F̂ , i.e. Ψ = Ψm, then |cn|2 = δmn

and the probability for measuring the eigenvalue fm is equal to unity, as it should. Generally, we must have that∑
n |cn|2 = 1, which expresses conservation of probability. The calculation again proceeds in the same way for

the scenario of a continuous spectrum, in which case we obtain

〈F 〉 =
∫ ∫

dfdf ′c∗(f)c(f ′)f ′
∫

Ψ∗
fΨf ′dr =

∫
df |c(f)|2f. (2.52)

We may then state that

The probability of measuring F in the interval (f, f + df) is |c(f)|2df =
∣∣∣
∫

Ψ∗
fΨdr

∣∣∣
2

df .
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An important case is F̂ = x̂, i.e. the position operator. The eigenfunction was previously shown to be δ(x− f) in
one spatial dimension: xδ(x− f) = fδ(x− f). This gives the following expansion coefficients:

c(f) =

∫
δ(x− f)Ψ(x)dx = Ψ(f). (2.53)

According to our above physical interpretation of the expansion coefficients c(f), it follows that |Ψ(f)|2df is the
probability to measure x in the interval (f, f + df). Therefore, |Ψ(x)|2 is the probability density for position x.
In other words, the likelihood of finding a particle described by Ψ(x) at position x is determined by the absolute
value squared of the wavefunction |Ψ(x)|2. This is a crucial result as it gives a concrete physical meaning to the
magnitude of the wavefunction. We finally note that in the event of a spectrum containing both a discrete and
continuous set of eigenvalues, one would have to expand ξ(r) according to:

ξ(r) =
∑
n

cnΨ(r) +

∫
c(f)Ψf (r)df. (2.54)

E. Probability current and density

We showed in the above section that the spatial probability density ρ for a particle described by Ψ (meaning that
Ψ is a solution of the Schrödinger equation) is given by

ρ(r, t) = |Ψ(r, t)|2.

and that it is normalized to unity according to
∫

ρ(r, t)dr = 1. (2.55)

Since the total probability Eq. (2.55) has to be conserved at all times t (the particle must always be somewhere),
it follows that any change in probability for finding the particle at one specific location x must be accompanied
by an increase in probability at a different location. This is expressed by the continuity equation for probability,
which we now derive.

If the probability ρ increases in some volume V , there has to exist an accompanying probability current flowing
into that volume through the surface S enclosing V . Denoting the surface density of this current j, it follows that

∂t

∫

V

ρdr = −
∫

S
(j · n)dS (2.56)

where n is a normal vector to the surface S . Using the divergence theorem from calculus:
∫

V

(∇ · j)dr =

∫

S
(j · n)dS (2.57)

we can rewrite Eq. (2.56) to:
∫

V

(∂tρ+∇ · j)dr = 0. (2.58)

When the integrand vanishes, rather than the entire integral, we are guaranteed that the flow of probability is
conserved regardless of which volume V we consider. Therefore, the continuity equation takes the form:

∂tρ+∇ · j = 0.

The reader might recognize the form of this equation from classical electrodynamics, where an equivalent equation
holds for the conservation of charge. The probability density has above been shown to equal ρ = |Ψ|2 and we
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know that the wavefunction of the system satisfies the time-dependent SE i�∂tΨ = ĤΨ. Generally, we know that
Ĥ = − �2

2m∇2Ψ+ V (r, t)Ψ so that:

∂tρ = ∂t(Ψ
∗Ψ) = Ψ∗∂tΨ+Ψ∂tΨ

∗ =
i�
2m

(Ψ∗∇2Ψ−Ψ∇2Ψ∗). (2.59)

We can rewrite this further by using that ab′′ − b′′a = (ab′ − b′a)′ where ′ denotes differentiation. Note also that
the terms with V (r, t) cancel each other. We obtain

∂tρ =
i�
2
∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗) = −∇ · Re

(
Ψ∗ �

im
∇Ψ

)
. (2.60)

Comparing this to the boxed expression above, we are now able to identify the quantum mechanical probability
current:

j = Re
(
Ψ∗ �

im
∇Ψ

)
.

We have then proven that the continuity equation for probability is consistent with the time-dependent SE and the
interpretation of |Ψ|2 as the probability density.

We close this chapter by demonstrating how the presence of an external magnetic field B = ∇ × A can be
incorporated in the calculation. The quantity A is the vector potential, just as in classical mechanics. When
A �= 0, it is known from classical mechanics that the Hamiltonian of the system becomes modified: the canonical
momentum p must be replaced by p− qA where q is the electric charge of the particle. This is necessary to obtain
the correct equations of motion for the particle (and also of fundamental importance in order to achieve so-called
gauge invariance, although we do not discuss this topic further here - a detailed treatment of this topic can be
found here).
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According to our prescription of how to write down the quantum mechanical Hamilton-operator based on the
classical Hamiltonian, the time-dependent SE now takes the form:

i�∂tΨ =
(p̂− qA)2

2m
Ψ+ V (r, t)Ψ. (2.61)

We note that the presence of an electrostatic potential can also be included in the potentinal energy V . An important
consequence of the way that A enters the Hamilton-operator is that it provides a direct coupling to the momentum
p̂ of the charged particles through the terms ∝ p̂A + Ap̂ (as seen when writing out the square). By proceeding
as we did above regarding the derivation of the probability current density (computing ∂tρ via the time-dependent
SE), we find the same continuity equation ∂tρ+∇ · j = 0 where j now reads:

j =
1

m
Re

[
Ψ∗

(�
i
∇− qA

)
Ψ
]
. (2.62)

As demanded by consistency, Eq. (2.62) reduces to the correct result in the absence of a field, A → 0.

F. Simultaneous eigenfunctions

We have shown earlier that a physical quantity F has a sharply defined value f , i.e. with zero statistical variance,
when the system is in an eigenstate ξ of the operator F̂ :

F̂ ξ = fξ. (2.63)

Consider now a different physical quantity G. Is it possible for F and G to simultaneously have sharply defined
values? If so, the state of the system must be an eigenstate for F̂ and Ĝ simultaneously:

F̂ ξ = fξ and Ĝξ = gξ. (2.64)

If we act on the two equations with F̂ and Ĝ, respectively, and subtract them from each other, the result is:

(ĜF̂ − F̂ Ĝ)ξ = [Ĝ, F̂ ]ξ = 0 (2.65)

since ĜF̂ ξ = fgξ and F̂ Ĝξ = gfξ where g and f are scalars that commute.

This observation becomes considerably more interesting if there exists a complete set of eigenfunctions ξn, rather
than just one single function ξ, of Ĝ and F̂ . The reason for this is that we can, as before, then expand an arbitrary
function ξ in the eigenfunctions ξn since the latter form a complete set. In this case, [F̂ , Ĝ]ξ = 0 holds true for
any function ξ. It follows that the commutator itself must vanish, [F̂ , Ĝ] = 0. The conclusion is then that

Two physical quantities that always have sharply defined values simultaneously must have commuting operators.

In addition, the inverse statement also holds true: if two operators commute, we may find a common set of
eigenfunctions for them. These statements hold both with and without degeneracy.

Consider for instance the case without degeneracy. Let ξ be an eigenfunction of F̂ with eigenvalue f . Since F̂ and
Ĝ commute, we obtain F̂ Ĝξ = fĜξ. Therefore, the function Ĝξ must be an eigenfunction of F̂ with eigenvalue
f . Now, if f is not a degenerate eigenvalue, Ĝξ cannot be equal to ξ but must instead be distinct up to a multi-
plicative factor g. In effect, Gξ = gξ. This means that ξ is indeed an eigenfunction of Ĝ, and the proof is complete.

If the eigenvalue f is degenerate, there may exist several eigenfunctions ξj , j = 1, 2, . . . p associated with this
eigenvalue. Therefore, we can no longer claim that Gξj must be proportional to ξj . Instead, it will generally be a
linear combination of all the p eigenfunctions:

Ĝξj =

p∑
j=1

gijξj . (2.66)
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However, it is still possible to identify a set of eigenfunctions ξ for F̂ and Ĝ which themselves are linear
combinations of ξj (try this!). The existence of such mutual eigenfunctions turns out to be quite handy in
several scenarios. For instance, we will later demonstrate that the operators for energy E, the magnitude of the
angular momentum squared L2, and one component of the angular momentum (e.g. Lz) all have a shared set of
eigenfunctions for spherically symmetric potentials V (r) = V (r).

A practical example of two operators that can share a set of eigenfunctions is the Hamilton operator Ĥ and the
parity operator P̂ . The latter inverts the position vector, so that

P̂ψ(r) = ψ(−r). (2.67)

To identify the spectrum of eigenvalues that P̂ can have, we consider its eigenvalue equation:

P̂ψ(r) = Pψ(r). (2.68)

Acting with P̂ on this equation provides

P̂2ψ(r) = P 2ψ(r). (2.69)

However, acting twice with the parity operator should be tantamount to doing nothing, because the net effect of
reversing the sign of r twice is r → −r → r: we end up with what we started with. Therefore, P̂2ψ = ψ, which
means that P 2 = 1 must be satisfied. It is clear that two possibilities exist:

P =

{
+1 even parity
−1 odd parity

(2.70)

Now, if a Hamiltonian describing a system has inversion symmetry, it should not change upon performing the
transformation r → (−r). This means that Ĥ(r) = Ĥ(−r). If this is the case, we can prove that Ĥ commutes
with P̂:

[P̂, Ĥ(r)]ψ(r) = P̂Ĥ(r)ψ(r)− Ĥ(r)P̂ψ(r) = Ĥ(−r)ψ(−r)− Ĥ(r)ψ(−r) = 0. (2.71)

Since this holds regardless of ψ, the commutator itself must vanish so that [P̂, Ĥ] = 0. According to our previous
treatment, we then immediately know that it is possible to identify a set of mutual eigenfunctions for P̂ and Ĥ .
In the non-degenerate case, these states will automatically have a specific parity. This can be directly verified
later when we will treat infinite potential wells by moving the potential to be centered around x = 0 so that the
potential, and thus Hamilton-operator Ĥ , is inversion symmetric [invariant under the transformation x → (−x)].

G. Time-evolution of expectation values

We have seen how expectation values for physical quantities F are sharply defined and time-independent when
we are fortunate enough that the state of the system is an eigenfunction of the operator F̂ . However, it is far from
always that we have that luxury. Generally, quantum mechanical expectation values of physical quantities can be
time-dependent and we should thus figure out how the expectation value of such dynamical variables evolve as a
function of time t. The time-evolution of the expectation value

〈F 〉 =
∫

Ψ∗F̂Ψdr (2.72)

can be identified using the time-dependent SE

i�∂tΨ = ĤΨ (2.73)
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in the following manner [where we also make use of the fact that Ĥ is Hermitian, so that
∫
(ĤΨ)∗Φdr =∫

Ψ∗ĤΦdr]:

d

dt
〈F 〉 =

∫
∂tΨ

∗F̂Ψdr +

∫
Ψ∗∂tF̂Ψdr +

∫
Ψ∗F̂ ∂tΨdr

=
i

�

∫
Ψ∗ĤF̂Ψdr +

∫
Ψ∗∂tF̂Ψdr − i

�

∫
Ψ∗F̂ ĤΨdr

=
i

�
Ψ∗[Ĥ, F̂ ]Ψdr +

∫
Ψ∗∂tF̂Ψdr. (2.74)

In other words, we have shown that

d

dt
〈F 〉 = i

�
〈[Ĥ, F̂ ]〉+ 〈∂tF̂ 〉.

A central consequence of this equation is that if the operator F̂ does not depend explicitly on time, so that ∂tF̂ = 0,
then it follows that its expectation value 〈F 〉 will be time-independent so long as F̂ commutes with Ĥ . One then
refers to F as a constant of motion, since it does not change with time. Consider for instance a free particle which
simply has a kinetic energy: Ĥ = p̂2/2m. Classically, the momentum of this particle would be conserved as no
forces (potential gradients) are present. Quantum mechanically, the same is true because the momentum operator
p̂ commutes with this Ĥ .

H. The Ehrenfest theorem

Although quantum mechanics replaces classical mechanics as the physically valid theory at small length-scales
(such as the nanometer scale), we should still expect quantum mechanics to recover classical mechanics as a
limiting case when going to larger length-scales (such as the macroscopic world that we experience). To test this,
consider a moving particle. We will later comment specifically on how its size matters. The classical equations of
motion for this particle is Newton’s second law dp/dt = −∇V and the definition of momentum dr/dt = p/m.
Does there now at least exist a set of equivalent quantum mechanical equations for the expectation values of the
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=
i

�
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(ĤΨ)∗Φdr =∫
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refers to F as a constant of motion, since it does not change with time. Consider for instance a free particle which
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Ψ∗ĤF̂Ψdr +

∫
Ψ∗∂tF̂Ψdr − i

�

∫
Ψ∗F̂ ĤΨdr
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As we know well by now, these are defined quantum mechanically as:

〈r〉 =
∫

Ψ∗rΨdr, 〈p〉 =
∫

Ψ∗p̂Ψdr. (2.75)

Applying our formula in the box above for the time-evolution of a physical quantity, we obtain for the position
variable that:

d

dt
〈r〉 = i

�
〈[Ĥ, r]〉 = i

2m�
〈[p̂2, r]〉. (2.76)

We obtained this resulting by using that the Hamilton operator for a particle moving in a potential V is Ĥ =
p̂2/2m + V (r, t) and that r commutes with V . To evaluate the final commutator in Eq. (2.76), we only need to
compute [p̂2x, x] since the result will be the same for the y and z components. We find that

[p̂2x, x] = p̂x(p̂xx− xp̂x) + (p̂xx− xp̂x)p̂x = −2i�p̂x. (2.77)

Here, we made use of the fundamental commutation relation between momentum and position [x, p̂x] = i� that
we established earlier in this book. Inserting this in Eq. (2.76), and the corresponding result for the y and z
components, we obtain:

d

dt
〈r〉 = 〈p〉/m. (2.78)

We see that this indeed corresponds well with the classical result dr/dt = p/m. What about the equation of
motion for 〈p〉? We obtain:

d

dt
〈p〉 = i

�
〈[Ĥ, p̂]〉 = i

�
〈[V, p̂]〉, (2.79)

where the kinetic term in Ĥ gives no contribution since it commutes with p̂ (an operator commutes with itself). It
remains to evaluate [V, p̂]:

[V (r, t), p̂]Ψ = −i�V∇Ψ+ i�∇(VΨ) = i�(∇V )Ψ. (2.80)

The final result is then:

d

dt
〈p〉 = 〈−∇V 〉, (2.81)

again corresponding well to the classical Newton’s second law. Ehrenfest’s theorem can now be stated:

The quantum mechanical equations of motion for the expectation value of position, momentum, and force
are the same as the classical equations of motion for these quantities.

What is the difference between the quantum mechanical and classical predictions for these quantities, then? More-
over, we still have not commented on how the size of the particle plays a role in this. To gain further insight, we
note that the expectation value 〈F (r)〉 of the force F = −∇V is not necessarily the same as the force evaluated
at the expectation value of the position, F (〈r〉). Only if this had been the case could we have conluded that the
particle would have followed the classical trajectory also in the quantum mechanical treatment. The difference
between 〈F (r)〉 and F (〈r〉) can be evaluated quantitatively by expanding the force around the expectation value
of the position (essentially a Taylor expansion). Consider the one-dimensional case for simplicity:

F (x) = F (〈x〉) + (x− 〈x〉)F ′(〈x〉) + 1

2
(x− 〈x〉)2F ′′(〈x〉) . . . (2.82)

Taking the expectation value of Eq. (2.82) yields:

〈F (x)〉 = F (〈x〉) + 1

2
〈(x− 〈x〉)2〉F ′′(〈x〉) + . . . (2.83)
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where the linear term in Eq. (2.82) vanished since 〈x− 〈x〉〉 = 0.

Now, we can finally make a connection to the size of the particle/object in question. The point is that for
macroscopic "particles" (say, a football), the standard deviation ∆x ≡ 〈(x − 〈x〉)2〉1/2, which according to Eq.
(2.83) is precisely what causes the difference between 〈F (x)〉 and F (〈x〉), is vanishingly small. The reason for
this is that ∆x can, simply from its definition, be taken as a measure of the spatial extension of the quantum
mechanical wave describing the particle, i.e. the de Broglie wavelength λ introduced previously. Macroscopic
objects have extremely small wavelengths λ, much smaller than the physical object itself, and in this case classical
mechanics works well.

What happens then for microscopically small objects, where quantum physics becomes important? It turns out
that classical mechanics can actually be used as a starting approximation in some cases for microscopic objects as
well. More specifically, this is allowed if the potential the object moves in varies extremely slowly compared to the
de Broglie wavelength λ. If the potential does not vary slowly over a length-scale λ, a full quantum mechanical
treatment is required and the particle will not follow its classical trajectory. A special mention of linear (e.g. the
gravitation field close to the surface of Earth) and quadratic potentials (e.g. an idealized oscillating spring without
damping) is required, because in those scenarios it follows that F ′′ and all higher order derivatives are identically
equal to zero. In this case, it follows from Eq. (2.83) that 〈F (x)〉 = F (〈x〉) so that the classical trajectory is
obtained even quantum mechanically when computing 〈r〉.

I. Heisenberg’s uncertainty principle

We have seen that two physical quantities with operators that commute have sharply defined values simultaneously.
If they do not commute, the standard deviation ∆F from the expectation value 〈F 〉 is a sensible quantitative
measure for the "spread" in value one would expect when measuring F many times:

∆F =
√

〈(F − 〈F 〉)2〉. (2.84)

To be concrete, let us again consider the most fundamental example of two quantities that do not commute, namely
position and momentum. It turns out that the degree to which these two quantities can be sharply defined simulta-
neously is limited via Heisenberg’s uncertainty relation:

∆x∆px ≥ �/2.

