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Preface

The aim of this book is to present fundamental concepts in particle physics. This includes topics such as the
theories of quantum electrodynamics, quantum chromodynamics, weak interactions, Feynman diagrams and
Feynman rules, important conservation laws and symmetries pertaining to particle dynamics, relativistic field
theories, gauge theories, and more. In addition to explaining the underlying theories in a detailed manner, we shall
also provide a number of examples that will illustrate the formalisms "in action".

This book is primarily based on my lecture notes from teaching this class to university students over several
years, and the notes are in turn based on the excellent book "Introduction to Elementary Particles" by D. Griffiths,
which they follow closely in structure and choice of examples. I have also included some additional topics and
instructive examples which hopefully will allow the reader to obtain a more thorough physical understanding of
the material. This book is suitable as material for a full-semester course in introductory particle physics.

It is my goal that students who study this book afterwards will find themselves well prepared to dig deeper into
the remarkable world of theoretical physics at a more advanced level. I welcome feedback on the book (including
any typos that you may find, although I have endeavored to eliminate as many of them as possible) and hope that
you will have an exciting time reading it!

Jacob Linder (jacob.linder@ntnu.no)
Norwegian University of Science and Technology
Trondheim, Norway

mailto:jacob.linder%40ntnu.no?subject=
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I. OVERVIEW OF ELEMENTARY PARTICLES AND THEIR INTERACTIONS

Learning goals. After reading this chapter, the student should:

• Be able to describe the four fundamental interactions, their mediating particles, and which particles that can
participate for a given interaction.

• Understand how to read basic Feynman diagrams.

• Account qualitatively and quantitatively for neutrino oscillations.

In the so-called Standard Model of particle physics, matter is believed to consist of elementary particles. One often
makes the distinction between matter and mediators (also known as force fields), so that although the following
three groups are all elementary particles:

• Leptons

• Quarks

• Mediators

only the leptons and quarks (collectively known as fermions) comprise matter. In this book, you will get
acquainted with all of these particles and how they interact with each other. We will begin by introducing the
fundamental forces by which elementary particles interact and represent their interaction via Feynman diagrams.
Our treatment will mostly be qualitative to begin with in order for the reader to get an overview of the situation,
and then we will treat each scenario in detail mathematically. The appropriate physical theory to be used when
considering physical phenomena in a system depends on which length scales and velocities we are considering.
These quantities should be compared with the de Broglie wavelength λ of the particles and the velocity v of the
particles, as illustrated in the figure below. In particular, λ roughly marks the transition for the length scales where
a quantum mechanical description is required. Similarly, if a particle is moving with a velocity close to the speed
of light c, a relativistic description is needed. In this way, region III describes length scales which are small or
comparable to λ and velocities that are slow compared to c, whereas region IV describes length scales that are
equally small, but where the velocity is comparable to c.

Length scale

Velocity

I II

III IV

I: Classical, non-relativistic mechanics

II: Classical, relativistic mechanics

III: Non-relativistic quantum mechanics

IV: Relativistic quantum mechanics

A. The fundamental interactions

Each of the four fundamental interactions are believed to be mediated by the exchange of a particle: a so-called
mediator. This is well-established except for the gravitational force, as there is no compelling evidence as of today
for the existence of a graviton.
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Force Theory Mediator
Strong Chromodynamics Gluon

Electromagnetic Electrodynamics Photon
Weak Flavordynamics W± and Z0

Gravitational General theory of relativity Graviton?

We will start by considering quantum electrodynamics (QED), which is the oldest, simplest, and most successful
(in terms of comparison between theory and experiment) of all the above theories. The others are to a large extent
in fact modelled on QED.

B. Quantum electrodynamics

All electromagnetic phenomena can ultimately be reduced to the following elementary process:

Time

e

e

γ

The diagram should be read as: a charge e enters, emits/absorbs a photon γ, and exits. The charged particle can
be a lepton or a quark. For more complicated processes, one patches together several such so-called primitive
vertices. For instance, the interaction between two electrons (Möller scattering) can be drawn as:

e

e

γ

e

e

Diagrams of this type are known as Feynman diagrams. Note that a particle running backward in time (as indicated
by the arrows) must be interpreted as the corresponding antiparticle moving forward in time. In fact, a universal
feature of quantum field theory is:

For every kind of particle, there exists an antiparticle with equal mass and opposite charge.

There are six so-called flavors of leptons and these flavors form three generations: e− and νe, µ− and νµ, τ−

and ντ . Here, µ− is a muon, τ− is a tau particle, while νj are neutrinos of a particular type j = {e, µ, τ}.
Notationwise, antiparticles are denoted with an overbar ¯. . . or by specifying their charge explicitly: n for neutron,
n̄ for antineutron and e− for electron, e+ for positron. Note that since the neutron is not electrically charged, one
could ask how its antiparticle is physically different. As we shall see, it turns out that particles such as neutrons
carry other quantum numbers that also change sign for antiparticles.
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e e

γ

ee

In the above figure, an electron and positron annihilate to form a photon and then produce and e− − e+ pair. The
photon is its own antiparticle. The diagram then represents the interaction between two opposite charges, namely
their Coulomb attraction. Another diagram also contributes to this process:

e

γ

e

e e

Diagrams with two vertices can also be used to represent several other processes:

e

γ

e e

γ

e

γ

ee

γ

e

γ

e γ

e

Pair annihilation Pair production Compton scattering

e− + e+ → γ + γ γ + γ → e− + e+ e− + γ → e− + γ

There is no need to explicitly specify the + or − charge on the external lines: the arrows suffice to indicate whether
it is a particle or antiparticle. Note that all of the above processes are related via a so-called crossing symmetry.
Suppose that A+B → C +D is allowed. Then:

A → B̄ + C +D, A+ C̄ → B̄ +D, C +D → A+B (1.1)

are in principle also allowed. However, an important caveat is that conservation of energy must be fulfilled. For
instance, if the masses satisfy mA < mB +mC +mD, then A → B̄ +C +D cannot occur. The reason is energy
conservation. A massive particle has rest energy (we will have more to say about this in our treatment of the
special theory of relativity later on) and thus mA needs to be sufficiently large in order to enable the reaction. This
is an example of a process which is not kinematically permissible, meaning that it does not satisfy conservation of
for instance energy or momentum.

In terms of Feynman diagrams, processes which are related via crossing symmetry can be obtained by twisting or
rotating the diagrams. We find additional possibilities if we allow for four vertices:
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The common feature of all these diagrams is that two electrons enter and exit. The internal lines represent virtual
particles that cannot be observed: they describe the precise mechanism of the interaction. It should be emphasized
that diagrams are symbolic in the sense that they do not represent actual particle trajectories. Each Feynman
diagram is actually associated with a particlar complex number M that may be computed by using Feynman rules.
We shall say much more about this later when we develop our quantitative theory of particle interactions. Assume
now that you want to analyze a particular physical process. The standard procedure is then:

• Draw all Feynman diagrams contributing to this process (with appropriate external lines) that have 2 vertices,
then all with 4 vertices, and so on.

• Evaluate the contribution of each diagram via Feynman rules.

• Sum all these contributions: the result represents the actual physical process.

One aspect of the above recipe seems problematic: there are infinitely many Feynman diagrams, since we
can construct higher and higher order contributions by introducing additionial vertices! We cannot consider
all of these. The solution is that each vertex in a diagram introduces a factor α = e2/�c � 1/137: the
fine structure constant. Therefore, higher order diagrams fortunately contribute less and less the more ver-
tices they have. In practical calculations, it is often sufficient to include diagrams up to four vertices. Feynman
rules include conservation of energy and momentum at each vertex (and thus automatically for the whole diagram).

The primitive QED vertex thus cannot represent a physical process: e− → e− + γ violates energy conservation
since the electron does not have enough of the aforementioned rest energy to sustain the existence of both an
electron and an additional photon γ. The same problem exists for e− + e+ → γ where momentum conservation
cannot be fulfilled: in the CM system, e− and e+ enter with equal and oppsite velocities so that ptot = 0. However,
the final momentum cannot be zero since the photon γ travels at the speed of light. It is important to note that
virtual particles (internal lines in the diagrams) do not necessarily satisfy the same relation between energy, mass,
and momentum as the corresponding physical particle. Instead, their mass is whatever the conservation laws at
each vertex requires. In contrast, external lines represent real particles and must have the correct mass.

INSERT ADVERTISEMENT HERE
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C. Quantum chromodynamics

In quantum chromodynamics (QCD), color plays the role of charge in QED. The fundamental process (primitive
vertex) is quark → quark + gluon. There are six types of quarks, also referred to as flavors: up, down, strange,
charm, top, and bottom (u, d, s, c, t, b).

q

q

g

Leptons have no color and thus do not interact strongly. The force between quarks (responsible e.g. for binding
quarks to make baryons) has the lowest-order diagram:

q

q

g

q

q

Note how the gluon is represented by a curly line whereas the photon is represented by a wavy line. A key
difference from QED is that there are three kinds of color (instead of ± charge) and color may change in a process,
although the total color must be conserved. In the example shown below, the gluon carries away one unit of blue
and minus one unit of red:

u(r)

u(b)

g(b, r̄)

Note that the flavor of the quark may not change. A negative unit of color is denoted by an overbar, so that a
negative unit of red color is r̄. Gluons are therefore "bicolored": they carry one positive and one negative unit of
color. This suggests that 3 × 3 = 9 possible gluons should exist. For reasons that we will come back to, there
are nevertheless only 8. Moreover, individual quarks do not appear freely in nature, but quark-antiquark pairs
called mesons exist. For now (we will later bring out a nuance in this statement), we may write that all naturally
occuring particles are colorless. We define colorless as either the total amount of color being zero or that the three
colors are present in equal amounts.

Since gluons carry color (unlike photons that do not carry charge), they may couple to other gluons:

This g − g coupling makes QCD richer and a lot more complicated than QED. Another essential difference is
related to the size of the coupling constant. In QED, we stated that each vertex introduced a factor α � 1/137.
In contrast, the coupling constant for strong forces αS is (under some circumstances) greater than 1. It may be
determined from e.g. the force between two protons. This leads to a problem: higher-order vertices and diagrams
contribute more and more! The resolution to this, as we shall discuss in more detail later, is that αS is in fact not
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a true constant. It rather depends on the separation distance between the interacting particles, giving rise to the
phenomenon of asymptotic freedom. For large distances, αS becomes large. For small distances (less than the size
of a proton), αS becomes small. Therefore, within a proton or pion, quarks move around without interacting much.

The proton and neutron are comprised of three quarks, and such a composite particle is known as a baryon. A
composite particle consisting of one quark and one antiquark (a qq̄ pair) is known as a meson. Baryons and
mesons are thus both quark-based composite particles which collectively are known as hadrons.

This distance-dependent effective coupling actually appears in electrodynamics as well in the form of charge
screening.

+

q > 0

−

−

+

+

+

+

+

+

+ −

−
−

−

−

−

The "halo" of negative charge from molecular dipoles partially cancel the field from q > 0. Thus, the effective
charge is reduced to qeff = q/ε where ε is the dielectric constant of the medium. It measures how easily a substance
becomes polarized by an electric field E.

q/ε

qeff

q

r
Intermolecular
separation

Now, in QED the vacuum actually acts as a dielectric due to the production of e− − e+ pairs that interacting in the
following ways:

(a) (b)
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The key aspect to note in these diagrams is that the virtual electron in each bubble will be attracted to a positive
charge q, whereas the positron is repelled. As a consequence of the screening occurring even in vacuum, what
is measured in experiments is the screened effective charge. The same thing happens in QCD, but with an extra
ingredient: gluon-gluon vertices. Therefore, in addition to diagrams of the type (a) and (b) above (where the
photons should now be exchanged with gluons), we also have to include

It is not obvious what the influence of these diagram will be, but it turns out that their effect is opposite: they
drive down αS at short distances, in contrast to quark polarization diagrams which enhance αS at short distances.
These effects then compete. The winner of the competition is determined by comparing the relative number of
flavors (quarks) and colors (gluons). Detailed calculations beyond the scope of this textbook reveal that the critical
parameter is a = 2f − 11n where f is the number of flavors and n is the number of colors. In the Standard Model,
f = 6 and n = 3, leading to a = −21. Therefore, the coupling decreases at short distances as stated previously.

INSERT ADVERTISEMENT HERE

www.job.oticon.dk
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Keep in mind that in contrast to charge, no naturally occurring particles carry color: quarks must be confined
to colorless packages of two (mesons) and three (baryons). As a result, strong interactions between naturally
occuring particles may be quite complicated. Consider for instance the strong force between two protons. One of
the contributing diagrams is:

d u u u u d

d

u u u u d

Effective π0 exchange

It is worth mentioning that we here see remnants of an early model for strong interactions introduced by the
physicist Yukawa, who conjectured that the pion (and not the gluon) was the mediator of the strong force. In
reality, the diagram shows that the interaction is much more complicated.

D. Weak interactions

Unfortunately, there is no particular name for the property that produces weak forces, but whatever you call it:
quarks and leptons have it. Two types of weak interactions exist. Charged weak interactions are mediated by W±

bosons while neutral weak interactions are mediated by the Z0. For leptons, the fundamental charged vertex is:

νl

l−

W−

A negative lepton l− converts into the corresponding neutrino and emits W− (or absorbs W+: the diagram can
mean both things). As before, we combine primitive vertices for more complicated reactions:

νµ

µ

W−

e

νe

This type of neutrino-muon scattering event is hard to set up in the laboratory, but a slight twist gives us a muon-
decay diagram that occurs all the time:

νµ

µ

W−

eνe
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The fundamental neutral vertex for leptons is:

l

l

Z0

Here, l is any lepton including neutrinos. Neutral interactions were difficult to discover experimentally, being
masked by much stronger electromagnetic interactions (we will see later why the electromagnetic ones usually
dominate):

e

e

γ

e

e
e

e

Z0

e

e

versus

Therefore, to observe a purely weak interaction one has to consider neutrino scattering since there is no electro-
magnetic contribution to such a process. In terms of notation for the W± and Z0 bosons in Feynman diagrams,
it is worth remarking that another frequently encounted convention exists where these particles are drawn as wavy
lines rather than dotted lines, similarly to the photon. Here, we stick with the dotted line convention to distinguish
them more clearly from photon-mediated diagrams. Turning to how quarks interact weakly, recall first that leptonic
weak vertices connect members of the same generation: e− connects to νe, but never νµ, for instance. Thus, we
have conservation of electron, muon, and tau numbers {Le, Lµ, Lτ} (see table below). Antileptons have all signs
reversed.

Lepton l Q Le Lµ Lτ

e -1 1 0 0
νe 0 1 0 0
µ -1 0 1 0
νµ 0 0 1 0
τ -1 0 0 1
ντ 0 0 0 1

For quarks, the fundamental charged vertex would be natural to assume looks as follows:

W−

q+2/3

q−1/3

A quark with charge − 1
3 (the d, s, b quarks) converts into the corresponding quark with charge 2

3 (the u, c, t quarks)
and emits a W−. The outgoing quark carries the same color as the incoming one, but has a different flavor (type
of quark). Importantly, the W− does not carry the missing flavor. In fact, W± has no flavor since it must be able
to couple to leptons. Therefore,
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Flavor is not conserved in weak interactions.

The W− in the above diagram can couple to leptons (a semileptonic process) or other quarks (a purely hadronic
process). An example of a semileptonic process is the following:

W−

u

d

e

νe

This process would never appear isolated in nature due to quark confinement, which we have discussed. However,
if we turn it around to represent pion-decay, we obtain a feasible process as shown in (a).

W−

u d

e νe

π−

(a) (b)

n

p

u d u

u d d

νe e

W−

INSERT ADVERTISEMENT HERE
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W−

u

d

e

νe

This process would never appear isolated in nature due to quark confinement, which we have discussed. However,
if we turn it around to represent pion-decay, we obtain a feasible process as shown in (a).

W−

u d

e νe

π−

(a) (b)

n

p

u d u

u d d

νe e

W−
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The same type of diagram holds for the beta decay of the neutron, as shown in (b). Since quarks interact both
weakly and strongly, hadronic (quark-based) interactions can have both a weak and strong contribution. Consider
for instance ∆0 → p+ + π−:

Weak contribution Strong contribution

∆0

u d u

u d d

∆0

u d u

u d d

u d

W−

π−

π−u

d

g

The strong contribution dominates completely in magnitude. As for the fundamental neutral vertex for quarks, it
would be natural to suppose that it looks like:

Z0

q

q

We may then use this to construct neutrino-scattering processes such as νµ + p → νµ + p:

Z0

νµ

νµ

u

u

u d

u d

In essence, the above suggests that quarks mimic the leptons as far as weak interactions are concerned. However,
we must make an important modification to what we have stated. To see why, consider the fact that if the fun-
damental quark vertex may only couple quarks within the same generation [similarly to leptons, the quarks also
form three generations (u, d), (c, s), (t, b)], we cannot describe any strangeness-changing weak interactions such
as changing a strange quark into an up quark. Yet such processes do exist in nature, with two examples shown
below:



INTRODUCTION TO PARTICLE PHYSICS

15

OVERVIEW OF ELEMENTARY PARTICLES 
AND THEIR INTERACTIONS

15

Λ → p+ + π− Ω− → Λ +K−

Ω−

s u d

s s s

Λ

u d u

u d s

u d

W−

π−

K−u

s

W−

The solution to this dilemma was suggested by Cabibbo in 1963, and we shall treat this issue quantitatively in the
chapter on QCD later on in this textbook. For now, we note that strangeness is a property (like charge or color)
that is assigned to each particle. Strangeness is conserved in strong interactions, but not necessarily conserved in
weak interactions.

Summarizing, the primitive vertices giving rise to physical processes via weak, strong, and electromagnetic inter-
actions are the following:

Strong EM Weak

q

q

g

e

e
γ

l′

l

q′

q

W±, Z0 W±, Z0

We also give a summary of how to characterize particles in terms of their spins in the table below

Elementary

Composite

particles

particles

Bosons (integer spin s) Fermions (half-integer spin s)

Spin 0 Spin 1 Spin 1
2 Spin 3

2

Higgs particle Mediators Quarks, leptons

Pseudoscalar
mesons

Vector

mesons

Baryon

octet decouplet

Baryon

n/a

Weak and electromagnetic couplings to W± and Z0

As a final note, just as there exist gluon-gluon couplings in QCD, the W± and Z0 may couple to each other and
the photon:

W

W

Z0 γ

Z0

Z0W

W

W

W
W

W

γ

Z0
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E. Briefly on neutrino oscillations

Neutrinos are notoriously difficult to observe, unfortunately, in particular since they are so light and electrically
neutral. In the mid-1950s, Cowan and Reines performed an ingenious experiment where the idea was to look for a
reaction triggered by neutrinos rather than trying to observe neutrinos as a byproduct of a reaction. In particular,
they looked for inverse β-decay:

ν̄ + p+ → n+ e+ (1.2)

and successfully confirmed the existence of neutrinos. However, there turned out to be a problem associated with
comparison between theory and several experiments. The experiments only saw about 1/3 of the theoretically
predicted amount of neutrinos produced by the Sun, a mystery which was dubbed the solar neutrino problem.
Pontecorvo suggested in 1968 a bold and elegant solution to the problem: what if the νe produced by the Sun were
transformed into something else on their way to Earth which could not be detected by the experiments at hand,
such as νµ (the experiments were specifically set up to measure νe)? This could be achieved via so-called neutrino
oscillations.

To illustrate this idea, consider a scenario where we have two neutrino flavors νe and νµ. If indeed one may
spontaneously convert to another, neither can be an eigenfunction of the Hamiltonian. Instead, the stationary states
of the Hamiltonian describing the neutrinos should be a linear combination of them:

ν1(t) = cos θνµ(t)− sin θνe(t), ν2(t) = sin θνµ(t) + cos θνe(t). (1.3)

This form ensures orthonormality of the states ν1 and ν2, which by virtue of being stationary have a simple time
dependence:

νi(t) = νi(0)e
−iEit/�, Ei =

√
p2i c

2 +m2
i c

4. (1.4)

Here, Ei and mi is the energy and mass of neutrino type i. We note immediately that it follows that νe and νµ do
not have well-defined masses since they are linear combinations of ν1 and ν2.
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To see how a flavor state evolves with time (e.g. from production in the Sun and propagating toward Earth), assume
that we start with νe neutrinos:

νe(t = 0) = 1, νµ(t = 0) = 0. (1.5)

This gives

ν1(0) = − sin θ, ν2(0) = cos θ. (1.6)

Now, rewrite Eq. (1.3) to express {νe, νµ} as a function of {ν1, ν2} to obtain

νµ(t) = cos θν1(t) + sin θν2(t) = sin θ cos θ(e−iE1t/� + e−iE2t/�). (1.7)

We then find the probability that νe has converted into νµ after a time t:

|νµ(t)|2 =
sin2 2θ

4
(1− ei(E2−E1)t/� − e−i(E2−E1)t/� + 1)

=
sin2 2θ

4
4 sin2

(E2 − E1

2�
t
)

→ Pνe→νµ =
[
sin 2θ sin

(E2 − E1

2�
t
)]2

. (1.8)

In this model, we have thus achieved precisely a conversion between νe and νµ which depends in an oscillatory
manner on t (or equivalently the distance travelled). There are two necessary ingredients for neutrino oscillations
to occur:

1. A finite mixing angle θ �= 0.

2. Different masses for the eigenstates νi (both cannot be zero).

Today, there is compelling experimental evidence (which was also awarded the Nobel Prize in physics in 2015)
that neutrinos are not massless - in hindsight, one could even state that there actually is no fundamental reason for
why they should be (unlike the photon, for which there exists a very good reason that its mass must be zero). In
practical calculations where ν-oscillations are not of relevance, however, we will often approximate their mass to
zero which still yields excellent results.

II. CONSERVATION LAWS AND SYMMETRIES

Learning goals. After reading this chapter, the student should:

• Understand the relation between continuous symmetries and conserved quantities.

• Be able to explain what a symmetry and a symmetry group is, and account for how isospin, parity, and
charge conjugation symmetries work.

• Explain the difference between SU(2) and SO(3) and in which physical settings these groups are used.

A. Decays and conserved quantities

A general property of elementary particles is their tendency to decay:

Every particle decays into lighter particles, unless prevented by some conservation law.
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Neutrinos and photons are stable due to their low and vanishing mass, respectively: there is simply nothing lighter
to decay into. Strictly speaking, however, there is a finite probability for a process of the type νi → νj + γ if
the mass eigenstates for the neutrinos have masses that satisfy mνi

> mνj
. The electron is the lighest charged

particle, so that conservation of charge makes it stable. The proton is the lightest baryon, so that conservation of
baryon number saves it. Baryon number A is assigned so that baryons have A = +1 (neutrons, protons, et.c.)
wheres antibaryons have A = −1 (non-baryons have A = 0). The positron and antiproton are also stable for the
same reasons, but all other particles may spontaneously disintegrate. Even quarks decay: this is e.g. what happens
for the weak decay n → p+ e− + ν̄e. A given decay is governed by one of the three fundamental forces we have
discussed:

• ∆++ → p+ + π+ is a strong decay.

• π0 → γ + γ is an electromagnetic decay.

• Σ− → n+ e− + ν̄e is a weak decay.

How can we know this? If a photon comes out, the process is certainly electromagnetic. If a neutrino emerges,
the process is certainly weak. If neither γ or ν emerge, it is more tricky to determine the origin. For instance,
Σ− → n + π− is weak, but ∆− → n + π− is strong. The reason for this is that in the Σ− decay strangeness is
changed, which does not happen in strong interactions. Weak interactions can conserve strangeness, however, and
in that case one can look at the decay time in order to distinguish the weak and strong interactions. This is in fact
the experimentally most dramatic difference between the various types of decays:

Type of decay Typical lifetime
Strong ∼ 10−23 s

EM ∼ 10−16 s
Weak Ranges from 10−13 s (for τ ) to several minutes (for n)

A decay of a given type in general proceeds more rapidly the larger the mass difference is between the original
particle and the decay products (although exceptions exist). It is this kinematic effect that causes the great spread
in the weak interaction lifetimes. The definition of the lifetime τ is related to the half-life t1/2 via

t1/2 = (ln 2)τ � 0.693τ. (2.1)

In turn, the half-life is the time required for half the particles in a large sample to decay.

