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PREFACE 
 
  
 
In this book, the authors define the new notion of set vector 
spaces which is the most generalized form of vector spaces. Set 
vector spaces make use of the least number of algebraic 
operations, therefore, even a non-mathematician is comfortable 
working with it. It is with the passage of time, that we can think 
of set linear algebras as a paradigm shift from linear algebras. 
Here, the authors have also given the fuzzy parallels of these 
new classes of set linear algebras.  

This book abounds with examples to enable the reader to 
understand these new concepts easily. Laborious theorems and 
proofs are avoided to make this book approachable for non-
mathematicians.  

The concepts introduced in this book can be easily put to 
use by coding theorists, cryptologists, computer scientists, and 
socio-scientists.  

Another special feature of this book is the final chapter 
containing 304 problems. The authors have suggested so many 
problems to make the students and researchers obtain a better 
grasp of the subject.  

This book is divided into seven chapters. The first chapter 
briefly recalls some of the basic concepts in order to make this 
book self-contained. Chapter two introduces the notion of set 
vector spaces which is the most generalized concept of vector 
spaces. Set vector spaces lends itself to define new classes of 
vector spaces like semigroup vector spaces and group vector 
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spaces. These are also generalization of vector spaces. The 
fuzzy analogue of these concepts are given in Chapter three.  

In Chapter four, set vector spaces are generalized to biset 
bivector spaces and not set vector spaces. This is done taking 
into account the advanced information technology age in which 
we live. As mathematicians, we have to realize that our 
computer-dominated world needs special types of sets and 
algebraic structures. 

Set n-vector spaces and their generalizations are carried out 
in Chapter five. Fuzzy n-set vector spaces are introduced in the 
sixth chapter. The seventh chapter suggests more than three 
hundred problems. When a researcher sets forth to solve them, 
she/he will certainly gain a deeper understanding of these new 
notions.  

Our thanks are due to Dr. K. Kandasamy for proof-reading 
this book. We also acknowledge our gratitude to Kama and 
Meena for their help with the corrections and layout. 
  

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

K.ILANTHENRAL 
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Chapter One 
 
 
 
 
 

BASIC CONCEPTS  
 
 
 
 
 
This chapter has three sections. In section one a brief 
introduction to linear algebra is given. Section two gives the 
basic notions in bilinear algebra and the final section gives the 
definition of fuzzy vector spaces. For more about these 
concepts, please refer [48, 60]. 
 
 
1.1 Definition of Linear Algebra and its Properties  
 
In this section we just recall the definition of linear algebra and 
enumerate some of its basic properties. We expect the reader to 
be well versed with the concepts of groups, rings, fields and 
matrices. For these concepts will not be recalled in this section.  
 
Throughout this section, V will denote the vector space over F 
where F is any field of characteristic zero. 
 
DEFINITION 1.1.1: A vector space or a linear space consists of 
the following: 
 
i. a field F of scalars. 

ii. a set V of objects called vectors. 
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iii. a rule (or operation) called vector addition; which 
associates with each pair of vectors α, β ∈ V; α + β in V, 
called the sum of α and β in such a way that 

 
a. addition is commutative α + β = β + α. 
 
b. addition is associative α + (β + γ) = (α + β) + γ. 
 
c. there is a unique vector 0 in V, called the zero 

vector, such that  
α + 0 = α 

 for all α in V. 
 
d. for each vector α in V there is a unique vector – α 

in V such that  
α + (–α) = 0. 

 
e. a rule (or operation), called scalar multiplication, 

which associates with each scalar c in F and a 
vector α in V, a vector c  α in V, called the 
product of c and α, in such a way that  

 
1. 1  α = α for every α in V.  
2.  (c1  c2)  α = c1  (c2  α ). 
3. c  (α + β) = c  α + c  β. 
4. (c1 + c2)  α = c1  α + c2  α . 

 
for α, β ∈ V and c, c1 ∈ F.  

 
It is important to note as the definition states that a vector space 
is a composite object consisting of a field, a set of ‘vectors’ and 
two operations with certain special properties. The same set of 
vectors may be part of a number of distinct vectors. 