We will prove this relation below, but let us first comment on how to interpret it. One consequence is that
a wavefunction with a quite well-defined momentum (but still finite ∆px) must have a very large spread ∆x
in position. This is certainly the case for a plane-wave which has a sharply defined momentum, ∆px = 0,
which in turn means that ∆x → ∞ since a plane-wave is completely delocalized and extends over all of space.
Conversely, a strongly localized wavefunction with small variance ∆x must have a large spread ∆px in momentum.

Heisenberg’s uncertainty principle is in fact just a special case of a more general result, namely:

∆F∆G ≥ 1

2
|〈[F̂ , Ĝ]〉|

for two physical quantities F and G. Inserting F = x and G = px gives Heisenberg’s uncertainty relation, but it
remains to prove the general case. To do so, note first that the following integral cannot be negative:

∫
|ĈΨ+ iβD̂Ψ|2dr ≥ 0. (2.85)

We have here introduced

Ĉ = F̂ − 〈F 〉, D̂ = Ĝ− 〈G〉 (2.86)
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and the constant β ∈ �. Note that the operators Ĉ and D̂ are Hermitian if F̂ and Ĝ are Hermitian, since the only
difference is that a constant has been subtracted. If we now write the absolute value squared in Eq. (2.85) as the
argument of the absolute value times its complex conjugate, we obtain

∫
[(ĈΨ)∗ĈΨ+ α2(D̂Ψ)∗D̂Ψ+ iβ(ĈΨ)∗D̂Ψ− iα(D̂Ψ)∗ĈΨ]dr ≥ 0. (2.87)

Using the Hermitian property of these operators, we can rewrite the above equation as:
∫

Ψ∗[Ĉ2 + β2D̂2 + iβ(ĈD̂ − D̂Ĉ)]Ψdr = 〈C2〉+ β2〈D〉2 + iβ〈[Ĉ, D̂]〉 ≥ 0. (2.88)

In spite of the presence of the imaginary number i in the last term of Eq. (2.88), we can be sure that that term
is real since the original integral Eq. (2.85) must be real. Our treatment so far is completely independent on our
particular choice of β. Choosing β = − i〈[Ĉ,D̂]〉

2〈D2〉 gives us:

〈C2〉 − i〈[Ĉ, D̂]〉2

4〈D〉2
≥ 0. (2.89)

If we now reinstate the physical quantities F and G we were interested in to begin with via the definitions of Ĉ
and D̂ in Eq. (2.86), we can rewrite Eq. (2.89) to

∆F∆G ≥ 1

2
|〈[F̂ , Ĝ]〉| (2.90)

where we used that 〈C2〉 = (∆F )2, 〈D2〉 = (∆G)2, and [Ĉ, D̂] = [F̂ , Ĝ]. We have thus proven the general
uncertainty relation between the quantities F and G. As a special case, we recover our previous result that two
commuting operators can have sharply defined values simultaneously since a vanishing right hand side of Eq.
(2.90) allows for ∆F∆G = 0.
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III. SOLVING THE SCHRÖDINGER EQUATION: BOUND STATES AND SCATTERING

Learning goals. After reading this chapter, the student should:

• Know how to deal with the Schrödinger equation (SE) and stationary states.

• Understand how to obtain suitable boundary conditions for the wavefunction from the SE.

• Understand the concept of a superposition of states and collapse of the wavefunction upon measurement.

• Be able to compute bound energy states in potential wells.

A. Stationary states

Consider a scenario where the Hamiltonian, and thus the Hamilton-operator, does not depend explicitly on time t.
In that case, the time-dependent SE we previously have introduced

i�∂tΨ = ĤΨ (3.1)

becomes a separable equation by setting Ψ(r, t) = ψ(r)D(t). Inserting this into the SE gives:

i�
1

D(t)

dD(t)

dt
=

1

ψ(r)
Ĥψ(r). (3.2)

after dividing the entire equation with Ψ. Since the left side only depends on t whereas the right side only depends
on r, it follows that both sides of the equations must be a constant which we with remarkable foresight shall name
E (we shall soon see why this is a suitable name for the constant, as it is in fact the energy). The equation for D(t)
then reads

i�
1

D(t)

dD(t)

dt
= E (3.3)

which has the solution

D(t) = D0e
−iEt/�. (3.4)

The other equation reads

Ĥψ(r) = Eψ(r)

and is known as Schrödingers time-independent equation. The full wavefunction which solves the full time-
dependent SE for a stationary system thus takes the form

Ψ(r, t) = ψ(r)e−iEt/�. (3.5)

We absorbed the constant D0 into ψ(r). The reason this is referred to as a stationary system, is that the corre-
sponding probability density |Ψ(r, t)|2 = |ψ(r)|2 is independent on time. Therefore, any expectation values for
physical quantities that do not depend explicitly on time should also be time-independent:

〈F 〉 =
∫

Ψ∗(r, t)F̂Ψ(r, t) =

∫
ψ∗(r)F̂ (r, p̂)ψ(r)dr. (3.6)

It is crucial to note that the wavefunction itself is not time-independent: it depends on time through the factor
e−iEt/�.
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The spatial part of the wavefunction Ψ is determined via the factor ψ(r). In turn, this is obtained by solving the
time-independent SE Ĥψ = Eψ which really is an eigenvalue equation. Consider for instance a particle moving
in a potential V (r), in which case it takes the form:

− �2

2m
∇2ψ + V (r)ψ = Eψ(r). (3.7)

We see now why E was a suitable choice for the constant above: it is the energy eigenvalue of the Hamilton-
operator Ĥ . Assume that there exists a set of discrete eigenvalues {En} of Ĥ . A general solution of the time-
dependent SE then reads

Ψ(r, t) =
∑
n

cnψn(r)e
−iEnt/� (3.8)

where {cn} is a set of coefficients which determine the weight of the contribution from eigenstate n. Insertion of
Eq. (3.8) into the time-dependent SE shows that it is a solution. When the system is described by a wavefunction
Ψ(r, t) which is a sum over several eigenfunctions, the system is said to be in a superposition of states. Specifically,
when there is a contribution from the eigenstates with different energies En, we see that |Ψ(r, t)|2 is no longer
time-independent and thus cannot be a stationary state. Put differently, a superposition of stationary states with
different energies is in total not a stationary state. Note that Eq. (3.8) is not an eigenstate of Ĥ .

B. Time-energy uncertainty: what it really means

The present section is meant as an interlude and is not essential for understanding how to solve the Schrödinger
equation. The reader may thus skip ahead to the next section if desirable - however, the present section does raise
an interesting conceptual point which may be worthwhile considering.

Whereas the uncertainty relation ∆x∆px ≥ �/2 discussed in the previous chapter is well-defined mathematically
and in terms of physical meaning, one often encounters a similar uncertainty relation involving time and energy in
the literature. It has the form

∆E∆t ≥ �/2. (3.9)

The problem with this relation is that it is not immediately clear how it is obtained or what it even means. For
instance, while there is an energy operator in quantum mechanics (the Hamiltonian Ĥ), there is no time operator t̂
in quantum mechanics. In fact, time is an independent variable in non-relativistic quantum mechanics. Thus, from
the very outset it is clear that we cannot derive Eq. (3.9) in the same way as ∆x∆px ≥ �/2, the latter requiring
well-defined position and momentum operators.

Moreover, what does ∆t even mean? This has caused a lot of discussion regarding the existence and meaning
of Eq. (3.9) and, unfortunately, some gross misinterpretations of it. Here, we will show [as was originally done
by L. I. Mandelshtam, I. E. Tamm "The uncertainty relation between energy and time in nonrelativistic quantum
mechanics", J. Phys. (USSR) 9, 249-254 (1945)] that Eq. (3.9) can be derived in non-relativistic QM as long as
one properly defines the meaning of ∆E and ∆t. Then, we will discuss its physical interpretation.

Before proceeding, let us briefly remind ourselves of the difference between stationary and non-stationary states.
A stationary state Ψn solves both the time-dependent SE and is an eigenfunction of a time-independent Ĥ

at the same time. It can be written as Ψn = ψne
−iEnt/� where ψ is an eigenfunction of Ĥ while E is the

belonging eigenenergy. If the system is in a stationary state, all expectation values of observable quantities are
time-independent.

Now, according to the superposition principle we also know that any linear combination of stationary states will
also be a solution to the time-dependent SE, so that a general physical state of the system (still for a time-
independent Hamiltonian) may be written as

Ψ =
∑
n

cnΨn =
∑
n

cnψne
−iEnt/�. (3.10)
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The key point is that Ψ is no longer an eigenfunction of Ĥ , meaning that Ψ is not a stationary state. Both the
probability density |Ψ|2 and the expectation value of physical observables may now depend on time, and energy
is not sharply defined anymore (∆E �= 0).

Let us now sketch the proof of Eq. (3.9). Let Ĥ be a time-independent Hamiltonian and let Ψ be the wavefunction
of the system, which is not necessarily stationary. In that case, we can show that in the Heisenberg picture (which
is explained is explained here), where the time-dependence is placed on the operators whereas the wavefunctions
are time-independent, the expectation value of a quantity A that does not depend on time (∂A/∂t = 0) explicitly
satisfies:

d

dt
〈A〉 = 1

i�
〈[Â, Ĥ]〉 (3.11)

Let ∆A and ∆E denote the root-mean-square deviations (also known as standard deviations) of A and H , respec-
tively, in which case one can show that ∆A·∆E ≥ 1

2 |〈[Â, Ĥ]〉|. Inserting our above expression for the commutator
between A and H , one obtains:

∆E · ∆A

|d〈A〉/dt|
≥ �/2. (3.12)

which may be written precisely as

∆E∆t ≥ �/2, (3.13)

if we define

∆t ≡ ∆A

|d〈A〉/dt|
. (3.14)

INSERT ADVERTISEMENT HERE
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The crucial point regarding the physical interpretation of this uncertainty relation between ∆E and ∆t is to
recognize what ∆t means. From its definition above, we see that ∆t is the time required for the expectation
value of A to change by an amount equal to its standard deviation ∆A. Put in more informal terms, it is the time
required for the expectation value of A to change appreciably (with "appreciably" quantitatively being defined by
the standard deviation).

If the system is in a stationary state, then we know that d〈A〉/dt = 0 so that ∆t → ∞, but that is perfectly
fine since ∆E → 0 then and the inequality is still valid. For a non-stationary state, however, ∆E �= 0 is the
standard deviation of the Hamiltonian Ĥ and ∆t can be thought of as the lifetime of the state Ψ with respect
to the observable A, according to our above explanation. More precisely, it is the time interval after which the
expectation value of A has changed appreciably (as defined via the standard deviation of A).

How do we interpret this physically? One consequence is that a state that exists only for a short time cannot have
a well-defined energy. An excited state in a condensed matter system that has a finite lifetime will then release
a slightly different energy each time it decays, and the spread in this energy will be larger (meaning larger ∆E)
the shorter its lifetime ∆t. For a long-lived excitation ∆t → ∞, energy becomes well-defined ∆E → 0. This
uncertainty in energy is reflected in the natural linewidth of the distribution of energies released by a particle
that has decayed in this manner: fast-decaying states have a broad linewidth. The same principle also applies to
fast-decaying particles in particle physics: the faster the particle decays, the shorter its lifetime and the less certain
is its mass.

The above reasoning seems to suggest that there should be a strong link between the time-energy uncertainty
relation and the concept of quantum fluctuations. A well-known example of a quantum fluctuation in particle
physics is the bubble polarization diagram where a photon is converted into a temporary electron-positron pair
which then collapses back into a photon. The fact that one frequently encounters incorrect statements, such as that
this can happen because the e− − e+ pair "borrows" energy from the environment, underlines the importance of
correctly interpreting what the time-energy uncertainty relation means.

In light of the explanation we have given above, we can now understand that the reason that such spontaneous
particle pairs can occur as a quantum fluctuation is that the energy of vacuum cannot be sharply defined. In a
cartoon picture, one can think of the vacuum fields "jittering" constantly and thus have what is referred to as a
zero-point energy, the latter statement really just expressing that ∆E �= 0. Now, because of this uncertainty in
the energy of vacuum, we are allowed to create spontaneous pairs corresponding to the bubble diagram in particle
physics that exist a finite time ∆t as long as ∆E∆t ≥ �/2. Please note the important distinction between saying
that energy is not sharply defined, which is a statistical statement, and saying that energy can appear out of nothing
or being "borrowed" from some ill-defined environment. Vacuum is not a stationary state, because in that case we
would have ∆E = 0. Note that a Hamiltonian describing vacuum can still be time-independent even if vaccum is
a non-stationary state.

C. Collapse of the wavefunction and superpositions

As we have seen, a quantum mechanical system may be in a superposition of states, Ψ =
∑

n cnψn. Assume that
ψn are eigenstates of the operator Q̂ with eigenvalues qn. Upon measuring the physical quantity Q which has a
quantum mechanical operator Q̂, the only values we can obtain for this are qn with probabilities |cn|2. Assume
that we measure qm at t = t0. Immediately after the measurement has been performed, the system is in the state
Ψ = ψm and no longer in a superposition of states. Does it revert to a superposition of states? That depends.
In fact, the time-dependence of the wavefunction Ψ will be governed by the time-dependent SE and thus by the
Hamiltonian of the system, where one uses Ψ(t = t0) = ψm as the initial condition.

Performing a measurement on the system thus collapses the superposition of states into a single state and destroys
effects such as the interference pattern in double-slit experiments (if one here detects the electron as it passes
through a slit - if one does not detect the electron, the interference pattern is shown in the screen).
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D. Wavefunction properties

For simplicity, we from now on restrict our attention to one-dimensional systems in order to keep the notation as
compact as possible. The presented results have a natural extension to higher-dimensional systems, which we treat
explicitly in a later chapter. To begin with, we concentrate on stationary solutions of the SE so that our main focus
will be solutions of the time-independent SE:

− �2

2m
ψ′′ + V (x)ψ = Eψ. (3.15)

A useful first observation is obtained by rewriting this equation to:

ψ′′

ψ
=

2m

�2
[V (x)− E], (3.16)

which is allowed so long as ψ(x) �= 0. It follows that the wavefunction and its derivative have to be continuous
everywhere if V (x) is finite at all x, i.e. does not diverge. If ψ′ had been discontinuous at some point, ψ′′ would
necessarily act singularly in that point and be proportional to the Dirac delta-function δ, which contradicts the
finite magnitude of V (x). The reason for why this observation is useful is that it provides us with a set of boundary
conditions we can use to solve Eq. (3.15), namely continuity of ψ and ψ′.

Moreover, the curvature of the wavefunction provides us with physical information. Generally, the stronger the
curvature of the wavefunction, the higher its kinetic energy. This is true because the kinetic energy operator is
p̂2x/2m where p̂x = �

i ∂x so that a large value of the derivative translates into a large kinetic energy. The curvature
is determined mathematically by ψ′′, which in turn is decided by whether or not the energy E is larger than the
potential V as seen from the right hand side of Eq. (3.16).

A peculiar feature of one-dimensional systems is that, unlike e.g. three-dimensional systems, only one quadrati-
cally integrable eigenfunction can accompany each eigenvalue. In effect, there is no degeneracy in one-dimension.
This can be proven by considering two functions ψ1 and ψ2 which we begin by assuming have the same eigenvalue
E. Using the time-independent SE, we see that

�2

2m
(ψ′

1ψ2 − ψ1ψ
′
2)

′ = (V − E)ψ1ψ2 − ψ1(V − E)ψ2 = 0. (3.17)

It follows that (ψ′
1ψ2 − ψ1ψ

′
2) must be a constant. In order to determine the value of the constant, we make use

of the fact that a quadratically integrable function must vanish at x → ±∞. Therefore, the constant must be zero
as follows by evaluating (ψ′

1ψ2 − ψ1ψ
′
2) at x → ±∞. This means that ψ′

1ψ2 = ψ1ψ
′
2, which has the solution

ψ1 = cψ2 where c is an arbitrary, new constant. However, ψ1 and ψ2 were supposed to be different, and setting
c = 1 would make them equal. We must conclude that there is no degeneracy of eigenfunctions with a discrete
eigenvalue spectrum in one dimension. Note that this does not hold for a continuous eigenvalue spectrum, because
in that case we know that the wavefunctions are not in general quadratically integrable. In turn, this means that ψ
does not have to vanish at x → ±∞ so that we cannot use the same argument as above.

E. Particle in a potential well

An instructive example which demonstrates how a particle acquires a discrete energy eigenvalue spectrum, corre-
sponding to a bound state (confined to a certain region of space), is an infinitely deep potential well:

V (x) =

{
0 if 0 < x < L

∞ otherwise
(3.18)

Since the potential is infinitely high outside the well, the particle is confined to being located inside the two hard
walls appearing at x = 0 and x = L. Inside the well (0 < x < L), the time-independent SE reads:

− �2

2m
ψ′′ = Eψ, (3.19)
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since the potential is zero there. The general solution of this equation reads

ψ(x) = a sin(x
√

2mE/�2) + b cos(x
√
2mE/�2) (3.20)

with a and b being undetermined coefficients. We determine them by using appropriate boundary conditions, as
mentioned previously. Outside of the well, ψ must vanish. This means that ψ(0) = ψ(L) = 0. As a consequence,
b must be zero in Eq. (3.20), whereas ψ(L) = 0 is guaranteed if additionally

√
2mE/�2L = nπ, n = 1, 2, 3, . . . (3.21)

Note how n = 0 is not included, since that would cause ψ to vanish regardless of the position x. The above
equation provides precisely the allowed discrete energy eigenvalue spectrum that the particle inside the potential
well can have:

En =
π2�2

2mL2
n2, n = 1, 2, 3, . . .