Different types of conservation laws exist which dictate whether or not a reaction is possible. The kinematic
conservation laws are concerned with energy, momentum and angular momentum. These apply to all interactions:
strong, weak, and electromagnetic. In addition, there are additional conservation laws that apply to each vertex in
a Feynman diagram. A quantity conserved at each vertex is automatically conserved for the total reaction.

1. Conservation of charge. Note that the W± bosons can carry away charge.

2. Conservation of color. Electromagnetic and weak interactions do not affect color, whereas gluons can carry
away color.

3. Conservation of baryon number. As mentioned before, A = +1 for baryons, A = −1 for antibaryons,
and A = 0 for everything else. The origin of this rule can be traced back to conservation of quark number.

4. Conservation of lepton generation number. Strong interactions do not influence leptons, whereas electro-
magnetic interactions only makes the particle emit a photon. Weak interactions mix leptons within the same
generation (e, µ, τ ).

5. Conservation of flavor in strong and electromagnetic interactions. Flavor is not conserved in weak
interactions.

It is also worth mentioning that unlike leptons and baryons, there is no conservation of mesons (a quark-antiquark
pair qq̄).
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B. The concept of symmetry and symmetry groups

Symmetry is an immensely powerful concept in physics and mathematics. Consider for instance the following
graph.

f(x)

x

Even if we do not know the functional form of f(x), we know a symmetry property it has, namely f(x) = −f(−x).
It then follows immediately that, for instance, [f(−x)]4 = [f(x)]4 and that df

dx |x=2 = df
dx |x=−2. We actually know

a lot about the mathematical properties of f(x) simply by observing that it is antisymmetric. The concept of
symmetry has profound implications in particle dynamics. A milestone was set in 1917 when Emmy Noether
published her famous theorem:

Noether’s theorem: Continuous symmetry ↔ Conservation law.

We will assume that the reader has been introduced to this theorem previously and not dwell further upon it, despite
the fact that it is very interesting. If more details regarding its formal application to important scenarios such as
translational or rotational symmetry is desirable, the reader can have a look here. Some examples are shown below.
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Symmetry Conservation law
Translation in time Energy
Translation in space Momentum

Rotation Angular momentum
Gauge transformation Charge (to be explained)

Now, what precisely is a symmetry? It is an operation you can perform on a system that leaves it invariant. Consider
the following example.

A

B Ca

An equilateral triangle is carried into itself by clockwise rotation with 2π/3 (an operation we denote R+) or
counter-clockwise rotation (R−) with the same angle. Moreover, if we flip it about the axis Aa (Ra) or corre-
sponding axis through B and C (Rb and Rc), it is also left invariant. A combination of these operations would also
be a symmetry operation. Mathematically, a set of symmetry operations must have the following properties:

1. Closure. If Ri and Rj are in the set, then the product RiRj is also in that set.

2. Identity. There is an element I such that IRi = RiI = Ri for all elements Ri.

3. Inverse. For every element Ri, there is an inverse R−1
i such that RiR

−1
i = R−1

i Ri = I .

4. Associativity. Ri(RjRk) = (RiRj)Rk.

These are the defining properties of a group. Note that commutativity of the elements is not required, so that
RiRj �= RjRi is allowed, in which case we have a non-Abelian group.

In physics, most of the groups of interest are groups of matrices. Of particular importance is the U(n) group,
meaning all unitary n × n matrices U (which thus satisfy U−1 = U †). Orthogonal matrices are a special case,
namely unitary matrices with real entries.

• SU(n): unitary matrices with determinant +1.

• O(n): real unitary matrices (O stands for orthogonal).

• SO(n): real orthogonal matrices with determinant +1.

The SO(3) group, which we will treat in more detail in the next section, describes rotations in three dimensions
and is mathematically quite similar to the SU(2) group. An important aspect of groups is that:

Every group can be represented by a group of matrices.

This means that for every group element a, there is a corresponding matrix Ma. This correspondence respects
group multiplication: if ab = c, then MaMb = Mc. There may be several group elements represented by the same
matrix. One then says that the group of matrices is homomorphic, but not necessarily isomorphic to G. If G itself
is a group of matrices, such as SU(4), then it is a representation of itself (referred to as the fundamental representa-
tion). There can, however, be many other representations by matrices in various dimensions. For instance, a trivial
example is that every element can be represented by the 1 × 1 unit matrix (although it is not a very interesting
representation). The group SU(2) has representations of dimension 1 (the trivial one just mentioned), dimension 2
(the fundamental representation), dimensions 3, 4, 5, and so forth. One can always construct a new representation
by combining two old in block-diagonal form:

Ma =

[
M

(1)
a 0

0 M
(2)
a

]
. (2.2)
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However, such representations are not counted separately: instead, one usually only lists irreducible representa-
tions which cannot be decomposed in this manner.

C. Introduction to group theory: SU(2) vs. SO(3)

These two groups are of particular importance since they are related to both rotations of spins (half-integer as well
as integer) and to internal symmetries between particles and in Lagrangians describing relevant quantum fields.
Let us start by introducing some terminology.

Isomorphism. A one-to-one correspondence between elements G of a group G and G′ of a group G′ such that if
GiGj = Gk, then G′

iG
′
j = G′

k.

Homomorphism. Let f be a mapping that maps the element G of G onto G′ of G′: G′ = f(G). If
f(GiGj) = f(Gi)f(Gj) holds for any two elements, f is a homomorphic mapping.

Note that homomorphism signifies a n-to-one correspondence between the elements of the group, in general. A
homomorphism with n = 1 is thus an isomorphism.

Example 1. Equilateral triangle. The allowed symmetry operations constitute a group C3v:

C3v = {E1, C3, C
−1
3 , σ1, σ2, σ3}. (2.3)

Here, C3 means a rotation counterclockwise with an angle 2π/3 around the center while σj means mirror reflection
around symmetry axis. The multiplication table of a group provides information about how the product of two
group elements is related to an element in the group. For this particular group, the multiplication table is shown in
the figure.

Gi

Gj
E C3 C−1

3 σ1 σ2 σ3

Multiplication table for C3v (entries Gj ◦Gi)

E

C3

C−1
3

σ1

σ2

σ3

E

E

E

C3

C3

C3

C−1
3

C−1
3

C−1
3

C−1
3

C−1
3

C−1
3

E

E

E

C3

C3

C3

σ1

σ1

σ1

σ2

σ2

σ2

σ3

σ3

σ3

σ3

σ3

σ3σ1

σ1

σ1

σ2

σ2

σ2

Multiplication table for C2

Gi

Gj

E

C

E C

E C

C E

σ1 1

3

2(a)

(b)

(c)

Compare this group with C2 = {E,C} where C is a rotation with π so that C2 = E. Let the following define the
mapping f

{E,C3, C
−1
3 } → E, {σ1, σ2, σ3} → C. (2.4)
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This fulfills the homomorphism criterion, as seen from the multiplication table in part (c) of the figure. As seen,
there are three elements in C3v corresponding to one element in C2: this is a homomorphism, not an isomorphism.

The above considerations are related to representations of a group. Let G be a group with elements Gi and associate
a square matrix with each element D̂(Gi). If the matrices satisfy D̂(Gj)D̂(Gi) = D̂(Gk) for the corresponding
relation GjGi = Gk, then the set of matrices D̂(Gi) is a representation of G. The mapping

D̂ : Gi → D̂(Gi) (2.5)

is then homomorphic as the same matrix may be associated with several elements. As mentioned before, a group
can have representations in several dimensions.
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Example 2. 1D representation of C3v . The following one-dimensional matrices (scalars) constitute a represen-
tation of C3v and thus produce the same multiplication table as the above figure.

D̂(E) = 1, D̂(C3) = 1, D̂(C−1
3 ) = 1,

D̂(σ1) = −1, D̂(σ2) = −1, D̂(σ3) = −1. (2.6)

Consider now the rotation group in 3D, described by a matrix depending on three angles {α, β, γ}:

R̂ =



cα −sα 0

sα cα 0

0 0 1







cβ 0 sβ
0 1 0

−sβ 0 cβ






cγ −sγ 0

sγ cγ 0

0 0 1


 . (2.7)

We introduced the short-hand notation sα = sinα, cα = cosα, and so forth. Since only proper rotations are
considered (and thus not inversions), R̂ is a 3 × 3 orthogonal matrix with det(R̂) = +1. Thus, the set of rotation
matrices forms the group SO(3). The range of the parameters is important when discussing the relation of this
group to SU(2), as we will now see. A possible representation of SO(3) in two dimensions is given by

D̂(1/2)[R(α, β, γ)] =

[
e−i(α+γ)/2 cos β

2 −e−i(α−γ)/2 sin β
2

ei(α−γ)/2 sin β
2 ei(α+γ)/2 cos β

2

]
. (2.8)

We see that D̂(1/2) is a special unitary 2 × 2 matrix. The word "special" means that the determinant is +1 rather
than -1, and the superscript (1/2) indicates that the group SU(2) is of importance for rotation of spin 1/2 particles.
Hence, the matrices given in the equation above form the group SU(2) if the parameter range of (α, β, γ) is such
that all possible SU(2) matrices can be produced. To proceed, notice that R̂(0, 0, 0) and R̂(0, 0, 2π) are both
corresponding to the same identity operation. However, D̂(1/2)(0, 0, 0) = −D̂(1/2)(0, 0, 2π). In effect, both the
matrix D̂(1/2)(R) and −D̂(1/2)(R) correspond to R̂. This seems to indicate that SU(2) would be a double-valued
representation of SO(3), meaning that there are two elements in SU(2) that can represent one element in SO(3).
This is not allowed for a true representation as it provides an ambiguity. We can nevertheless resolve this issue
by considering precisely the parameter range for the angles in D̂(1/2). In order for these matrices to comprise
SU(2), we need for instance 0 ≤ γ ≤ 4π. However, by restricting the range to 0 ≤ γ ≤ 2π, D̂(1/2) can represent
SO(3). Note that in this way, it is no longer the full group SU(2), but we have removed the double-valuedness
by restricting the parameter range. We can also turn the argument around. Since there are two elements in SU(2)
corresponding to SO(3), the groups are homomorphic:

SO(3) is a representation of SU(2).

This is not an isomorphism (one-to-one correspondence) and SU(2) is not a representation of SO(3).

We here summarize some general properties related to the groups SU(2) and SO(3).

• The representations of SU(2) may be classified by a number j = 0, 1
2 , 1,

3
2 , . . . and the dimensionality of the

representations is 2j + 1.

• The spin-j representation of SU(2) is {D̂(j)} where D̂(j) are rotation matrices for angular momentum =
0, 1

2 , 1,
3
2 , . . .

j =half-integer: the representation is faithful to SU(2), for instance like j = 1
2 in our above treatment.

j =integer: the representation is also a representation for SO(3), and faithful as long as j �= 0.
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D. Isospin

The close similarity between the proton and neutron in terms of their mass (mp � 938 MeV/c2 and mN � 939
MeV/c2) caused Heisenberg to suggest that they could be regarded as two states of a single particle: the nucleon
N . To explore such an idea, let us write

N =

[
α

β

]
where p =

[
1

0

]
, n =

[
0

1

]
, (2.9)

so that the proton and neutron can be characterized by their isospin I . This is in analogy to the treatment of spinors
which have the same structure, only that their components are a part of spin-space. The physics behind this idea
is that the strong interactions should be invariant under rotations in isospin space, just like electrical forces are
invariant under rotations in ordinary space. Put differently, Heisenberg proposed that if the charge of the proton
was somehow "turned off", it should be identical to the neutron. Noether’s theorem dictates that isospin should
then be conserved in all strong interactions, just like angular momentum is conserved in processes with rotational
invariance.

Formulated in terms of our recently discussed group theory, strong interactions should then be invariant under an
internal symmetry group SU(2) and nucleons belong to the two-dimensional representation with isospin 1

2 . Note
that since mp is not exactly equal to mn, SU(2) isospin symmetry should not be expected to be an exact symmetry,
but it should be very good. Isospin may also be used to classify other particles besides nucleons, such as the
structure of the hadrons. The motivation for this is the same as for n and p: similar masses, but different charges.
For the pions one assigns I = 1, so that the different pion particles are represented as different states in isospin
space:

π+ = |1, 1〉, π0 = |1, 0〉, π− = |1,−1〉. (2.10)

The Λ has I = 0, so that Λ = |0, 0〉, whereas the ∆ particles have I = 3
2 :

∆++ = |3
2
,
3

2
〉, ∆+ = |3

2
,
1

2
〉, . . .∆− = |3

2
,−3

2
〉. (2.11)

The number of particles r in a multiplet of hadrons is related to the isospin by r = 2I + 1. The third component
I3 is determined by the charge, so that I3 = I for the highest charge.

Isospin also has dynamical implications rather than simply being used a tool to classify particles. Consider the
(isospin) angular momentum of two nucleons. Their total value can be I = 0 or I = 1, according to standard rules
for how to add two angular momenta. In particular, we have three possible triplet states:

|1, 1〉 = pp, |1, 0〉 = 1√
2
(pn+ np), |1,−1〉 = nn (2.12)

and one singlet state

|0, 0〉 = 1√
2
(pn− np). (2.13)

Now, the n and p form a bound state known as a deuteron (d). We can then immediately conclude that it has to be
a singlet state in isospin space. Why? If it were a triplet state, then pp and nn should also occur in nature simply
by rotating the isospin. However, such long-lived states are not known to exist (to be precise, nn was actually
observed as an intermediate state in 2012, which shows that isospin is not a perfect symmetry). It is possible to
extend the concept of isospin further to particles such as Σ’s and Θ’s, which have spin quantum number s = 1/2
and somewhat similar masses. Nevertheless, it is certainly a stretch to call all of these particles different states of
one single particle. SU(2) isospin symmetry is a a good, but not exact, symmetry.

It is instructive to compare the isospin classification of π and K. There are three pions: π+, π0, π−. All have
similar mass and they fit nicely into a I = 1 multiplet. As for kaons, there are 4 of them: K+,K−,K0, K̄0. Note
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that K0 and K̄0 are distinct (unlike π0 which is its own antiparticle). Now, the question is: should the kaons be a
I = 3/2 or I = 1/2 multiplet? In principle, we could assign them as follows (sticking with the notation |I, I3〉):

K+ = |3
2
,
3

2
〉, K0 = |3

2
,
1

2
〉, K̄0 = |3

2
,−1

2
〉, K− = |3

2
,−3

2
〉. (2.14)

If we do, however, the charge is not descending with I3 as it should. Moreover, there is a more serious problem:
the kaons have different strangeness quantum number. The K+ and K0 have S = −1 as they consist of us̄ and
ds̄, respectively. The K− and K̄0 have S = +1, as they consist respectively of ūs and d̄s. The whole idea
with isospin is that the particles are supposed to interact strongly in the same way, and this cannot be the case
above since strangeness is conserved in strong interactions. Therefore, we must assign the kaons into two isospin
I = 1/2 doublets:

K+ = |1
2
,
1

2
〉, K0 = |1

2
,−1

2
〉,

K̄0 = |1
2
,
1

2
〉, K− = |1

2
,−1

2
〉, (2.15)

even if all have similar masses.

INSERT ADVERTISEMENT HERE
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E. Charge conjugation and parity

Charge conjugation.
Classical electrodynamics is invariant under a sign change of charge (the forces remain the same). In particle
physics, the generalization notion of this symmetry is the charge conjugation C:

C|p〉 = |p̄〉 (2.16)

where |p〉 represents a general particle and not necessarily a proton. Therefore, the effect of the C operator is that
it changes the sign of charge, baryon- and lepton-number, strangeness, and additional quantum numbers associated
with quarks. It leaves mass, energy, momentum, and spin untouched (and thus also the helicity of a particle). We
see that C2 = I , which means that the eigenvalues of C are ±1. Only particles that are their own antiparticles are
eigenstates of C (such as the photon). However, a composite system such as spin-1/2 particle pair pp̄ with relative
orbital angular momentum l and total spin s is also an eigenstate of C with eigenvalue (−1)l+s. Mesons are
examples of this. C is a multiplicative quantum number and conserved in strong and electromagnetic interactions,
whereas it is not conserved in weak interactions.

Example 3. Pion decay. The process π0 → γ + γ is allowed since Cπ0 = +1 and C = (−1)n for n photons.
However, π0 → γ + γ + γ would not be allowed via the electromagnetic interaction since C is not conserved in
this process. A weak interaction could mediate this process, but its amplitude would be very small.

Can γ decay to multiple photons?
According to our discussion on charge conjugation, we see that γ → γ + γ violates C-symmetry. In fact, it is not
even kinematically possible since the photon has no rest frame. Note that the process is not possible despite the
fact that we can draw a Feynman diagram for it:

The existence of a Feynman diagram is thus no guarantee for the viability of a decay or scattering process,
similarly to the primitive vertices. What about γ → γ+ γ+ γ? It seems fine in terms of C-symmetry, but the only
way that γ could decay into an odd number of photons is if all particles are moving colinearly in order to satisfy
energy and momentum conservation. Computation of the actual Feynman diagram (which we will learn how to do
later) nevertheless gives zero probability of this process to all orders perturbatively.

Parity.
Prior to 1956, physicists generally believed that nature had a parity symmetry: letting r → (−r) in any physical
process should also yield a physically permissible process. Lee and Yang found that there was strong experimen-
tal evidence of parity-invariance in the strong and electromagnetic processes, but not when it came to the weak
interactions. Lee and Yang initiated a famous experiment, which was conducted by Wu and collaborators, that
consisted of the setup shown in (a).

e−

Co60

z
(a)

e−

Co60

z(b)
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The spins of radioactive Co60 were aligned with the z-axis through application of a magnetic field. Upon decaying,
the Co60 would emit electrons that turned out to escape mostly in one direction, as shown in (a). Based simply on
this observation, the conclusion was that parity must be broken! If we let r → (−r), the parity-reversed process
is obtained as shown in (b), but the experiment demonstrated that this does not occur. Recall that spin (angular
momentum) is invariant under a parity transformation (for instance, L = r × p does not change since both r and
p change sign under parity).

In fact, P violation appears to be prominent in weak interactions. This is exemplified via the neutrino. Define first
the helicity of a particle as ms/s where the z-axis is aligned with the direction of motion:

v v

s s
Positive helicity (right-handed) Negative helicity (left-handed)

Earlier experiments showed that all neutrinos seemed to be left-handed while all anti-neutrinos were right-handed.
Consider for instance the pion decay π− → µ− + ν̄µ. If π− decays from rest (in the CM frame), the µ− and ν̄µ
spins must be opposite since sπ− = 0 and angular momentum is conserved:

vv

ss

µ− ν̄µπ−

As seen, the helicities must then be the same, and experimentally one measures the muon to be right-handed in
the π− rest frame. Now, if the neutrino were truly massless, its helicity would have been the same in all inertial
frames since then vν = c. But if neutrinos do have mass (which we now know that they do), then vν < c and we
could in principle find a reference frame S moving at a speed vν < vS < c. In this frame, the neutrino would be
right-handed and parity symmetry would be restored. However, this has not yet been observed.

The parity operator P acts differently on different mathematical quantities. We have Pr = −r. However, PL = L
since Pp = −p. We thus have

• Pv = −v for a vector (also known as polar vector).

• Pa = a for a pseudovector (also known as axial vector).

Note that we can construct a pseudoscalar from the triple product of three polar vectors (a · (b× c)):

• Ps = s for a scalar.

• Pp = −p for a pseudoscalar.

Like C, P is multiplicative and conserved in strong and electromagnetic interactions. It is not conserved in weak
interactions. The parity group has two elements: I and P (since P 2 = I). The eigenvalues are ±1 and particle
such as hadrons are eigenstates of P , so that they may be classified according to their eigenvalue. Quantum field
theory dictates that the parity for fermions must be opposite to the corresponding antiparticle. For bosons, on the
other hand, particle and antiparticle parity is the same. Spin-1/2 fermions have intrinsic positive parity (quarks,
leptons, nucleons). In composite systems, parity is multiplicative. Excited states acquire an extra factor (−1)l

where l is the angular momentum. The photon, being a vector particle, has parity −1. The terms "pseudo" and
"vector" are in reference to a particle indicate the parity eigenvalue of the particle.

F. CP-violation and the TCP theorem

Although C and P are not invariant in terms of weak interactions, could it be that their product CP is? To
investigate this, consider the process K0 ↔ K̄0 which is possible via a second-order weak interaction:
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These are two of the contributing diagrams. Due to the interconversion, what is experimentally observed is usually
some linear combination of K0 and K̄0. We have

P |K0〉 = −|K0〉, P |K̄0〉 = −|K̄0〉, (2.17)

since these are pseudoscalar particles. Moreover,

C|K0〉 = |K̄]0〉, C|K̄0〉 = |K0〉. (2.18)

It follows that CP |K0〉 = −|K̄0〉 and CP |K̄0〉 = −|K0〉. Using these properties, we may then construct the
normalized eigenstates of CP as:

CP |K1〉 = |K1〉, CP |K2〉 = −|K2〉, (2.19)

where we defined the states

|K1〉 =
1√
2
(|K0〉 − |K̄0〉), |K2〉 =

1√
2
(|K0〉+ |K̄0〉). (2.20)

If CP is a conserved quantity, then K1 (K2) can only decay to a state with CP = +1 (−1). As a consequence,
K1 → 2π and K2 → 3π are allowed, but K2 → 2π should be impossible. Imagine then that we start the
experiment with a beam of K0 produced by an accelerator:

|K0〉 = 1√
2
(|K1〉+ |K2〉). (2.21)

The 2π decay is faster than the 3π since the released energy is much greater. Thus, for a long beam trajectory only
3π events should be observed at the end. However, an experiment by Cronin and Fitch in 1964 proved that 2π
events did occur at the end of the beam, indicating violation of CP . The long-lived kaon state |KL〉 should then
read:

|KL〉 =
1√

1 + |ε|2
(|K2〉+ ε|K1〉), (2.22)

since it apparently is not a perfect eigenstate of CP , where ε is a small number. Kaons are typically produced in
strong interactions as eigenstates of strangeness, but they decay via the weak interaction. Once created, they are
therefore better thought of as a superposition of weak eigenstates (K1 and K2).

What about time-reversal symmetry T ? Should the laws of physics work equally well when reversing time? It
seems not, due to the TCP -theorem from quantum field theory. It is derived only from general assumptions, such
as Lorentz invariance, and states
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The combined operation of T , C, and P is an exact symmetry of any interaction.

Therefore, if CP is violated, T should also be violated. If this theorem is correct, one can prove that every particle
should have exactly the same mass and lifetime as its antiparticle. So far, no experiment has proven otherwise.
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III. THEORY OF RELATIVISTIC KINEMATICS

Learning goals. After reading this chapter, the student should:

• Be able to perform calculations using 4-vectors and Lorentz-transformations.

• Understand the basic principles of the special theory of relativity and how this influences particle decay and
scattering.

We shall here establish the basic principles, notation, and terminology of relativistic kinematics. This will be
crucial in order for us to develop the mathematical foundation for particle dynamics in later chapters of this book.

A. Lorentz transformations

We will assume here that the reader has been introduced the Einstein’s special theory of relativity in previous
courses, for instance in classical mechanics, and thus only briefly revisit some of the key insights here. For a more
detailed introduction to this topic, the reader can have a look here. The special theory of relativity states that all
laws of physics are equally valid in all inertial systems. An inertial system is defined as a system where Newton’s
first law is obeyed, namely that objects move along straight lines with constant speed unless acted upon by a force.
Consider then two inertial frames S and S′ where S′ is moving at constant velocity v relative S:

S S ′

x x′

Assume that the origins of the frames coincide at t = t′ = 0. A Lorentz-transformation establishes the relation be-
tween an event as seen in S at coordinates (x, y, z, t) and the same event as seen in S′ at coordinates (x′, y′, z′, t′):

x′ = γ(x− vt), y′ = y, z′ = z, t′ = γ(t− vx/c2). (3.1)

Here, we introduced

γ =
1√

1− v2/c2
(3.2)

The inverse set of transformations (going from S′ to S) are obtained by letting r′ → r and v → (−v). The
transformation rules can be derived by demanding that the speed of light c should be the same in both inertial
frames. This set of of transformations has a number of consequences:

1. The relativity of simultaneity. If two events occur at the same time in S, but at different locations, then
they do not occur at the same time in S′. Namely, if tA = tB , then t′A = t′B + γv

c2 (xB − xA).