We simply by default of notation just say V a vector space 
over the field F and call elements of V as vectors only as matter 
of convenience for the vectors in V may not bear much 
resemblance to any pre-assigned concept of vector, which the 
reader has. 
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Example 1.1.1: Let R be the field of reals. R[x] the ring of 
polynomials. R[x] is a vector space over R. R[x] is also a vector 
space over the field of rationals Q. 
 
Example 1.1.2: Let Q[x] be the ring of polynomials over the 
rational field Q. Q[x] is a vector space over Q, but Q[x] is 
clearly not a vector space over the field of reals R or the 
complex field C. 
 
Example 1.1.3: Consider the set V = R × R × R. V is a vector 
space over R. V is also a vector space over Q but V is not a 
vector space over C. 
 
Example 1.1.4: Let Mm × n = {(aij) ⏐ aij ∈ Q} be the collection of 
all m × n matrices with entries from Q. Mm × n is a vector space 
over Q but Mm × n is not a vector space over R or C. 
 
Example 1.1.5: Let  
 

P3 × 3 = 
11 12 13

21 22 23 ij

31 32 33

a a a
a a a a Q,1 i 3, 1 j 3
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

. 

 
P3 × 3 is a vector space over Q. 
 
Example 1.1.6: Let Q be the field of rationals and G any group. 
The group ring, QG is a vector space over Q. 
 
Remark: All group rings KG of any group G over any field K 
are vector spaces over the field K. 
 
We just recall the notions of linear combination of vectors in a 
vector space V over a field F. A vector β in V is said to be a 
linear combination of vectors ν1,…,νn in V provided there exists 
scalars c1 ,…, cn in F such that  
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β = c1ν1 +…+ cnνn = ∑
=

ν
n

1i
iic . 

 
Now we proceed on to recall the definition of subspace of a 
vector space and illustrate it with examples. 
 
DEFINITION 1.1.2: Let V be a vector space over the field F. A 
subspace of V is a subset W of V which is itself a vector space 
over F with the operations of vector addition and scalar 
multiplication on V. 
 
We have the following nice characterization theorem for 
subspaces; the proof of which is left as an exercise for the 
reader to prove. 
 
THEOREM 1.1.1: A non-empty subset W of a vector V over the 
field F; V is a subspace of V if and only if for each pair α, β in 
W and each scalar c in F the vector cα + β is again in W. 
 
Example 1.1.7: Let Mn × n = {(aij) ⏐aij ∈ Q} be the vector space 
over Q. Let Dn × n = {(aii) ⏐aii ∈ Q} be the set of all diagonal 
matrices with entries from Q. Dn × n is a subspace of Mn × n. 
 
Example 1.1.8: Let V = Q × Q × Q be a vector space over Q. P 
= Q × {0} × Q is a subspace of V. 
 
Example 1.1.9: Let V = R[x] be a polynomial ring, R[x] is a 
vector space over Q. Take W = Q[x] ⊂ R[x]; W is a subspace of 
R[x].  
 
It is well known results in algebraic structures. The analogous 
result for vector spaces is: 
 
THEOREM 1.1.2: Let V be a vector space over a field F. The 
intersection of any collection of subspaces of V is a subspace of 
V. 
 
Proof: This is left as an exercise for the reader. 
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DEFINITION 1.1.3: Let P be a set of vectors of a vector space V 
over the field F. The subspace spanned by W is defined to be the 
intersection of W of all subspaces of V which contains P, when 
P is a finite set of vectors, P = {α1, …, αm } we shall simply call 
W the subspace spanned by the vectors α1, α2,…, αm . 
 
THEOREM 1.1.3: The subspace spanned by a non-empty subset 
P of a vector space V is the set of all linear combinations of 
vectors in P. 
 
Proof: Direct by the very definition. 
 
DEFINITION 1.1.4: Let P1, … , Pk be subsets of a vector space 
V, the set of all sums α1 + …+ αk of vectors αi ∈ Pi is called the 
sum of subsets of P1, P2,…, Pk and is denoted by P1 + …+ Pk or 

by 
k

i
i 1

P
=
∑ . 

 
If U1, U2, …, Uk are subspaces of V, then the sum 

 
U = U1 + U2 + …+ Uk 

 
is easily seen to be a subspace of V which contains each of the 
subspaces Ui. 
 