The solution for the wavefunction Eq. (3.20) is then:

ψn(x) = a sin(nπx/L). (3.22)

The remaining coefficient a is determined by demanding that ψ is normalized:
∫ ∞

−∞
|ψ(x)|2dx = 1 → |a|2L/2 = 1, (3.23)

by performing the integral. This is satisfied by a =
√
2/L. The final result is then that the wavefunction describing

a particle with energy En is ψn(x) =
√
2L sin(nπx/L). The first few eigenfunctions are shown in the figure.

INSERT ADVERTISEMENT HERE
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E3

E2

E1ψ1(x)

ψ2(x)

ψ3(x)

x = 0 x = L

An interesting point is that the minimum energy of the particle is not zero, despite the absence of any potential
energy. In other words, there exists a finite zero-point energy which is a quantum mechanical effect without
analogue in classical physics. The minimum energy of the particle is indeed E1, obtained for n = 1, whereas
classically the kinetic energy would be allowed to vanish. The fact that a finite zero-point energy must exist
follows from Heisenberg’s uncertainty principle, which we treat in detail later on in this book.

The fact that the wavefunctions shown in the figure are either symmetric or antisymmetric around the middle of the
potential well is not a coincidence. It is a general result that a potential which is symmetric around a specific point
in space gives rise to eigenfunctions which also have a specific parity with respect to that point. A more realistic,
and thus slightly more complicated, scenario can be considered by relaxing the requirement that the potential must
be infinitely high outside of the well. Let us do the same calculation as above, but where the potential energy now
is finite V = V0 outside of the well:

V (x) =

{
0 if |x| ≤ L

V0 if |x| > L
. (3.24)

The potential well thus extends from x = −L to x = L this time, as shown in the figure.

V (x)

x
x = −L x = L

V0

This situation is interesting not only as an academic example, but also because it has direct relevant in applied
physics. Potential wells such as the one considered here are routinely made in experimental labs where the electri-
cal conduction properties of the confined electrons in the well can be controlled via an applied voltage difference.
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Our time-independent SE now takes the form:

ψ′′(x) =

{
− 2m

�2 Eψ if |x| ≤ L
2m
�2 (V0 − E)ψ if |x| > L

. (3.25)

It is useful to distinguish between the cases where the energy E is larger or smaller than the potential V0. Consid-
ering first the case of E < V0, so that the particle classically would not have enough energy to access the region
outside of the well, the solution of the SE for |x| > L is:

ψ(x) = Aeκx +Be−κx. (3.26)

We defined here κ =
√

2m(V0 − E)/� which is a positive, real number since E < V0, while A and B are
coefficients to be determined. To make sure that we maintain a quadratically integrable function, we have to
remove the exponential term in Eq. (3.26) which diverges when x → ∞ and x → −∞, respectively. It follows
that

ψ =

{
Aeκx if x < −L

Be−κx if x > L
. (3.27)

In contrast, inside the well the solution of the SE has the form:

ψ = C sin(kx) +D cos(kx), (3.28)

where the wavenumber now is k =
√
2mE/�. As we discussed at the beginning of this chapter, both ψ and ψ′

must be continuous so long as the potential is finite everywhere. This allows us to determine the coefficients by
using that ψ and ψ′ as given by Eq. (3.27) and Eq. (3.28) must be equal at x = 0 and at x = L. The boundary
conditions at x = −L gives us C and D expressed in terms of A:

C = Ae−κL cos(kL)[κ/k − tan(kL)],

D = Ae−κL cos(kL)[κ/k tan(kL) + 1]. (3.29)

The boundary condition at x = L gives the equation (after eliminating B):

C[κ/k tan(kL) + 1] +D[κ/k − tan(kL)] = 0 (3.30)

which upon inserting C and D from Eq. (3.29) gives:

2[κ/k tan(kL) + 1][κ/k − tan(kL)] = 0. (3.31)

Equation (3.31) is satisfied when either of the square brackets are zero. If the first square bracket is zero, it follows
from Eq. (3.29) that D = 0. Conversely, if the second bracket is zero, then Eq. (3.29) gives C = 0. We may then
summarize our findings so far as follows. When the energy E of the particle is such that the equation

tan(kL) = κ/k (3.32)

is satisfied, we obtain symmetric energy eigenfunctions

ψ(−L ≤ x ≤ L) ∝ cos(kx). (3.33)

Instead, when the energy is such that

tan(kL) = −k/κ (3.34)

is satisfied, we obtain antisymmetric energy eigenfunctions

ψ(−L ≤ x ≤ L) ∝ sin(kx). (3.35)
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Writing out the expression for k and κ explicitly, we see that

tan(
√
2mL2E/�) =

{√
(V0 − E)/E for symmetric ψ

−
√
E/(V0 − E) for antisymmetric ψ

. (3.36)

The remaining task is to attempt to solve Eq. (3.36) for the energy E, in which case we will have succeeded to
identify the energy eigenvalues of the problem for the case of a bound state E < V0. Before doing so, we note in
passing that we recover the correct result in the limit V0 → ∞ (the infinite potential well we treated previously).
This can be seen by noting that the right hand side of Eq. (3.36) is equal to ∞ (upper line) or 0 (lower line) when
V0 → ∞, which is satisfied when the tan-function on the left hand side has an argument that equals an integer
times π/2. This occurs when En = �2π2n2/[2m(2L)2] which is consistent with the result we obtained for the
infinite well since the width of the well was L instead of 2L there.

Finding a general solution for E from Eq. (3.36) is not possible analytically, as it is a transcendental equation. It is,
however, straightforward numerically (try to solve it using e.g. MATLAB by plotting the left and right hand side
of the equation and identifying the intersections. However, if we instead turn our attention to energies exceeding
the potential (E > V0), analytical progress becomes possible. We now have to go back to the time-independent
SE which outside of the well (|x| > L) reads

ψ′′ = −K2ψ (3.37)

where we defined K =
√
2m(E − V0)/�. The solution is:

.ψ = a sin(Kx) + b cos(Kx) (3.38)

where a and b are undetermined coefficients. This solution is fundamentally different from the previously treated
one, valid for E < V0, because it is oscillating as a function of position rather than decaying. In effect, the particle
now acts as a free particle outside of the well, which is reasonable as its energy exceeds the potential barrier. It
is no longer a bound state, which in turn has the consequence that the energy spectrum is continuous rather than
discrete: solutions of the type Eq. (3.38) exist for all E > V0.

Some of the key insights we have gained through our treatment of the finite and infinite potential well are thus:

• The energy spectrum is continuous for energies that exceed the potential barrier (i.e. energies where a
classical particle would not have been bound).

• The allowed bound states occuring for energies below the potential barrier only exist at specific (discrete)
energy values.

• So long as the potential is not infinitely high, there exists a finite probability |ψ|2 of locating the particle
outside of the well (i.e. inside the potential barrier region).

• The eigenfunctions for bound states have a definite parity (symmetric or antisymmetric) with respect to the
symmetry point of the potential.

F. The δ-function potential

Modelling a potential as a mathematical δ-function might seem like an unrealistic approximation. Nevertheless,
such a potential commonly appears in physical models of real systems and works surprisingly well in many cases.
We should expect a δ-function to be a reasonable model for an extremely deep and narrow potential. If the potential
is attractive (similar to the potential well treated above), we may write:

V (x) = −αδ(x). (3.39)

where α > 0. If α < 0, such a potential instead models a strong barrier upon which e.g. electrons may scatter-
ing. This is a model which often appears when one calculates electric currents propagating in hybrid structures
comprised of two or more materials: the interface region between two such materials, where strong scattering is
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expected due to the lattice mismatch and other defects, can then be described reasonably well by a δ-function.
Away from the point x = 0 where V = 0, the time-independent SE has exponentially decaying solutions:

ψ(x) =

{
ψ0e

+
√
−2mEx/� for x < 0

ψ0e
−
√
−2mEx/� for x > 0

(3.40)

when E < 0. The reason that we are interested in decaying solutions away from x = 0 is that we are looking for
bound states which thus should be localized near the binding potential at x = 0. Moreover, bound states should
have an energy E < 0 since otherwise they would have enough energy to propagate as free particles away from
the potential (E > 0). To find the allowed energies of bound states at the δ-function well, we make use (as before)
of boundary conditions. Continuity of the wavefunction does not help us much here, since it is obvious from Eq.
(3.40) that the two solutions for x < 0 and x > 0 are continuously connected at x = 0. However, we also know
that there exists a boundary condition related to the derivative of the wavefunction. To see how the δ-function
modifies the usual continuity of the derivative, we integrate the SE − �2

2mψ′′−αδ(x)ψ = Eψ over a small distance
ζ and take the limit ζ → 0:

− �2

2m
[ψ′(+ζ)− ψ′(−ζ)]− αψ(0) = 0 (3.41)

since limζ→0 E
∫ ζ

−ζ
ψ(x)dx = 0. Using Eq. (3.40) to evaluate the derivates in Eq. (3.41), we obtain

�2

2m
2
√
−2mE/� = α, (3.42)

which is rearranged to

E = −mα2

2�2
.

We have thus discovered that the δ-function potential well only has one single bound-state which remarkably is
independent of the sign of α.

INSERT ADVERTISEMENT HERE
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IV. QUANTUM HARMONIC OSCILLATOR AND SCATTERING

Learning goals. After reading this chapter, the student should:

• Know how to perform a quantum mechanical treatment of the harmonic oscillator model and understand the
procedure for how to obtain the energy eigenvalues of this problem.

• Understand how scattering of particles in quantum mechanics works, in particular with respect to the differ-
ence between scattering on potential wells and barriers as well as qualitative differences to particle scattering
in classical physics.

One of the primary mannequins of physics is the harmonic oscillator. The treatment of this system is often
emphasized not only in quantum mechanics, but already at the classical mechanics level. One reason for its
popularity is the fact that it is exactly solvable, which is a privilege one rarely has in physics. More importantly,
however, the applications of the harmonic oscillator model goes far beyond the standard system of a spring
oscillating back and forth. The reason for this is that the equations governing the behavior of a great deal of
physical systems, including the behavior of the electromagnetic field quanta (photons), molecules, and complex
electric circuits, can be rewritten in such a way that they are equivalent to a harmonic oscillator model! Therefore,
we treat this system quantum mechanically in detail here.

Moreover, we will present a detailed treatment of how particles scatter on potentials, rather than how par-
ticles are bound to potentials as in the previous chapter. Scattering of particles is of crucial importance in
physics, as it is one of the most effective ways to gain information about the potential generated by various
sources, such as other particles. The particles will scatter in a way which depends on the interaction between them
and the scattering center, which allows the experimentalist to understand what type of potential one is dealing with.

A. Harmonic oscillator

From classical mechanics, we know that the Hamiltonian (classical energy function) for a harmonic oscillator reads

H =
p2

2m
+

1

2
mω2q2. (4.1)

It describes a particle with mass m which is acted upon by a force F = −kq where k = mω2, thus constantly
trying to restore it to its equilibrium position q = 0. Without damping, this results in a classical oscillation with
frequency ω =

√
k/m. To treat this quantum mechanically, we first write down the Hamilton operator. By now,

we know well that the method for doing so is to first let:

p → p̂ =
�
i

d

dq
, q → q̂ = q (4.2)

in the Hamilton-operator. The time-independent SE Ĥψ = Eψ then takes the form:

− �2

2m
ψ′′ +

1

2
mωq2ψ = Eψ. (4.3)

For brevity of notation, let us introduce some normalized (dimensionless) quantities as follows:

ε ≡ E
1
2�ω

, x =
q√

�/mω
. (4.4)

Using these relations in Eq. (4.3) gives:

d2ψ

dx2
+ (ε− x2)ψ(x) = 0. (4.5)
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Let us examine how a solution to this equation may be identified. It is often useful to consider how an equation
behaves in various limiting cases in order to get a "feel" for what the solution should look like. For instance, for
large values of x we see that:

1

x2

d2ψ

dx2
= ψ(1− ε/x2) � ψ. (4.6)

The exponential e±x2/2 solves this equation. However, physically we additionally demand that ψ should vanish
at large distances rather than diverge (in order to at least have a chance of being normalizable). For this reason,
we keep only the solution e−x2/2. Incidentally, it turns that if we start out with ε = 1 in Eq. (4.3), then e−x2/2 is
actually the exact solution.

However, we have no valid reason to expect that ψ should behave as e−x2/2 for small values of x. It is then natural
to write down the ansatz (a trial function):

ψ(x) = ζ(x)e−x2/2 (4.7)

where ζ(x) should approach a constant value at large x. Inserting this ansatz into Eq. (4.3) provides the following
equation that ζ must satisfy:

ζ ′′ − 2xζ ′ + (ε− 1)ζ = 0. (4.8)

In order to solve Eq. (4.8), and thus identify what the eigenfunctions of the harmonic oscillator are, we first expand
ζ as:

ζ(x) =

∞∑
k=0

akx
k. (4.9)

It is then straightforward to obtain ζ ′ and ζ ′′:

ζ ′ =

∞∑
k=0

kakx
k−1, ζ ′′ =

∞∑
k=0

k(k − 1)akx
k−2. (4.10)

We may note that the k = 0 and k = 1 terms make no contribution to ζ ′′. Therefore, we may rewrite it as:

ζ ′′ =

∞∑
k=2

k(k − 1)akx
k−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k. (4.11)

Inserting these expressions for ζ ′ and ζ ′′ into Eq. (4.8) provides

∞∑
k=0

[(k + 2)(k + 1)ak+2 − (2k + 1− ε)ak]x
k (4.12)

It is then clear why we rewrote ζ ′′ in the manner we did: it was to be able to collect all terms inside one single
summation. The trick is now to choose the coefficients {ak} in such a manner that the terms inside the bracket
[...] in the equation above vanishes. Only then will the equation be satisfied regardless of the value of x. We thus
obtain the requirement:

ak+2 =
2k + 1− ε

(k + 1)(k + 2)
ak, k = 0, 1, 2, 3, . . . (4.13)

This is a recursion formula which enables us to express ζ only via a0 and a1 in the following manner:

ζ(x) = a0

[
1 +

1− ε

2!
x2 + . . .

]
+ a1

[
x+

3− ε

3!
x3 + . . .

]
. (4.14)

We see how all terms {ak} for k ≥ 2 are determined by a0 and a1 via Eq. (4.13).
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For large values of |x|, ζ(x) given by Eq. (4.14) diverges, as can be seen in the following manner. Looking at Eq.
(4.13), we see that the terms for large k, which are highly relevant in the limit of |x| → ∞ according to how we
defined ζ in the first place [Eq. (4.9)], satisfy:

ak+2

ak
� 2

k
. (4.15)

Compare this with the coefficients in the expansion of the function ex
2

:

ex
2

=
∑

k=0,2,4,...

1

(k/2)!
xk, (4.16)

which also satisfy the relation Eq. (4.15) for large k:

(k/2)!

[(k + 2)/2]!
=

1

1 + k/2
� 2

k
. (4.17)

Even if we had multiplied ex
2

with a polynomial in x, the same conclusion would hold since the exponential
function would dominate. In light of this, it is clear that the brackets proportional to a0 and a1 in Eq. (4.14)
must both diverge at large x (since we just proved that the relation between the coefficients is the same as for the
diverging function ex

2

). This is problematic since the total quantum mechanical wavefunction ψ(x) = ζ(x)e−x2/2

would then also diverge.

To avoid this, we have to ensure that ζ(x) is instead a polynomial so that e−x2/2 dominates at large |x|. We can
achieve this if the recursion relation Eq. (4.13) starts producing coefficients which are equal to zero when k equals
a cutoff index which we name n. Specifically, we see that if we choose ε = 2n + 1, where now n is a fixed even
integer, then an+2 = 0 which in turn ensures that an+4 = an+6 = . . . = 0. All coefficients ak for an even k up to
k = n remain non-zero, however.
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For the odd-k coefficients, there is no cutoff when n is even, which means that the only way to prevent the
divergence is to set a1 = 0. What remains is that ζ(x) is now a polynomial where the coefficients ak are only
non-zero for even k, are given by Eq. (4.13), and terminate when k = n. Conversely, we could make exactly the
same argument when n is a fixed odd integer. In that case, ζ becomes a polynomial where the coefficients ak are
only non-zero for odd k, are given by Eq. (4.13), and terminate when k = n. In this case, it is a0 which must be
set to zero.

Summarizing so far, we have been able to show that there exists acceptable (normalizable) wavefunctions of the
form ψ(x) = ζ(x)e−x2/2 where ζ(x) is a polynomial in x when ε = 2n + 1, n = 0, 1, 2, . . .. Looking at our
definition of ε above, we see that this means that the energy eigenvalues must be:

En = (n+
1

2
)�ω, n = 0, 1, 2, . . .