2. Lorentz contraction. An object of length L′ as measured in S′ has a length L = L′/γ when measured in
S. The moving object is thus shortened by a factor γ, which applies to lengths along the direction of motion
(dimensions ⊥ the motion are unaffected).

3. Time dilation. A clock at the origin of S′ ticking an interval T ′, will be seen to have ticked an interval
t = γT ′ by an observer in S. Thus, one may state that moving clocks run slower. This is important with
respect to particle physics since each unstable particle has their own "built-in" clock: a moving particle lasts
longer than it would at rest. Note that tabulated lifetimes for particles always refer to the particles restframe.
Due to time dilation, cosmic ray muons produced in the upper atmosphere make it to ground level even if
their lifetime in the rest frame is not long enough to do so.

https://bookboon.com/en/introduction-to-lagrangian-hamiltonian-mechanics-ebook
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4. Velocity addition. Suppose that a particle is moving in the x-direction at speed u′ with respect to S′.
We then have u′ = ∆x′/∆t′. What is the speed of the particle with respect to S? It moves a distance
∆x = γ(∆x′ + v∆t′) in a time ∆t = γ[∆t′ + (v/c2)∆x′], so that

u =
∆x

∆t
=

(∆x′/∆t′) + v

1 + (v/c2)(∆x′/∆t′)
=

u′ + v

1 + u′v/c2
. (3.3)

The classical, non-relativistic answer from a Galilei-transformation would be u = u′ + v, so the correction
from relativity is in the denominator. It only matters if u′ and v are close to c. Note that u′ = c gives u = c.

B. 4-vectors

Define the position four-vector xµ, µ = 0, 1, 2, 3, 4:

x0 = ct, x1 = x, x2 = y, x3 = z (3.4)

The Lorentz transformation may then be written compactly:

xµ′
=

3∑
ν=0

Λµ
νx

µ, (3.5)

where Λµ
ν are the coefficients of the matrix Λ:

Λ =




γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1


 (3.6)

so that for instance Λ0
0 = γ, Λ1

0 = −γβ, and so forth. We will from now on use Einstein’s sum convention for greek
indices, which means that for repeated indices a summation is implicitly understood. The Lorentz-transformation
is then written simply as xµ′

= Λµ
νx

ν . It can be shown that the particular combination:

I ≡ (x0)2 − (x1)2 − (x2)2 − (x3)2 (3.7)

has the same value in all inertial systems, so that I is also equal to (x0′)2 − (x1′)2 − (x2′)2 − (x3′)2. Therefore,
I must be a Lorentz-invariant as it remains the same under a Lorentz-transformation, analogously to how r2 =
x2 + y2 + z2 is invariant under rotations in three-dimensional space. To keep track of the different signs in I , we
introduce the metric gµν which are the components of the matrix g:

g =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 . (3.8)

We may then express I as a double sum: I = gµνx
µxν . From this, we may define the covariant four-vector xµ

(index down):

xµ ≡ gµνx
ν . (3.9)

It follows that x0 = x0 and xi = −xi, i = 1, 2, 3. For index up, we have a contravariant four-vector xµ:

xµ = gµνxν . (3.10)

We thus have:

Index up (xµ): contravariant vector. Index down (xµ): covariant vector.
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The metric g can thus be thought of as raising or lowering the index of a four-vector. One way to memorize this is
the following: contravariant vectors have index on top. Our invariant I can now be written even more compactly
as

I = xµx
µ. (3.11)

This type of notation also generalizes to non-Cartesian coordinate systems and curved spaces encountered in the
theory of general relativity. We define a four-vector aµ formally as an object that transforms in the same way as
xµ when going from one inertial-system to another:

aµ
′
= Λµ

νa
ν . (3.12)

We also associate a covariant four-vector aµ to each such contravariant vector:

aµ = gµνa
ν . (3.13)

According to our definition above, we go from covariant to contravariant four-vectors via aµ = gµνaν . Here, gµν

are the elements of the matrix g−1. For our case, we see that g = g−1 so that gµν = gµν . For any two four-vectors,
aµ and bµ, the quantity aµb

µ ≡ a · b is invariant. We will sometimets also simply write aµb
µ ≡ ab when there

is no risk for confusion. Notation-wise, we may distinguish between time and spatial coordinates in this invariant
since aµb

µ = a0b0 − a · b. Note that a2 = aµa
µ need not be positive:

• If a2 > 0, then aµ is said to be timelike.

• If a2 < 0, then aµ is said to be spacelike.

• If a2 = 0, then aµ is said to be lightlike.

Tensors transform in a generalized way compared to vectors: sµν
′
= Λµ

κΛ
ν
σs

κσ. Note that any tensor of rank n+2
can be contracted to a tensor of rank n by performing a summation over upper and lower indices. For instance, sµµ
is a scalar while tµνν is a four-vector, and so forth.

INSERT ADVERTISEMENT HERE
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C. Energy and momentum

We previously stated that time dilation refers to the phenomenon that a moving clock measures an eigentime dτ
whereas a stationary observer meaures dt. The two are related via

dτ = dt/γ. (3.14)

The quantity τ is an invariant: all observers agree on which time that is measured in the particle’s restframe, even if
the time measured in their own frame might differ. Just as 4-position vector gives an invariant xµxµ, the 4-velocity:

ηµ = dxµ/dτ = γ(c,v) (3.15)

gives an invariant when contracted: ηµηµ = γ2(c2 − v2) = c2. Note that if we had defined relativistic momentum
as mv, it would not have provided conservation of momentum in all inertial systems, assuming that it was valid in
one such system. However, mηµ assures that this holds. Thus, the appropriate 4-momentum vector reads:

pµ = (γmc, γmv). (3.16)

Let us define the relativistic energy as E = γmc2. Then, it follows that pµpµ = E2/c2−p2 = E2/c2−γ2m2v2 =
m2c2. We see that the relativistic momentum reduces to its classical counterpart when v � c since γ → 1 then.
However, for the energy we obtain

E = mc2
(
1 +

1

2

v2

c2
+

3

8

v4

c4
+ . . .

)
(3.17)

from which it is seen that an extra constant term mc2 exists in the limit v � c. This term survives even in the
absence of any kinetic energy, v = 0. It is the so-called rest energy of the particle. The remainder of the energy
must then be associated with the kinetic content: Ekinetic ≡ (γ − 1)mc2. An aspect which has no counterpart in
non-relativistic mechanics is that a massless particle with non-zero momentum may exist: E = |p|c. The fact that
this is possible is demonstrated by the formulae

p = mv/
√
1− v2/c2 and E = mc2/

√
1− v2/c2. (3.18)

since m → 0 still can give a finite p and E if simultaneously v → c.

D. Collisions

Energy and momentum are, as in non-relativistic mechanics, conserved quantities in particle collisions. This may
be compacty expressed via the 4-momentum vector: pµtotal is a conserved quantity. Mass, however, is not necessarily
conserved. The crucial concept here is that rest energy (and thus mass) may be converted into kinetic energy or vice
versa. To obtain consistency with the non-relativistic limit, where kinetic energy is converted into some internal
form of energy (such as heat), we need only realize that all such internal energies are reflected in the rest energy
of the body. On a macroscopic scale, the rest energy is much greater than the internal energy, so that the added
mass from internal energy is completely negligible. Strictly speaking, however, a hot potato weighs more than a
cold potato. Imagine two objects that have identical masses when at the same temperature. If one of the objects is
heated, so that its internal temperature increases, its weight will also become larger than the other object according
to our reasoning above.

Example 4. Particles merging. Consider the following scenario where two particles merge into one via a head-on
collision.

Before After
m

+v −v

M

m
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The task is to find the mass M of the final particle when |v| = 3c/5. Conservation of momentum gives p1 = −p2.
For the energy, we obtain

Mc2 = 2Em = 2mc2/
√
1− v2/c2 = 5mc2/2. (3.19)

Thus, we find M = 5m/2 > 2m, meaning that we have a so-called sticky collision where the mass has increased.
Note that the reverse process, M decaying into two particles with mass m each, is only possible if M > 2m. A
deuteron (bound state of a p and n) weigs less than mp+mn. Therefore, it will not decay unless energy is injected.
This is actually a concrete example of how the (negative) binding energy is reflected in the total rest mass.

Example 5. Pion decay. A pion at rest decays into a muon and a neutrino. What is the speed of the muon? Let us
start with the conservation laws at hand:

Eπ = Eµ + Eν , pπ = pµ + pν → pµ = −pν . (3.20)

One solution strategy is to find the energy of a particle when you know its momentum, by using the invariant
E2 − p2c2 = m2c4. When the energy has been identified in this way, use that E = γmc2 and p = γmv which
gives v = pc2/E. For this example, we have

Eπ = mπc
2, Eµ = c

√
m2

µc
2 + p2

µ, Eν = |pν |c = |pµ|c. (3.21)

This provides |pµ| = (m2
π − m2

µ)c/2mπ and Eµ = (m2
π + m2

µ)c
2/2mπ. Plugging these expressions into v =

pc2/E then provides the muon velocity.

We end this chapter by emphasizing the difference between a conserved quantity and a invariant quantity. Energy
is conserved (same value before and after collision), but it is not an invariant: the energy can have different values
in different inertial frames. On the other hand, mass is invariant (same value in all inertial systems), but it is not a
conserved quantity in general (before and after a collision).
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IV. QUANTUM ELECTRODYNAMICS AND FEYNMAN RULES

Learning goals. After reading this chapter, the student should:

• Be able to work with the Klein-Gordon and Dirac equation mathematically and understand what their solu-
tions represent.

• Be able to compute the Feynman amplitude M for Feynman diagrams in quantum electrodynamics, and also
be able to obtain decay rates and scattering cross sections from M.

• Understand the principle behind renormalization and how it is related to higher-order Feynman diagrams.

This theory is a major cornerstone in particle physics and serves as the foundation for much of the material that we
will look at later. We will here introduce the Dirac equation and its solution, Feynman rules and how they work
specifically in QED, in addition to some pragmatic calculational tools.

A. The Dirac equation

In non-relativistic quantum mechanics (QM), it is the Schrödinger equation which is the fundamental equation that
describes the behavior of physical systems. In relativistic QM, one has different fundamental equations depending
on the spin of the particle.

• Spin-0: Klein-Gordon equation.

• Spin- 12 : Dirac equation.

• Spin-1: Proca equation.

We will later in this chapter establish a set of Feynman rules which will allow us to evaluate Feynman diagrams
mathematically. Once this set of rules has been established, the underlying field equation for a particle with a
given spin is no longer immediately needed. However, the notation of Feynman rules for spin- 12 particles does
require that we are familiar with the Dirac equation and we therefore treat it, and its solutions, here in detail.

It is instructive to first consider how the Schrödinger equation (SE) can be motivated. If one starts out with the
classical, non-relativistic expression for energy, E = p2/2m+ V , and then substitute the operators

p → �
i
∇, E → i�∂t (4.1)

one ends up with precisely the time-dependent SE:

− �2

2m
∇2Ψ+ VΨ = i�∂tΨ. (4.2)

The same principle can be applied for the Klein-Gordon (KG) equation. The starting point is the classical, rela-
tivistic expression for energy, E2 − p2c2 = m2c4, or pµpµ − m2c2 = 0. Consider a free particle to begin with
such that V = 0. Now, perform the same substitution as in the SE case in order to introduce operators

pµ = i�∂µ (4.3)

which is simply a more compact way of writing Eq. (4.1). We introduced ∂µ ≡ ∂
∂xµ . In effect, this means that

(E/c,−p) → i�(∂t/c,∇). (4.4)

The KG equation now becomes:

−�2∂µ∂µΨ−m2c2Ψ = 0 (4.5)
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which alternatively can be written as:

− 1

c2
∂2Ψ∂t2 +∇2Ψ =

(mc

�

)2

Ψ. (4.6)

In the presence of an EM potential, we have to take into account the influence of the electric scalar potential
and magnetic vector potential. This is done in the usual manner: the energy is changed to E → E − eφ while
the momentum is augmented by the magnetic vector potential via p → p − eA

c in order for the physics to be
gauge-invariant (the so-called minimal coupling). In this case, we obtain

(i�∂t − eφ)2Ψ = c2
(
− i�∇− eA

c

)2

Ψ+m2c4Ψ. (4.7)

Note that while the SE is O(t), the KG equation is O(t2). As we now will turn our attention to the Dirac equation,
it is also worth to emphasize that Ψ is a scalar field and that any solution to the Dirac equation is also a solution of
the KG equation, as there is no reference to spin in the KG equation One can loosely think of the KG equation as
describing the magnitude of the field, whereas the Dirac equation describes both the magnitude and the "direction"
(spin) of the field in the case of spin-12 particlecs. Note that the opposite is not true: a solution of the KG equation
is not necessarily a solution of the Dirac equation, since the KG equation has lost a degree of freedom (spin)
compared to the Dirac equation.

Now, in order to obtain the Dirac equation, the strategy is to factor the E − p relation (often called a dispersion
relation). If p = 0, this is easy:

(p0)2 −m2c2 = 0 = (p0 +mc)(p0 −mc) → (p0 −mc) = 0 or (p0 +mc) = 0. (4.8)

Both options guarantee that pµpµ − m2c2 = 0. For the more interesting case p �= 0, we would need something
like:

(pµpµ −m2c2) = (βκpκ +mc)(γλpλ −mc), (4.9)

where βκ and γλ are undetermined coefficients for now. To match the two sides of the equation, we obtain

βκγλpκpλ −mc(βκ − γκ)pκ −m2c2. (4.10)

If βκ = γκ, the linear terms in momentum are seen to cancel. Now, we must find γκ so that the second order terms
also match:

pµpµ = γκγλpκpλ. (4.11)

The problem with this equation is that it is impossible to satisfy for scalars γκ. However, it can be satisfied if the
γ-quantities are matrices instead. Writing out Eq. (4.11) more explicitly, we obtain

(p0)2 − (p1)2 − (p2)2 − (p3)2 = (γ0)2(p0)2 + (γ1)2(p1)2 + (γ2)2(p2)2 + (γ3)2(p3)2

+ (γ0γ1 + γ1γ0)p0p1 + . . . (γ2γ3 + γ3γ2)p2p3. (4.12)

We need a set of matrices to get rid off the cross terms, and we thus require that the matrices have the following
properties in order to accomplish this:

(γ0)2 = 1, (γ1)2 = (γ2)2 = (γ3)2 = −1 (4.13)

in addition to

{γµ, γν} ≡ γµγν + γνγµ = 0 for µ �= ν. (4.14)

It is clear why scalars could not satisfy the above properties: scalars commute. The above requirements, can be
written quite compactly as:

{γµ, γν} = 2gµν , gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 . (4.15)
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gµν is thus the Minkowski metric. There exists an infinite number of physically equivalent sets of γ-matrices that
satisfy these properties. The smallest ones are 4× 4 and take the explicit form:

γ0 =

[
1 0

0 −1

]
, γi =

[
0 σi

−σi 0

]
(4.16)

where . . . means a 2× 2 matrix. Now, the Dirac equation factorizes:

(pµpµ −m2c2) = (γκpκ +mc)(γλpλ −mc) = 0. (4.17)

The conventional choice is now to consider:

γµpµ −mc = 0. (4.18)

If we let pµ → i�∂µ as for the other quantum equations (thus introducing operators), we obtain the final form of
the Dirac equation:

i�γµ∂µψ −mcψ = 0.

Here, ψ is a Dirac spinor (which is not a 4-vector):

ψ =




ψ1

ψ2

ψ3

ψ4


 (4.19)

Since it is not a 4-vector, it does not transform via a Lorentz transformation when changing inertial system.

We note in passing that the Pauli equation, which is essentially the SE with spin taken into account, is obtained by
considering the Dirac equation in the low-energy (non-relativistic limit). We underline that spin is not a relativistic
correction: it is a fundamental property of particles which existence does not rely on the speed at which the
particles move. The Dirac equation thus describes both spin and relativistic effects.
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Alternative derivation of the Dirac equation.
We saw above that we could fulfil the equation:

pµpµ −m2c2 = (γκpκ +mc)(γλpλ −mc) = 0 (4.20)

with appropriate γ-matrices. We then took one of these factors, say γµpµ − mc, and set it to zero. Assigning
operators and acting on a wavefunction, we got:

i�γµ∂µψ −mcψ = 0. (4.21)

But AB = 0 does not imply that A = 0 or B = 0 when A and B are matrices. Therefore, we are strictly speaking
not allowed to conclude that one of the factors in Eq. (4.20) is zero, even if it seems to give us the correct result.
We therefore give here a more mathematically satisfying derivation which produces the same result.

Consider the KG equation:

(
∇2 − ∂2

t

c2

)
ψ =

(mc

�

)2

ψ. (4.22)

If we factorize this equation (which is already in operator form), we get:

(
∇2 − ∂2

t

c2

)
ψ = (A∂x +B∂x + C∂z + iD∂t/c)(A∂x +B∂x + C∂z + iD∂t/c)ψ

=
(mc

�

)2

ψ ≡ κ2ψ. (4.23)

This equation is satisfied if

(A∂x +B∂x + C∂z + iD∂t/c)ψ = ±κψ (4.24)

and if the terms {A,B,C,D} are chosen so that the cross terms on the r.h.s. of the first line in Eq. (4.23) vanish.
It turns out that this occurs when

{A,B,C} = iγk, D = γ0. (4.25)

so that Eq. (4.24) gives the Dirac equation:

i�γµ∂µψ ±mcψ = 0. (4.26)

This equation can also be brought to another form which is commonly used by multiplying it with γ0:

γ0(γ0p0 − γ · p−mc)ψ → i∂tψ − γ0γ · pψ −mγ0ψ = 0. (4.27)

This may be written as:

i∂tψ = HDψ (4.28)

where we defined the Hamiltonian

HD = α · p+ βm (4.29)

and α = γ0γ and β = γ0. This form of the equation describing a relativistic spin-1/2 particle also makes it clear
how to include a potential energy V (r), namely HD → HD + V (r) as usual.

Solutions to the Dirac equation.
Consider first the simple case where ψ is independent on r: ∂ψ/∂xj = 0 (j = x, y, z). This should be the case for
p = 0, since pµ → i�∂µ. The Dirac equation then reads

[
1 0

0 −1

][
∂ψA

∂t
∂ψB

∂t

]
= −i

mc2

�

[
ψA

ψB

]
(4.30)
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where ψA = [ψ1, ψ2]
T and ψB = [ψ3, ψ4]

T . The superscript T denotes matrix transposition. The equations for
ψA and ψB are decoupled, and the solutions are obtained as:

ψA(t) = e−i(mc2/�)tψA(0), ψB(t) = e+i(mc2/�)tψB(0). (4.31)

For a particle at rest, E = mc2, so ψA is seen to carry the usual factor e−iEt/�. The negative sign in the exponent
of ψB represents antiparticles with positive energy. For instance, ψA may represent an electron, in which case ψB

represents a positron.

The particle and antiparticle (p and p̄) parts are each 2× 1 spinors since they have s = 1
2 . For p = 0, we then have

four independent solutions

• Electron spin-↑: ψ(1) = e−i(mc2/�)t[1, 0, 0, 0]T .

• Electron spin-↓: ψ(2) = e−i(mc2/�)t[0, 1, 0, 0]T .

• Positron spin-↑: ψ(3) = e+i(mc2/�)t[0, 0, 1, 0]T .

• Positron spin-↓: ψ(4) = e+i(mc2/�)t[0, 0, 0, 1]T .

We now turn to the more difficult, but much more interesting, case of p �= 0. We look for solutions to the Dirac
equation in a plane-wave form:

ψ(r, t) = ae−i(Et−p·r)/�u(E,p) (4.32)

which in 4-vector notation can be written (more compactly, as usual): ψ(x) = ae−ix·p/�u(p). Here, a is a
normalization constant and we must determine u(p). Inserting our ansatz into the Dirac equation produces:
(γµpµ − mc)u = 0. It is simpler than the original equation because there are no derivatives present. Now, we
see that since

γµpµ =
E

c

[
1 0

0 −1

]
− p ·

[
0 σ

−σ 0

]
, (4.33)

it follows that

(γµpµ −mc)u =

[
(E/c−mc)uA − p · σuB

p · σuA − (E/c+mc)uB

]
. (4.34)

The (E/c±mc) terms are implicitly understood to have an 1 structure as dimensionality requires, and we follow
this convention in what follows (i.e. omitting identity matrices where it is clear from the context that such a matrix
should be present). The solution to the above equation is:

uA =
c

E −mc2
(p · σ)uB , uB =

c

E +mc2
(p · σ)uA. (4.35)

Combining these equations, we find

uA =
c2(p · σ)2

E2 −m2c4
uA, (4.36)

which is seen to be consistent as (p · σ)2 = p2 = (E2 −m2c4)/c2. The wavefunctions are then determined up to
a normalization constant:

1. uA =

[
1

0

]
, which gives uB = c

E+mc2

[
pz

px + ipy

]
.

2. uA =

[
0

1

]
, which gives uB = c

E+mc2

[
px − ipy
−pz

]
.
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3. uB =

[
1

0

]
, which gives uA = c

E−mc2

[
pz

px + ipy

]
.

4. uB =

[
0

1

]
, which gives uA = c

E−mc2

[
px − ipy
−pz

]
.

In the first two cases, we have to use E = +
√

p2c2 +m2c4 in order to avoid uB diverging when p → 0. These
are the particle solutions. In the two last cases, the opposite is true: we must use E = −

√
p2c2 +m2c4 to avoid

divergences. These are the antiparticle solutions. Regarding the normalization, there exists different conventions.
A common convention that we shall stick with here is to normalize the above spinors so that u†u = 2|E|/c. The †

means conjugate transpose, so that

u =




α

β

γ

δ


 → u† = [α∗, β∗, γ∗, δ∗]. (4.37)

Note that all of the choices 1-4 above do not correspond immediately to spin-↑, ↓ electrons or positrons as they
have more than one non-zero entry in the spinor. Neither of them are in fact eigenstates of the spin operator

S =
�
2
Σ =

�
2

[
σ 0

0 σ

]
. (4.38)

Only for the special case of px = py = 0 will the spinors 1-4 be eigenspinors of Sz and S2. We noted that
E = −

√
p2c2 +m2c4 corresponds to antiparticles with positive energy (since free particles must have positive

energy). It is customary to relabel the antiparticle states to v and flip the sign of the energy and momentum, so
that we can use E =

√
p2c2 +m2c4 everywhere without having to worry about whether the energy belongs to a

particle or antiparticle state. The four independent solutions valid for finite momentum p �= 0 then read:
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u(1) = N




1

0
cpz

E+mc2
cp+

E+mc2


 , u(2) = N




0

1
cp−

E+mc2

− cpz

E+mc2


 , v(1) = N




cp−
E+mc2

− cpz

E+mc2

0

1


 , v(2) = −N




cpz

E+mc2
cp+

E+mc2

1

0


 , (4.39)

where we defined N =
√

(|E|+mc2)/c and p± = px ± ipy . Thus, u(i) are two spin states for an electron
with energy E and momentum p while v(i) are two spin states for a positron with energy E and momentum p.
Notice that the u-spinors satisfy (γµpµ −mc)u = 0 while the v-spinors satisfy (γµpµ +mc)v = 0 since we have
reversed the sign of E and p by convention.

Plane-wave solutions are particularly useful since they describe particles with specific energies and momenta,
both quantities that are usually possible to control quite well in experiments.