Now we proceed on to recall the definition of basis and 
dimension.  
 
Let V be a vector space over F. A subset P of V is said to be 
linearly dependent (or simply dependent) if there exists distinct 
vectors, α1, …, αt in P and scalars c1, …, ck in F not all of which 
are 0 such that c1α1 + c2 α2 + …+ ckαk = 0. 
 A set which is not linearly dependent is called independent. 
If the set P contains only finitely many vectors α1, …, αk we 
sometimes say that α1, …, αk are dependent (or independent) 
instead of saying P is dependent or independent. 
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i. A subset of a linearly independent set is linearly 
independent. 

ii. Any set which contains a linearly dependent set is 
linearly dependent. 

iii. Any set which contains the 0 vector is linear by 
dependent for 1.0 = 0. 

iv. A set P of vectors is linearly independent if and only 
if each finite subset of P is linearly independent i.e. 
if and only if for any distinct vectors α1, …,   α k of 
P, c1α1 + …+ ck α k = 0 implies each ci = 0. 

 
For a vector space V over the field F, the basis for V is a 
linearly independent set of vectors in V, which spans the space 
V. The space V is finite dimensional if it has a finite basis.  
 
We will only state several of the theorems without proofs as 
results and the reader is expected to supply the proof. 
 
Result 1.1.1: Let V be a vector space over F which is spanned 
by a finite set of vectors β1, …, βt . Then any independent set of 
vectors in V is finite and contains no more than t vectors. 
 
Result 1.1.2: If V is a finite dimensional vector space then any 
two bases of V have the same number of elements. 
 
Result 1.1.3: Let V be a finite dimensional vector space and let 
n = dim V. Then  
 

i. any subset of V which contains more than n vectors 
is linearly dependent. 

ii. no subset of V which contains less than n vectors 
can span V. 

 
Result 1.1.4: If W is a subspace of a finite dimensional vector 
space V, every linearly independent subset of W is finite, and is 
part of a (finite) basis for W.  
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Result 1.1.5: If W is a proper subspace of a finite dimensional 
vector space V, then W is finite dimensional and dim W < dim 
V. 
 
Result 1.1.6: In a finite dimensional vector space V every non-
empty linearly independent set of vectors is part of a basis. 
 
Result 1.1.7: Let A be a n × n matrix over a field F and suppose 
that row vectors of A form a linearly independent set of vectors; 
then A is invertible. 
 
Result 1.1.8: If W1 and W2 are finite dimensional subspaces of 
a vector space V then W1 + W2 is finite dimensional and dim 
W1 + dim W2 = dim (W1 ∩ W2) + dim (W1 + W2). We say α1, 
…, αt are linearly dependent if there exists scalars c1, c2,…, ct 
not all zero such that c1 α1 + … + ct αt = 0. 
 
Example 1.1.10: Let V = M2 × 2 = {(aij) ⏐aij ∈ Q} be a vector 
space over Q. A basis of V is  

 
0 1 0 0 1 0 0 0

, , ,
0 0 1 0 0 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

. 

 
Example 1.1.11: Let V = R × R × R be a vector space over R. 
Then {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis of V.  
 
If V = R × R × R is a vector space over Q, V is not finite 
dimensional. 
 
Example 1.1.12: Let V = R[x] be a vector space over R. V = 
R[x] is an infinite dimensional vector spaces. A basis of V is {1, 
x, x2, … , xn, …}. 
 
Example 1.1.13: Let P3 × 2 = {(aij) ⏐aij ∈ R} be a vector space 
over R. A basis for P3 ×2 is  
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1 0 0 1 0 0 0 0 0 0 0 0
0 0 , 0 0 , 1 0 , 0 1 , 0 0 , 0 0
0 0 0 0 0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

. 

 
Now we just proceed on to recall the definition of linear 
algebra. 
 
DEFINITION 1.1.5: Let F be a field. A linear algebra over the 
field F is a vector space A over F with an additional operation 
called multiplication of vectors which associates with each pair 
of vectors α , β in A a vector αβ  in A called the product of α 
and β in such a way that  
 

i. multiplication is associative α (βγ) = (αβ) γ. 
ii. multiplication is distributive with respect to 

addition  
     

α (β + γ) = α β + α γ 
(α + β) γ = α γ + β γ. 

 
iii. for each scalar c in F, c (α β) = (cα ) β = α (c β). 