This is a discrete set of eigenvalues which constant increments �ω between each successive eigenvalue. With the
eigenvalues in hand, we can now return to the equation determining ζ, namely Eq. (4.8, which takes the form:

ζ ′′n − 2xζ ′n + 2nζn = 0 (4.18)

where we added a n subscript to ζ to indicate that it is associated with eigenvalue En. According to our above
treatment, we now know that this equation has a polynomial solution of degree n. We leave it as an exercise for
the reader to show that the solution of ζn is such that the normalized eigenfunctions become

ψn(x) =
(mω

�

)1/4 1√
2nn!π1/2

Hn(x)e
−x2/2,

where Hn are Hermite-polynomials. They satisfy precisely Eq. (4.18):

H ′′
n − 2xH ′

n + 2nHn = 0 (4.19)

and may be defined via

Hn(x) = ex
2
(
− d

dx

)n

e−x2

. (4.20)

Due to their property

Hn(−x) = (−1)nHn(x) (4.21)

it follows that ψn all have a specific parity: ψn is invariant under q → (−q) if n is an even number whereas ψn

changes sign under q → (−q) for odd n. The specific form of the eigenvalues for the harmonic oscillator that
we discovered above turned out to be equidistant from each other, separated by a quantum �ω = hν. The reader
may recall from the introductory chapter in this book that this is exactly the quantum of energy carried by photons,
as postulated by Planck. This is in fact no coincidence, because the electromagnetic field can be expressed as a
superposition of harmonic oscillators! This is treated in great detail here.

B. Quantum mechanical scattering

Instead of studying how bound states appear at attractive potentials, as we have done previously in this book, we
now want to determine how a potential can scatter an incoming particle. This is of crucial importance in physics,
because the manner in which the particle is scattered (which can be measured by detecting in which direction
the particle is deflected) gives us valuable information about the nature of the source of the scattering potential.
For instance, how does the potential depend on the separation distance between the particle and the source of the
potential or the angle the particle approaches the potential with?

To illustrate the essence of how this problem can be treated quantum mechanically, we start by focusing here on
scattering in one dimension. In that case, there are only two relevant directions: the particle can move forward or
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backward. In the more general three dimensional case, one can use a more advanced treatment as shown here. The
particle will have a probability T for transmitting through the potential and a probability R for being reflected. It
stands to reason that T + R must equal one. Both of these coefficients will in general depend on the properties
of the particle and the potential itself. In the simplest case where we consider an incident plane-wave toward a
potential, the particle is characterized by its energy and mass. Its wavefunction far away from the potential, where
V (x) → 0, is

ψ(x) = ψ0e
±ikx (4.22)

where k =
√
2mE/� and ψ0 is the amplitude of the wavefunction. The sign in the exponent determines in which

direction the particle is moving: toward or away from the barrier. Now, as the particle approaches the potential
V , the solution of the time-independent SE is no longer necessarily a plane-wave as in Eq. (4.22). However,
if the particle moves through the potential it will again revert to a plane-wave far away on the other side of the
potential. In order to determine the probabilities for transmission and reflection of the particle, we have to compute
the associated quantum mechanical probability currents. We derived previously that the quantum mechanical
probability current is obtained from a wavefunction ψ as:

j = Re{ψ∗ �
im

ψ′}. (4.23)

The probability for transmission is then determined by the ratio of the magnitude of the transmitted, jt, to the
magnitude of the incident current, ji, and similarly for the reflection probability:

R =
|jr|
ji

, T =
jt
ji
. (4.24)

Note how we attached an absolute value sign on the magnitude of the reflected current jr in order to obtain its
magnitude. The reason for this is that the reflected current should have the opposite sign of ji since the reflected
current must move oppositely to the incident current.

x x

−V0

V0

ji

jr

jt

Scattering on potential well Scattering on potential barrier

jt

jr

ji

Let us look at how this works in a practical calculation. We first consider the scenario shown in the left figure,
where a particle is incident toward a potential well with depth |V0|. The well is confined to the region 0 < x < L,
which gives us the following solution to the time-independent SE:

ψ(x) =




eikx + re−ikx for x < 0

aeiqx + be−iqx for 0 ≤ x ≤ L

teikx for x > L

. (4.25)

Here, the wavevectors inside and outside of the potential well are different due to the presence of the constant
(−V0) in the SE for for 0 ≤ x ≤ L. Specifically, we have:

k =
√
2mE/�, q =

√
2m(E + V0)/�. (4.26)

Upon inspection of Eq. (4.25), we see that there is no prefactor in front of the incoming exponential wave.
In effect, we have set the amplitude of the wavefunction equal to unity. However, this is standard procedure
in the context of scattering because it ultimately does not matter which constant amplitude we choose for the
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incoming wave. The reason for this is that the reflection and transmission probabilities only depend on the ratios
of probability currents. Therefore, instead of attaching a constant factor ψ0 to all the exponentials in Eq. (4.25)
and dragging it with us throughout all of the calculations just to see it vanish in the final step, we set it to ψ0 = 1
right away.

We should also note that on the right side of the barrier, x > L, there is no term e−ikx. A moment of consideration
reveals why this is so: such a wave must necessarily describe a particle moving leftward. This exists in the
region x < L, where such a term corresponds to the reflected wave. But for x > L, there may only exist a
transmitted wave. In order for us to determine R and T , the first step is to identify the coefficients {a, b, r, t}
in Eq. (4.25). These may all in general be different, as they correspond to the weight of the waves propagat-
ing in different directions in the system. As before, we make use of proper boundary conditions to determine them.

To this end, we start by noting that the potential is finite everywhere, and therefore the relevant boundary condi-
tions are (i) continuity of the wavefunction and (ii) continuity of the derivative of the wavefunction. Using these
conditions at x = 0 and x = L gives us the set of equations:

1 + r = a+ b,

ik(1− r) = iq(a− b),

aeiqL + be−iqL = teikL,

iq(aeiqL − be−iqL) = ikteikL. (4.27)

It is straightforward to solve this set of equations and we are particularly interested in r and t since these are the
coefficients associated with the reflected and transmitted waves. We find that:

t =
2kqe−ikL

2kq cos(qL)− i(q2 + k2) sin(qL)
,

r =
i(q2 − k2) sin(qL)

2kq cos(qL)− i(q2 + k2) sin(qL)
. (4.28)
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With these coefficients in hand, we may now compute the quantum mechanical proability currents by using Eq.
(4.23). For the incident wave, ψi = eikx, which gives

ji = �k/m. (4.29)

For the reflected wave, we have ψr = re−ikx so that

jr = −�k|r|2/m. (4.30)

Finally, for the transmitted wave, we have ψt = teikx and:

jt = �k|t|2/m. (4.31)

We are now in a position to compute T and R via:

T =
jt
ji

= |t|2 =
4E(E + V0)

4E(E + V0) + V 2
0 sin2(qL)

,

R =
jr
ji

= |r|2 =
V 2
0 sin2(qL)

4E(E + V0) + V 2
0 sin2(qL)

. (4.32)

The probabilities for transmission and reflection are seen to oscillate with the length L of the potential well.
Interestingly, there is a finite probability for reflection R in spite of the fact that the potential is purely attractive.
This has no counterpart in classical mechanics. As a consistency check, we see that R+ T = 1 is indeed satisfied,
as conservation of probability demands.

It is natural to ask the question: what are the ideal circumstances for causing transmission of the particle? In other
words, given that we can experimentally design the strength |V0| and length L of the potential well, what are the
optimal choices for causing high transmission? We see from Eq. (4.32) that T → 1 when sin(qL) → 0. This
happens whenever qL = nπ, n = 1, 2, 3, . . . and since q =

√
2m(E + V0)/�, this corresponds to

E = −V0 +
n2�2π2

2mL2
, n = 1, 2, 3, . . .

For these special energies of the incident particle, there is no reflection. How can we understand this physically?
Due to our wavefunction description of the particle, it is natural to expect that there may exist an analogy in optics,
and this is indeed the case. To see this, note that the condition qL = nπ may be rewritten as 2L = 2nπ/q. Since
the wavelength of the particle is 2π/q, we see that the resonance condition providing T = 1 is satisfied when
twice the length of the potential well equals an integer number of wavelengths. In other words, 2L is the total
distance travelled by a wave entering the well and then being reflected at the edge x = L so that it travels back to
x = 0. When this length equals an integer number of wavelengths, there is a destructive interference between this
wave and a wave that is reflected immediately at x = 0 (without traversing the potential well first), so that the net
reflected wave is extinguished. As a result, no reflection occurs and the wave is fully transmitted. This effect takes
place in optics and also here due to the quantum mechanical wavenature of particles.

On the other hand, the reflection is maximal whenever qL = (n + 1/2)π. A sketch of the behavior of T vs. the
incident particle energy E is shown in the figure.
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What happens if we instead consider a particle incident toward a potential barrier rather than a well? We obviously
have to let −V0 → V0 in order to make the potential repulsive. This has a crucial consequence when the incident
particle energy E is smaller than V0, because the wavevector now becomes imaginary:

q =
√
2m(E − V0)/� = iκ (4.33)

where κ ∈ � for E < V0. Calculating the reflection and transmission probabilities in the same way as above, we
arrive at

T =
4E(V0 − E)

4E(V0 − E) + V 2
0 sinh2(κL)

(4.34)

whereas R = 1 − T . In contrast to the potential well, there is no way to make T = 1 except for removing the
barrier all together by setting L → 0. In the case where κL � 1 (for instance if V0 � E or for wide barriers), we
obtain by expanding sinh:

T � e−2L
√

2m(V0−E)/�. (4.35)

It is clear that the probability for transmission decays exponentially as L increases, but in contrast to the classical
result there is still a finite probability that the particle may appear on the other side of the barrier. This is the
essence of quantum mechanical tunneling. Interestingly, and also in contrast to classical physics, there is a
finite reflection probability even if E > V0 (try to derive an expression for R and T in this scenario). Besides
being interesting from a fundamental perspective, quantum mechanical tunneling is used in many practical
applications. One example is scanning tunneling microscopy, where tunneling allows one to visualize the atomic
landscape of materials. By placing a small metallic tip very close (order nanometer) to the surface of a material
and establishing a voltage difference between the tip and the surface, electrons may tunnel between them. The
tunneling probability, and thus the net current flowing between tip and surface, depends very sensitively on the
tip-surface distance L as we have seen above. Therefore, moving an STM-tip across the surface of a material
allows one to very accurately determine the atomic structure (potential) of the material surface. This is merely one
example of how quantum mechanics is used in concrete applications.

It is interesting to note depending on the precise form of the kinetic energy term in the Hamilton-operator, the
scattering problem can acquire very unusual properties. For instance, whereas conventional free particles are
described by p̂2/2m, electrons in the graphene (a single layer of carbon atoms) are described by an effective
Hamiltonian that is linear in the momentum operator p̂. As a consequence, such particles can remarkably propagate
through a potential barrier without any decay under special circumstances.
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V. QUANTUM MECHANICS BEYOND 1D

Learning goals. After reading this chapter, the student should:

• Understand how to generalize quantum mechanics to 2D and 3D mathematically by using the Schrödinger
equation (SE) and suitable eigenfunctions.

• Know how to compute the density of states for free electrons confined to a volume V .

• Understand how to set up the SE and separate the wavefunction ψ in a central potential.

Up to now, we have focused almost exclusively on one-dimensional systems and potentials. We now generalize
these results to three spatial dimensions (which, after all, is a more realistic scenario) and see how this influences
the results.

A. Particle in a box

Consider first our previous scenario of a particle in a potential well, flanked by infinitely high barriers. This is also
commonly referred to as the "particle in a box" scenario. Inside the box with volume V = LxLyLz , the particle is
free so that:

V (r) =

{
0 if 0 < x < Lx, 0 < y < Ly, 0 < z < Lz

∞ otherwise.
(5.1)

The SE Ĥψ = Eψ is separable since the Hamilton-operator inside the box can be written as a sum of three
independent terms, Ĥ =

∑
j Ĥj with:

Ĥj =
p̂2j
2m

, (5.2)

INSERT ADVERTISEMENT HERE

43

V. QUANTUM MECHANICS BEYOND 1D

Learning goals. After reading this chapter, the student should:

• Understand how to generalize quantum mechanics to 2D and 3D mathematically by using the Schrödinger
equation (SE) and suitable eigenfunctions.

• Know how to compute the density of states for free electrons confined to a volume V .

• Understand how to set up the SE and separate the wavefunction ψ in a central potential.

Up to now, we have focused almost exclusively on one-dimensional systems and potentials. We now generalize
these results to three spatial dimensions (which, after all, is a more realistic scenario) and see how this influences
the results.

A. Particle in a box

Consider first our previous scenario of a particle in a potential well, flanked by infinitely high barriers. This is also
commonly referred to as the "particle in a box" scenario. Inside the box with volume V = LxLyLz , the particle is
free so that:

V (r) =

{
0 if 0 < x < Lx, 0 < y < Ly, 0 < z < Lz

∞ otherwise.
(5.1)
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This means that its solution takes the form ψ = ψxψyψz where the solutions for ψj are the solutions for a 1D
particle in a box (treated earlier in this book) while the eigenvalue is E = Ex + Ey + Ez (verify that this is true
by insertion of the wavefunction!). Therefore, we obtain

ψnxnynz (x, y, z) ∝ sin(nxπx/Lx) sin(nyπy/Ly) sin(nzπz/Lz) (5.3)

with the belonging energy eigenvalues

Enxnynz
=

π2�2n2
x

2mL2
x

+
π2�2n2

y

2mL2
y

+
π2�2n2

z

2mL2
z

, nj = 1, 2, 3, . . . . (5.4)

The proportionality constant in Eq. (5.3) may be determined via normalization, as before. The particle in box
system goes beyond being an instructive example and in fact has high relevance for experimental systems. For
instance, the particle in box wavefunctions and energy eigenvalues establish a foundation for ideal gases. Such
gases constitute precisely a confined, many-body system of non-interacting particles.

Density of states
From the form of the eigenvalues in Eq. (5.4) we see that as the volume V = LxLyLz increases, the spacing
between the eigenvalues decreases. In other words, when V becomes macroscopically large the quantized
eigenvalues will lie very close to each other. A relevant question to ask is then: how many energy levels exist in a
small energy interval (E,E + ∆E)? To answer this question, we set out to compute the density of states D(E).
The total number of energy levels in the small energy interval (E,E +∆E) may then be computed as D(E)∆E.

Consider a three-dimensional space where nx, ny, nz are the coordinate-axes and where only positive values of nj

are allowed. The eigenvalues in Eq. (5.4) then correspond to points in this space (see figure a) so that there is one
quantum state per volume element in our (nx, ny, nz)-space. To a very good approximation, the number of states
with energy less than some value E will then be equal to the volume of the positive octant of an ellipsiod with axes
aj , j = x, y, z where:

aj =
√
2mEL2

j/π
2�2. (5.5)

nx

ny

nz D(E)

E

(a) (b)

The volume of an ellipsoid with axes aj is equal to V = 4πaxayaz/3, so that according to our above reasoning
the number of states R(E) with energy less than E is equal to:

R(E) ≡ 1

8

4π

3
axayaz =

4π

3

(2m
h2

)3/2

V E3/2. (5.6)

We may then compute the number of states in a small energy interval (E,E +∆E) as

R(E +∆E)−R(E) � dR

dE
∆E. (5.7)

Comparing with our above definition of the density of states D(E), it is clear that D(E) = dR/dE. Differentiating
Eq. (5.6) with respect to E then provides the final answer:
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D(E) = 2π
(2m
h2

)3/2

V E1/2.

The fact that the density of states goes like D(E) ∝
√
E (see figure b) is a direct result of the three-dimensionality

of the system considered. In general, for a system of dimensionality d with a conventional energy-momentum
relation one finds that

D(E) ∝ E
d
2−1. (5.8)

As a consequence, the density of available eigenstates in two dimensions (d = 2) is then actually independent of
energy. A two-dimensional system is far from a theoretical construct - it is in fact routinely studied in physics
laboratories. Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, is an example of a
two-dimensional material (in this case, the expression for the DOS nevertheless changes since energy is linear
rather than quadratic in momentum in graphene). However, even prior to the successful isolation of graphene
sheets in 2004, two-dimensional systems were realized experimentally by making the thickness Lz so small that
the energy π2�2/2mL2

z became much larger than all other available energies. In this case, one is guaranteed that
particles will stay in the nz = 1 state and not be excited to higher quantum numbers nz . Therefore, the physics is
governed solely by the behavior in the xy-plane of the system, i.e. the nx and ny quantum numbers.

Although we assumed that the volume under consideration was given by V = LxLyLz , the calculation of
D(E) shown above becomes increasingly more valid even for a different volume geometry when V increases in
magnitude. Moreover, our above calculation did not take into account the spin degree of freedom (relevant for e.g.
electrons). We will later in this book return to what spin is, for readers unfamiliar with this concept. For now,
we simply mention that if spin is taken into account, one simply multiplies the density of states D(E) with the
number of available spin-states for a particle.

The influence of different boundary conditions
One frequently encounters periodic boundary conditions in the literature, and we therefore clarify the consequence
of using these instead of hard-wall boundary conditions (meaning that the wavefunction vanishes at the edge of
the system). To illustrate the point, consider for simplicity a one-dimensional particle in a box scenario. Since the
potential is taken as infinitely high at x < 0 and x > L, the wavefunction must satisfy ψ(x = 0) = ψ(x = L) = 0.
For a free particle inside the box, it is straightforward to show that the vanishing of ψ at the edges leads to the
quantization condition

k =
πn

L
, n = 1, 2, 3, . . . (5.9)

for the wavevector k of the wavefunction, which reads ψ =
√

2/L sin(kx). Mathematically, negative values of n
should also be allowed since if sin(kx) = 0, then clearly sin(−kx) = 0 as well. However, negative values of k
only changes ψ with an overall factor (-1) and thus physically corresponds to the same state since |ψ|2 remains
unchanged. That is why only positive integers n appear in the above quantization condition. Another way to think
of this is that sin(kx) = (eikx + e−ikx)/2i which shows that negative values of n (and thus k) already appear in
the wavefunction.