Transformation of Dirac spinors.
We mentioned previously that a Dirac spinor is not a 4-vector, meaning that it does not transform via the Lorentz
transformation under a change of inertial system. How does it transform then? The full proof is not given here and
the reader is referred to e.g. the textbook by Bjorken & Drell. The reader is instead encouraged to try to derive the
transformation rule via the following strategy. We want to discover how the solution ψ of the Dirac equation in
one frame, which satisfies

i�γµ∂µψ −mcψ = 0 (4.40)

looks in a different frame, ψ′ = Sψ, where the Dirac equation reads

i�γµ∂′
µψ

′ −mcψ′ = 0. (4.41)

To help us, we know how the differential operators transform as follows under a change of inertial system:

∂′
µ =

∂

∂xµ′ =
∂xν

∂xµ′ ∂ν . (4.42)

The result is that:

ψ → ψ′ = Sψ (4.43)

where the ′ system is moving with speed v in the x-direction and

S =

[
a+1 a−σ1

a−σ1 a+1

]
. (4.44)

Besides γ = 1/
√
1− (v/c)2 as usual, we defined

a± = ±
√

1

2
(γ ± 1). (4.45)

Now, ψ†ψ does not transform as a scalar under a change of inertial system because (ψ†ψ)′ �= ψ†ψ:

(ψ†ψ)′ = (ψ†)′ψ′ = ψ†S†Sψ (4.46)

and

S†S = γ

[
1 − v

cσ1

− v
cσ1 1

]
�= 1. (4.47)
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Similarly to a 4-vector, only the proper metric (relative sign between the components xµ) will make a quantity
transform like a scalar. In this case, it turns out to be

ψ̄ψ = ψ†γ0ψ = |ψ1|2 + |ψ2|2 − |ψ3|2 − |ψ4|2 (4.48)

which is a relativistic invariant. Here, we introduced the adjoint spinor:

ψ̄ ≡ ψ†γ0. (4.49)

It is also of interest to consider the transformation properties of ψ under a parity transformation. Recall how
scalars and pseudoscalars are distinguished based on how they transform under a parity operation. We have seen
that ψ̄ψ is Lorentz-invariant (transforms as a scalar under a change of inertial system), but how does it transform
under parity? Using a similar strategy as above (working out the parity transformation effect on the differential
operators), one finds that parity has the effect:

ψ → ψ′ = γ0ψ. (4.50)

It follows that these relations hold for a parity transformation:

• ψ̄ψ = scalar.

• ψ̄γ5ψ = pesudoscalar.

• ψ̄γµψ = vector.

• ψ̄γµγ5ψ = pseudovector.

B. The photon

Classical electrodynamics is described by Maxwell’s equation (using a Gaussian units convention, but the proce-
dure below is equally valid for SI units):

(i) ∇ ·E = 4πρ, (ii) ∇ ·B = 0,

(iii) ∇×E +
1

c

∂B

∂t
= 0, (iv) ∇×B − 1

c

∂E

∂t
=

4π

c
J . (4.51)

Here, ρ is the charge density and J is the current density. In relativistic theory notation, one introduces the
antisymmetric field tensor Fµν :

Fµν =




0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


 (4.52)

and the 4-vector Jµ = (cρ,J). The first and fourth of Maxwell’s equations listed above can now be compactly
written:

∂µF
µν =

4π

c
Jν . (4.53)

Since Fµν is an antisymmetric tensor, Fµν = −F νµ, one finds that ∂µJµ = 0. This can be written as

∇ · J = −∂ρ

∂t
, (4.54)

which is simply the charge continuity equation. On the other hand, the homogeneous equations (the second and
third of Maxwell’s equations listed above) may be reexpressed via the scalar potential φ and vector potential A as
follows:

B = ∇×A, E = −∇φ− 1

c

∂A

∂t
(4.55)
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which can be compactly expressed through:

Fµν = ∂µAν − ∂νAµ. (4.56)

The fields E and B are the physical observables, whereas the potentials φ and A [or simply Aµ ≡ (φ,A)] are not
uniquely determined:

A′
µ = Aµ + ∂µλ (4.57)

gives the same fields since ∂µAν′−∂νAµ′ = ∂µAν −∂νAµ. Here, λ is any differentiable function of position and
time. Eq. (4.57) is an example of a gauge-transformation, because we can choose any particular gauge (λ) that
we like. For instance, ∂µAµ = 0 is the Lorentz condition, which means that we restrict λ to satisfy �λ = 0 where
� ≡ ∂µ∂µ. In this gauge, the inhomogeneous Maxwell equations simplify to

�Aµ = 4πJµ/c. (4.58)

For empty space with Jµ = 0, we may choose a gauge with A0 = 0 such that the Lorentz condition takes the form
∇ ·A = 0. This special case is known as the Coulomb gauge.

Note that by selecting A0 = 0, we restrict ourselves to one particular inertial system, and thus break so-called
Lorentz covariance (which is the property that the equations are written in a form which is valid in any inertial
system). Alternatively, we must perform a gauge transformation along with every Lorentz transformation in order
to keep the Coulomb gauge intact in a new inertial system.

In QED, Aµ can be thought of as the "wavefunction" of the photon. For a free photon (Jµ = 0), the equation of
motion for this wavefunction in our chosen gauge takes the simple form: �Aµ = 0. Closer inspection reveals that
this is in fact equivalent to the KG equation for a massless field (m = 0). It has plane-wave solutions of the type:

Aµ(x) = ae−ip·x/�εµ(p), (4.59)
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where εµ is the polarization vector characterizing the spin of the photon. Inserting this solution into �Aµ = 0
[which is valid only under the Lorentz condition gauge], we find pµpµ = 0. This means that indeed m = 0 and
E = |p|c. Now, the Lorentz condition dictates that pµεµ = 0. In the Coulomb gauge, we further have that

ε0, ε · p = 0. (4.60)

Therefore, the polarization vector ε is ⊥ to p: a free photon is transversely polarized in the Coulomb gauge. For
a given p, there are thus two linearly independent 3-vectors perpendicular to p, for instance ε(1) = (1, 0, 0) and
ε(2) = (0, 1, 0) for p ∝ (0, 0, 1).

It might seem puzzling that there are only two polarization states since the photon is a spin-1 particle (s = 1).
Should there not be three available spin states? We might expect this based on how massive particles of spin s
behave: in this case, we are used to there being 2s + 1 different spin orientations. However, this changes for
massless particles of spin s. For such particles, there are only 2 different spin orientations regardless of s except
for s = 0 in which case there is only one spin orientation. This fact is related to the fact that the photon has no rest
frame as it moves with the speed of light.

With our gauge-choice, we explicitly eliminated the ms = 0 solution. However, the same physics would transpire
if we didn’t specify the gauge. In that case, longitudinal "ghost" photons decoupled from everything else would
appear (which would thus not be of any physical consequence since they would not interact with anything).

C. Feynman calculus: application to decays and scattering

In order to develop a quantitative formulation of elementary particle dynamics, such as decay rates Γ and scattering
cross sections σ, we need two main ingredients:

• Evaluate Feynman diagrams to find the amplitude M for a given process.

• Use Fermi’s Golden rule to compute Γ or σ from M.

Decay rate and scattering cross section.
The lifetime of a particle implicitly refers to a particle at rest, since otherwise we always have to take into account
time dilation. Even so, we can only compute the average lifetime of particles from a large sample. The decay rate
Γ is the probability per unit time that a muon will disintegrate. For a large sample N(t), we have

dN = −ΓNdt → N(t) = N0e
−Γt. (4.61)

The mean lifetime is then defined as τ = Γ−1. If a particle has several decay routes Γi (for instance, a π+ can
decay to µ+ + νµ, e

+ + νe + γ, et.c.), the total decay rate is

Γtot =

n∑
i=1

Γi (4.62)

The branching ratio is defined as Γi/Γtot.

Concerning scattering, it gives information about how particles quantitatively interact with each other. Imagine
firing a stream of arrows against a target as an analogue of particles scattering.

• Unlike a physical object, the arrows (particles in our case) do not simply miss or hit. Instead, their deflection
depends on the distance to the target. In this way, the effective scattering cross section σeff �= A where A is
the physical area of the object in general.

• The scattering cross section σ also depends on the arrows themselves. Particles scatter differently due to
different interactions, such as electromagnetic or weak ones.

• Finally, there is also a dependence on the final state of the arrows, such as whether or not the scattering is
elastic or inelastic.
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Each process has a specific scattering cross section. It depends on the energy of the particles as well: so-called
resonances in the σ − E diagram indicate bound states such as short-lived particles.

E

σ

Resonances

The scattering cross section is a measure for how likely a particle reaction is to occur. In fact, we can measure the
particle scattering cross section σ for a given reaction via the rate W at which it occurs. This is because W ∝ σ.
When there are similar routes to a final end-product one performs (similarly to the decay rate Γ):

σtot =

n∑
i=1

σi (4.63)

where n is the total number of processes leading to the end-product. For a particle scattering off some potential
center, we may envision the situation as follows:

θ

Scattering center

b

Particle trajectory

where b is the impact parameter and θ is the scattering angle. The reader is assumed to be familiar with the
classical treatment of a scattering cross section and we will not give a detailed treatment of classical scattering
theory - if required, the reader can find a comprehensive treatment here. We denote the differential scattering cross
section as dσ/dΩ.

The Golden rule.
The basic ingredients for calculating decay rates and scattering cross sections quantitatively will be the amplitude
M of the Feynman diagram for a given process (which contains information about how the interactions give rise
to the process, how they depend on energy and momentum, and so forth) and the available phase-space. More
phase-space indicates a more likely process, in general.

Example 6. Heavy particle decay. When a particle with a large mass decays into several light secondary particles,
a large phase-space is involved. This means that there are many ways to distribute the available energy and causes
(generally, but there are exceptions) heavy particles to decay faster than light particles. In contrast, a process such
as n → p + e− + ν̄e has very little extra mass to spare since mn and mp are almost equal, and thus very small
phase-space. As a result, the neutron has a very long lifetime (compared to other particles that decay via weak
interactions).

https://bookboon.com/en/introduction-to-lagrangian-hamiltonian-mechanics-ebook


INTRODUCTION TO PARTICLE PHYSICS

46

Quantum electrodynamics and Feynman rules

46

46

Before we work out a quantitative theory concerning decays and scattering cross sections, we state Fermi’s Golden
rule in a qualitative form to promote the physical understanding:

Transition rate =
2π

�
|M|2× phase-space.

We will now look at two particular cases of interest where we quantify what phase-space means mathematically.

Golden rule for decays.
The decay rate for a process 1 → 2 + 3 + 4 + . . .+ n (which is thus a very general process) is given by

dΓ = |M|2 S
2�m1

[( cd3p2
(2π)32E2

)( cd3p3
(2π)32E3

)
. . .

( cd3pn
(2π)32En

)]
× (2π)4δ4(p1 − p2 − p3 − . . . pn).

It is assumed here that particle 1 is at rest, so that p1 = (m1c,0). In general, pi = (Ei/c,pi) is the 4-momentum
for particle i with mass mi (E2

i − p2
i c

2 = m2
i c

4). The detailed derivation of the expression for dΓ is beyond the
scope of this textbook, but we shall in fact later outline briefly how it is derived using quantum field theory. The
δ-function enforces conservation of E and p. S is a product of statistical factors: it contains a factor 1/j! for each
group of j identical particles in the final state. The expression dΓ is to be understood as the differential rate of
decay where the momentum of particle 2 ends up in the range d3p2 around p2, and so forth for the remaining of
the produced particles. The total decay rate is obtained via integration. For instance, with two particles in the final
state:

Γ =
S

�m1

( c

4π

)2 1

2

∫
|M|2

E2E3
δ4(p1 − p2 − p3)d

3p2d
3p3. (4.64)

In general, the amplitude will depend on the momenta: M = M(p2,p3).

INSERT ADVERTISEMENT HERE
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Example 7. Two-body decay. Consider the process m1 → m2 +m3. Assume that M is a known quantity and
compute Γ. Since Ej =

√
m2

jc
4 + p2

jc
2, we have

Γ =
S

2(4π)2�m1

∫ |M|2δ(m1c−
√
m2

2c
2p2

2 −
√
m2

3c
2 + p2

2√
m2

2c
2p2

2

√
m2

3c
2p2

3

d3p2. (4.65)

We have carried out the integral over d3p3 by noting it only gives a contribution for p2 = −p3:

δ4(p1 − p2 − p3) = δ(m1c− E2/c− E3/c)δ
3(0− p2 − p3). (4.66)

Now, |M|2 only depends on p2 since we have set p3 = −p2. In fact, it should only depend on |p2| since it is
a scalar (only the combination p2 · p2 represents a scalar). Introducing spherical coordinates and performing the
angular integration gives:

Γ =
S

8π�m1

∫ ∞

0

|M|2δ(m1c−
√
m2

2c
2p2

2 −
√

m2
3c

2 + p2
2√

m2
2c

2p2
2

√
m2

3c
2p2

3

ρ2dρ. (4.67)

Here, we defined ρ ≡ |p2|. To solve this integral, introduce the total energy of the final particles:

E ≡ c
[√

m2
2c

2 + ρ2 +
√

m2
3c

2 + ρ2
]
. (4.68)

This yields:

Γ =
S

8π�m1

∫ ∞

(m2+m3)c2
|M|2 ρ

E
δ(m1c− E/c)dE. (4.69)

Finally, using that δ(m1c− E/c) = cδ(E −m1c
2), we obtain

Γ = S|M|2ρ0/8π�m2
1c (4.70)

where ρ0 is the value of ρ which gives E = m1c
2. Explicitly, it reads:

ρ0 = c
√
m4

1 +m4
2 +m4

3 − 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3/2m1. (4.71)

Also, |M| is evaluated at the momentum consistent with energy conservation and momentum conservation. Note
that m1 > m2+m3 in order to perform the integration. This makes physical sense, since otherwise particle 1 does
not have enough rest energy to produce the masses of particles 2 and 3, let alone provide them with any kinetic
energy.

Example 8. Decay rate of π0 → γ + γ. Use the formula derived in the previous example and set m2 = m3 = 0,
leading to ρ0 = m1c/2. Moreover, we have to set S = 1/2! = 1/2 since we are producing two identical particles.
Note that both of these examples were done without knowing the explicit form of M. This is not possible for
decays into three particles.

Golden rule for scattering
Suppose that 1+2 collide and produce a number of particles via the process 1+2 → 3+4+ . . .+n. The scattering
cross section is then:
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dσ = |M|2 �2S
4
√
(p1p2)2 − (m1m2c2)2

[( cd3p3
(2π)32E3

)
. . .

( cd3pn
(2π)32En

)]
× (2π)4δ4(p1 + p2 − p3 − . . . pn).

Typically, one studies at which angle one of the final particles emerge (say, particle 3): the integration required
to find the cross section for this process is then performed over all the other momenta (p4,p5, . . . ,pn) and the
magnitude of p3. We are then left with the differential scattering cross section dσ/dΩ for scattering particle 3 into
solid angle dΩ.

Example 9. Scattering 1 + 2 → 3 + 4 in the CM frame. Assume that M is known and calculate dσ/dΩ.

θ

p1 p2
p4

p3

In the CM frame, we have p1 = −p2 which leads to p1 · p2 = E1E2/c
2 + p2

1. Therefore:

dσ =
( �c
8π

)2 S|M|2c
(E1 + E2)|p1|

d3p3d
3p4

E3E4
δ[(E1 + E2 − E3 − E4)/c]× δ3(−p3 − p4). (4.72)

Now, express the energies with p3 and p4 and perform
∫
d3p4 so that p4 = −p3 everywhere:

dσ =
( �
8π

)2 S|M|2c
(E1 + E2)|p1|

δ[(E1 + E2)/c−
√
m2

3c
2 + p2

3 −
√
m2

4c
2 + p2

3]√
m2

3c
2 + p2

3

√
m2

4c
2 + p2

3

d3p3. (4.73)

This time, |M|2 can in general depend not only on |p3|, but also its direction since it depends on all momenta:
due to the assumption of working in the CM system, it depends on p1 and p2, so that the direction may play a
role from terms such as p1 · p3. We cannot carry out the integration over dΩ unless |M|2 is specified, but we can
integrate over |p3|:

dσ

dΩ
=

( �
8π

)2 Sc
(E1 + E2)|p1|

|M|2δ[(E1 + E2)/c−
√
m2

3c
2 + p2

3 −
√
m2

4c
2 + p2

3]√
m2

3c
2 + p2

3

√
m2

4c
2 + p2

3

ρ2dρ, (4.74)

where we introduced ρ ≡ |p3|. This is the same integral as in our previous example of a decay if we perform the
substitutions m2 → m4 and m1 → (E1 + E2)/c

2. The result is:

dσ

dΩ
=

( �
8π

)2 S|M|2c
(E1 + E2)2

|pf |
|pi|

. (4.75)

Here, |pf | is the magnitude of either final momentum (does not matter since we work in the CM frame) and |pi|
is the incoming momentum. As before, it is implicitly understood that |M|2 in the final expression is evaluated at
these momenta.

Let us also say a few words about the dimensions of the quantities we have considered. We have [Γ] = s−1 and
[σ] = m2, although in practice the cross section is more commonly given in cm2 or even barn where 1 barn
= 10−24 cm2. The dimension of the Feynman amplitude is [M] = (mc)4−n, in effect momentum raised to the
power 4− n where n is the number of incoming plus outgoing particles.
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How does one derive the formula for dΓ and dσ?
We here outline how the formulae we have given for dΓ and dσ are derived, following the 1988 textbook by Mandl
and Shaw. Both decay and scattering have in common that one starts with an initial state |i〉 and ends up in a final
state |f〉. The rate or likelihood of this process is determined by matrix elements of the type |〈f |Φ(∞)〉|2 where
|Φ(∞)〉 is the state into which |i〉 evolves as t → ∞. It includes all possible states that |i〉 can evolve into, and
the matrix element thus measures the overlap with one specific final state |f〉 that we are interested in. Now, to
find |Φ(∞)〉 we use that |Φ(∞)〉 = S|i〉 where S is the S-matrix determining the time-evolution of |i〉. S may be
obtained via the time-dependent standard QM equation of motion (Schrödinger equation):

i
d|Φ(t)〉

dt
= HI(t)|Φ(t)〉 (4.76)

in an iterative fashion. Here, HI(t) contains the interactions that govern the decay/scattering process. One finds
that:

S =
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 . . . T {HI(t1)HI(t2) . . . HI(tn)}, (4.77)

where T is the time-ordering operator. Essentially, we thus need to compute Sfi = 〈f |S|i〉 for the specified states
|i〉 and |f〉 for a given interaction HI . When computing this matrix element, one typically ends up with a result of
the type:

Sfi = δfi + (2π)4δ4
(∑

pf −
∑

pi

)∏
i

( 1

2V Ei

)1/2

×
∏
f

( 1

2V Ef

)1/2

CM (4.78)

where C is a constant and M contains info about external lines, i.e. the states |i〉 and |f〉, and the relevant
interactions HI . After this, we just have to multiply with an appropriate factor for the number of states available
[typically

∏
f

V d3pf

(2π)3 ], and we are left with dΓ or dσ.

Feynman rules for QED
Turning now to QED specifically, let us preface our discussion of the Feynman rules with a summary of the
properties for electron and positron wavefunctions and there properties. By electron and positron, we really mean
particle and antiparticle in general, but for concreteness we focus on those particular cases. The wavefunctions for
free electrons and positrons of momentum p = (E/c,p) and E =

√
m2c4 + p2c2 have the following form.
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Electrons: ψ(x) = ae−ipx/�u(s)(p) where s = 1, 2 denotes two spin states. The spinor satisfies (γµpµ −mc)u =
0 and its adjoint ū = u†γ0 satisfies ū(γµpµ − mc) = 0. Moreover, the spinors are orthogonal, normalized, and
complete:

ū(1)u(2) = 0, ūu = 2mc,
∑
s=1,2

u(s)ū(s) = (γµpµ +mc). (4.79)

Positrons: ψ(x) = aeipx/�v(s)(p) where s = 1, 2 denotes two spin states. The spinor satisfies (γµpµ +mc)v = 0
and its adjoint v̄ = v†γ0 satisfies v̄(γµpµ + mc) = 0. Moreover, the spinors are orthogonal, normalized, and
complete:

v̄(1)v(2) = 0, v̄v = −2mc,
∑
s=1,2

v(s)v̄(s) = (γµpµ −mc). (4.80)

The completeness relations are important as one normally averages over electron and positron spins (since these
are often random in experiments), so that one requires the complete set. Note that all of the above relations are
equally valid for e.g. µ− and µ+, quarks and antiquarks, and so forth (since all are spin-1/2 particles).

Photons: The wavefunction reads Aµ(x) = ae−ipx/�εµ(s) with s = 1, 2 being the two spin polarization states. The
polarization vectors satisfy εµpµ = 0 (Lorentz condition) and are orthogonal and normalized:

(εµ(1))
∗εµ(2) = 0, (εµ(i))

∗εµ(i) = 1. (4.81)

In the Coulomb gauge, ε0 = 0 and ε · p = 0, and one has
∑
s=1,2

(ε(s))i(ε
∗
(s))j = δij − p̂ip̂j (4.82)

for the 3-vectors. An explicit pair is, as previously mentioned, ε(1) = (1, 0, 0) and ε(2) = (0, 1, 0).

With the above notation in mind, we now explain how to compute M for a given Feynman diagram:

1. Notation. Label the incoming and outgoing momenta and spin with p1, p2, . . . and s1, s2, . . . Internal mo-
menta are labelled qn. Arrows on external lines indicate if it is an e− or e+, while arrows on internal lines
are conventionally assigned so that the direction of flow is preserved (one arrow in, one arrow out). External
photons have arrows that point forward:

p4, s4
p5, s5

p6, s6

p1, s1 p2, s2

p3, s3

2. External lines.
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0 and its adjoint ū = u†γ0 satisfies ū(γµpµ − mc) = 0. Moreover, the spinors are orthogonal, normalized, and
complete:
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How does one derive the formula for dΓ and dσ?
We here outline how the formulae we have given for dΓ and dσ are derived, following the 1988 textbook by Mandl
and Shaw. Both decay and scattering have in common that one starts with an initial state |i〉 and ends up in a final
state |f〉. The rate or likelihood of this process is determined by matrix elements of the type |〈f |Φ(∞)〉|2 where
|Φ(∞)〉 is the state into which |i〉 evolves as t → ∞. It includes all possible states that |i〉 can evolve into, and
the matrix element thus measures the overlap with one specific final state |f〉 that we are interested in. Now, to
find |Φ(∞)〉 we use that |Φ(∞)〉 = S|i〉 where S is the S-matrix determining the time-evolution of |i〉. S may be
obtained via the time-dependent standard QM equation of motion (Schrödinger equation):

i
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in an iterative fashion. Here, HI(t) contains the interactions that govern the decay/scattering process. One finds
that:
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|i〉 and |f〉 for a given interaction HI . When computing this matrix element, one typically ends up with a result of
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where C is a constant and M contains info about external lines, i.e. the states |i〉 and |f〉, and the relevant
interactions HI . After this, we just have to multiply with an appropriate factor for the number of states available
[typically

∏
f

V d3pf

(2π)3 ], and we are left with dΓ or dσ.

Feynman rules for QED
Turning now to QED specifically, let us preface our discussion of the Feynman rules with a summary of the
properties for electron and positron wavefunctions and there properties. By electron and positron, we really mean
particle and antiparticle in general, but for concreteness we focus on those particular cases. The wavefunctions for
free electrons and positrons of momentum p = (E/c,p) and E =

√
m2c4 + p2c2 have the following form.

INSERT ADVERTISEMENT HERE
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2. External lines. 51

Electrons Positrons Photons

Incoming

Outgoing

Incoming Incoming

Outgoing Outgoing

u

ū

v

v̄ εµ

(εµ)∗

3. Vertex factors. Each vertex contributes igeγµ where ge =
√
4πα is a dimensionless coupling constant. For

quarks where |q| �= e, one should use g = −q
√
4π/�c.

4. Propagators. Internal lines contribute with

i(γµqµ +mc)

q2 −m2c2
(4.83)

for electrons and positrons, while photons contribute with

− igµν
q2

. (4.84)

5. Conservation of E and p. For each vertex, write (2π)4δ4(k1 + k2 + k3). Positive k for arrow into the
vertex and negative k for arrow out of the vertex, except for external positrons.

6. Integrate over internal momenta. For each internal q, write
∫
d4q/(2π)4.

7. Cancel the δ-function. Remove (2π)4δ4(p1 + p2 + . . . − pn), and what remains is −iM. It is worth
remarking that if one chooses C = +i in Eq. (4.78), one ends up with +iM which is a commonly used
convention. However, the overall sign does not matter since it is |M|2 that is used to compute quantities
such as decays and scattering cross sections. We shall stick with the convention that one ends up with −iM
after cancelling the δ-function.

The total amplitude M is then the sum of all the amplitudes for each contributing diagram while taking into
account:

Antisymmetrization. Include a relative minus sign between diagrams that differ only by either (1) interchanging
two incoming (or outgoing) electrons or positrons (2) or that differ by exchanging an incoming electron with an
outgoing positron or vice versa. This rule is taken into account in order to incorporate the Pauli principle for
fermionic wavefunctions.