 
If there is an element 1 in A such that 1 α = α 1 = α for each α 
in A we call α a linear algebra with identity over F and call 1 
the identity of A. The algebra A is called commutative if α β = 
βα for all α and β in A. 
 
Example 1.1.14: F[x] be a polynomial ring with coefficients 
from F. F[x] is a commutative linear algebra over F. 
 
Example 1.1.15: Let M5 × 5 = {(aij) ⏐aij ∈ Q}; M5 × 5 is a linear 
algebra over Q which is not a commutative linear algebra. 
 
All vector spaces are not linear algebras for we have got the 
following example. 
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Example 1.1.16: Let P5 × 7 = {(aij) ⏐aij ∈ R}; P5 × 7 is a vector 
space over R but P5 × 7 is not a linear algebra. 
 
It is worthwhile to mention that by the very definition of linear 
algebra all linear algebras are vector spaces and not conversely. 
 
 
1.2 Basic Properties of Linear Bialgebra 
 
In this section we for the first time introduce the notion of linear 
bialgebra, prove several interesting results and illustrate them 
also with example.  
 
DEFINITION 1.2.1: Let V = V1 ∪ V2 be a bigroup. If V1 and V2 
are linear algebras over the same field F then we say V is a 
linear bialgebra over the field F.  

 
If both V1 and V2 are of infinite dimension vector spaces 

over F then we say V is an infinite dimensional linear bialgebra 
over F. Even if one of V1 or V2 is infinite dimension then we say 
V is an infinite dimensional linear bialgebra. If both V1 and V2 
are finite dimensional linear algebra over F then we say V = V1 
∪ V2 is a finite dimensional linear bialgebra. 
 
Examples 1.2.1: Let V = V1 ∪ V2 where V1 = {set of all n × n 
matrices with entries from Q} and V2 be the polynomial ring Q 
[x]. V = V1 ∪ V2 is a linear bialgebra over Q and the linear 
bialgebra is an infinite dimensional linear bialgebra. 
 
Example 1.2.2: Let V = V1 ∪ V2 where V1 = Q × Q × Q abelian 
group under ‘+’, V2 = {set of all 3 × 3 matrices with entries 
from Q} then V = V1 ∪ V2 is a bigroup. Clearly V is a linear 
bialgebra over Q. Further dimension of V is 12 V is a 12 
dimensional linear bialgebra over Q. 
 
The standard basis is {(0 1 0), (1 0 0), (0 0 1)} ∪  
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1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 , 0 0 0 , 0 0 0 , 1 0 0 , 0 1 0 ,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 , 0 0 0 , 0 0 0 , 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪
⎨ ⎬
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎪

 

 
Example 1.2.3: Let V = V1 ∪ V2 where V1 is a collection of all 
8 × 8 matrices over Q and V2 = {the collection of all 3 × 2 
matrices over Q}. Clearly V is a bivector space of dimension 70 
and is not a linear bialgebra.  

 
From this example it is evident that there exists bivector 

spaces which are not linear bialgebras.  
Now if in a bivector space V = V1 ∪ V2 one of V1 or V2 is a 

linear algebra then we call V as a semi linear bialgebra. So the 
vector space given in example 1.2.3 is a semi linear bialgebra.  

 
We have the following interesting theorem. 

 
THEOREM 1.2.1: Every linear bialgebra is a semi linear 
bialgebra. But a semi linear bialgebra in general need not be a 
linear bialgebra. 
 
Proof: The fact that every linear bialgebra is a semi linear 
bialgebra is clear from the definition of linear bialgebra and 
semi linear bialgebra. 
 
To prove that a semi linear bialgebra need not in general be a 
linear bialgebra. We consider an example. Let V = V1 ∪ V2 
where V1 = Q × Q and V2 the collection of all 3 × 2 matrices 
with entries from Q clearly V = Q × Q is a linear algebra of 
dimension 2 over Q and V2 is not a linear algebra but only a 
vector space of dimension 6, as in V2 we cannot define matrix 
multiplication. Thus V = V1 ∪ V2 is not a linear bialgebra but 
only a semi linear bialgebra.  