What is used more often than hard-wall boundary conditions, even when considering finite systems, is so-called
periodic boundary conditions. This means that one demands that the wavefunction satisfies ψ(x = 0) = ψ(x =
L). Since the general solution of the wavefunction for a free particle (just as in the particle-in-box case) reads

ψ = Aeikx +Be−ikx (5.10)

this imposes the quantization condition

k =
2πn

L
, n = 0,±1,±2, . . . (5.11)

which is different from Eq. (5.9). Note how we wrote the solution with e±ikx rather than sin and cos, which is
fully allowed since sin and cos are both linear combinations of e±ikx. The main difference between Eq. (5.11)
and Eq. (5.9) is that now also negative values of n are allowed. Why does this happen? The point is that since
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A and B are arbitrary complex coefficients [unlike the particle-in-box case where ψ(x = 0) forces A = −B],
a new ψ and |ψ|2 is obtained when k → (−k) unlike the particle-in-box scenario with hard walls. There are
then twice as many solutions (pluss one since n = 0 also gives ψ �= 0) in the periodic boundary condition case
compared to the hard wall particle-in-box case. Moreover, the periodic boundary conditions (PBC) allow us to
describe propagating waves in both positive and negative directions with different weight A and B, unlike the
particle-in-box case which only allows standing waves which is equivalent to counter-propagating waves e±ikx

with equal weight. Choosing A = −B in the PBC case of course reproduces the hard wall case.

Very well - but if we now have an isolated system, should we not still use the hard wall boundary conditions to be
accurate? Surely, the wavefunction must vanish at the vacuum edges. Strictly speaking, yes. However, there are at
least two good reasons for using periodic boundary conditions:

• Usually, a material does not exist in isolation, but is rather connected to some other type of material. In
that case, we want to be able to describe the possibility of propagating electrons in either direction which
is accomplished by using PBC. Note that even if we use PBC instead of hard wall boundary conditions, we
can still count the number of electron modes k.

• Even if a material does exist in strict isolation, we should not expect the boundary conditions to influence
the physics substantially in the bulk of the material (far away from the boundaries) if the material is large
enough. In that case, it should not matter which boundary conditions we use, and we may use whichever is
more convenient, such as the PBC.

The strongest argument is, in the author’s opinion, the first one. If one, for instance, is interested in discussing
transport in a finite-sized system, it is clear that we must be able to describe propagating electrons in different
directions. The hard wall condition should nevertheless be used if we want to identify edge-modes of a higher-
dimensional system which is truly terminated by vacuum.
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Summarizing, using periodic boundary conditions for a system in a volume V allows us to characterize the particles
in the system with a well-defined momentum. In turn, this means that we can describe particles propagating in
various directions in the system, as is relevant for e.g. describing electron motion in a metal. It is also important
to note that the density of states D(E) obtained using PBC is in fact the same as that obtained using hard wall
boundary conditions. I encourage the reader to try to prove this, using the same procedure as we did for the hard
wall case! You should find that the number of states in the positive octant with energy less than E is in the PBC
case 1

8 of what we found in the hard wall case. At the same time, negative integers for nj are allowed in the PBC
case, which gives us an additional factor 23 = 8 which cancels the 1

8 , so that the density of states is the same.

B. Harmonic oscillator

A three-dimensional harmonic oscillator, which we allow to be anisotropic (meaning that it may have different
spring constants in different spatial directions), has a Hamilton-operator:

Ĥ =
p̂2

2m
+

1

2
m

∑
j

ω2
jx

2
j . (5.12)

Here, ωj is the frequency associated with spatial direction xj (j = 1, 2, 3 where x1 = x, x2 = y, x3 = z). Since
there is no coupling between different spatial coordinates xj in Eq. (5.12), the motion in each direction should be
independent of the motion in the other directions. Since Eq. (5.12) can be written as a sum of three independent
terms:

Ĥ =
∑
j

Ĥj , Ĥj =
p̂2j
2m

+
1

2
ω2
jx

2
j , (5.13)

the time-independent SE Ĥψ = Eψ is separable. Just as for the particle in a box, this means that the wavefunction

ψ =
∏
j

ψj (5.14)

solves the equation, where ψj satisfies

Ĥjψj = Ejψj , E =
∑
j

Ej . (5.15)

At this point, we can simply reuse the already derived result for the one-dimensional harmonic oscillator where we
know that

Ej = �ωj(nj +
1

2
), nj = 0, 1, 2, . . . (5.16)

so that the total energy eigenvalue becomes

E = �ωx(nx +
1

2
) + �ωy(ny +

1

2
) + �ωz(nz +

1

2
). (5.17)

In the previous chapter in this book where we treated the harmonic oscillator model in detail, we mentioned that the
harmonic oscillator is the relevant model for a large amount of seemingly disparate physical systems. The present
generalization of the harmonic oscillator to 3D is for instance relevant both for an electromagnetic field and the
quantized lattice vibrations in crystals that comprise materials. In the special case where all eigenfrequencies are
equal, ωj = ω, we say that the system is isotropic (behaving the same in all spatial directions). The eigenvalue
of the system then becomes E = (N + 3/2)�ω where N = nx + ny + nz . Whereas the ground state E0

is not degenerate, excited states are since a given finite value of N can be obtained in several different ways by
combining {nx, ny, nz} in a suitable manner. A crucial point to note here is that the degeneracy following from the
isotropic behavior is accompanied by the fact that the Hamilton operator Ĥ acquires a symmetry, namely rotational
symmetry. This can be seen since the potential takes the form V (r) = 1

2mωr2, which is invariant under rotations
as it only depends on the absolute value of |r| (r2 = |r|2). The observation that symmetries and degeneracies are
closely related is not accidental, and we shall return to this issue later.
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C. 2D potentials with polar coordinates

So far, we have used Cartesian coordinates in our treatment of all systems. We now turn our attention to a polar
coordinate treatment using coordinates (r, φ) instead of (x, y), not simply for the sake of pedagogical value, but
also as a precursor to our treatment of the important case of 3D rotationally symmetric systems.

Our starting point is a potential V (r) which is rotationally symmetric, meaning that it only depends on the magni-
tude r = |r|. Therefore, V (r) = V (r) and the SE is:

− �2

2M
(∂2

r + r−1∂r + r−2∂2
φ)ψ(r, φ) + V (r)ψ(r, φ) = Eψ(r, φ). (5.18)

Here, we used M for the particle mass rather than m, since the latter symbol will be used for a quantum number
associated with angular momentum. Moreover, we used the short-hand notation ∂j ≡ ∂/∂j and ∂2

j = ∂2/∂j2

with j = r, φ. Finally, we made use of the fact that the Laplace-operator ∇2 in 2D and using polar coordinates is:

∇2 = ∂2
r + r−1∂r + r−2∂2

φ. (5.19)

Eq. (5.18) is a separable equation. It is left as an exercise for the reader to show that when setting

ψ(r, φ) = R(r)Φ(φ) (5.20)

in Eq. (5.18), the equation can be rearranged to read:

r2

R(r)

(
∂2
rR+ r−1∂rR+

2M

�2
[E − V (r)]R

)
= − 1

Φ(φ)
∂2
φΦ. (5.21)

Although R and Φ depend only on one variable each, we stick with the short-hand notation ∂j for brevity. Since
the left hand side of the above equation only depends on r whereas the right hand side only depends on φ, both
sides must equal a constant. We name this constant m2. The equation for the angular part Φ of the wavefunction
ψ then has the form

− 1

Φ(φ)
∂2
φΦ = m2 (5.22)

which has the solution

ψ ∝ eimφ. (5.23)

This solution gives us information about which values m is allowed to take. Consider the fact that φ and φ + 2π
must correspond to the same physical angle, since a 2π advancement of the angle brings the position vector back to
its original location. Therefore, m must be an integer to ensure that Φ(φ) = Φ(φ+ 2π). We have then established
that the total wavefunction has the form

ψ(r, φ) = R(r)eimφ, m = 0,±1,±2, . . . (5.24)

where R(r) must obey the following equation

− �2

2M
(∂2

r + r−1∂r −m2r−2)R(r) + V (r)R(r) = ER(r). (5.25)

Its specific solution depends on the shape of V (r). We shall return to this type of equation later on.
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VI. QUANTIZATION OF SPIN AND OTHER ANGULAR MOMENTA

Learning goals. After reading this chapter, the student should:

• Know how to deal with the quantization of orbital angular momentum operators and the belonging commu-
tation relations.

• Understand how to arrive at the quantized energy eigenvalues of the Coulomb potential.

• Be able to account for the properties of generalized angular momentum operators in quantum mechanics, in
particular the spin operator.

From classical mechanics, we know that angular momentum is an important quantity which is conserved whenever
a particle moves in a central potential V (r) = V (r). We will now see how this result holds also quantum
mechanically, meaning that the eigenvalues associated with the operator for angular momentum will be crucial in
order to describe the quantum states.

A. Orbital angular momentum

Classically, we know that the angular momentum of a particle at position r with momentum p with respect to the
center of the coordinate system is defined as

L = r × p. (6.1)
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Therefore, the quantum mechanical operators for each of the components Lj are obtained via our usual prescription
pj → p̂j and xj → x̂j for j = x, y, z:

L̂x = yp̂z − zp̂y, L̂y = zp̂x − xp̂z, L̂z = xp̂y − yp̂x. (6.2)

It is straightforward to verify that these operators are all Hermitian (try it), as they should be since they correspond
to physically observable quantities: L̂j = L̂†

j . Now, when treating the position and momentum operators in the
early chapters of this book we saw that they did not commute: [x̂, p̂x] �= 0. As a consequence, they could not have
sharply defined eigenvalues simultaneously according to Heisenberg’s uncertainty principle ∆x∆px ≥ �/2. What
about the angular momentum components? Can they have sharply defined values simultaneously? By making
repeated use of [x̂, p̂x] = i� (and similarly for y and z), it follows from the definitions in Eq. (6.2) that:

[L̂x, L̂y] = [L̂x, zp̂x − xp̂z] = −i�yp̂x + i�xp̂y = i�L̂z. (6.3)

In the same way, one finds for the other commutators that [L̂y, L̂z] = i�L̂x and [L̂z, L̂x] = i�L̂y . Note how we
could obtain the different commutators from each other by a cyclic permutation of the variables. We can also show
that the operator for the magnitude squared of the total angular momentum, L̂

2
, and one of the angular momentum

components L̂j commute (try to show this):

[L̂
2
, L̂z] = 0 (6.4)

by using the relations in Eq. (6.3)!] The same goes for [L̂
2
, L̂x] = [L̂

2
, L̂y] = 0. Therefore, we conclude that

• Two Cartesian components of the angular momentum cannot have sharply defined values simultaneously.

• One component of the angular momentum and the magnitude squared of the angular momentum can have
sharply defined values simultaneously.

With this in mind, we should be able to identify simultaneous eigenfunctions for L̂
2

and L̂z . We choose L̂z rather
than L̂x or L̂y simply by convention: the z-component is not special compared to the others for any reason. Before

obtaining the common set of eigenfunctions (which must exist since L̂
2

and L̂z commute), we express the angular
momentum operators in spherical coordinates instead. This is more convenient since rotations are more easily
dealt with using angles than Cartesian coordinates. We found above that

L̂x = y
�
i
∂z − z

�
i
∂y, L̂y = z

�
i
∂x − x

�
i
∂z, L̂z = x

�
i
∂y − y

�
i
∂x. (6.5)

Since x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ, we find that

∂z = (∂r/∂z)∂r + (∂θ/∂z)∂θ + (∂φ/∂z)∂φ = cos θ∂r − (sin θ/r)∂θ, (6.6)

since φ does not depend on z (tanφ = y/x). We may express ∂x and ∂y in terms of spherical coordinates and
corresponding derivatives following the same route, and inserting the results into Eq. (6.5) provides:

L̂x =
�
i
(− sinφ∂θ − cotθ cosφ∂φ),

L̂y =
�
i
(cosφ∂θ − cotθ sinφ∂φ),

L̂z =
�
i
∂φ. (6.7)

Using that L̂
2
= L̂2

x + L̂2
y + L̂2

z , we also identify:

L̂
2
= �2(∂2

θ + cotθ∂θ + (1/ sin2 θ)∂2
φ). (6.8)

Having established what the orbital angular momentum operators are (we specify "orbital" to distinguish them
from internal angular momentum operator we shall introduce soon, namely spin), we can now discuss their
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eigenfunctions.

For L̂z , it follows that the eigenvalue equation

L̂zΦ(φ) =
�
i
∂φΦ = m�Φ(φ) (6.9)

is satisfied by Φ(φ) = eimφ. Since an advancement of φ by 2π should land us at exactly the same physical point, m
must be an integer to ensure that Φ(φ) = Φ(φ+2π). Note that this is exactly the same property and eigenfunction
that we discussed for a rotationally symmetric potential in 2D in the previous chapter [see Eq. (5.23)]! This is no
coincidence: a rotationally symmetric potential in 2D (say, the xy-plane) results in the angular momentum along
the z-direction being conserved. Therefore, the eigenfunction of such a system should be an eigenstate of L̂z with
a well-defined eigenvalue. Since L̂z only acts on φ, and not θ, it follows that a common set of eigenfunctions for
L̂

2
and L̂z must have the general form:

Y (θ, φ) = Θ(θ)eimφ. (6.10)

Let us then write the eigenvalue problem for L̂
2

as:

L̂
2
Y = λ�2Y. (6.11)

The reason for why we have written the eigenvalue as λ�2, rather than simply some constant c, is that L2 has
dimension �2. In this way, λ is guaranteed to be a dimensionless quantum number. Inserting Eq. (6.10) into Eq.
(6.11) gives an equation that determines Θ(θ):

( 1

sin θ
∂θ sin θ∂θ + λ− m2

sin2 θ

)
Θ(θ) = 0. (6.12)

We introduce the auxiliary quantity X ≡ cos θ and rewrite the equation as

(
(1−X2)∂2

X − 2X∂X + λ− m2

1−X2

)
Θ = 0. (6.13)

To solve this equation, we draw upon the Legendre-polynomials. The differential equation
(
(1−X2)∂2

X − 2X∂X + λ
)
Θ = 0, (6.14)

which is obtained by setting m = 0 in Eq. (6.13) is known as Legendre’s differential equation. Although it can be
solved mathematically for arbitrary values of λ, it only has a physically acceptable solution for specific, discrete
values of λ. To examine it further, we expand Θ in powers of X (the same strategy we used in the harmonic
oscillator problem):

Θ =

∞∑
n=0

anX
n. (6.15)

Plugging this into Eq. (6.14) gives us a recursion formula for the coefficients (again, similarly to the harmonic
oscillator case):

an+2

an
=

n(n+ 1)− λ

(n+ 1)(n+ 2)
, n = 0, 1, 2, . . . (6.16)

To obtain a physically acceptable wavefunction, we must ensure that Θ does not diverge. A potential problem
arises when X = 1 (corresponding to θ = 0) in which case we have Θ =

∑∞
n=0 an. For large n, however, it

follows from Eq. (6.16) that an+2/an → 1 which in turn means that
∑∞

n=0 an is not guaranteed to converge (the
same happens e.g. for the divergent harmonic seriers

∑
n an where an = 1/n). We are forced to choose λ in Eq.

(6.16) so that the series is truncated (stopped) at some point. This happens when

λ = l(l + 1), l = 0, 1, 2, 3, . . . (6.17)
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When l is an odd number, the series with odd powers of X will cease with X l as the final term. Additionally,
we demand that a0 = 0 since the even powers of X are not truncated. Similarly, when l is an even number, we
demand that a1 = 0.

This procedure ensures that we obtain physically acceptable solutions of Eq. (6.13) which converge for any X ,
and that these solutions are polynomials of degree l. When the solutions are normalized so that the value of the
solution in X = 1 is 1, the solution is referred to as the Legendre polynomial Pl(X) of degree l:

Pl(X = 1) = Pl(θ = 0) = 1. (6.18)

From now on, we shall stick with the notation Pl for the solution rather than using Θ. A useful property is that
Pl(−X) = (−1)lPl(X).

So far, however, we have only considered the special case m = 0. In order to solve the original eigenvalue equation
Eq. (6.13) for m �= 0, we differentiate Eq. (6.14) m times (using the notation Pl for the solution rather than Θ, as
mentioned before) and obtain:

[
(1−X2)∂2

x − 2x∂x + l(l + 1)− m2

1−X2

][
(1−X2)m/2∂m

XPl(X)
]
= 0. (6.19)

Comparing this to Eq. (6.13) shows that we have now identified the solution. Namely, the function

Pm
l (X) = (1−X2)m/2∂m

x Pl(X) (6.20)

is the solution to Eq. (6.13) for arbitrary m (including m = 0).
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When treating the m = 0 case, an important issue was that we wanted to obtain solutions that were physically
acceptable (non-diverging). The same goes here: we are not just interested in any mathematical solution, but only
those solutions that can be normalized since the solution determines the quantum mechanical wavefunction. Since
the range of values that |X| can take lies within [0, 1], it is clear that Eq. (6.20) is a physically acceptable solution
for any X since Pm

l (X) is finite for |X| ≤ 1. Moreover, since Pl(X) is a polynomial of the l-th degree, Pm
l (X)

can only be finite when m ≤ l due to the differentiation ∂m
x Pl(X).

The functions Pl(X) are the Legendre polynomials, whereas the functions Pm
l (X) are known as the associated

Legendre polynomials. It is clear from Eq. (6.19) that since only m2 appears, the relation Pm
l (X) = P−m

l (X) is
satisfied. The first few associated Legendre polynomials read:

Pm=1
l=1 (X) =

√
1−X2, Pm=1

l=2 (X) = 3X
√
1−X2, Pm=2

l=2 (X) = 3(1−X2). (6.21)

They are normalized according to

∫ 1

−1

[Pm
l (X)]2dX =

2

2l + 1

(l + |m|)!
(l − |m|)!