Later, we will comment explicitly on how to deal with fermion loops which are of relevance in so-called vacuum
polarization diagrams. To test our skills in using the Feynman rules, we now work out M in detail for some of
these processes.

Example 10. e− µ scattering. The lowest-order diagram looks as follows.

q

p3, s3 p4, s4

p1, s1 p2, s2

e

e

µ

µ
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Using the Feynman rules, we obtain the following complex scalar:

(2π)4
∫
[ū(s1)(p3)(igeγ

µ)u(s1)(p1)]
(
− igµν

q2

)
[ū(s4)(p4)igeγ

νu(s2)(p2)]δ
4(p1 − p3 − q)δ4(p2 + q − p4)d

4q.

(4.85)

After performing the q-integration and dropping the δ-function, we are left with

M = − g2e
(p1 − p3)2

[ū(s3)(p3)γ
µu(s1)(p1)][ū

(s4)(p4)γµu
(s2)(p2)]. (4.86)

We emphasize again that M is a number.

Example 11. e − e scattering. The diagram is similar to the above example, but there are now two contributing
diagrams since electrons are identical particles and cannot be distinguished. Therefore, we have to account for
an additional diagram where (p3, s3) ↔ (p4, s4) since we cannot tell which electron that is coming out where.
As a result, the total amplitude is obtained by adding the two contributions with a relative minus sign due to the
aforementioned antisymmetrization rule:

M = − g2e
(p1 − p3)2

[ū(3)γµu(1)][ū(4)γµu(2)] +
g2e

(p1 − p4)2
[ū(4)γµu(1)][ū(3)γµu(2)]. (4.87)

We were able to simply write down this M by using our result from the e− µ scattering example. For brevity, we
introduced the notation u(i) ≡ u(si)(pi).
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Example 12. e− − e+ scattering. Again, there are two lowest-order contributions to this process:

q

p3, s3 p4, s4

p1, s1 p2, s2

e

e q

p3, s3 p4, s4

p1, s1 p2, s2

e
(a) (b)

e

e

e

ee

The first contribution [(a)] is evaluated, according to the Feynman rules, to the following complex scalar:

(2π)4
∫
[ū(3)(igeγ

µ)u(1)]
(
− igµν

q2

)
[v̄(2)(igeγ

ν)v(4)]δ4(p1 − p3 − q)δ4(p2 + q − p4)d
4q. (4.88)

Note how the order is always adjoint spinor/gamma matrix/spinor when moving along a fermion line, in order for
the dimensionality of the factors to match. Moving backwards (along the arrow) of an antiparticle line is equivalent
to moving forward in time. The second contribution [(b)] provides:

(2π)4
∫
[ū(3)(igeγ

µ)v(4)]
(
− igµν

q2

)
[v̄(2)(igeγ

ν)u(1)]δ4(q − p3 − p4)δ
4(p1 + p2 − q)d4q. (4.89)

By interchanging the incoming e+ and outgoing e−, we obtain

which is equivalent to the first contributing diagram. Therefore, due to the rule of antisymmetrization, the two
amplitudes must add with a relative minus sign.

D. Casimir’s trick and trace theorems

If all spins and polarizations are known a priori in the experiment, the appropriate spinors and polarization vectors
are simply inserted into the expression for M. However, it is more often the case that the spins are not known,
but random. Then, the cross section is given by the average over all initial spin configurations and the sum over
all final spin configurations. Thus, 〈|M|2〉 ≡ average over initial spins and sum over final spins. Let us introduce
some convenient notation known as Feynman slash notation: � a ≡ aµγµ, � a∗ ≡ γµa∗µ, and Γ̄ ≡ γ0Γ†γ0 for a
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matrix Γ. Consider now e− µ scattering. From our previous result for M for this process, we find:

|M|2 =
g4e

(p1 − p3)4
[ū(3)γµu(1)][ū(4)γµu(2)][ū(3)γ

νu(1)]∗[ū(4)γνu(2)]
∗. (4.90)

This mathematical object is built up from the schematic structure: G ≡ [ū(a)Γ1u(b)][ū(a)Γ2u(b)]
∗, where Γ1,2

are 4× 4 matrices. For a scalar (1× 1 matrix) the operation ∗ is equivalent to †, which means that

[ū(a)Γ2u(b)]
∗ = [u†(a)γ0Γ2u(b)]

† = u†(b)Γ†
2γ

0†u(a) = ū(b)Γ̄2u(a) (4.91)

where we used that γ0† = γ0 and (γ0)2 = 1. We now perform a summation over the spin orientations of particle
b:

∑
b spins

G = ū(a)Γ1

{ ∑
sb=1,2

u(sb)(pb)ū
(sb)(pb)

}
Γ̄2u(a) = ū(a)Γ1(� pb +mb)Γ̄2u(a) = ū(a)Qu(a), (4.92)

where Q ≡ Γ1(� pb +mbc)Γ̄2. Similarly, for a summation over the a spins we get:

∑
a spins

∑
b spins

ū
(sa)
i Qiju

(sa)
j = Qij

{ ∑
sa=1,2

u(sa)ū(sa)

}

ji

= Qij(� pa +mac)ji = Tr{Q(� pa +mac)}. (4.93)

Here, Tr(A) =
∑

i Aii. We also used that u and ū are 4× 1 and 1× 4 spinors, respectively. In total, we thus have
∑

all spins

[ū(a)Γ1u(b)][ū(a)Γ1u(b)]
∗ = Tr{Γ1(� pb +mbc)Γ̄2(� pa +mac)}. (4.94)

We see that there are no spinors left after the summation over spins: only matrix multiplication and a trace at the
end. This procedure is known as Casimir’s trick. Note that if u is replaced with v, the corresponding mass should
change sign.

For e− µ scattering, we then have Γ2 = γν and Γ̄2 = γ0γν†γ0 = γν . We find:

〈|M|2〉 = g44
4(p1 − p3)4

Tr{γµ(� p1 +mc)γν(� p3 +mc)}Tr{γµ(� p2 +Mc)γnu(� p4 +Mc)}, (4.95)

where m = me, M = mµ, and 1
4 is included to average over initial spins (2 particles with 2 configurations each =

4 configurations). To evaluate the traces appearing in 〈|M|2〉, there is a set of trace theorems that may be derived
by using the fundamental mathematical properties of the Tr operation. Some useful relations, which we will draw
upon in later calculations, are:

• Tr{A+B} = Tr{A}+ Tr{B}. • Tr{AB} = Tr{BA}.

• Tr{αA} = αTr{A}. • gµνg
µν = 4.

• γµγν + γνγµ = 2gµν . • � a� b+ � b� a = 2ab.

From this follows, for instance, that Tr{γµγν} = 4gµν and Tr{� a� b} = 4ab. Also, the trace over an odd number of
γ-matrices is equal to zero (try to prove this yourself, by using that Tr{γ5} = 0 and {γ5, γµ} = 0).

E. Treatment of bubble diagrams

In some Feynman diagrams, fermion loops (so-called bubbles) appear. The general rule for treating these is:

Include a factor −1, take the Tr, and follow the fermion lines along the arrows.

Taking the Tr physically corresponds to including all possible spin orientations of the fermions as it connects with
itself in the end, in the same spirit as the integration over all internal momenta.
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Example 13. Evaluating a fermion bubble. Consider the following contribution to a Feynman diagram.

k − q

k

q
q

Vertex νVertex µ

Using the rule stated above, we obtain

−Tr
∫

d4k

(2π)4
{γµ(� k +m)γν(� k −� q +m)}
[(k − q)2 −m2c2][k2 −m2c2]

. (4.96)

However, is the direction in which we follow the arrows important? Could we instead follow the arrows in the
opposite direction? The answer is that for a loop with two (in general, an even) number of fermions, we can. The
proof goes as follows. Consider the trace Tr{γµ� pγν� q} obtained by traversing a fermion loop in a given direction.
This can be written as:

Tr{γµ� pγν� q} = pλqσTr{γµγλγνγσ} = 4pλpσ(gµλgνσ − gµσgλσ + gµσgλν) = 4(pµqν − gµνp
λqλ + qµpν).

(4.97)

If we instead had traversed the fermion loop in the opposite direction, we would have obtained Tr{γµ� qγν� p}. But
Eq. (4.97) is invariant upon exchanging p ↔ q. Therefore, the two traces must be identical and the direction
in which we move around the loop does not matter. This proof can then be generalized to any even number of
fermions, where one makes use of the general formula Tr{γµ1

γµ2
. . . γµn

} = Tr{γµn
. . . γµ2

γµ1
}.
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F. Computation of various cross sections and lifetimes

We are now in a position to explicitly evaluate dσ/dΩ for e.g. Mott and Rutherford scattering. If me scatters off a
much heavier muon M � me, the task is to find dσ/dΩ in the lab frame where M is at rest when neglecting the
recoil of M . Using the rules for cross-section related to M given previously, one finds

dσ

dΩ
=

( �
8πMc

)
〈|M|2〉. (4.98)

Before After

E,p1

E,p3

θ

We now want to compute M explicitly. We have

p1 = (E/c,p1), p2 = (Mc, 0), p3 = (E/c,p3), p4 = (Mc, 0). (4.99)

where |p1| = |p3| due to our assumptions. The averaged amplitude is given by (using Casimir’s trick):

〈|M|2〉 = 8g4e
(p1 − p3)4

[(p1p2)(p3p4) + (p1p4)(p2p3)− (p1p3)M
2c2 − (p2p4)m

2c2 + 2(mMc2)2] (4.100)

by evaluating the traces that arise. Inserting the above 4-momenta gives:

〈|M|2〉 =
( g2eMc

p2 sin2(θ/2)

)2

[(mc)2 + p2 cos2(θ/2)]. (4.101)

Inserted into our expression for the differential scattering cross section, we obtain the Mott formula:

( dσ

dΩ

)
lab

=
( α�
2p2 sin2(θ/2)

)2

[(mc)2 + p2 cos2(θ/2)]. (4.102)

In the non-relativistic limit p2 � (mc)2, one arrives at the Rutherford formula:

dσ

dΩ
=

( e2

2mv2 sin2(θ/2)

)2

. (4.103)

Whereas the above illustrates an example of how the differential scattering cross section may be evaluated fully,
including the calculation of M, we should also consider an example of a decay. But a moment of reflection
reveals an interesting fact: there are no decays in pure QED. There is no mechanism that can convert e.g. µ− to
e− since fermion lines cannot simply terminate in a diagram. If we allow for neutrino oscillations, such a process
can become possible, but then we have introduced a type of interaction that is not contained in pure QED. On the
other hand, annihilation events such as e−+ e+ → γ+γ are fully possible in pure QED, but this is conventionally
viewed as a scattering event rather than a decay.

As an example, let us in fact analyze this annihilation in the positronium rest frame (the CM-frame for the e−e+

pair). We assume that the bound-state is in the singlet spin configuration and at rest to begin with. There are two
contributing diagrams, as seen in the figure.

q

p1, s1 p2, s2

p3, s3 p4, s4

q

p1, s1 p2, s2

p3, s3p4, s4
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The corresponding amplitudes are

M1 =
g2e

(p1 − p3)2 −m2c2
v̄(2)� ε4(� p1 −� p3 +mc)� ε3u(1), M2 =

g2e
(p1 − p4)2 −m2c2

v̄(2)� ε3(� p1 −� p4 +mc)� ε4u(1).

(4.104)

We have omitted the complex conjugation sign on the polarization vectors for brevity of notation - however, we
will reinstate this in the final result. The total amplitude reads M = M1 +M2 and according to our statements
about the frame and starting point we have the following 4-vectors:

p1 = mc(1, 0, 0, 0), p2 = mc(1, 0, 0, 0), p3 = mc(1, 0, 0, 1), p4 = mc(1, 0, 0,−1). (4.105)

It follows that (p1 − p3)
2 −m2c2 = (p1 − p4)

2 −m2c2 = −2(mc)2. Now use the rule

� p1� ε3 + � ε3� p1 = 2p1ε3 (4.106)

and invoke the Coulomb gauge ε0 = 0. Since p1 = 0, this gives � p1� ε3 = −� ε3� p1. Moreover, � p3� ε3 = −� ε3� p3 since
p3ε3 = 0 due to the Lorentz condition. We finally also use that (p1 −mc)u(1) = 0 [since u(1) solves the Dirac
equation] leads to

(� p1 −� p3 +mc)� ε3u(1) = � ε3� p3u(1). (4.107)

Inserting all of this into M produces

M = − g2e
2(mc)2

v̄(2)[� ε4� ε3� p3 + � ε3� ε4� p4]u(1). (4.108)

Using the properties of the γ-matrices the contraction rules, we find that the above can be rewritten as

M =
g2e

(mc)
v̄(2)[ε3 · ε4γ0 + i(ε3 × ε4) ·Σγ3]u(1) (4.109)

where we introduced

Σ =

[
σ 0

0 σ

]
. (4.110)

Now, take into account the spin-singlet symmetry so that the final amplitude in the singlet state reads:

Msinglet = (M↑↓ −M↓↑)/
√
2. (4.111)

We have obtained an expression for M in Eq. (4.109), so to evaluate M↑↓ we simply have to use a spin-up spinor
for the electron and spin-down spinor for the positron:

u(1) =
√
2mc




1

0

0

0


 , v̄(2) =

√
2mc[0, 0, 1, 0]. (4.112)

This gives v̄(2)γ0u(1) = 0 and v̄(2)Σγ3u(1) = −2mcẑ, so that

M↑↓ = −2ige2(ε3 × ε4)z. (4.113)

The same procedure for the opposite spin configuration yields

M↓↑ = 2ige2(ε3 × ε4)z = −M↑↓. (4.114)

This means that the total amplitude, according to Eq. (4.111) is:

Msinglet = −2
√
2ig2e(ε3 × ε4)z (4.115)

for annihilation of a stationary e−e+ pair in a spin-singlet configuration into two photons which emerge in the
directions ±ẑ.

Note that the amplitude for this process in a triplet configuration (↑↓ + ↓↑)/
√
2 gives 0, since M↑↓ = −M↓↑.

The reason is conservation of charge conjugation in EM processes which only allow 2γ, and not 3γ, from e−e+ in
the singlet configuration. On the other hand, in a triplet configuration the 3γ production is allowed from a charge
conjugation point of view.
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G. Renormalization

We now consider specifically higher-order diagrams which require renormalization. Consider e− µ scattering.

q

p1, s1 p2, s2

p3, s3 p4, s4

With q = p1 − p3, the amplitude for this diagram is:

M = −g2e [ū(p3)γ
µu(p1)]

gµν
q2

[ū(p4)γ
νu(p2)]. (4.116)

A higher-order correction (4th order, to be specific) to this process is the vacuum-polarization diagram shown
below.

q

p1 p2

p3 p4

q

k − q

k
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The origin of this name is that the temporary e−e+ pair modifies the effective electric charge of the electron (or
alternatively put, the effective coupling constant of the electron). One may derive the amplitude by using the extra
Feynman rule for fermion loops that we treated earlier: for each closed fermion loop, include an overall factor −1
and take the trace. This gives:

M = − ig4e
q4

[ū(p3)γ
µu(p1)]

{
d4k

(2π)4
Tr{γµ(� k +mc)γν(� k −� q +mc)}
(k2 −m2c2)[(k − q)2 −m2c2]

}
[ū(p4)γ

νu(p2)] (4.117)

Including this contribution, one observes the higher-order diagram can in fact be incorporated as an effective
modification of the photon propagator:

gµν
q2

→ gµν
q2

− i

q4
Iµν where Iµν = −g2e

{∫
d4k

(2π)4
. . .

}
(4.118)

The problem is the integral Iµν is logarithmically divergent upon evaluation. Our strategy for dealing with this
problem is representative for the main idea behind renormalization: we will start by absorbing this "infinity"
into a new mass and coupling constant. This might seem horrendous from a mathematical point of view, but let
us see how it works out in the end. The general form of Iµν after integration (only q remaining as a 4-vector) is
gµν(. . .)+qµqν(. . .). We thus write Iµν = −igµνI(q)+qµqνJ(q). The second term actually makes no contribution
to the final amplitude, which can be verified as follows: qµ contracts with γµ in the expression for M and thus
gives

[ū(3)� qu(p1)] = ū(p3)(� p1 −� p3)u(p1) = 0 (4.119)

as seen from the basic Dirac equations for u and ū. The first term, on the other hand, may be rewritten in the
following manner (the calculation is beyond the level of this book):

I(q) =
ge

12π2

[ ∫ ∞

m2

dx

x
− 6

∫ 1

0

z(1− z)ln
(
1− q2

m2c2
z(1− z)

)
dz. (4.120)

We thus manage to contain the logarithmic divergence in the first term of this quantity. If we temporarily introduce
a cut-off Λ instead of the infinite limit of the integral, and define

f(x) ≡ 6

∫ 1

0

z(1− z)ln[1 + xz(1− z)]dz (4.121)

with x ≡ −q2/(m2c2), we can evaluate the integral determining I(q) in Eq. (4.120) as:

I(q) = ln
( λ2

m2

) g2e
12π2

− g2e
12π2

f
( −q2

m2c2

)
. (4.122)

Two particular limiting cases of f(x) allow for a simpler expression:

lim
x�1

f(x) � x/5, lim
x�1

f(x) � ln(x). (4.123)

We are now ready to write down the total amplitude for e − µ scattering, including the fourth order vacuum-
polarization diagram as a correction, as follows:

M = −g2e [ū(3)γ
µu(p1)]

gµν
q2

[
1− g2e

12π2

(
ln
( Λ2

m2

)
− f

( −q2

m2c2

)]
[ū(p4)γ

νu(p2)]. (4.124)

Here is the critical step: let us now introduce the renormalized coupling constant

gR ≡ ge

√
1− g2e

12π2
ln(Λ2/m2), (4.125)

so that up to O(g2e) [we make the approximation g4e/g
2
R = g2R for the last term] we obtain

M = −g2R[ū(p3)γ
µu(p1)]

gµν
q2

[
1 +

g2R
12π2

f
( −q2

m2c2

)]
[ū(p4)γ

νu(p2)]. (4.126)

Remarkably, this has an identical form as the lowest order diagram except for two differences:
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1. We have a new effective coupling constant ge → gR. It depends on the cut-off Λ, which is physically a
spurious effect since we have introduced Λ by hand as a way to avoid a divergence. Nevertheless, this is
not a problem in practice because gR can be experimentally measured and has been determined to be finite.
Therefore, the divergent term is apparently cancelled out by compensating infinities from other higher-order
diagrams. The main point of the renormalization procedure is that the bare quantity ge is not the physical
quantity (or equivalently the bare electron charge e): higher-order corrections to the bare quantity gives the
effective quantity gR (or equivalently eeff) which is physically measurable. Therefore, we can work with the
expression for M obtained from the lowest-order diagram so long as we keep in mind that the masses and
coupling constants we use must be the renormalized ones (whose values can, in some cases, be determined
experimentally).

2. There is also a finite correction from the term ∝ g2
R

12π2 f
(

−q2

m2c2

)
. This can also be absorbed into the effective

coupling constant, in which case we obtain a so-called running coupling constant which means that it now
depends on energy and momentum (through q):

gR(q
2) = gR(0)

√
1 +

g2R
12π2

f
( −q2

m2c2

)
. (4.127)

High momentum q is equivalent to a closer approach between the particles, so that the effective coupling
constant depends on the distance to other particles (which is physically reasonable due to vacuum polariza-
tion and screening effects). For non-relativistic situations, this is nevertheless usually a small effect. The fact
that a coupling constant is running has crucial physical consequences as it leads to e.g. asymptotic freedom
in QCD, which we shall say more about in a little while.
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V. WEAK INTERACTIONS AND ELECTROWEAK THEORY

Learning goals. After reading this chapter, the student should:

• Be able to compute the Feynman amplitude M for weak interaction Feynman diagrams, and also be able to
obtain decay rates and scattering cross sections from M.

• Understand which particles interact via charged and neutral weak interactions and how these interactions are
mediated.

• Be able to describe how electromagnetic and weak interactions can be combined in a unified framework via
chiral fermion states.

We will here establish Feynman rules for charged (W±) and neutral (Z0) weak interactions related to leptons and
quarks, and treat some important processes in detail. Finally, we gather EM and weak vertices under the same
umbrella, namely Glashow-Weinberg-Salam electroweak theory, by using chiral fermion states.

A. Charged leptonic weak interactions

The mediators of weak interactions are the charged W± bosons and the neutral Z0 boson. Their masses are

MW = 80.385± 0.015 GeV/c2, Mz = 91.188± 0.002 GeV/c2. (5.1)

Since these are massive spin-1 bosons, there are three available spin polarization states (ms = −1, 0, 1). Their
propagator has the form

−i[gµν − qµqν/(Mc)2]

q2 −M2c2
. (5.2)

Since the boson masses are large, it is often experimentally the case that the momentum transfer satisfies
q2 � (Mc)2. In that case, we may simplify the propagator to simply igµν/(Mc)2. The fundamental leptonic
vertex and the reverse process are shown below. Note that W+ and W− are antiparticles of each other.

νl

l−
W−

νl

l−

W+

As for the Feynman rules, they are the same as in QED except for two things:

1. The propagator expression is modified since it is massive.

2. Since the interaction is different from QED, the weak vertex factor reads

− igW

2
√
2
γµ(1− γ5). (5.3)

The extra factor (1 − γ5) causes pairty violation. γµ on its own gives a vector coupling (in QED), while γµγ5

gives an axial vector coupling, as described in the previous chapter.

Decay of the muon.
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νµ

µ

W−

p1

p3 p2 p4

νe e

The amplitude is obtained as

M =
g2W

8(MW c)2
[ū(3)γµ(1− γ5)u(1)][ū(4)γµ(1− γ5)v(2)]. (5.4)

Using Casimir’s trick, we find that

〈|M|2〉 = 2
( gW
MW c

)4

(p1p2)(p3p4). (5.5)

Analyzing it in the muon rest frame where p1 = (mµc,0) we obtain p1p2 = mµE2. Moreover, p1 = p2 + p3 + p4
from which it follows that

(p3 + p4)
2 = m2

ec
2 + 2p3p4 = (p1 − p2)

2 +m2
µc

2 − 2p1p2 (5.6)

which in turn leads to

p3p4 =
(m2

µ −m2
e)c

2

2
−mµE2. (5.7)

We have set the neutrino mass mν = 0 and since mµ � me, we can set me = 0 as well as an approximation.
Inserting our 4-vectors into the expression for M gives:

〈|M|2〉 =
( gW
MW c

)4

m2
µE2(mµc

2 − 2E2). (5.8)

We use the Golden rule to calculate the decay rate:

dΓ =
〈|M|2〉
2�mµ

( ∏
i=2,3,4

cd3pi
(2π)32Ei

)
(2π)4δ4(p1 − p2 − p3 − p4). (5.9)

Here, we have Ei = |pi|c. The p3 integral is performed:

dΓ =
〈|M|2〉c3

16(2π)5�mµ

(d3p2)(d
3p4)

E2E3E4
δ(mµc− E2/c− E3/c− E4/c), (5.10)

where E3 = |p2 + p4|c. We may then continue with the p2 integral. Let p4 ‖ ẑ so that

(E3/c)
2 = |p2 + p4|2 = (E2

2 + E2
4 + 2E2E4 cos θ)/c

2. (5.11)

Moreover, d3p2 = (E2

c )2 dE2

c sin θdθdφ and since there is no φ dependence,
∫
dφ = 2π. To do the θ-integration,

let x = E3/c so that

dx = −E2E4 sin θdθ

cE3
. (5.12)

We then have
∫ π

0

sin θdθ

E3
δ[mµc− (E2 + E3 + E4)/c] =

c

E2E4

∫ x+

x−

δ(mµc− x− E2/c− E4/c)dx

=

{
c

E2E4
if x− < mµc− E2/c− E4/c < x+

0 otherwise.
(5.13)
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Here, we defined x± = |E2 ± E4|/c. We can write the above inequality in a physically more transparent way by
adding (E2 + E4) and dividing on 2:

1

2
[|E2 − E4|+ E2 + E4] <

1

2
mµc

2 < E2 + E4. (5.14)

This is in fact equivalent to three inequalities: E2 < mµc
2/2, E4 < mµc

2/2, and (E2 + E4) > mµc
2/2. If we

reflect upon these equations for a moment, we realize that they make sense physically. The maximum energy for
particle is obtained if it emerges opposite to the two others. Conservation of momentum then dictates that the
particle picks up half of the available energy. Therefore, a pair of particles (e.g. 2 and 4) must always have at least
an energy of mµc

2/2 If there is an angle between the particles, one will always acquire less energy.