(6.22)

and their parity [behavior under the transformation X → (−X)] is:

Pm
l (−X) = (−1)l−mPm

l (X). (6.23)

The reader is encouraged to try to show this from the parity property of P l(X), which we discussed earlier, and
from how we obtained the equation for Pm

l (X) in the first place.

Let us summarize our treatment of the common set of eigenfunctions for L̂
2

and L̂z so far. We have found that
the functions Ylm(θ, φ), which are products of eimφ and Pm

l (cos θ), are eigenfunctions of both L̂z and L̂
2

with
belonging eigenvalues:

L̂
2
Ylm = l(l + 1)�2Ylm where l = 0, 1, 2, . . . and L̂zYlm = m�Ylm where m = −l,−l + 1, . . . l − 1, l.

When Ylm are normalized to unity upon integration over all solid angles:

∫
|Ylm|2dΩ =

∫ 2π

0

∫ π

0

|Ylm|2 sin θdθdφ = 1 (6.24)

they are referred to as harmonics. The full form of Ylm is then:

Ylm(θ, φ) = tm

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimφ.

where tm can be freely chosen as +1 or −1. Usually, one sets tm = 1 for m ≤ 0 and tm = (−1)m for m ≥ 0.

We also mention the parity properties of Ylm, since these are often useful when performing integrals. Inversion
has the effect that r → −r, which in spherical coordinates is equivalent to r → r, θ → π − θ, and φ → φ + π.
Consequently, eimφ → (−1)meimφ and X = cos θ → −X which means that

Ylm(π − θ, φ+ π) = (−1)lYlm(θ, φ). (6.25)

The parity of the spherical harmonics is thus exclusively determined by the quantum number l. The parity is odd
for odd l whereas it is even for even l. It should be noted that often times in the literature, one uses letters to
classify the spherical harmonics rather than their quantum number l. Specifically, one uses

• s for l = 0

• p for l = 1
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• d for l = 2

• f for l = 3

and so forth. The origin of this nomenclature is the characterization of certain groups of spectral lines analyzed
toward the end of the 19th century, where for instance s stands for "sharp" and p for principal. Some specific
expressions for the spherical harmonics are as follows:

Y00 =
1√
4π

, Y10 =

√
3

4π
cos θ, Y1,±1 = ∓

√
3

8π
sin θe±iφ. (6.26)

Note how the s-component Y00 is rotationally invariant, as it is independent of both θ and φ. The spherical
harmonics form a complete orthonormal set, which means that an arbitrary function g(θ, φ) existing on the surface
of a sphere can be expanded in these (a property often made use of in physics):

g(θ, φ) =

∞∑
l=0

m=l∑
m=−l

cmlYlm(θ, φ) (6.27)

where cml are the expansion coefficients. The orthonormality property is expressed in the standard way:
∫

Y ∗
lm(θ, φ)Yl′m′(θ, φ)dΩ = δll′δmm′ . (6.28)

B. Central potentials and application to the Coulomb potential

We previously saw how the eigenfunctions for a 2D rotationally symmetric potential were proportional to eimφ,
which we by now know is the eigenfunction for L̂z . This makes sense since Lz is a conserved quantity for system
that is rotationally symmetric around the z-axis. We now extend these considerations to 3D and also have a look
at the Coulomb-potential as a specific example.

A mass m moving in a spherically symmetric potential V (r) = V (r) has the Hamilton-operator:

Ĥ = − �2

2m
∇2 + V (r). (6.29)

Introducing spherical coordinates, and making using of the definition of L̂
2

in Eq. (6.8), this can be rewritten as:

Ĥ = − �2

2m

(
∂2
r + (2/r)∂r

)
+

L̂
2

2mr2
+ V (r). (6.30)

The terms associated with the kinetic energy of the particle thus describe both motion in the radial direction and
rotation, the latter described precisely by the term ∝ L̂

2
. When faced with a Hamilton-operator, one of the first

things which are useful to note is which other operators corresponding to physical quantities that commute with it.
In this case, it is clear that L̂

2
commutes with Ĥ , since Ĥ depends on L̂

2
and L̂

2
commutes with itself. Moreover,

we showed in the previous section that the components of angular momentum all commute in general with L̂
2
.

Because of this, we can state that L2 and Lj (j = x, y, z) are all conserved quantities and that there exists a set of
common eigenfunctions for the (i) energy, (ii) square of the total angular momentum, and (iii) one of the angular
momentum components (conventionally chosen to be Lz). We proved in the previous section that Ylm(θ, φ) are
the eigenfunctions for L̂

2
and L̂z , which means that the common set of eigenfunctions for these operators and Ĥ

must have the form:

ψ(r, θ, φ) = R(r)Ylm(θ, φ). (6.31)

Using that L̂
2
Y = l(l + 1)�2Y , insertion of Eq. (6.31) into Ĥψ = Eψ gives

∂2
rR+ (2/r)∂rR+

(2m
�2

[E − V (r)]− l(l + 1)

r2

)
R = 0. (6.32)
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Remarkably, we can rewrite this equation as the usual one-dimensional SE for a particle moving in an effective
potential Veff. This is done by introducing u(R) = rR(r) and

Veff = V +
l(l + 1)�2

2mr2
, (6.33)

in which case Eq. (6.32) takes the form:

− �2

2m
∂2
ru(r) +

(
V (r) +

l(l + 1)�2

2mr2

)
u(r) = Eu(r).

We see that the effective potential Veff consists of the original potential and a so-called centrifugal term l(l +
1)�2/2mr2. The sketch of Veff below [where V (r) is an attractive potential] shows that the effect of the centrifugal
term is, in general, to make small values of r less accessible to the particle whenever l �= 0. In many cases, Veff
acquires a minimum at a finite value r = r0 (not shown in the figure).

Veff(r)

r

l > 0

l = 0

0
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To determine the full wavefunction ψ(r, θ, φ) for a spherically symmetric potential, the only remaining task is to
solve the equation above for u(r) for r ≥ 0, since that provides us with the R(r) that goes into Eq. (6.31) (we
have already determined Ylm). Before attempting to solve the equation generally, let us make some considerations
regarding how u(r) should behave in various limits. First of all, it is clear that u(r = 0) must vanish, the reason
being that otherwise R(r) = u(r)/r will diverge as r → 0. Secondly, consider the asymptotic limit r → ∞.
Assuming that the potential satisfies V (r → ∞) → 0 (as virtually all real potentials do), the equation for u
reduces to

u′′ = −2mE�−2u (6.34)

where ′ denotes differentiation with respect to r. Any bound state with E < 0 will then exponentially decay to
zero as follows

u(r) ∝ e−κr for r → ∞, (6.35)

where κ =
√
2m|E|/�2. Another important case occurs when the potential V (r) diverges slower than 1/r2, in

which case the centrifugal term will dominate when r → 0. The equation for u then takes the form:

u′′ � l(l + 1)

r2
u (6.36)

which has the physically acceptable solution u(r) � rl+1. Therefore, assuming that the centrifugal potential
dominates as r → 0, we have R(r) ∝ rl for r → 0.

Starting out with a spherically symmetric potential in 3D, we have managed to reduce the problem to solving a
one-dimensional problem (with r as coordinate) with an effective potential Veff(r). We now consider specifically
the Coulomb-potential, as the most important application of this problem. The electrostatic interaction between a
particle with charge Ze, position in the origin of our coordinate system, and a moving electron with charge −e, is:

V (r) = − Ze2

4πε0

1

r
. (6.37)

We will begin by focusing on bound states, which thus have negative energy E < 0. It is important to note that
the term "bound state" generally refers to a state which has less energy than the asymptotic value of the potential
energy. In our case, this asymptotic value is zero and thus a bound state has E < 0. There is nothing weird about
the fact that the energy is negative, because we can always choose the reference level of energy as we like. It
should be noted that besides the presumably discrete bound state spectrum we will find, there also exists a conntin-
uous energy spectrum E ≥ 0 corresponding to particles with too high energy to be bound by the potential. The
continuous part of the spectrum will be of importance when discussing scattering of charged particles on each other.

The radial equation that needs to be solved in the specific case of a Coulomb equation reads:

�2

2m
∂2
ru+

[ Ze2

4πε0

1

r
− l(l + 1)�2

2mr2
+ E

]
u(r) = 0. (6.38)

We can bring this equation to a more convenient form by introducing the auxiliary quantity ρ = r
√

−8mE/�2
and dividing the equation on −4E:

∂2
ρu+

[λ
ρ
− l(l + 1)

ρ2
− 1

4

]
u(ρ) = 0. (6.39)

Here, we introduced the quantity:

λ =
Ze2

4πε0�

√
m

−2E
. (6.40)

It turns out that the method we used to identify the energy eigenvalues in the harmonic oscillator case is very
useful, because we can apply precisely the same strategy here as well. We start by considering how u(ρ) behaves
for large distances ρ, in which case Eq. (6.39) reduces to

∂2
ρu � u/4. (6.41)
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There are two solutions: u = e±ρ/2. However, only the solution e−ρ/2 is physically acceptable, as the other one
diverges as ρ → ∞. Therefore, we can now set

u(ρ) = v(ρ)e−ρ/2 (6.42)

where v(ρ) should be a polynomial that is completely dominated by e−ρ/2 for large ρ. Inserting Eq. (6.42) into
Eq. (6.39) gives us the equation for v(ρ):

∂2
ρv − ∂ρv + λv/ρ− l(l + 1)v/ρ2 = 0. (6.43)

Since v must be a converging polynomial, we expand it in ρ:

v(ρ) = c0ρ
l+1 + c1ρ

l+2 + . . . =

∞∑
k=0

ckρ
l+1+k. (6.44)

Note how the lowest order of ρ is l+1 rather than zero, the reason being that we have already identified above that
u(r) � rl+1 as r → 0. Inserting our expansion into Eq. (6.43) provides

∑
k

(
ck[k(2l + 1 + k)]ρl+k−1 − ck[l + 1 + k − λ]ρl+k

)
= 0. (6.45)

As in the harmonic oscillator case, this is equivalent to a recursion equation for the coefficients {ck} since the
coefficient in front of each order of ρ have to vanish in order to satisfy the equation. From Eq. (6.45), we obtain:

ck
ck−1

=
l + k − λ

k(2l + 1 + k)
, (6.46)

so that the full solution of v(ρ) can be written as:

v(ρ) = c0

[
ρl+1 +

l + 1− λ

2l + 2
ρl+2 +

(l + 1− λ)(l + 2− λ)

(2l + 2)(4l + 6)
ρl+3 + . . .

]
. (6.47)

The necessity to truncate this series can be seen by noting that for large k, it follows from Eq. (6.46) that ck/ck−1 �
1/k. This is the same ratio between two successive coefficients as in the series expansion of eρ for large k. The
asymptotic behavior for large ρ, where the large values of k are most relevant, would then be v(ρ) = eρe−ρ/2 =
eρ/2 which diverges and is thus not acceptable. Therefore, we must choose λ as an integer we name n which is
larger than or equal to l+1 in order to truncate the series in Eq. (6.47), as seen from the coefficients. For instance,
if we choose

λ = l + 1 + j, (6.48)

where j = 0, 1, 2, . . ., it follows from Eq. (6.45) that cj+1 = 0. The smallest value accessible for n is 1, so that

l ≤ n− 1. (6.49)

Going back to the definition of λ in Eq. (6.40), we see that the criterium that λ = n gives us a quantization
condition for the energy E:

En = − m

2�2
( Ze2

4πε0

)2 1

n2
, n = 1, 2, . . .

Since n, which is known as the principal quantum number, can take on any value among the natural numbers,
there are infinitely many bound states. Note how the energy levels only depend on n, and not e.g. on quantum
numbers l and m associated with the angular momentum. The number of discrete, available energy states pile up
as one approaches E = 0 (see figure).
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Another common way to write the quantized bound state energies of a charged particle in a Coulomb potential is

En = −1

2
mec

2α2Z
2

n2
. (6.50)

Here, me is the electron mass while

a0 ≡ 4πε0
e2

�2

me
� 0.529× 10−10 m. (6.51)

is the Bohr radius, which is a convenient length scale to work with (e.g. to normalize lengths against) in atomic
physics. Also, we introduced the fine-structure constant in Eq. (6.50):

α ≡ e2

4πε0�c
� 1

137
. (6.52)

We noted previously that the energy levels in Eq. (6.50) depend only on the principal quantum number n, which
means that there is a large degeneracy associated with each eigenenergy. For a specific value of n, we know that l
takes the values l = 0, 1, 2, . . . n−1. Moreover, for each l-value there are (2l+1) possible values for the quantum
number m associated with the z-component of the angular momentum. The total degeneracy for a given eigenvalue
En is then gn where:

n−1∑
l=0

(2l + 1) = n2. (6.53)

Having identified the eigenvalues of the Coulomb-potential, we can now turn our attention to the eigenfunctions.
In our above treatment, we concluded that the radial eigenfunctions had to have the form:

Rnl = ρle−ρ/2M(ρ), (6.54)

where ρ = r
√
−8mE/�2 (where the m is the mass of the particle) and M(ρ) is a polynomial of degree n− l− 1.

The latter is defined via

M(ρ) =
∞∑
k=0

ckρ
k (6.55)

where the expansion coefficients are determined by

ck
ck−1

=
l + k − n

k(2l + 1 + k)
, (6.56)

in effect Eq. (6.46) where we have set λ = n to truncate the series and ensure convergence. Only one coefficient,
namely the first one (c0), remains undetermined via the recursion formula above. However, c0 can be determined
from the normalization:

∫ ∞

0

|Rnl(r)|2r2dr = 1. (6.57)

Using the above equations, we find that:

Rn=1,l=0 = 2a−3/2e−ρ/2,

Rn=2,l=0 = 2−1/2a−3/2(1− ρ/2)e−ρ/2,

Rn=2,l=1 = 24−1/2a−5/2ρe−ρ/2. (6.58)

and so forth. Since we may rewrite ρ as ρ = 2r/na with a = a0me/Zm, we confirm the above comment that a0
is a natural length scale characterizing the spatial extent of the wavefunctions. We also emphasize that ρ depends
on n, meaning that ρ is different for each Rnl in Eq. (6.58).
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Application to two-particle systems
It might seem like our present treatment of a particle moving in a Coulomb potential can be directly applied to
the hydrogen atom, describing the electron-proton interaction. However, strictly speaking, the atomic core is not
necessarily at rest while the electron is moving: it depends on the relative mass of the two constituents. Never-
theless, we know from classical mechanics that we may reduce a two-particle problem with central interactions
(depending only on |r| = r) to an effective one-body problem. Interestingly, even when the interaction is not
central, the two-body problem can be reduced to two decoupled one-body problems. This is done as follows.
Consider the classical Hamiltonian for two particles with mass m1 and m2 that interact via a potential V (r) (that
is not necessarily rotationally symmetric):

H(r1, r2,p1,p2) =
p2
1

2m1
+

p2
2

2m2
+ V (r1 − r2). (6.59)

Let us introduce the center-of-mass coordinate R and the relative coordinate r:

R =
m1r1 +m2r2

m1 +m2
, r = r2 − r1. (6.60)

To find the quantum mechanical Hamilton operator in terms of these coordinates, we follow the usual prescription
of identifying the classical Hamiltonian and then letting r → r̂ and p → p̂. Using that

r1 = R− m2

m1 +m2
r, r2 = R+

m1

m1 +m2
r, (6.61)

we can rewrite Eq. (6.59) to

H(R, r,P ,p) =
P 2

2M
+

p2

2m
+ V (r). (6.62)

Here, we introduced the CM mass M = m1 +m2, the reduced mass m = m1m2/(m1 +m2), and the center-of-
mass momentum P and relative momentum p according to:

P = MṘ, p = mṙ. (6.63)

The corresponding SE for stationary states is obtained by introducing the operators as mentioned above, so that:

[
− �2

2M
∇2

R − �2

2m
∇2

r + V (r)
]
ψ(R, r) = Eψ(R, r). (6.64)

The point is now that Eq. (6.64) is a separable equation, which occurs precisely when we have two decoupled
subsystems. This can be seen by writing

ψ(R, r) = ψCM(R)ψrel(r), (6.65)

where the equation for the center-of-mass (CM) wavefunction ψCM is:

− �2

2M
∇2

RψCM = ECMψCM(r). (6.66)

Similarly, the equation for the wavefunction ψrel is:

− �2

2m
∇2

rψrel + V (r)ψrel = Erelψ. (6.67)

and the total energy of the system is the sum of the energies associated with the center-of-mass motion (ECM) and
the relative motion (Erel) of the particles: E = ECM + Erel.

The results we have obtained in this way can then be interpreted physically as follows. The two-particle problem
with an interaction V (r1 − r2) is formally equivalent to two independent one-body problems: one for the center-
of-mass motion and one for the relative motion of the particles. The CM motion is that of a free particle with mass
M whereas the relative motion is that of a particle with mass m moving in a potential V (r).
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C. Generalized angular momentum operators

Our treatment of the magnitude squared of the angular momentum, L2, showed that the possible eigenvalues for
its quantum mechanical operator L̂

2
where l(l + 1)�2 where l = 0, 1, 2, . . .. Similarly, the allowed eigenvalues

for L̂z where m�, where m = −l,−l+1, . . . l− 1, l. Since not all angular momentum operators can be expressed
as L = r × p, it is necessary to generalize the treatment given previously. This will allow us to describe internal
angular momentum such as spin, which we treat in the next section.