θ
2

3

4

2

3

4

versus

The inequalities dictate the limits for the dE2 integral:

dΓ =
( gW
4πMW c

)4mµc

�
d3p4
E2

4

∫ mµc
2/2

mµc2/2−E4

E2(mµc
2 − 2E2)dE2 =

( gW
4πMW c

)4mµc

�

(mµc
2

2
− 2E4

3

)
d3p4.

(5.15)

Finally, setting E ≡ E4 and then d3p4 = 4π(E4/c)
2dE4/c gives us:
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dΓ

dE
=

( gW
MW c

)4 m2
µE

2

2�(4π)3
(
1− 4E

3mµc2

)
. (5.16)

This is the energy distribution of the electrons emitted in muon decay, and gives a very good experimental match.
The total decay rate can be obtained as:

Γ =
( gW
MW c

)4 m2
µ

2�(4π)3

∫ mµc
2/2

0

E2
(
1− 4E

3mµc2

)
dE (5.17)

which in turn gives the lifetime τ = Γ−1. Comparing with the experimentally determined value of τ , one obtains
gW = 0.66. This gives a weak fine structure constant

αW =
g2W
4π

� 1

29
(5.18)

which is roughly five times αQED. The intrinsic coupling in weak interactions is then large, but the interactions
still remain feeble at low energies because the propagator is so massive [∼ (q2 − M2

W c2)−1]. For high energies
(momentum transfer), q2 ∼ M2

W c2, the weak interactions can dominate over the electromagnetic ones.

Decay of the neutron.

W−

p1

p3 p2 p4

νe eProton

Neutron

Neutrons and protons are composite particles since they consist of quarks, but perhaps we can expect that treating
them as point Dirac particles will give a reasonable approximation? The calculation proceeds in essentially the
same way as for µ-decay, and the final result is:

Γ =
1

4π3�

( gW
2MW c

)4

(mec
2)5[

1

15
(2a4 − 9a2 − 8)

√
a2 − 1 + aln(a+

√
a2 − 1)], (5.19)

where a ≡ (mn − mp)/me. Note that we cannot here neglect the electron mass, since the rest energy of
the electron is comparable to the released energy of the reaction, (mn − mp − me)c

2, due to the small mass
difference between the neutron and proton masses. This is not the case for µ-decay, where the released energy is
(mµ −me)c

2. Putting in the numbers, we obtain τ = 1
Γ = 1316 s. The experimentally value, on the other hand,

is τ = 898 ± 16 s. The order of magnitude is thus correct, but there is still a deviation. Considering that weak
decay processes range from 15 minutes (the neutron) to 10−13 s, our theoretical estimate is not that bad. But what
is the reason for the discrepancy? We did assume that p and n are point particles (neglecting their internal quark
structure) and assumed an interaction with W in the same way as leptons interact with it. At the same time, we
also know that the Mott formula works very well for e− p scattering mediated by γ, where p is treated as a point
particle. The crucial question becomes: what is the net coupling strength of the proton and the neutron to W±?

In electrodynamics, all internal complications do not matter because electric charge is conserved. However, we
do not know that the same is necessarily true for weak interactions. For instance, a gluon splitting to a qq̄ pair
might make a finite contribution to the effective weak coupling vertex since quarks interact weakly. To account
for this in the n → p+W vertex, we make the substitution: (1− γ5) → (cV − cAγ

5) where cV is the correction
to the vector "weak charge" while cA is the correction to the axial vector "weak charge". Experimentally, one
finds cV � 1.00 and cA � 1.26. The corrected theoretical estimate for the lifetime then comes into much closer
agreement with the experimental one: τ = 914 s.
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Decay of the pion.
The process π− → l− + ν̄l is actually a scattering event of bound quarks [see Fig. (a)], and can in a sense be
viewed analogously to positronium decay (e+ + e− → γ + γ).

(a) (b)

νl l

W−

d u

π−

νl l

W−

π−

p2 p3

Momentum p

= F̃ µ

Analyzing this decay in the framework of weak interactions, we may represent the scattering as in (b). The dark
blob represents the (unknown) coupling of π− to W−. Let F̃µ describe the blob. The Feynman amplitude takes
the form:

M = ū(3)
(−igW

2
√
2
γµ(1− γ5)

)
v(2)

igµν
(MW c)2

F̃µ

=
g2W

8(MW c)2
[ū(3)γµ(1− γ5)v(2)]Fµ. (5.20)

We here absorbed a constant into F̃µ → Fµ. We know it must be a 4-vector in order to contract γµ, so that M
ends up being a scalar. Since π− has spin 0, Fµ can only depend on pµ. Therefore, Fµ = fπp

µ where fπ is a
scalar. We now perform a summation over outgoing spins:

〈|M|2〉 =
[fπ
8

( gW
MW c

)2]2
pµpνTr{γµ(1− γ5)� p2γν(1− γ5)(� p3 +mlc)}

=
1

8

[fπ
8

( gW
MW c

)2]2
[2(pp2)(pp3)− p2(p2p3)]. (5.21)

Since p = p2 + p3, we have 2p2p3 = (m2
π −m2

l )/c
2. As a result, we obtain

〈|M |2〉 =
( gW
2MW

)4

f2
πm

2
l (m

2
π −m2

l ). (5.22)

This is as far as we get without specifying what fπ is. However, we can calculate branching ratios:

Γ(π− → e− + ν̄e)

Γ(π− → µ− + ν̄µ)
=

m2
e(m

2
π −m2

e)
2

m2
µ(m

2
π −m2

µ)
2
= 1.28× 10−4. (5.23)

Experimental measurements give (1.23± 0.02)× 10−4, so it is a good fit.

However, let us consider if this result is physically reasonable. It appears that π seems to prefer to decay into µ in
spite of the fact that mµ � me. This seems to contradict the general rule that decays occur faster the larger the
mass difference, since there is more phase space available for decay into a lighter particle. There exists, however,
an explanation. Consider the hypothetical case where me = 0. If so, then π− → e− + ν̄e would be completely
forbidden for the following reason. π− has s = 0, so that e and ν̄e have to emerge with opposite spins. This means
that they have equal helicity.

e− ν̄eπ−
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Since ν̄e is considered to be right-handed in all cases treated here (although nowadays it is known that neutrinos
have a small, but finite mass, meaning that left-handed antineutrinos should exist as well), e should also be that
here. However, if me = 0, then (1 − γ5) in the weak vertex would only couple to left-handed electrons (just as
it only couples to left-handed neutrinos). Therefore, the decay to e is strongly suppressed since me is so small
compared to the other energy scales.

B. Charged weak interactions of quarks

For leptons, a coupling to W± occurs only within a particular generation:
[
νe
e

]
,

[
νµ
µ

]
,

[
ντ
τ

]
. (5.24)

No cross-terms of the type e− → νµ +W− occur. For quarks, the generation structure is similar:
[
u

d

]
,

[
c

s

]
,

[
t

b

]
, (5.25)

but now cross-generational coupling is allowed. For instance, s → u+W− underlies the decay Λ → p+ e+ ν̄e.
In 1963, when only the u, d, s quarks were known, Cabibbo sugested that d → u + W− vertex carries an extra
factor cos θC , whereas s → u+W− carries sin θC .
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− igW
2
√
2
γµ(1− γ5) cos θC − igW

2
√
2
γµ(1− γ5) sin θC

u

d W−

u

s W−

Experimentally, one finds θC = 13.1◦, so that weak interactions almost respect quark generations. Various decays
may be classified as follows:

• Leptonic decays (K− → l− + ν̄l)

• Semileptonic decays (π− → π0 + e− + ν̄e)

• Non-leptonic decays (K− → π0 + π−).

Cabibbo’s idea was very successful for many decay rates, but a problem arose when considering K0 → µ+ + µ−.
The amplitude should be proportional to sin θC cos θC , since the diagram has the following form:

νµ
µµ

d

u

s

W−W−

K0 = ds̄

However, this did not agree with the experimentally measured rate, which was much lower than the prediction.
The paradox was resolved in 1970 by Glashow, Iliopoulos, and Maiani who introduced a fourth quark c (even prior
to its experimental discovery. The new quark would interact in the following manner:

− igW
2
√
2
γµ(1− γ5)(− sin θC) − igW

2
√
2
γµ(1− γ5) cos θC

c

d W−

c

s W−
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Now, the diagram for K0 → µ+ + µ− was almost completely cancelled by the corresponding one where u was
replaced with c, since that one was proportional to (− sin θC cos θC). The cancellation was not perfect due to the
mass mismatch mc �= mu, leaving behind a small net amplitude.

The Cabibbo-GIM scheme then suggests the following: in weak interactions, one should replace the physical
quarks d and s with d′ and s′:

d′ = d cos θC + s sin θC , s
′ = −d sin θC + s cos θC . (5.26)

The W±’s then couple to Cabibbo-rotated states
[
u

d′

]
=

[
u

d cos θC + s sin θC

]
,

[
c

s′

]
=

[
c

−d sin θC + s cos θC

]
. (5.27)

In this way, d → u+W− carries a factor cos θC , s → u+W− carries sin θC , and so forth.

Kobayashi and Maskawa (KM) generalied this to three "weak interaction generations" of quarks:


d′

s′

b′


 =



Uud Uus Uub

Ucd Ucs Ucb

Utd Uts Utb






d

s

b


 . (5.28)

where Uud represents the coupling of u to d (d → u+W−). Not all entries are independent, because U must be a
unitary matrix.

C. Neutral weak interactions

The fundamental vertex for these interactions looks as (a).

(a) (b)

Z0

ν̄µ e

f

Z0

f

ν̄µ e

Here, f is any lepton or quark. There is no fermion-mixing, though. The first experimental indication of neutral
weak interactions was provided in 1973 through the process ν̄µ + e → ν̄µ + e shown in (b). We know that the
coupling of quarks and leptons to W± is −(igW /2

√
2)γµ(1 − γ5). This is slightly modified when coupling to

composite particles, like the proton, but that is due to a contamination from strong interaction. The coupling to Z0

is similarly given by the vertex factor

−igzγ
µ(cfV − cfAγ

5)/2. (5.29)

Here, gz is the neutral coupling constant while cfV,A are coefficients depending on the fermion type f . All of these
numbers are determined by the weak mixing angle, also known as the Weinberg angle, θW . These relations are
summarized as follows.

f cV cA
νe, νµ, ντ

1
2

1
2

e−, µ−, τ− − 1
2 + 2 sin2 θW − 1

2

u, c, t 1
2 − 4

3 sin
2 θW

1
2

d, s, b − 1
2 + 2

3 sin
2 θW − 1

2
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This will be motivated later on, as we unify QED and weak interactions into electroweak theory. There is no way
to compute θW theoretically in the Standard Model, but its value can be inferred from experiments: θW � 28.7◦.
Finally, the propagator is:

−i(gµν − qµqν/M
2
Zc

2)/(q2 −M2
Zc

2) (5.30)

with MW = MZ cos θW .

Example 14. Elastic νe − e scattering.

Z0

νµ e

νµ e
p1 p2

p3 p4

The amplitude is obtained using the Feynman rules:

M =
g2Z

8(MZc)2
[ū(3)γµ(1− γ5)u(1)][ū(4)γµ(cV − cAγ

5)u(2)]. (5.31)

As before, {cV , cA} are the neutral weak couplings for electrons. If we go to the CM frame and assume very high
energy scattering so that we may neglect the electron mass (its rest energy), we obtain:

〈|M|2〉 = 2
( gZE

MZc2

)4

[(cV + cA)
2 + (cV − cA)

2 cos4(θ/2)] (5.32)

where E is the electron energy (or equivalently the neutrino energy, since we have neglected me and operate in the
CM frame) and θ is the scattering angle.
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Example 15.

Before After

p1 p2

p3

p4
e

ν
θ

eν

The differential scattering cross section for this situation can be worked out according to our previous treatment of
how to relate dσ/dΩ to M in for two-particle scattering in the CM frame:

dσ

dΩ
= 2

(�c
π

)2( gz
4Mzc

)4

E2[(cV + cA)
2 + (cV − cA)

2 cos4(θ/2)] (5.33)

so that the total σ becomes:

σ =
2

3π
(�c)2

( gz
2Mzc2

)4

E2(c2V + c2A + cV cA). (5.34)

It is important to note that most (but not all) neutral processes are masked by competing electromagnetic ones. For
instance, e− + e+ → µ− + µ+ can occur both via exchange of a virtual Z0 or γ. Conversely, there is a weak
interaction contamination in every electromagnetic process since Z0 couples to everything that γ couples to (and
more). Even if the effect is small, its smoking gun signature, when it is observable, is parity violation. To access
weak interactions alone, one has to use neutrinos which do not have any electromagnetic coupling. Alternatively, if
one is able to access energies so high that q ∼ MZc, the denominator of the Z0 propagator becomes very small and
leads to a large interaction that dominates even the γ contribution. Let us consider an example of such a situation.

Example 16. e−e+ scattering near the Z0 pole. We are considering the process e− + e+ → f + f̄ where f is a
quark or a lepton.

p3

f f

p4

Z0q

e e

p1 p2

Asume that mf � MZ , but let us keep the exact form of the Z0 propagator since we are interested in large
momenta transfers q ∼ MZc. By the way, note that Z0 is its own antiparticle. We obtain:

M = − g2Z
4[q2 − (MZc)2]

[ū(4)γµ(cfV − cfAγ
5)v(3)][gµν − qµqν/(Mzc)

2][v̄(2)γν(ceV − ceAγ
5)u(1)] (5.35)

with q = p1 + p2 = p3 + p4. Since we will consider energies near the MZ mass of 90 GeV, we may safely neglect
all masses. From the second term, we find that qµ contracts with γµ to yield

ū(4)� q(cV − cAγ
5)v(3). (5.36)
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Moreover, since � q = � p3 + � p4 and ū(4)� p4 = 0 (this is the Dirac equation for m = 0) in addition to:

� p3(cV − cAγ
5)v(3) = (cV + cAγ

5)� p3v(3) = 0, (5.37)

we see that the term dependent on qµqν gives no contribution to M. Performing now the spin summation (Casimir’s
trick):

〈|M|2〉 =
[ g2Z
8(q2 −M2

Zc
2)

]2
Tr{γµ(cfV − cfAγ

5)� p3γν(cfV − cfAγ
5)� p4} × Tr{γµ(ceV − ceAγ

5)� p1γν(ceV − ceAγ
5)� p2}.

(5.38)

Performing the traces (using rules for γ-matrices) and integrating over the scattering angle, we find:

σ =
1

3π

[ �cg2ZE
4[(2E)2 − (Mzc2)2]

]2
[(cfV )

2 + (cfA)
2][(ceV )

2 + (ceA)
2] (5.39)

in the CM frame. We now see that as the total energy 2E → MZc
2, the cross section σ diverges! To counter this

(a true mathematical divergence can never be observed physically), take into account the finite lifetime τZ of Z0

which modifies the propagator to:

1

q2 − (MZc)2
→ 1

q2 − (MZc)2 + i�MZΓZ
(5.40)

where ΓZ = τ−1
Z . To derive why the finite lifetime leads to the imaginary term in the denominator is beyond the

scope of this course, but as a sidenote it is interesting to be aware of the fact that the same thing happens when
describing finite lifetimes of quasiparticles in condensed matter systems. In any case, the presence of the term
∝ ΓZ is that it "smears" out the effective mass of the propagator so that the divergence right at the bare mass MZ

is avoided and one obtains

σ =
(�cg2ZE)2

48π

[(cfV )
2 + (cfA)

2][(ceV )
2 + (ceA)

2]

[(2E)2 − (MZc2)2]2 + (�MZc2ΓZ)2
. (5.41)

The correction from the finite lifetime is negligible except if 2E � MZc
2, in which case it is crucial since it

prevents a divergence. Now, the same process mediated by a photon gives:

σ =
(�cg2e)2(Qf )2

48πE2
(5.42)

where Qf is the charge of f in units of e. We can actually compare γ- and Z0-mediated scattering directly via the
ratio:

σ(e+e− → Z0 → µ+µ−)

σ(e+e− → γ → µ+µ−)
� 2E4

[(2E)2 − (MZc2)2]2 + (�ΓZMZc2)2
(5.43)

when inserting for θW in cfV,A and ceV,A. Two particular limiting cases are of interest:

lim
2E�MZc2

σZ

σγ
� 2

( E

MZc2)

)4

� 1 (5.44)

whereas near the Z0 pole

lim
2E→MZc2

σZ

σγ
� 1

8

(MZc
2

�Γz

)2

� 1. (5.45)

We have used the value �ΓZ = 2.5 GeV. Hence, the weak mechanism is strongly favored near Z0 pole.
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D. Electroweak unification

Chiral fermion states.
We would now like to explore where the GWS-parameters, such as cV and cA, and their dependence on the
Weinberg-angle θW come from. First, note that Glashow’s original aim was to unify weak and electromagnetic
interactions as manifestations of one fundamental "electroweak" interaction. An immediate problem arises: if it is
indeed the same underlying interaction, why is γ massless while W± and Z0 so heavy? The solution turns out to
be the Higgs mechanism, but we shall delay a detailed treatment of this to a later chapter in this book.

There is another issue which also must be resolved in the quest to merge weak and electromagnetic interactions:
the structural difference between the vertices, namely γµ versus γµ(1 − γ5). One way to fix this is to absorb
(1− γ5) into the particle spinor itself:

uL(p) ≡ (1− γ5)u(p)/2, (5.46)

so that the vertex structure becomes the same in QED and weak interactions. In general, uL is not an eigenstate of
helicity operator in spite of "L" representing "left-handed", i.e. helicity −1. We have:

γ5u(p) =

[
c(p·σ)
E+mc2 0

0 c(p·σ)
E−mc2

]
u(p) (5.47)

which is clearly seen to not be proportional to u(p). We can prove the above equation as follows. First, note that

γ5u =

[
0 1

1 0

][
uA

uB

]
. (5.48)

Now, use that (� p−mc)u = 0 gives us two equations (the upper and lower components):

uA =
c

E −mc2
(p · σ)uB , uB =

c

E +mc2
(p · σ)uA. (5.49)
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Inserted into Eq. (5.48), we then obtain the desired result Eq. (5.47). Now, if m = 0, then we obtain

γ5u(p) = (p̂ ·Σ)u(p) (5.50)

where p̂ ·Σ is the helicity operator with eigenvalues ±1. Thus, for mass m = 0 one has:

1

2
(1− γ5)u(p) =

{
0 if u(p) has helicity +1
u(p) if u(p) has helicity -1

(5.51)

It is important to emphasize that this holds exactly only for m = 0, but uL is nevertheless always referred to as a
left-handed particle. We can think of 1

2 (1 − γ5) as a projection operator that picks out the -1 helicity component
from u(p) for m = 0.

For an antiparticle:

vL(p) ≡
(1 + γ5)

2
v(p). (5.52)

For a right-handed counterpart of a particle or antiparticle, let γ5 → (−γ5). The states uL,R and vL,R are chiral
fermion states, where the word "chiral" is Greek for "hand" (in reference to their left/right nature). In this way,
weak and electromagnetic interactions can be expressed in a more unified form. Consider for instance the process:

W−
νe

e

which contributes with a factor

j−µ = ν̄γµ

(1− γ5

2

)
e (5.53)

to the amplitude M. Here, ν̄ and e represents the spinors. The quantity j−µ is the weak current, and can be viewed
as an analogue to the electric current in QED. Now, anticommutation of {γµ, γ5} = {γµ, γ5} = 0 gives that
γµ(1− γ5)/2 = (1 + γ5)γµ/2. Also, we have [(1− γ5)/2]2 = (1− γ5)/2. Therefore, the relation

γµ

(1− γ5

2

)
=

(1 + γ5

2

)
γµ

(1− γ5

2

)
. (5.54)

This allows us to write the weak current in the manner:

j−µ = ν̄LγµeL (5.55)

which is a purely vectorial vertex, but only couples left-handed ν’s to left-handed e’s. We can also accomplish
the same thing in QED (writing the current in terms of chiral fermion states) even if the vertex is already vectorial
there:

u =
(1− γ5

2

)
u+

(1 + γ5

2

)
u = uL + uR, (5.56)

so that for instance

jQED
µ = −ēγµe = −ēLγµeL − ēRγµeR. (5.57)

Cross-terms can be shown to vanish, and we built in a factor (−1) due to the negative electric charge.

The main merit of the above formulation is then that the actual vertex may be turned into a purely vectorial one for
both QED and the weak interactions by allowing the (1 − γ5) factor to characterize the particles instead. Again,
we emphasize that the "L" and "R" notation only represents true handedness for mass m = 0 (and approximately
for E � mc2). In general, it should be viewed as convenient notation.

Weak isospin and hypercharge.
The negatively charged weak current and positive equivalent look as follows.
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W−

νe

e

W+

νe

e

j−µ = ν̄LγµeL j+µ = ēLγµνL

They may be expressed compactly by introducing the notation

χL =

[
νe
e

]

L

, τ+ =

[
0 1

0 0

]
, τ− =

[
0 0

1 0

]
(5.58)

so that we may write:

j±µ = χ̄Lγµτ
±χL. (5.59)

We see that τ± = (τ1± iτ2)/2 where τ1,2 are the first two Pauli matrices. This is similar to our earlier treatment of
isospin. In fact, we could envision a full "weak isospin" SU(2) symmetry (meaning that the Lagrangian describing
these interactions would be invariant under an SU(2) transformation of the fermion spinors: more on this in the
final chapter) if a third current existed, namely

j3µ = χ̄Lγµ
1

2
τ3χL. (5.60)

This is precisely the neutral weak current, which we already do know exists. But what about right-handed couplings
via γ, which should also be allowed? To incorporate these couplings and the electromagnetic current into this
unified framework, we introduce the weak hypercharge current

jYµ = 2jQED
µ − 2j3µ. (5.61)

which includes right-handed electrons [to see this, revisit the definition of jQED
µ in Eq. (5.57)]. The quantity

Y equals 2Q − 2I3 where Q is the electric charge in units of e while I3 is the third component of the weak
isospin. Note that jYµ is invariant with respect to rotations in weak isospin space (such as eL ↔ νL), since such
transformations do not influence right-handed states.

Note that we are here considering the original leptonic version of the electroweak model, where the right-handed
neutrino did not couple to any gauge fields as it was thought to not exist, and could thus simply be dropped.
However, today we know that neutrinos have a small mass (as discussed in our earlier treatment of neutrino
oscillations), so that the right-handed neutrino should in fact be kept.

The total underlying symmetry group of the (original) electroweak theory is SU(2)L⊗ U(1) where U(1) is associ-
ated with the weak hypercharge quantum number. The latter involves both chiralities. The meaning of the above
statement regarding the symmetry group is that the Lagrangian describing these interactions is invariant under both
SU(2) transformations (in the left-handed sector) and U(1) transformations of the fermion spinors. This formalism
can also be extended to other lepton/quark doublets, such as

χL →

[
νe
e

]

L

,

[
νµ
µ

]

L

,

[
u

d′

]

L

,

[
c

s′

]

L

, (5.62)

and so forth. We then formally define three weak isospin currents jµ and a weak hypercharge current jYµ :

jµ =
1

2
χ̄LγµτχL, j

Y
µ = 2jQED

µ − 2j3µ, (5.63)

where

jQED
µ =

2∑
i=1

Qi(ūiLγµuiL + ūiRγµuiR) (5.64)

and the summation goes over particles i in the doublet.
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E. Electroweak mixing

The GWS model states the the weak isospin currents couple with strength gW to a weak isotriplet of intermedi-
ate vector bosons W µ (a vector in weak isospin space) whereas jYµ couples with strength g′/2 to an isosinglet
intermediate vector boson Bµ. This may be mathematically expressed via the following structure, which could be
included in a Lagrangian describing such interactions:

−i
[
gW jµ ·W µ +

g′

2
jYµ Bµ

]
(5.65)

We shall in fact examine Lagrangians describing particle interactions in much more detail in the last chapter of
this book. Eq. (5.65) contains all the electrodynamic and weak interactions. We may express the first term via the
charged currents:

jµ ·W µ =
1√
2
(j+µ Wµ+ + j−µ Wµ−) + j3µW

µ3 (5.66)

where Wµ± ≡ 1√
2
(Wµ1∓ iWµ2) are the "wavefunctions" for the W± particles. The precise couplings to the W±

particles can now be read out from the coefficients of Eq. (5.65). Let us look at this in more detail.