A general angular momentum operator Ĵ in quantum mechanics (of which L̂ is a special case) is defined by the
commutation rules satisfied by its components:

[Ĵx, Ĵy] = i�Ĵz,

whereas the two other commutation rules follow from a cyclic change of coordinates: x → y, y → z, z → x.
These are precisely the commutation relations that we proved are valid for L̂. For brevity of notation, we skip
the ˆ. . . notation for operators in what follows. It is crucial to note that the commutation relation [J2, Ji] = 0
for i = x, y, z follows exclusively from the above set of commutation rules for the components. Therefore, we
know from our previous treatment of L that there exists a common set of eigenstates for J2 and for one of the
components, conventionally taken to be Jz . In this section, we introduce a new notation for the eigenstates which
enables the eigenvalue equations to be written as follows:

J2|j,m〉 = �2j(j + 1)|j,m〉
Jz|j,m〉 = �m|j,m〉. (6.68)

The notation |j,m〉 for the "wavefunction" (more precisely, state) of the system is due to Dirac and known as
bra-ket notation. It is used in the general formulation of quantum mechanics and treated in full detail here.
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Using wavefunctions to describe the system is in fact only relevant for a position representation of quantum
mechanics, and this representation is a special case of a more general theory (described in the book linked above).
For our present purposes, where the main focus is the properties and quantization of angular momentum operators,
we shall be content with simply using the object | . . .〉 to describe the state of the system in terms of the quantum
numbers j and m.

Which values can j and m take in general? A dimensional check of Eq. (6.68) reveals that j and m must be
dimensionless numbers. Since the square of a Hermitian operator, J2, must be a real and non-negative number, we
know that j(j+1) ≥ 0. Moreover, we can set j ≥ 0 without loss of generality since any non-negative number can
be written as j(j+1) when j ≥ 0. For now, that is all we know about these numbers, but we shall now investigate
how we can find out more. To determine the precise values that j and m can take, we define the operators:

J± = Jx ± iJy. (6.69)

Since Jx and Jy commute with J2, J± also commutes with J2 since it is a linear combination of the former. Let
us also compute the commutator between Jz and J±, which will come in handy soon:

[Jz, J±] = i�Jy ± i(−i�Jx) = ±�(Jx ± iJy) = ±�J±. (6.70)

Let us also examine the effect that J± has when acting on the state |j,m〉:

J2J±|j,m〉 = J±J
2|j,m〉 = j(j + 1)�2J±|j,m〉. (6.71)

In effect, J±|j,m〉 is an eigenvector for J2 with the same eigenvalue as |j,m〉 has. Similarly, we find that

JzJ±|j,m〉 = (J±Jz ± �J±)|j,m〉 = �(m± 1)J±|j,m〉. (6.72)

From Eq. (6.71) and (6.72), we may conclude that J±|j,m〉 is a set of common eigenvectors for both J2 and Jz ,
but with a different set of eigenvalues for the Jz operator. In particular, m has been advanced by one unit compared
to the eigenstates |j,m〉. Specifically, we have shown in Eq. (6.72) that:

J±|j,m〉 = c±|j,m± 1〉, (6.73)

where c± is a constant. The operators J+ and J− thus earn their name of raising and lowering operators,
respectively, as their effect is to raise or lower the m-value of the eigenstate. Their collective name is ladder
operators.

It is physically reasonable that the maximum value that m can take should be limited by j, just as we found in
the orbital angular momentum case when J = L. This can be understood by noting that when the magnitude is
determined by j, one of the components (e.g. Jz) cannot be arbitrarily large, but rather limited by precisely the
magnitude of the total vector. Indeed, one can show formally (try it!) that for a given value of the quantum number
j, the allowed values for m are:

m = −j, j + 1, . . . j − 1, j.

while the allowed values for j are:

j = 0,
1

2
, 1,

3

2
, . . .

These results are consistent with our treatment of the special case where J is the orbital angular momentum
L = r × p. In this case, the quantum number l (corresponding to j above) was found to take integer values.
However, other types of angular momentum allows j to take half-integer values. One peculiar consequence of this
is that in some cases, one needs to do a 4π rotation rather than 2π in order to get back to the original starting point!
Such angular momenta must have a fundamentally different origin than the orbital angular momentum L, and we
shall now have a look at precisely such an example.



INTRODUCTION TO QUANTUM MECHANICS

63

Quantization of spin and other angular momenta

63

D. Quantum spin

Our treatment thus far has focused on either a particle moving in some external potential or particles interacting
with each other. As we saw in our treatment of the Coulomb potential in the previous section, the orbital angular
momentum of the system is a pivotal part of the physical description of the problem. However, it turns out that a
single particle, even when at rest, also has an internal angular momentum known as spin. When an elementary
particle is charged, there is also a magnetic moment µ associated with the spin S. For instance, electrons have
spin and an internal magnetic moment, whereas neutrinos have spin but no magnetic moment. Composite particles
(such as neutrons consisting of three quarks) can have a magnetic moment in spite of having zero net charge.
Particles such as electrons, positrons, protons, neutrons, and neutrinos all are characterized by the quantum
number s = 1/2. The number s plays the same role as the quantum number l did for the angular momentum:
it characterizes the magnitude of the spin. A photon has spin s = 1. Moreover, the quantum number ms is the
equivalent of the number m we introduced for angular momentum: it characterizes the magnitude of the spin
angular momentum component along a specific axis.

How do we know that particles have spin? There is abundant experimental proof of this, such as the Zeeman-effect
and the Stern-Gerlach experiment. Strictly speaking, the latter experiments probe the magnetic moment µ that
exists due to the spin S, but the spin is actually manifested in atomic spectra even without the presence of a
magnetic field (we shall have more to say about this later). To think about spin in a simplified manner, one may
envision an electron spinning around its own axis and creating an angular momentum. However, this is just a
"cartoon" picture which cannot be taken literally for several reasons, one being that our previous treatment of the
orbital angular momentum L showed that the associated quantum number l only took integer values. The spin
of electrons, on the other hand, takes a half-integer value. Therefore, it should not be literally be considered a
rotational motion in space.

From our treatment of generalized angular momentum operators J in the preceeding section, we know that if
s = 1/2 the allowed values for the quantum number ms associated with the operator Sz are ms = ±1/2. We may
then write the two common eigenstates |s,ms〉 for S2 and Sz as:

∣∣∣1
2
,
1

2
〉 and

∣∣∣1
2
,−1

2
〉. (6.74)

How does spin enter in the Hamilton-operator? For a charged particle, we stated above that the spin S is accom-
panied by a magnetic moment µ. The same thing happens for the orbital angular momentum associated with a
circulating charge current, which produces a magnetic moment according to:

µL =
q

2m
L (6.75)

where L is the orbital angular momentum associated with the circular motion of the particle. A charge moving in
a circular orbit with velocity v has L = mvR where R is the radius of the orbit, and the current is I = q

2πR/v .
Therefore, the magnetic moment (the product between current and area) is µL = IA = qvR/2 = qL/2m.

µ

L

Current loop

Now, if angular momentum operators J in general have a magnetic moment µJ associated with them, then we
may conclude that generally we should be able to write

µJ = gJ
q

2m
J (6.76)
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where gJ , known as the g-value, for the sake of consistent dimensionality must be a dimensionless number. For
orbital angular momentum, we thus have gJ = gL = 1. For the magnetic moment arising in this manner from the
spin of an electron with charge q = −e, we thus have

µS = gS
(−e)

2me
S (6.77)

where gS is predicted to be gS = 2 whereas one experimentally finds that it is very close to this value: gS � 2.002.

If we accept that the electron spin produces a magnetic moment, one consequence is that it will enter the Hamilton-
operator via a term −µ · B in the presence of an external magnetic field B. This is because of the well-known
coupling between magnetic fields and magnetic moments present in electromagnetic theory. The difference in the
quantum mechanical treatment is, as we have seen consistently throughout the book, that we replace the classical
quantities with their corresponding operators. In effect, µ is proportional to the quantum mechanical angular
momentum operator S. A further treatment of spin is more conveniently handled using the generalized formulation
of quantum mechanics introduced in the beginning of the freely available book Intermediate Quantum Mechanics.
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VII. QUANTUM STATISTICS AND EXCHANGE FORCES

Learning goals. After reading this chapter, the student should:

• Understand where the symmetry requirements for the wavefunction of bosons and fermions come from and
some of its physical consequences.

• Be able to account for the Pauli principle and why it is of physical relevance in real systems.

• Understand how exchange forces arise due to the symmetry requirements of the wavefunction and how these
are of physical relevance.

We have seen multiple examples of the SE for various single-particle systems throughout this book so far. In
principle, the SE is established for a many-body system by generalizing the single-particle Hamilton-operator and
including interactions between the particles. However, there is a fundamental principle in the theory of quantum
mechanics that we have not mentioned yet, which becomes of crucial importance when treating many-body systems
with identical particles. The concept of identical particles is something pertaining uniquely to quantum theory,
because from a classical physics perspective there is no such thing: the motion of particles can (in principle) always
be computed sharply without any uncertainty. In quantum mechanics, on the other hand, one cannot distinguish
between identical particles such as electrons. This is more than semantics, as it has real experimental consequences.
For instance, the energy spectra of atoms would in general be completely different if identical particles were not
indistinguishable, as we shall see. Therefore, something as fundamental as the periodical system in fact relies on
quantum mechanical considerations of identical particles in the form of the so-called Pauli exclusion principle (we
shall have much more to say about this in this chapter).

A. Symmetry of the wavefunction

Consider a quantum mechanical wavefunction Ψ = Ψ(1, 2) describing a system consisting of two identical parti-
cles labelled 1 and 2. The label "1" thus refers to both the position r1 of the particle and its spin quantum number
ms,1. Since all electrons have s = 1

2 , it suffices to explicitly consider ms = { 1
2 ,−

1
2}. Now, if the particles are

truly identical, the physical properties of the system must be completely invariant if we exchange the two: 1 ↔ 2.
Since we know that the absolute value squared of Ψ corresponds to the probability density, we must thus demand
that

|Ψ(1, 2)|2 = |Ψ(2, 1)|2. (7.1)

Mathematically, only a phase-factor of the type eiα with α ∈ � can separate the two wavefunctions so that

Ψ(1, 2) = eiαΨ(2, 1). (7.2)

We see that this can be achieved in at least two ways. If α = 0, the wavefunction is symmetric under an exchange
of particle coordinates. If α = π, the wavefunction is antisymmetric (acquires a minus sign) under an exchange of
particle coordinates. Particles which have a symmetric wavefunction under exchange of the coordinates are known
as bosons, whereas the antisymmetric case occurs for fermions:

Ψ(1, 2) =

{
+Ψ(2, 1) for bosons
−Ψ(2, 1) for fermions.

(7.3)

In systems where the spatial and spin coordinates are independent on each other, we can write the total wavefunc-
tion as a Ψ(1, 2) = ψ(r1, r2)χ(ms,1,ms,2) where ψ describes the spatial behavior of the particles whereas χ
describes the spin behavior. It follows from Eq. (7.3) that if a system consisting of two fermions has a spatial part
ψ that is symmetric under exchange of 1 and 2, then the spin part must be antisymmetric.
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For instance, let ↑ and ↓ be short-hand notation for the states |s = 1
2 ,ms =

1
2 〉 and |s = 1

2 ,ms = − 1
2 〉, respectively.

The notation stems from thinking of ms = + 1
2 as a spin pointing upwards since Lz > 0, whereas ms = − 1

2
corresponds to a spin pointing downward since Lz < 0. A singlet state

χ ∝ (↑1↓2 − ↓1↑2) (7.4)

is clearly antisymmetric under an exchange 1 ↔ 2. On the other hand, either of the triplet states

χ ∝





↑1↓2 + ↓1↑2
↑1↑2
↓1↓2

(7.5)

is symmetric under the same exchange.

Whether a particle is regarded as a boson or fermion is in fact determined by the spin quantum number s:

Integer spin particles (s = 0, 1, . . .) are bosons, while half-integer spin (s =
1

2
,
3

2
, . . .) particles are fermions.

Experimentally, this relation between the spin of the particle and the symmetry property of a wavefunction
describing multiple such particles is well documented. It is common terminology to state that bosons adhere to
Bose-Einstein statistics whereas fermions adhere to Fermi-Dirac statistics, with the word "statistics" pointing to
the behavior of the distribution of such particles in a system.

It is also possible to take the viewpoint that a system comprised of N number of identical particles should collec-
tively act as either a boson or a fermion. For such composite systems, it is the fermion number F of the composite
system which decides how permutation of the coordinates of two such composite systems will affect the sign of
the total wavefunction Ψ describing the composite systems. In particular, such a permutation gives a factor (−1)F

when both composite systems have fermion number F . Therefore, a system comprised of two fermions (F = 2)
act as an effective boson in terms of its statistical properties whereas any odd number F of fermions will have
act as an effective fermion. This difference manifests very clearly experimentally, for instance in the behavior of
4He-atoms (which act as bosons since F is even for that system) versus 3He-atoms (where F is odd).

B. The Pauli exclusion principle and its range

One of the most fundamental consequences of the symmetry properties of bosons and fermions under an exchange
of particle coordinates in the system is the Pauli exclusion principle (or simply the Pauli principle):

Two fermions cannot occupy exactly the same single-particle quantum state.

To see this, consider for concreteness a system consisting of two fermions in the states ψi and ψj , where i and j
refer to e.g. specific values of the principal quantum number n for particles moving in a Coulomb-potential. We
consider only the spatial part ψ of the wavefunction to keep the notation simple. The antisymmetric combination:

ψ(1, 2) =
1√
2
[ψi(1)ψj(2)− ψj(1)ψi(2)] (7.6)

satisfies ψ(1, 2) = −ψ(2, 1), as required for fermions. Note that this wavefunction indeed is a solution to the SE
for the system which may be written as

Ĥ = Ĥ(1) + Ĥ(2) (7.7)

for two non-interacting particles, since (as we have seen previously in this book) product states of the type
ψi(1)ψj(2) are eigenstates of this Ĥ with belonging energy eigenvalue E = Ei + Ej .

Importantly, it follows from Eq. (7.6) that ψ = 0 when the two particles are in the same state i = j even if the
particles occupy different positions in space (1 �= 2). The same holds true also in the presence of interactions
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between the particles. We also note that even if the particles are in different quantum states (i �= j) for the system
described by Eq. (7.6), they cannot occupy exactly the same spatial position since ψ(1, 1) = 0. The factor 1/

√
2

ensures that the total wavefunction is normalized to unity when ψi and ψj are individually normalized to unity.
Thus, the Pauli principle follows directly from the required symmetry property of fermionic wavefunctions: the
total wave function for two identical fermions is antisymmetric with respect to an exchange of the particles.

Now, there exists a general strategy for writing down wavefunctions that are ensured to have the correct fermion
symmetry, namely via determinants. For instance, we can write Eq. (7.6) as:

ψ(1, 2) =
1√
2

∣∣∣∣
ψi(1) ψi(2)
ψj(1) ψj(2)

∣∣∣∣ . (7.8)

Such a wavefunction is known as a Slater-determinant. It can be generalized to a wavefunction describing N
fermions residing in the single-particle states ψ1, ψ2, . . . ψN :

ψ(1, 2, . . . N) =
1√
Z!

∣∣∣∣∣∣∣

ψ1(1) ψ1(2) . . . ψ1(N)
ψ2(1) ψ2(2) . . . ψ2(N)
. . . . . . . . . . . .

ψZ(1) ψZ(2) . . . ψZ(Z)

∣∣∣∣∣∣∣
(7.9)

which then by constructing is antisymmetric. An exchange of two particle coordinates, such as 3 and 7, will
give a determinant which only differs from the original one by the exchange of two columns. Such an operation
mathematically provides precisely the desired changed in overall sign. Moreover, if two of the states the
particles are residing in are equal, such as ψ4 = ψ5, two rows in the determinant become identical which again
mathematically renders the determinant (and thus the wavefunction) equal to zero. If the fermions interact with
each other, Eq. (7.9) is no longer the exact solution of the SE, but it is still useful as a starting point for an
approximative calculation of e.g. the energy eigenvalues.
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Does the Pauli principle apply to any two electrons in the universe? Yes, the Pauli principle has an infinite range.
However, it only has a practical consequence when the two electrons are close enough so that there is an overlap
between their wavefunctions. We know now that a wavefunction describing two electrons must be antisymmetric
in their coordinates, such as their positions. Neglect spin in what follows for brevity of notation. If we have two
electrons 1 and 2 belonging to an atom where the eigenfunctions are labelled ψj where j is a quantum number
describing the state, we can then antisymmetrize the total wavefunction in the following way to describe the total
state:

Ψ(1, 2) = ψn(r1)ψm(r2)− ψm(r1)ψn(r2). (7.10)

where (n,m) are a set of quantum numbers describing the state and (1,2) describes the electron coordinates.
Clearly, the above satisfies Ψ(1, 2) = −Ψ(1, 2). The generalization of this to N fermions is called a Slater
determinant, as we have seen above. We see from this expression that the two electrons should not be able to
reside in exactly the same type of state ψn, even if they have different positions, because the wavefunction then
vanishes:

ψn(r1)ψn(r2)− ψn(r2)ψn(r1) = 0. (7.11)

Now, it is important to distinguish such a scenario from a case where two electrons belong to different atoms
separated in space. In that case, these electrons can be in the same quantum state because their wavefunctions are
separated in space and thus centered around different points (the core of each atom). Let the separation distance
between the atoms be R. Then, their wavefunction is

Ψ(1, 2) = ψn(r1)ψm(r2 −R)− ψm(r1 −R)ψn(r2) (7.12)

Now, we see that even if m = n, the wavefunction does not vanish. It only vanishes if n = m and r1 = r2: the
electrons cannot be at exactly the same position and in the same quantum state. This is actually the basic principle
behind ferromagnetism: since electrons cannot be at the same position when they are in the same quantum state
(both spins pointing in the same direction, e.g. ms = + 1

2 ), they avoid the Coulomb interaction and lower the
energy of the system.