Example 17. Coupling to intermediate vector bosons. Consider e− → νe +W−. This process is described by
the negative weak current:

j−µ = ν̄LγµeL = ν̄γµ
1− γ5

2
e. (5.67)

Inserted into Eq. (5.65), we obtain that

−igW
1√
2
j−µ Wµ− = − igW

2
√
2
[ν̄γµ(1− γ5)e]Wµ−. (5.68)

Thus, we recover the correct vertex factor −igW /(2
√
2)γµ(1− γ5).

What happens in electroweak theory is that the SU(2)L⊗ U(1) symmetry is reduced to an U(1) symmetry (but
not in the hypercharge sector, although this is not crucial for this argument) via the Higgs mechanism that occurs
through spontaneous symmetry breaking. We shall have much more to say about both of these phenomena in the
next chapter, but for now we only need to know that the implication of this is that the two neutral intermediate
vector bosons in our theory so far (W 3 and B) mix and produce one massless linear combination (the photon) and
one massive combination (the Z0) according to:

Aµ = Bµ cos θW +W 3
µ sin θW ,

Zµ = −Bµ sin θW +W 3
µ cos θW . (5.69)

If we write the neutral part portion of the electroweak interaction with the physical Aµ and Zµ states, we obtain

−i[gW j3µW
µ3 +

g′

2
jYµ Bµ] = −i

(
[gW sin θW j3µ + (g′/2) cos θW jYµ ]Aµ + [gW cos θW j3µ − (g′/2) sin θW jYµ ]

)

(5.70)

so that the previous symmetry in isospin space [SU(2)], made evident by the coupling to the Pauli matrix vector
τ , is now gone. Instead, by comparing this with the known electromagnetic coupling −igej

QED
µ Aµ, and using that

jQED
µ = j3µ + 1

2j
Y
µ , we obtain consistency only if

gW sin θW = g′ cos θW = ge. (5.71)
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This is the origin of the dependence of the interaction parameters on the mixing angle θW , and shows that
the weak and electromagnetic coupling constants are not independent. A similar procedure for Z0 yields
gZ = gE/ sin θW cos θW as previously announced. We can also read out the vector and axial couplings {cV , cA}
for neutral weak processes, as we show in the example below.

Example 18. Reading out coupling constants. Consider the process νe → νe + Z0. We can only have a
contribution from j3µ and not jQED

µ since neutrinos only interact weakly. The total coupling to Zµ can therefore be
written as:

−igZ(j
3
µ −

=0︷ ︸︸ ︷
sin2 θW jQED

µ )Zµ (5.72)

By inserting j3µ = ν̄LγµνL, we obtain from the above equation

− igZ
2

[
ν̄γµ

(1− γ5

2

)
ν
]
Zµ. (5.73)

From this expression, we then read out that cνV = cνA = 1
2 by comparing with Eq. (5.29).

Although we have made a lot of progress here in terms of constructing a unified framework for weak and electro-
magnetic interactions, we still have not provided a detailed explanation of an important step of this task, namely
how the gauge fields acquire mass. This will be remedied in the last chapter in this book which treats gauge theories
and spontaneous symmetry breaking.
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VI. QUANTUM CHROMODYNAMICS

Learning goals. After reading this chapter, the student should:

• Be able to compute the Feynman amplitude M for Feynman diagrams in quantum chromodynamics, and
also be able to obtain decay rates and scattering cross sections from M.

• Understand how to account for the composite structure of protons and neutrons when treating scattering
processes via Feynman diagrams.

• Understand how the color quantum number affects particles in strong interactions and how it is accounted
for quantitatively.

All that we have stated so far about electrons in QED applies to quarks as well after substituting (−e) to either
2e/3 or (−e/3), depending on which quark we are considering. The problem which complicates our observation
of how quarks behave is that they, in contrast to electrons, never appear freely: we must infer information indirectly
through hadrons. We therefore start by considering two central examples of hadron-production via e− − e+ and
e− p scattering. Then, we proceed to develop the framework of QCD: the theory of how colored particles interact.
We discuss Feynman rules, color factors, pair annihilation, and finally asymptotic freedom.

A. Hadron production via e− − e+ collisions

Consider the process e− + e+ → q + q−.

q

e

q

e

q

Briefly, the quarks escape as "free particles", but when their separation reaches ∼ 10−15 m the strong interaction
is so great that it triggers a cascade of quark-antiquark pairs. The result is jet formation of hadrons.

q

q

Jets

Detector
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What is observed is then e−+e+ → hadrons. However, the fingerprint of quarks in this process is that the hadrons
typically emerge in two back-to-back jets along the direction of q and q̄, respectively. One also experimentally
observes three-jet events, which is indicative of an emitted gluon carrying a portion of the energy. The observation
of three-jet events is generally regarded as the most direct evidence for the existence of gluons.

Note that the first stage in the hadronization and jet formation (e− + e+ → γ → q + q̄) is ordinary QED, so we
obtain (evaluated in the CM frame):

〈|M|2〉 = Q2g4e

[
1 +

(mc2

E

)2

+
(Mc2

E

)2

+
[
1−

(mc2

E

)2][(Mc2

E

)2]
cos2 θ

]
(6.1)

which leads to a total scattering cross section

σ =
πQ2

3

(�cα
E

)2

√
1− (Mc2/E)2

1− (mc2/E)2

[
1 +

1

2

(Mc2

E

)2][
1 +

1

2

(mc2

E

)2]
. (6.2)

Here, Q is the quark charge in units of e (2/3 for u, c, t, and so forth) while M is the mass of the quark.

An interesting point is that σ becomes imaginary for E < Mc2. Take a moment to reflect on why this happens -
clearly, it must be nonphysical. The reason is that the process becomes kinematically forbidden for energies below
Mc2: there is not enough energy available to even produce the rest masses of the quarks. On the other hand, for
high energies E > Mc2 � mc2, we obtain the simple expression

σ =
π

3

(�Qcα

E

)2

. (6.3)

There exists a number of thresholds for the energy as we increase it: first one is able to produce muons, light
quarks, then (at � 1300 MeV) the c quark, τ at 1777 MeV, b quark at 4500 MeV, and finally the t quark. A
prediction for experiments would then be to consider the ratio

R =
σ(e−e+ → hadrons)
σ(e−e+ → µ−µ+)

. (6.4)

Above each threshold, we then have according to our expression derived for σ above: R(E) = 3
∑

i Q
2
i where the

sum is over all quark flavors with threshold below E. The factor 3 is due to the three possible colors for each flavor.
According to this, we should have what resembles a "staircase" graph with a step up every time a new threshold is
exceeded.

E

R

(u, d, s)
c

b

Comparison between experiment and theory is pretty good, except right next to the actual thresholds. One thing
missed by our approximations is that the qq̄ pairs are not truly free particles, although we have described them as
if they were. Therefore, the hadronization process cannot in reality be split into two artificial steps e−e+ → qq̄
and then qq̄ → hadrons. For instance, it is possible to produce a bound state (such as φ = ss̄ or ψ = cc̄)
where the quarks are strongly interacting and our procedure fails. Such events show up as resonant peaks in σ.
Nevertheless, it is noteworthy that the color factor of 3 is crucial for agreement between experiment and theory,
and thus constitutes compelling evidence of the color quantum number.

B. Elastic e− p scattering

Let us now see how we can probe the internal structure of the proton. If p had no internal structure, we should be
able to treat it as a point-particle and copy/paste our QED treatment of e − µ scattering. However, since p is not
a simple point charge, we need a more flexible formalism to account for such scattering. To lowest order in QED,
we may represent the process as follows.



INTRODUCTION TO PARTICLE PHYSICS

79

Quantum chromodynamics

79

79

q
e

e
p

p

γ

p2

p4

p1

p3

The dark blob represents the unknown exact structure of the photon-proton vertex interaction. What we do know,
however, is that the e− e vertex and γ propagator are the same as in QED. Therefore, we can write generally:

〈|M|2〉 = g4e
q4

Lµν
electronKµν,proton (6.5)

where the tensor Kµν is, so far, unknown. Since Kµν is a second-rank tensor, it can only depend on three quantities:
p2, p4 and q. But as q = p4 − p2, only two of these are independent. We choose q and p2 and drop the subscript so
that p ≡ p2 is the initial proton momentum. With this in mind, the most general form of Kµν reads:

Kµν = −K1g
µν +

K2

(Mc)2
pµpν +

K4

(Mc)2
qµqν +

K5

(Mc)2
(pµqν + pνqµ). (6.6)

In this way, all scalars Ki have the same dimension and are functions of the only scalar variable in the problem:
q2. Note that p2 = M2c2 and p24 = M2c2 = (q + p)2 → q · p = −q2/2. The Ki functions are nevertheless not
independent of each other. One may show that qµKµν = 0 which in turn leads to

K4 = (Mc)2K1/q
2 +K2/4, K5 = K2/2. (6.7)

We have then managed to express Kµν with two so-called form factors K1 = K1(q
2) and K2 = K2(q

2):
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Kµν = K1

(
− gµν +

qµqν

q2

)
+

K2

(Mc)2
(pµ + qµ/2)(pν + qν/2). (6.8)

With this in hand, we may now evaluate 〈|M|2〉 in the standard way:

〈|M|2〉 =
(2g2e
q2

)2[
K1[(p1p3)− 2(mc)2] +K2[(p1p)(p3p)/(Mc)2 + q2/4]

]
. (6.9)

Working in the lab frame with the proton at rest, one obtains

dσ

dΩ
=

( α�
4ME sin2(θ/2)

)2E′

E
[2K1 sin

2(θ/2) +K2 cos
2(θ/2)] (6.10)

where E is the incident electron energy, E′ is the outgoing electron energy, while θ is the scattered angle of the
electron. The point is then that by experimentally counting the number of electrons scattered into a given direction
for a specific range of energies, one determines K1(q

2) and K2(q
2). This gives us a way to model the internal

structure of the proton. However, a complete theory should be able to calculate what K1 and K2 are. In the
simplest model (proton as a point charge), one obtains K1 = −q2 and K2 = (2Mc)2. This is fine at low energies
where e never gets close enough to see the inside of the proton. It fails dramatically at high energies, since the
proton has a rich internal structure which comes into play at close enough distances.

C. Feynman rules for QCD

QCD is the interaction between colored particles via gluons. The strong coupling constant is gS =
√
4παS , so

that αS sets the strength of the force. Put simply, we may think of gS as the fundamental unit of color. Now, to
specify a quark state requires both a Dirac spinor u(s)(p) and a there-element column vector c which provides the
color state. We have c = [1, 0, 0]T for red, [0, 1, 0]T for blue, and c = [0, 0, 1]T for green. Let ci, i = 1, 2, 3 run
over quark color indices. We can then have processes such as:

rb̄

r

b

where a red quark turns into a blue quark and a gluon carries off the missing color. Initially, we may thus expect
nine types of gluons since there are 3 × 3 combinations of color and anticolor (rr̄, rb̄, . . .). These states can be
represented as a color octet and a color singlet, which is a compatible representation with regard to the SU(3)
symmetry that QCD is based on (more on this later). Specifically, the octet states read

|1〉 = (rb̄+ br̄)/
√
2, |2〉 = −i(rb̄− br̄)/

√
2, |3〉 = (rr̄ − bb̄)/

√
2, |4〉 = (rḡ + gr̄)/

√
2,

|5〉 = −i(rḡ − gr̄)/
√
2, |6〉 = (bḡ + gb̄)/

√
2, |7〉 = −i(bḡ − gb̄)/

√
2, |8〉 = (rr̄ + bb̄− 2gḡ)/

√
6. (6.11)

while the singlet state is

|9〉 = (rr̄ + bb̄+ gḡ)/
√
3. (6.12)

All types of gluon combinations can be obtained using these nine states. For instance, a rb̄ gluon is obtained by
(|1〉 + i|2〉)

√
2. Note that the state |9〉 is invariant under SU(3) transformations. That is why it is called a singlet,

analogously to a Sz = 0, S = 0 spin-singlet state which is invariant under SU(2) spin rotations. We must now
make a minor, but important modification compared to what we have stated initially in this book:

All naturally occurring particles are colorless color singlets.
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A color singlet is not the same as what is meant by a colorless particle. For instance, |3〉 and |8〉 are colorless in
the sense that they have equally much of color and the corresponding anticolor. However, they are not singlets.
To see this, consider an analogy from spin. Sz = 0 does not imply S = 0: for instance, the m = 0 triplet state
(↑↓ + ↓↑)/

√
2 has Sz = 0, but S = 1. On the other hand, S = 0 does necessarily imply Sz = 0. One can think

of |9〉 as an invariant under color rotations in the same way as r2 = x2+y2+z2 is invariant under spatial rotations.

Therefore, octet gluons do not appear as free particles, because they are not singlets. But if |9〉 existed, it should
appear not only as a mediator but also as a free particle. Since gluons are massless, the existence of a free singlet
gluon would imply that a long-ranged strong force exists. However, this has never been observed and we may
conclude that only eight gluons exist. Strictly speaking, there are additional details regarding the gluon mass
in relation to the so-called trace anomaly in QCD, which we do not go into here. The conclusion nevertheless
remains that a free singlet gluon has not been experimentally observed.

In order to quantitatively describe gluons, let us start by noting that they are massless spin-1 particles, so that we
can set the polarization vector εµ orthogonal to the momentum pµ. Let us, as before, use the Coulomb gauge:
ε0 = 0, ε ·p = 0. Note that selecting a particular gauge spoils Lorentz covariance: doing a Lorentz transformation
now demands that we also do a belonging gauge transformation to restore the Coulomb gauge. As always, the
gauge-choice does not ultimately affect the physics: it is just a matter of mathematical convenience.

To describe the color of the gluon, we use an eight-element vector a:

a = [1, 0, 0, 0, 0, 0, 0, 0]T for |1〉, a = [0, 0, 0, 0, 0, 0, 1, 0]T for |7〉, and so forth. (6.13)

Gluons couple to each other since they carry color (unlike photons that do not carry charge).

Before stating the Feynman rules for QCD, we need to establish some notation (precisely as we also did for QED
before stating the rules). The first thing is to introduce the Gell-Mann matrices. These are to SU(3) what the Pauli
matrices are to SU(2):

λ1 =



0 1 0

1 0 0

0 0 0


 , λ2 =



0 −i 0

i 0 0

0 0 0


 , λ3 =



1 0 0

0 −1 0

0 0 0


 , λ4 =



0 0 1

0 0 0

1 0 0


 ,

λ5 =



0 0 −i

0 0 0

i 0 0


 , λ6 =



0 0 0

0 0 1

0 1 0


 , λ7 =



0 0 0

0 0 −i

0 i 0


 , λ8 =



1 0 0

0 1 0

0 0 −2


 . (6.14)

We also need the commutators of λ-matrices which define the structure constants fαβγ of SU(3) via the relation:

[λα, λβ ] = 2ifαβγλγ (6.15)

where summation over γ from 1 to 8 is implied due to the repeated index. The structure constants are antisymmet-
ric, so that fαβγ = −fαγβ = −fαβγ . With notation in hand, we can now write down the Feynman rules of QCD.

External lines. A quark or antiquark with momentum p, spin s, and color c is represented as follows.

u(s)(p)c

ū(s)(p)c†

Incoming

Outgoing

v̄(s)(p)c†

v(s)(p)c

Incoming

Outgoing

Quark Antiquark
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A gluon with momentum p, polarization ε, and color a is written as follows.

Incoming

Outgoing

α, µ
εµ(p)a

α

ε∗µ(p)(a
α)∗

α, µ

Propagators.

Quarks & Antiquarks

Gluons − igµνδ
αβ

q2α, µ

i(qµγµ+mc)
q2−m2c2

q

q

β, ν
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Vertices. Each vertex introduces a factor as follows.

γ, λ

δ, ρ

α, µ

β, ν

α, µ

β, ν

γ, λ

k3

k1

k3

α, µ

− igs
2 λ

αγµ −gSf
αβγ[gµν(k1 − k2)λ + gνλ(k2 − k3)µ + gλµ(k3 − k1)ν]

Quark-gluon Three-gluon

Four-gluon

−ig2S[f
αβηfγδη(gµλgνρ − gµρgνλ) + fαδηfβγη

×(gµνgλρ − gµλgνρ) + fαγηf δβη(gµρgνλ − gµνgλρ)]

(sum over η implied)

(notice how gluon momenta point into the vertex)

Apart from these rules, the same applies as in QED. In what follows, we shall have a look at some concrete
examples of this framework in action.

D. Color factors

Consider the interaction between two quarks to lowest-order QCD. The focus will be on saying something on
the effective potential between quarks, analogously to the QED Coulomb potential. Keep in mind that we are
effectively doing a perturbation theory calculation, assuming that αS is small. Because of this, however, we cannot
hope to obtain the result of asymptotic freedom at lowest order since we should only be able to describe the short-
range potential behavior where the strong interaction is much weaker in magnitude compared to large separation
distances between the quarks. We will discover a central result (to be shown quantitatively below):

Quarks attract most strongly when they are in a color singlet configuration.

Quark & Antiquark.
Consider then qq̄ scattering with different flavors (such as u + d̄ → u + d̄). The lowest-order diagram looks as
follows (the small arrows emphasize the direction of momentum flow).

q

p2, c2

p4, c4

p1, c1

p3, c3

The amplitude is obtained according to the rules:

M = i[ū(3)c†3][−igSλ
αγµ/2][u(1)c1][−igµνδ

αβ/q2][v̄(2)c†2][−igsλ
βγν/2][v(4)c4]

= − g2S
4q2

[ū(3)γµu(1)][v̄(2)γµv(4)](c
†
3λ

αc1)(c
†
2λ

αc4). (6.16)
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Now, the structure is identical to e − ē scattering except for (1) ge → gS and (2) the additional color factor
f = 1

4 (c
†
3λ

αc1)(c
†
2λ

αc4). Thus, we can state that the potential describing qq̄ interactions is the same as in QED for
opposite charges when replacing α with fαS , so that we can at least phenomenologically introduce the potential:

Vqq̄(r) = −fαS�c
r

. (6.17)

The factor f depends on the color state of the interacting quarks: we can create a singlet state or one of the color
octets. In the latter case, all octets actually turn out to yield the same f . Let us compute this one to begin with and
choose the combination rb̄ to be concrete. Color is conserved overall, and thus the incoming q has the same color
as the outgoing q, namely red. Conversely, the incoming and outgoing q̄ have antiblue color. Therefore,

c1 = c3 =



1

0

0


 , c2 = c4 =



0

1

0


 . (6.18)

In turn, this produces the following color factor:

f =
1

4

(
[1, 0, 0]λα[1, 0, 0]T

)(
[0, 1, 0]λα

)
=

1

4
λα
11λ

α
22. (6.19)

Only the λ3 and λ8 matrices have non-zero entries in the (11) and (22) positions, so that f = − 1
6 .

We can now repeat the same procedure for the singlet state 1√
3
(rr̄ + bb̄+ gḡ), which gives f = 4

3 . We have then
obtained:

Vqq̄(r) =

{
− 4

3
αS�c

r for color singlet
1
6
αS�c

r for color octet.
(6.20)

It is clear that the force is attractive for the singlet state, which helps to explain why qq̄ bindings (mesons) occur
as color singlets but not octets (which would have produced colored mesons).

Quark & quark.
Consider again different flavors (e.g. u+ d → u+ d). The lowest-order amplitude for such scattering is:

M = − g2S
4q2

[ū(3)γµu(1)][ū(4)γµu(2)](c
†
3λ

αc1)(c
†
4λ

αc2). (6.21)

The procedure is then similar to e − µ scattering except for (1) ge → gS and (2) the additional color factor f =

(c†3λ
αc1)(c

†
4λ

αc2). The effective potential becomes formally equivalent to that of like charges in electrodynamics:

Vqq(r) =
fαS�c

r
. (6.22)

However, the color configuration for two quarks cannot be singlet. Instead, we have

Triplet (antisymmetric) :




(rb− br)/
√
2

(bg − gb)/
√
2

(gr − rg)/
√
2

(6.23)

Sextet (symmetric) :





rr, bb, gg

(rb+ br)/
√
2

(bg + gb)/
√
2

(gr + rg)/
√
2

. (6.24)

Performing the calculation as before for the color factors, we find

Vqq(r) = −2

3

αS�c
r

for the triplet state, Vqq(r) =
1

3

αS�c
r

for the sextet state. (6.25)
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The different sign is obvious, but at the same time we know that neither occurs in nature in spite of the attractive
interaction for the triplet state. To understand this, we must realize that the short-range attraction does not
prove that binding occurs: for that, we would have to know about the long-range behavior for the same color
configuration. The above result nevertheless has important consequences for the binding of three quarks where
you can show that complete mutual attraction between three quarks is obtained only in a singlet configuration.

E. Briefly on asymptotic freedom

In the QED chapter of this book, we found that loop diagrams of the type caused the effective charge of the electron
to be a function of the momentum transfer q:

α(q) = α(0)
[
1 +

α(0)

3π
ln
( |q|2

(mc)2

)]
(6.26)

for |q|2 � (mc)2. The physics in this case is that as the charges get closer to each other (larger |q|2), the coupling
strength increases due to the vacuum polarization. The screening is less effective at shorter distances. We recall
that this type of diagram also introduces a divergent term that we "soak up" in an effective charge (which is what
is experimentally measured). Now, the above equation holds to order O{[α(0)]2}. The contribution from higher-
order diagrams such as:

can be performed a summation over explicitly and provides the result:

α(q) =
α(0)

1− [α(0)/3π]ln
(

|q|2
(mc)2

) . (6.27)

We can understand why the expression looks like this when taking into account higher-order loop diagrams since
we obtain a series of the type 1 + x+ x2 + . . . = 1

1−x where x represents a bubble.

Now, much of the same thing happens in QCD as well where q − q̄ bubbles screen quark color and gives (modulo
color factors f ) the same as Eq. (6.26). However, QCD has a twist that is not present in QED. There are also
virtual gluon bubbles due to the gluon-gluon coupling:

The gluon contribution actually works in the opposite direction as the q−q̄ bubbles and thus produces antiscreening
or "camouflage". The formula for the running coupling constant in QCD reads:

αS(|q|2) =
αS(µ

2)

1 + [αS(µ2)/12π](11n− 2f)ln
(

|q|2
µ2

) , |q|2 � µ2. (6.28)

Here, n is the number of colors and f is the number of flavors. In the Standard Model, we know that n = 3 and
f = 6. As a result, 11n > 2f and the coupling constant αS decreases as |q|2 increases. This means that short
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distances, the strong interaction in fact becomes quite weak in magnitude. This is an important consequence of
asymptotic freedom → our license to use perturbation theory (Feynman diagrams) for interquark potentials.

But we have not specified what µ is yet. In electrodynamics it is natural to define the charge of a particle as its
long-range (fully screened) value. We could, however, use the effective charge at any |q|2 as the reference value so
long as α(|q|2) is small there (so that we are allowed to use Feynman perturbation theory). The problem in QCD
is that αS is large when q2 → 0, so we cannot use that as our reference point. Instead, we use αS(µ

2) < 1 as the
"bare" strength of the coupling constant which we base our perturbation expansion on. The quantity µ is therefore
chosen so that αS satisfies this. Note that αS(|q|2) varies substantially over the experimentally available energy
range whereas α(|q|2) varies much less.
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VII. RELATIVISTIC FIELD THEORY AND GAUGE THEORIES

Learning goals. After reading this chapter, the student should:

• Be able to derive the equation of motion for a relativistic field Lagrangian L and interpret the terms present
in L physically.

• Be able to identify the Klein-Gordon, Dirac, and Proca Lagrangians.

• Understand the concepts of local gauge invariance, spontaneous symmetry breaking, and how these are
related to the Higgs mechanism.