C. Exchange forces due to the Pauli principle

The example of ferromagnetism arising fundamentally from the symmetry requirement of fermionic many-body
wavefunctions demonstrates the importance of this result. The ferromagnetic case is an example of an exchange
interaction at work. Put differently, we can think of the electrons effectively interacting with each other because
of the symmetry property of the wavefunction that must be obeyed upon exchange of the particles. Let us take a
look at an additional example. Consider two non-interacting particles residing in a harmonic oscillator potential
V (q) = mq2/2 where q is the spatial coordinate and we define x ≡ q

√
mω/� as a dimensionless length. The

spin-part of the total wavefunction for the two particles is taken to be symmetric, for instance one of the triplet
states in Eq. (7.5). We stress that the Pauli principle holds even when interactions are taken into account: the
reason we are neglecting interparticle interactions is simply because they severly complicate the problem and do
not permit an exact analytical treatment. We are here interested in computing the quantity

〈(q1 − q2)
2〉 = �

mω
〈(x1 − x2)

2〉 (7.13)

which physically tells us something about the average distance between the particles. The two lowest-lying energy
eigenstates ψ0 and ψ1 for a particle in this potential read

ψ0(x) =
( 1

pi

)1/4

e−x2/2,

ψ1(x) =
( 4

π

)1/4

xe−x2/2 =
√
2xψ0(x). (7.14)
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The expectation value for x2 in these two eigenstates, respectively, is straightforward to compute:

〈x2〉ψ0 =

∫ ∞

−∞
ψ∗
0x

2ψ0dx =
1

2
,

〈x2〉ψ1
=

∫ ∞

−∞
ψ∗
1x

2ψ1dx =
3

2
. (7.15)

We now want to compute 〈(x1 − x2)
2〉 = 〈x2

1 + x2
2 − 2x1x2〉 and compare how the results differ for the scenario

where (i) the particles are different and (ii) where the particles are identical. In both cases, we shall let one particle
be in the ground-state ψ0 whereas the other is in the state ψ1.

Consider scenario (i) first. Let particle 1 be in the ground-state. Then, the wavefunction

Ψ(x1, x2) = ψ0(x1)ψ1(x2), (7.16)

solves the stationary SE. Note how the above wavefunction does not have any particular symmetry properties,
which there is no need for when the particles are not identical. It is clear that 〈xi〉 = 0, so that the result is

〈(x1 − x2)
2〉 = 〈x2

1〉ψ0
+ 〈x2

2〉ψ1
= 2. (7.17)

Let us compare this with scenario (ii). We may treat bosons and fermions simultaneously by writing the wavefunc-
tion as

Ψ(x1, x2) =
1√
2
[ψ0(x1)ψ1(x2)± ψ0(x2)ψ1(x1)] (7.18)

where the upper sign refers to the bosonic case and the lower sign refers to the fermionic case. Computing the
expectation value in the standard way now produces

〈(x1 − x2)
2〉 = 2∓ 1 =

{
1 for bosons
3 for fermions

. (7.19)

We are now in a position where we can compare the results. The average distance between the fermions is larger
than both the bosons and the case where the particles were distinguishable. On the other hand, the average distance
between the bosons is smaller than both the fermions and the case where the particles were different. Put in other
words, the fermions seem to repel while the bosons attract each other due to the symmetry requirement of the
wavefunction. It is precisely in this way that we can think of an effective exchange interaction between identical
particles which is traced back to the behavior of the wavefunction under an exchange of the particles.

There are many remarkable consequences of this exchange interaction. Besides the above mentioned example of
ferromagnetism occurring via electrons, the exchange attraction between bosons can under suitable circumstances
trigger a so-called Bose-Einstein condensation where a macroscopic number of bosons all reside in the same
quantum state. Such a Bose-Einstein condensate can display fascinating properties, such as superfluidity (although
this additionally requires bosons which have an interaction in the first place). Yet another example, which is of
high practical relevance to describe fundamental properties of materials, is that of a large number of non-interacting
fermions confined to a volume V . From the previous chapter in this book where we computed the density of states
for such a system, we know that the number of states R(E) with energy smaller than E is equal to:

R(E) = ns
4π

3

( 2m

(2π�)2
)3/2

V E3/2, (7.20)

where ns denotes the number of spin-states per particle. For electrons, ns = 2. Now, a metal should be decently
approximated by a large number of non-interacting (due to Coulomb screening) electrons in a volume V . If there
exists in total N0 electrons in this volume, then we can imagine that the electrons gradually fill up the energy levels
available in the system until they reach a maximum energy EF . This is the so-called Fermi energy. The reason for
why electrons have to reside in increasingly higher-lying energy levels is precisely due to the Pauli principle: no
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two electrons can reside in exactly the same quantum state, and hence the electrons have no choice but to occupy
higher and higher energy levels. The Fermi energy must then be defined by

R(EF ) = N0 (7.21)

since all electrons have an energy lower than or equal to the Fermi energy. We can rearrange this equation to

EF =
�2

2m

(3π2N0

V

)2/3

. (7.22)

Since the Fermi energy depends on the density of electrons N0/V , one can estimate its magnitude in a typical
metal to be between 1 and 10 eV. Comparing this with the thermal energy available at room-temperature T = 300
K, which is kBT � 0.025 eV, we see that the Fermi energy is much larger. Therefore, even at room-temperature,
the total system comprised of electrons is close to being in its ground state.

INSERT ADVERTISEMENT HERE

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

www.discovermitas.com

http://s.bookboon.com/mitas


INTRODUCTION TO QUANTUM MECHANICS

71

Periodic potentials and application to solids

71

VIII. PERIODIC POTENTIALS AND APPLICATION TO SOLIDS

Learning goals. After reading this chapter, the student should:

• Know how the quantum mechanical wavefunction ψ behaves in a periodic potential and understand the
strategy for obtaining ψ in the Kronig-Penney model.

• Understand how periodic potentials in quantum mechanics gives rise to energy bands and band gaps, and
how these can be used to describe real physical materials.

Quantum mechanics is a fundamental theory which pervades physics, not only shaping our understanding of how
nature works, but with real consequences for applied physics. For instance, quantum mechanics is the foundation
for the band theory of solid state materials. Why are some materials conductors, semiconductors, or insulators?
Whereas we previously stated that our free-electron model in a constant potential could be suitable to approximate
the behavior of metals, such a framework is no longer suitable when it comes to decsribing the properties of
insulating or even semiconducting materials. However, as it turns out, quantum mechanics encompasses a
description of such materials as well by introducing a more realistic potential profile that the electrons in a solid
move through - namely, periodic potentials.

Including electron-electron interactions in quantum mechanical calculations of many-body systems is an important,
yet very difficult task which does not permit any exact analytical solution. The band-theory of quantum mechanics
is based on a picture where electrons do not interact with each other. Although some types of solids cannot be
described without properly accounting for interactions, such as Mott insulators, it turns out that such an effective
single-particle theory works well in many circumstances and gives predictions which have been experimentally
verified. Note that by effective single-particle theory, we mean a Hamiltonian comprised of a sum of independent
particles as opposed to a Hamiltonian where interactions between the particles are included. The electrons moving
through the crystal of a solid feel a periodic potential V (r) due to the periodic nature of the crystal lattice. Pro-
ceeding in one dimension for brevity of notation (the results can be generalized to 3D in a straightforward manner),
the potential must then satisfy:

V (x) = V (x+ a) (8.1)

for any x. We have introduced the lattice constant a as the length of periodicity. The complete lattice of the
material is built up from unit cells which repeat throughout the entire material, and each unit cell thus has a length
a.

a

x

V (x)

A. Bloch functions

We start out by examining the energy eigenfunctions for an electron moving in a periodic potential. The SE is as
usual Ĥψ = Eψ where

Ĥ = − �2

2m
∂2
x + V (x). (8.2)
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Due to the periodic nature of the potential, the physics must be invariant upon moving from one unit cell to another
(i.e. spatial translation with a distance a). Therefore, we should demand that

|ψ(x)|2 = |ψ(x+ a)|2. (8.3)

This means that ψ(x) and ψ(x+ a) should be distinguished by a multiplicative factor with absolute value equal to
unity. Let us write this specifically as:

ψ(x+ a) = eikaψ(x) (8.4)

where k is a real quantity. We should thus be able to write generally that:

ψ(x) = eikxuk(x) (8.5)

is an acceptable solution where uk(x) = uk(x+ a) is a periodic function. In effect, we see that the wavefunction
for a periodic potential is a plane-wave eikx modulated by a function uk which must have the same periodicity
as the potential (lattice in this case) itself. An eigenfunction of the type shown in Eq. (8.5) is known as a
Bloch-function.

It is often instructive to derive results in different ways to gain more insight, and we therefore show how Eq. (8.5)
can be derived in a different way. Now, we want to make explicit use of the translational operator T̂a which has
the following effect on the wavefunction:

T̂aψ(x) = ψ(x+ a). (8.6)

T̂a thus advances the position with a length a. This operator commutes with Ĥ:

[T̂a, Ĥ]ψ(x) = (Ĥ − Ĥ)ψ(x+ a) = 0. (8.7)

Therefore, a common set of eigenfunctions should exist for these two operators. The eigenvalue problem for T̂a

has the form:

T̂aψ(x) = tψ(x), (8.8)

which implies that ψ(x+ a) = tψ(x) with t being a constant. If we repeat this procedure n times, we find

ψ(x+ na) = tnψ(x). (8.9)

To prevent the wavefunction ψ from diverging, we have to set |t| = 1 to prevent tn from growing indefinitely. This
means that we can parametrize t as eika precisely as before. Thus, ψ(x) = eikxuk(x) with uk(x+ a) = uk(x) is
indeed satisfied by the common set of eigenfunctions for T̂a and Ĥ .

Some comments are in order regarding the result that we have obtained. There is a striking similarity between
Eq. (8.5) and a regular plane-wave describing a free particle moving in zero potential: the main difference is that
the amplitude uk(x) is periodically modulated in the presence of a periodic potential. This is a fundamentally
important result: electrons moving in an ideal periodic structure will not scatter! They will behave qualitatively
similar to free electrons and move around without difficulty. It is a common misconception that the electrical
resistance of materials is caused by electrons scattering on the ion lattice of a solid state material (which sets up
the periodic potential). This is not the case: a perfect crystal at zero temperature has zero electrical resistance.
Instead, it is thermal vibrations of the lattice (which in quantum mechanical language is known as phonons) or
lattice imperfections/defects (such as impurity atoms) which cause scattering of electrons and thus cause electrical
resistance of currents.

B. Band structure and the Kronig-Penney model

Above, we treated the wavefunctions of a periodic potential. What about the energy eigenvalues? We will here
discover that the energy spectrum behaves quite differently compared to the other systems we have considered so
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far in this book. Specifically, we will find that the eigenvalues form continuous energy bands which are interrupted
by band gaps where no allowed energy eigenvalues exist. To show this explicitly, we consider the Kronig-Penney
model which has an analytical solution.

The potential is illustrated in the figure: it consists of periodically appearing δ-function wells, which can alterna-
tively be thought of as a piecewise constant potential repeating itself. In terms of relevance for a lattice model,
one could then think of this model as a first approximation (quite crude, but it gets the point across) of a constant
potential between atomic sites and an attractive potential right at each site. We may write the potential energy as

V (x) = −�2α
ma

∞∑
−∞

δ(x− na). (8.10)

In this way, the coefficient α characterizing the strength of the potential becomes dimensionless, which is handy.
We see that the δ-function wells are placed at a distance a from each other. Earlier in this book, we treated the
case of a single δ-function well, so let us reuse some of the results from that treatment. Our strategy will to solve
for ψ in certain regions and then connect the regions via suitable boundary conditions.

a
x

V (x)
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In the interval −a < x < a, the SE only includes one potential well:

− �2

2m
ψ′′ − �2α

ma
δ(x)ψ = Eψ. (8.11)

A suitable boundary condition for ψ at x = 0 is obtained by integrating Eq. (8.11) from x = −ε to x = ε and
taking limε→0. This gives us:

a[ψ′(0−)− ψ′(0+)] = 2αψ(0), (8.12)

where 0− means x = 0 approached from negative x and similarly for 0+. In between the potential wells, we
have V = 0 so that the SE describes a free particle. Therefore, in the interval −a < x < 0, the solution for
− �2

2mψ′′ = Eψ is

ψ = A cos(qx/a) +B sin(qx/a), (8.13)

where the relation between E and the dimensionless number q is:

E =
�2q2

2ma2
. (8.14)

We also need the wavefunction in the interval 0 < x < a. However, this can easily be obtained from Eq. (8.13)
via Bloch’s theorem Eq. (8.4) for wavefunctions in a periodic potential: ψ(x+ a) = eikaψ(x). We obtain

ψ(0−) = A, ψ′(0−) = Bq/a (8.15)

while on the right side of the potential well centered at x = 0 we get

ψ(0+) = eika(A cos q −B sin q), ψ′(0+) = eika(q/a)(A sin q +B cos q). (8.16)

In addition to the boundary condition Eq. (8.12), we require continuity of the wavefunction at x = 0

ψ(0−) = ψ(0+), (8.17)

which provides

A = eika(A cos q −B sin q). (8.18)

This will be our first equation needed to identify A and B. The second one is obtained by inserting our wavefunc-
tion into Eq. (8.12), yielding:

eikaq(A sin q +B cos q) = Bq − 2αA. (8.19)

These equations then provide two homogeneous equations for A and B, allowing us to identify two separate
expressions (one from each equation) for the ratio A/B:

A

B
=

sin q

cos q − e−ika
=

1− eika cos q

eika sin q + 2α/q
. (8.20)

After some algebraic manipulations, we rewrite Eq. (8.20) as:

cos(ka) = cos q − (α/q) sin q. (8.21)

The left hand side of this equation is bounded in magnitude: it must lie between -1 and 1. Therefore, the only way
that this equation can be satisfied is if the right hand side satisfies:

| cos q − (α/q) sin q| ≤ 1. (8.22)

We have then obtained the following central result:
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The allowed energies are E =
�2q2

2ma2
where q must satisfy | cos q − (α/q) sin q| ≤ 1.

Note that the energy is positive when q is real, but there is no part of our calculation which requires that q must be
real. Therefore, the above result is also valid for negative energies (corresponding to an imaginary q).

The presence of an inequality governing the permitted eigenvalues is a new feature we have not encountered
previously. It results in the presence of allowed energies only in specific intervals. The qualitative behavior of the
function f(q) = cos q − (α/q) sin q is sketched in the figure as a function of the energy E [since q = q(E)]. It
is clear that the energy spectrum has a band structure where allowed energy bands are interrupted by band gaps
where no energy eigenvalues exist.

f(q)

E

1

0

−1

Gap Gap

To understand the dependence of the band structure on the potential strength α, we first note that for α → 0
the inequality governing the appearance of energy bands reduces to | cos q| ≤ 1 which is satisfied for any positive
energy. This is reasonable since we then have a completely free particle with an uninterrupted continuous spectrum
for E > 0. On the other hand, the band gaps shown in the figure grow larger with increasing α. In turn, the energy
bands then become very narrow. It is also instructive to establish the relation between the energy E and the
wavevector k associated with the free-particle behavior in the Bloch wavefunction. This relation is inferred via Eq.
(8.21) which explicitly reads

cos(ka) = cos
(√

2ma2E/�2
)
− α

sin
(√

2ma2E/�2
)

√
2ma2E/�2

. (8.23)

Due to the periodic dependence on k, it is sufficient to consider an interval 0 < k < 2π/a (or any other interval
where k advances with 2π/a, for that matter). The behavior of E vs. k is shown in the figure below. As k
advances from 0 to π/a, cos(ka) varies between +1 and −1. In this interval, there exists several energy bands
with different energies. All the bands are separated by gaps, in accordance with our previous observation. Note
how each energy eigenvalue is twofold degenerate since k and (2π/a)− k provide the same energy in Eq. (8.23).
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π 2π

ka

Gap

Gap

The relation E = En(k) where n corresponds to the band number in the above figure is known as the dispersion
relation. Its importance in condensed matter physics cannot be overstated, as it provides crucial information to
determine how electrons behave under the influence of e.g. an external electric field. The dispersion relation thus
dictates for instance whether a material behaves as a metal, semiconductor, or insulator. The difference between
these types of materials is shown in the figure below. The rectangles represent energy bands which are either filled
(dark gray) or empty (light gray). In metals (figure a), the Fermi energy (energy of the highest occupied electron
state at T = 0) is located inside a band of allowed energy values. As a consequence, there are available electronic
states even for an infinitesimal energy increase of an electron with E = EF . This enables electrons to move
in response to an electric field and thus conduct electricity. In semiconductors (figure b), the Fermi energy falls
inside the gap separating two energy bands. The lower band is known as the valence band while the upper is the
conduction band. Although the valence band is full in the figure, an infinitesimal energy increase is not sufficient
to promote an electron from the valence to the conduction band. Instead, it would require an energy comparable to
the energy gap Eg to excite an electron into the conduction band. At low temperatures, where the thermal energy
kBT � Eg , no electrons reside in the conduction band. An insulating material (figure c) qualitatively is similar
to a semiconductor, but is distinguished by having a much larger band gap between the allowed enery bands. For
instance, diamond is considered to be an electric insulator with Eg � 5.5 eV whereas silicon is a semiconductor
due to its lower band gap Eg � 1.1 eV.

E

Insulating gap

Metal Semiconductor Insulator