We here assume familiarity with the Lagrangian formulation of classical particle mechanics (see e.g. the free
textbook "Introduction to Lagrangian and Hamiltonian Mechanics" available to download from Bookboon), and
develop Lagrangian field theory. Then, we proceed to introduce the fundamental concepts of local gauge invari-
anec, spontaneous symmetry breaking, and the Higgs mechanism.

A. Lagrangians in relativistic field theory

The first issue to address is fundamental: what is a field? When we discuss particles, we think of localized entities.
In classical physics, one is typically interested in identifying the position x = x(t) of a particle as a function
of time t. On the other hand, a field occupies some region of space and time, and we are typically interested in
identfiying the value of the field φi = φ(x, y, t) at a given position in space and time. Temperature or electric
potential are classical examples of fields. Here, we shall use fields to describe relativistic particles.

In field theory, one starts with a Lagrangian density L which is a function of φi and its derivatives

∂µφi ≡
∂φi

∂xµ
(7.1)

The Euler-Lagrange equation reads

∂µ

( ∂L
∂(∂µφi)

)
=

∂L
∂φi

, i = 1, 2, 3, . . . (7.2)

These equations resemble their equivalents in classical, non-relativistic mechanics, but a key difference here is that
space and time coordinates are treated equally due to the special theory of relativity.

Example 19. Klein-Gordon Lagrangian. This L describes a scalar spin-0 field:

L =
1

2
(∂µφ)(∂

µφ)− 1

2
(mc/�)2φ2. (7.3)

To compute the corresponding equation of motion for the field φ, i.e. Eq. (7.2), we first observe that

∂L
∂(∂µφ)

= ∂µφ. (7.4)

To see this, note that we can write the Lagrangian as

L =
1

2
(∂0φ∂0φ− ∂1φ1∂1φ1 − . . .) (7.5)

https://bookboon.com/en/introduction-to-lagrangian-hamiltonian-mechanics-ebook
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from which it becomes clear that

∂

∂(∂0φ)
= ∂0φ = ∂0φ,

∂

∂(∂iφ)
= −∂iφ = ∂iφ. (7.6)

Moreover, we note that

∂L
∂φ

= −mc2

�
φ. (7.7)

The total equation then takes the form:

∂µ∂
µφ+ (mc/�)2φ = 0 (7.8)

which is precisely the Klein-Gordon equation we have discussed previously in this book.

In the same way as shown in the above example, one can show that from the Dirac Lagrangian which describes a
spin-1/2 field:

L = i(�c)ψ̄γµ∂µψ − (mc2)ψ̄ψ (7.9)

that the Euler-Lagrange equation provides the Dirac equation:

iγµ∂µψ − (mc/�)ψ = 0. (7.10)

Here, ψ and ψ̄ are treated as independent fields. Moreover, the Proca Lagrangian describes a massive vector
(spin-1) field:

L = − 1

16π
FµνFµν +

1

8π

(mc2

�

)
AνAν (7.11)

and leads to the Proca equation

∂µF
µν + (mc2/�)Aν = 0. (7.12)

In the special limit of a massless field m = 0, this reduces to Maxwell’s equations for empty space. A source term,
representing charge and current densities, can be added by writing

L = − 1

16π
FµνFµν − 1

c
JµAµ (7.13)

which provides the equation

∂µF
µν =

4π

c
Jν . (7.14)

Note that it follows that ∂νJν = 0: the current inserted must satisfy the continuity equation.

Now, where do all the above Lagrangians come from? We have simply written them down without any justification.
In fact, they were all chosen so that they would provide the correct field equations for their corresponding fields.
Therefore, in contrast to deriving the classical, non-relativistic L = T − U where T is kinetic energy and U is
potential energy, L is axiomatic in relativistic field theory. Similarly to classical, non-relativistic Lagrangians, L
is not unique. We can add a simple constant or a divergence ∂µM

µ without affecting the equation of motion Eq.
(7.2) for the field.
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B. Local gauge invariance

The Dirac Lagrangian is invariant under the transformation ψ → eiθψ. This is a global transformation as θ is
independent on position and time. Moreover, θ is a real number here. Therefore, since ψ̄ → e−iθψ̄, all exponential
factors cancel due to the fact that it is the combination ψ̄ψ that appears in LDirac. When θ = θ(x), the above is a
local gauge transformation. The phase-factor is usually thought of as a mere convention: as known from quantum
mechanics, the phase of a wavefunction is unobservable, and only the difference in phases between wavefunctions
may be observed. A local gauge symmetry just means that we should be able to freely change the convention
(reference point) of the phase at any point in space-time without changing the physics, and not only change the
reference point globally (i.e. by equally much at each point in space-time). However, there seems to be a problem:
LDirac is not invariant under a local transformation ψ → ψeiθ(x). Instead, it transforms as L → L−�c(∂µθ)ψ̄γµψ.

We define λ(x) ≡ −(�c/q)θ(x), so that when ψ → e−iqλ(x)/�cψ, we obtain

L → L+ (qψ̄γµψ)∂µλ. (7.15)

We see that there is a way in which to reobtain local gauge invariance, namely if we add a term to L which cancels
the extra contribution obtained during the local gauge transformation. Assume that

L = [i�cψ̄γµ∂µψ −mc2ψ̄ψ]− (qψ̄γµψ)Aµ, (7.16)

where Aµ is the so-called gauge field. If the fields now transform like: ψ → e−iqλ(x)/�cψ and Aµ → Aµ + ∂µλ,
then L is invariant under such a local gauge transformation. Whereas this mathematically restores the gauge
invariance, we still have to physically justify this procedure. This can be done by realizing that the term qψ̄γµψAµ

describes the coupling between the vector field Aµ and the fermion field ψ. If Aµ is present, however, there should
in all fairness also exist a "free" term that describes Aµ in L irrespective of whether or not a fermion field ψ is
present that it can couple to. This can be accomplished via the Proca Lagrangian with the mass term set to zero:

L = −FµνFµν/16π (7.17)

since Fµν is invariant under the gauge transformation in question (whereas a mass term ∝ AνAν is not). As a
result, we arrive at the important conclusion that:

Imposing local gauge-invariance on the Dirac L, we must introduce a massless vector field Aµ.
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The full Lagrangian describing a spin-1/2 fermion field coupled to a massless spin-1 boson field then reads:

L = [i�cψ̄γµ∂µψ −mc2ψ̄ψ] +
[
− 1

16π
FµνFµν

]
− [qψ̄γµψAµ].

We identify Aµ as the electromagnetic vector potential since:

1. Aµ → Aµ + ∂µλ leaves Fµν invariant.

2. The two last terms in the above L give the Maxwell Lagrangian with a source term Jµ = cq(ψ̄γµψ), and
this is precisely the current produced by Dirac particles.

We have therefore identified a Lagrangian which describes electrodynamics through the coupling between Dirac
fermions and photons, in particular the current Jµ produced by the former. Remarkably, the origin of this coupling
was that we demanded local gauge invariance.

The main difference, mathematically, between global and local gauge transformations arises due to derivatives of
the field. Let

∂µ → Dµ ≡ ∂µ + i
q

�c
Aµ (7.18)

to convert a global gauge invariance to a local one. The above relation is known as minimal coupling. Note that
the gauge field here must be massless. In terms of symmetry, we have a local U(1) gauge symmetry since eiθ

belongs to U(1). The mathematical structure here may be extended to a Lagrangian with two spin-1/2 fields ψ1

and ψ2, in which case we obtain a local SU(2) gauge symmetry. This is an example for the so-called Yang-Mills
theories which we shall treat in more detail later.

Before moving on to discussing how various terms in L can be interpreted physically in general, let us formally
define precisely what is meant by a gauge theory:

A gauge theory is a field theory described by a Lagrangian L that is invariant under a group of local continuous
transformations. The mathematical procedure which adjusts the degrees of freedom related to the invariance

of L is referred to as the gauge.

C. Interpreting L: importance of the mass term

In general, L consists of two kinds of terms.

• Free Lagrangian for each field (L0).

• Interaction terms for the fields (Lint).

Lint may be obtained by invoking local gauge invariance, as we showed in the above treatment of the Dirac and
Proca Lagrangians. Local gauge invariance thus provides a way to identify the vertex couplings in a theory, and
it works beautifully for strong and electromagnetic interactions. However, in the weak interactions the gauge
field is far from massless. It is nevertheless still possible to create a gauge theory with massive gauge fields via
spontaneous symmetry breaking and the Higgs mechanism. Before exploring these phenomena, we consider how
to identify a mass term in L in the first place.

Example 20. Identifying the mass term. What is the mass term in the following Lagrangian?

L =
1

2
(∂µφ)(∂

µφ) + e−(αφ)2 . (7.19)
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Let us expand L around the point φ = 0:

L =
1

2
(∂µφ)(∂

µφ) + 1− α2φ2 +
1

2
α4φ4 − . . . (7.20)

Since constants do not affect the equations of motion for the field (although constants do contribute to the so-called
cosmological constant), we discard them and thus identify the mass term from the O(φ2)-term:

m =

√
2α�
c

. (7.21)

The higher-order terms [O(φ4) and higher] represent couplings of the type:

, , . . .

However, we cannot always simply extract the mass from the term which is second order in the field. An exception
is for instance:

L =
1

2
(∂µφ)(∂

µφ) +
1

2
µ2φ2 − 1

4
λ2φ4. (7.22)

The sign is the problem here: it looks like the mass should be imaginary, since the sign is opposite to the previous
examples we have encountered.

To resolve this problem, we have realize that Feynman calculus using field Lagrangians is really a perturbation
theory starting from the ground-state. The higher order terms (φ4, φ6, . . .) then represent higher order corrections
to the ground-state. But this is because, so far, the field configuration that gives the minimum energy has been
φ = 0. In Eq. (7.22), this is no longer the case. We thus have to rewrite L in terms of deviations from the ground-
state. To do so, we first have to identify the value of φ which gives the ground-state. We can do so by conjecturing
that L = T − U (just like in classical, non-relativistic Lagrangian theory), where

T =
1

2
(∂µφ)(∂

µφ) (7.23)

is the kinetic energy while

U = −1

2
µ2φ2 +

1

4
λ2φ4 (7.24)

is the potential energy. We then see that the minimum of U(φ) occurs at φ = φm = ±µ/λ. We introduce a new
field η as the deviation from the minimum value:

η ≡ φ± µ/λ (7.25)

and then express L in terms of the new field η:

L =
1

2
(∂µη)(∂

µη)− µ2η2 ± µλη3 − 1

4
λ2η4 +

1

4
(µ2/λ)2. (7.26)

Now, we can identify the mass term since the second order term in η has the appropriate sign:

m =

√
2µ�
c

(7.27)

and the other terms in L are couplings of the type:

, , . . .

Note how the L’s expressed with φ and η represent exactly the same physical system - we have only changed
the notation. However, the key insight here is that the φ-version is not suitable for Feynman calculus since a
perturbation series in φ would not converge (as φ = 0 is not the ground-state).
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The conclusion is then that in order to identify the mass term, we must do the following:

1. Locate the ground-state.

2. Express L as a function of the deviation η from the ground-state.

3. Expand L in powers of η: the mass term comes from the η2 term.

What about linear terms in L?
Assume that we have a Lagrangian of the form:

L =
1

2
(∂µφ)(∂

µφ)− aφ2 − bφ3 − cφ. (7.28)

Introduce the field η ≡ φ− φ0 and write

L =
1

2
(∂µη)(∂

µη)−Aη2 −Bη3. (7.29)

Now identify {A,B, φ0} so that

aφ2 + bφ3 + cφ = Aη2 +Bη3. (7.30)

This gives us three equations: one for each order of φ. Therefore, a linear term can simply be absorbed into a
new field (η above) which describes the deviation from some constant value of the original field (φ in the above
example). However, note that η = 0 is not necessarily the ground-state of the field: in fact, in general it will not
be. So even though we can drop the linear term without loss of generality when considering a generic form of L,
we must pay attention to how it modifies the constants for a specific theory so that we may correctly identify the
ground-state around which the field is expanded (e.g. in the potential energy).
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D. Spontaneous symmetry breaking

This phenomenon refers to a situation where the Lagrangian (or equations of motion) have a given symmetry,
whereas the ground-state does not share the same symmetry. Let us borrow an example from condensed matter
theory, namely a ferromagnetic material. In the simplest model, the Lagrangian (or Hamiltonian, if you prefer)
only depends on the magnitude of the magnetization M = |M |. Therefore, it does not matter energywise in which
direction the magnetization points in such a material: all states are equivalent. However, as soon as a material
becomes magnetic, the magnetization has to point in some direction. In other words, the ground-state has chosen
one particular solution out of all the available ones that have equal energy. In this way, the ground-state has
lowered the symmetry that the original Lagrangian had. The word "breaking" could therefore in some sense be
substituted by "choosing": spontaneous symmetry breaking occurs when choosing one particular ground-state out
of many available.

Example 21. Mexican hat potential. Consider the Lagrangian for a two-component field (with components φ1

and φ2):

L =
1

2
(∂µφ1)(∂

µφ1) +
1

2
(∂µφ2)(∂

µφ2) +
1

2
µ2(φ2

1 + φ2
2)−

1

4
λ2(φ2

1 + φ2
2)

2. (7.31)

This is invariant under rotations in (φ1, φ2)-space. This means that we have an SO(2) symmetry: L is invariant
under the transformation [

φ1

φ2

]
→

[
φ′
1

φ′
2

]
=

[
cos θ sin θ

− sin θ cos θ

][
φ1

φ2

]
. (7.32)

We recognize the rotation matrix in 2D, which belongs to the SO(2) group. The minimum of the potential in L is
given by the equation

φ2
m,1 + φ2

m,2 = µ2/λ2. (7.33)

Circle of potential minima

U(φ1, φ2)

φ2

φ1

Thus, we in fact have an entire circle of minima. In order for us to be allowed to use Feynman calculus, we thus
expand around the ground-state. This means that we must choose one particular ground-state on this circle. Note
that the ground-state is often referred to simply as vacuum for a given model. The physics should not depend on
which ground-state we choose, so we might as well take

φm,1 = µ/λ, φm,2 = 0. (7.34)

The fluctuation fields are then η and ξ where:

η ≡ φ1 − µ/λ, ξ = φ2. (7.35)

We rewrite L in terms of these to obtain:

L = [
1

2
(∂µη)(∂

µη)− µ2η2] + [
1

2
(∂µξ)(∂

µξ)]

+ [µλ(η3 + ηξ3)− λ2

4
(η4 + ξ4 + 2η2ξ2)] +

µ4

4λ2
. (7.36)

The terms can now be interpreted as follows.
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• 1st term: free K-G Lagrangian with mass mη =
√
2µ�/c.

• 2nd term: free K-G Lagrangian with mass mξ = 0.

• 3rd term: five coupling terms of the type

η ξ

η

η

ξ

ξξ

ξ ξ

ξ ξ

η

η η

ηη η η

• 4th term: irrelevant constant.

The Lagrangian is no longer symmetric in any of the fields since we have chosen to express in terms of one
particular solution. One of the new fields, ξ, is actually massless.

The above is an example of a more fundamental theorem, namely:

Goldstone’s theorem: Spontaneous breaking of a continuous global symmetry always generates one or more
massless scalar (spin-0) particles, called Goldstone bosons

This does not seem very helpful for our purpose - we were looking for a way to generate massive gauge fields,
not massless ones. As we shall now see, the gauge fields become massive when we apply spontaneous symmetry
breaking to a local gauge invariance rather than global gauge invariance.

E. Higgs mechanism

Let us first make the notation a bit more convenient

φ ≡ φ1 + iφ2 → φ∗φ = φ2
1 + φ2

2. (7.37)

Then, the Lagrangian we have considered takes the form:

L =
1

2
(∂µφ)

∗(∂µφ) +
1

2
µ2(φ∗φ)− 1

4
λ2(φ∗φ)2. (7.38)

This L is invariant under U(1) phase transformations φ → eiθφ. Note that there is no contrast between this
result and our previous statement that the Lagrangian had an SO(2) symmetry. The reason for this is that the
groups SO(2) and U(1) are isomorphic (see our previous treatment of symmetry groups), so we have not changed
anything but notation.

We can now make L invariant under a local U(1) gauge, by introducing a massless Aµ field and a minimal coupling

∂µ → Dµ = ∂µ + i
q

�c
Aµ. (7.39)

Then, the following L has a local gauge symmetry:

L =
1

2
[(∂µ − iq

�c
Aµ)φ

∗][(∂µ +
iq

�c
Aµ)φ] +

1

2
µ(φ∗φ)− 1

4
λ2(φ∗φ)2 − 1

16π
FµνFµν . (7.40)

If we again define the fluctuation fields η = φ1 − µ/λ and ξ = φ2, we obtain

L = [
1

2
(∂µη)(∂

µη)− µ2η2] + [
1

2
(∂µξ)(∂

µξ)] +
[
− 1

16π
FµνFµν +

1

2

( qµ

�cλ

)
AµA

µ
]
+ interaction terms.

(7.41)
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The gauge-field Aµ is now massive: mA = 2
√
π( qµ

λc2 )
2. However, we still have the massless Goldstone boson ξ

present. Moreover, there are strange interaction terms ∝ (∂µξ)A
µ, suggesting a conversion between ξ and Aµ. We

see that both of these problems are related to the ξ = φ2 field. Interestingly, we can remove this field completely
by exploiting local gauge invariance.

To see this, let

φ → φ′ = (φ1c− φ2s) + i(φ1s+ φ2c) (7.42)

so that if we choose θ = −atan(φ2/φ1), then φ′
2 = 0. Since L has the same form expressed with (φ′, A′

µ) as it does
with (φ,Aµ) (that is what gauge invariant means per definition), we now have obtained ξ = 0 in this particular
gauge and L takes the form (where it is assumed that Aµ has been gauge-transformed accordingly):

L = [
1

2
(∂µη)(∂

µη)− µ2η2] +
[
− 1

16π
FµνFµν +

1

2

( qµ

�cλ

)2

AµA
µ
]

+
µ

λ

( q

�c

)2

η(AµA
µ) +

1

2

( q

�c

)2

η2AµA
µ − λµη3 − 1

4
λ2η4 +

(µ2

2λ

)2

. (7.43)

Again, the L’s in these two gauges describe exactly the same physics, but the new choice of gauge gives us an L
[Eq. (7.43)] that is easier to interpret. We are left with a single massive scalar (the Higgs particle) and a massive
gauge field Aµ. Physicists like to say that Aµ "ate" the Goldstone boson ξ and thus acquired mass. This can also
be thought of as Aµ acquiring a longitudinal polarization (since it now massive), which is a new degree of freedom.

The Higgs mechanism has then allowed for the gauge boson Aµ to become massive and this is what happens in
the Standard Model where a spontaneous symmetry breaking of the Higgs field gives mass to W± and Z0, while
leaving the photon massless. The spontaneous symmetry breaking of the Higgs field gives mass not only to the
gauge fields, but also to the fermion fields. The latter couple to the Higgs field via a so-called Yukawa coupling.
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This is necessary in order for the fermion fields to acquire mass, because in the electroweak Lagrangian there can
be no bare mass-terms for the fermions of the type mψ̄ψ = m(ψ̄LψR + ψ̄RψL), since these would explicitly
break the SU(2)L symmetry. The spontaneous symmetry breaking of the Higgs field demotes the electroweak
symmetry group SU(2)L⊗ U(1)Y to a U(1)EM symmetry (which can be seen by writing out the new Lagrangian
after the symmetry breaking), so that one is left with only one massless gauge field (the photon) in agreement with
experiments. In effect, there is good reason to believe that fundamental interactions (such as weak, strong, and
electromagnetic interactions) can be described by local gauge theories.
Note that "symmetry breaking" is often used in the literature without specifying if one refers to explicit or
spontaneous symmetry breaking - it is supposed to be clear from the context. This might not always be so and for
clarity we state what the difference is here.

Explicit symmetry breaking: A Lagrangian (or Hamiltonian) contains terms that exclude a certain symmetry
operation. For instance, a magnetic field applied in the ẑ-direction breaks spin rotation symmetry since spin
pointing in the ẑ direction now have a different energy than e.g. spins pointing along the x̂ direction.

Spontaneous symmetry breaking: A Lagrangian (or Hamiltonian) is invariant under a certain symmetry oper-
ation, but the ground-state in which the same system resides does not share that symmetry. For instance, in the
absence of a magnetic field the energy of a ferromagnetic material is independent on the direction of the magneti-
zation. However, once the material turns ferromagnetic the magnetization points in a given direction and thus has
broken the original symmetry by selecting one particular realization of the ground-state.

F. Yang-Mills theory

Instead of looking at the details of the full electroweak Lagrangian, we give an example of a simpler SU(2)
invariant Lagrangian and its belonging gauge fields. This will allow us to illustrate similar physics of the
electroweak theory, but in a technically more transparent way. In particular, we will recover the coupling structure
used in GWS theory (jµ ·W µ) and see that three gauge fields are required (unlike the single gauge field required
in QED). Yang-Mills theory is also known as non-Abelian gauge theory because its Lagrangian has an SU(2)
symmetry. In turn, SU(2) is a non-Abelian group since matrices do not in general commute.

Suppose that we have two spin-1/2 fields, ψ1 and ψ2. This is just like in the weak isospin doublet case, χL =[
νe
e

]

L

. The free Lagrangian takes the form

L = [i�cψ̄1γ
µ∂µψ1 −m1c

2ψ̄1ψ1] + (1 → 2). (7.44)

Consider for simplicity the case of equal masses, so that we can make the notation more compact upon introducing

ψ =

[
ψ1

ψ2

]
, ψ̄ = [ψ̄1, ψ̄2]. (7.45)

which leads to:

L = i�cψ̄γµ∂µψ −mc2ψ̄ψ. (7.46)

This L is invariant under the transformation ψ → Uψ where U is any 2× 2 unitary matrix. The general form of a
SU(2) matrix is

U = eiτ ·a (7.47)

where τ is the Pauli matrix vector. Therefore, L is invariant under global SU(2) transformations. If we now insist
on the SU(2) symmetry being local, we have to introduce gauge fields as before. For a local transformation, we let
a = a(xµ). Let us write this as:

ψ → Sψ, S = e−iqτ ·λ(x)/�c (7.48)
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which is a local SU(2) transformations. The original L is not invariant under this transformation, but we have
already laid out a strategy for fixing this: we replace ∂µ with the covariant derivative Dµ:

Dµ ≡ ∂µ + i
q

�c
τ ·Aµ. (7.49)

The remaining task is to identify a transformation rule for the gauge fields Aµ so that

Dµψ → S(Dµψ), (7.50)

in which case we have an L that is invariant under local SU(2) transformations as can be verified by direct insertion
of the above transformation. It turns out that (try to show this!) the following transformation rule for Aµ does the
trick:

τ ·A′
µ = S(τ ·Aµ)S

−1 + i(�c/q)(∂µS)S−1. (7.51)

It is particularly instructive to consider the special case of infinitesimal transformations where |λ| is small. In that
case, an expansion of S yields:

S � 1− iq

�c
τ · λ, ∂µS � − iq

�c
τ · ∂µλ. (7.52)

Inserted into Eq. (7.51), we obtain the transformation rule for the vector of gauge fields:

A′
µ � Aµ + ∂µλ+

2q

�c
(λ×Aµ). (7.53)

With these transformation rules, the following Lagrangian:

L = i�cψ̄γµDµψ −mc2ψ̄ψ

= i�cψ̄γµ∂µψ −mc2ψ̄ψ − (qψ̄γµτψ) ·Aµ (7.54)

is invariant under local SU(2) transformations. We should also include the free Lagrangian of the three new vector
fields as well:

LA = − 1

16π

∑
j

Fµν
j Fµν,j = − 1

16π
F µν · F µν . (7.55)

These must be massless gauge fields, since at term m2
AA

νAν would break SU(2) invariance. Also, we must
revise the structure of F µν compared to our previously used Fµν since the A field now has an extra term in the
transformation rule Eq. (7.53):

F µν = ∂µAν − ∂νAµ − 2q

�c
(Aµ ×Aν) (7.56)

In conclusion, the full Yang-Mills Lagrangian describing two equal mass Dirac fields interacting with three mass-
less gauge fields is:

L = i�cψ̄γµ∂µψ −mc2ψ̄ψ − (qψ̄γµτψ) ·Aµ − 1

16π
F µν · F µν . (7.57)

Notice the form of the coupling Jµ ·Aµ, exactly like in electroweak theory.