 



 17

Now we have another interesting result. 
 
THEOREM 1.2.2: Every semi linear bialgebra over Q is a 
bivector space over Q but a bivector space in general is not a 
semi linear bialgebra. 
 
Proof: Every semi linear bialgebra over Q is clearly by the very 
definition a bivector space over Q. But to show a bivector space 
over Q in general is not a semi linear bialgebra we give an 
example. Let V = V1 ∪ V2 where V1 = {the set of all 2 × 5 
matrices with entries from Q} and V2 = {all polynomials of 
degree less than or equal to 5 with entries from Q}. Clearly both 
V1 and V2 are only vector spaces over Q and none of them are 
linear algebra. Hence V = V1 ∪ V2 is only a bivector space and 
not a semi linear bialgebra over Q.  

Hence the claim.  
 
Now we define some more types of linear bialgebra. Let V 

= V1 ∪ V2 be a bigroup. Suppose V1 is a vector space over Q 

( )2  and V2 is a vector space over Q ( )3  (Q ( )2  and Q 

( )3  are fields).  

Then V is said to be a strong bivector space over the bifield 
Q ( )3  ∪ Q ( )2 . Similarly if V = V1 ∪ V2 be a bigroup and 

if V is a linear algebra over F and V2 is a linear algebra over K, 
K ≠ F K ∩ F ≠ F or K. i.e. if K ∪ F is a bifield then we say V is 
a strong linear bialgebra over the bifield.  

 
Thus now we systematically give the definitions of strong 

bivector space and strong linear bialgebra. 
 
DEFINITION 1.2.2: Let V = V1 ∪ V2 be a bigroup. F = F1 ∪ F2 
be a bifield. If V1 is a vector space over F1 and V2 is a vector 
space over F2 then V = V1 ∪ V2 is called the strong bivector 
space over the bifield F = F1 ∪ F2. If V = V1 ∪ V2 is a bigroup 
and if F = F1 ∪ F2 is a bifield. If V1 is a linear algebra over F1 
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and V2 is a linear algebra over F2. Then we say V = V1 ∪ V2 is a 
strong linear bialgebra over the field F = F1 ∪ F2. 
 
Example 1.2.4: Consider the bigroup V = V1 ∪ V2 where  V1 = 
Q ( )2  × Q ( )2  and V2 = {set of all 3 × 3 matrices with 

entries from Q ( )3 }.  

Let F = Q ( )2  ∪ Q ( )3 , Clearly F is a bifield. V1 is a 

linear algebra over Q ( )2  and V2 is a linear algebra over 

Q ( )3 . So V = V1 ∪ V2 is a strong linear bialgebra over the 

bifield F = Q ( )2  ∪ Q ( )3 . 

 
It is interesting to note that we do have the notion of weak 

linear bialgebra and weak bivector space. 
 

Example 1.2.5: Let V = V1 ∪ V2 where V1 = Q × Q × Q × Q be 
the group under ‘+’ and V2 = The set of all polynomials over the 
field Q ( )2 . Now V1 is a linear algebra over Q and V2 is a 

linear algebra over Q ( )2 . Clearly Q ∪ Q ( )2  is a not a 

bifield as Q ⊆ Q ( )2 . Thus V = V1 ∪ V2 is a linear bialgebra 

over Q we call V = V1 ∪ V2 to be a weak linear bialgebra over 
Q ∪ Q ( )2 . For Q × Q × Q × Q = V1 is not a linear algebra 

over Q ( )2 . It is a linear algebra only over Q.  

 
Based on this now we give the definition of weak linear 
bialgebra over F = F1 ∪ F2. where F1 and F2 are fields and F1 ∪ 
F2 is not a bifield. 
 
DEFINITION 1.2.3: Let V = V1 ∪ V2 be a bigroup. Let F = F1 ∪ 
F2. Clearly F is not a bifield (For F1 2 2 1)F or F F

≠ ≠
⊂ ⊂  but F1 
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and F2 are fields. If V1 is a linear algebra over F1 and V2 is a 
linear algebra over F2, then we call V1 ∪ V2 a weak linear 
bialgebra over F1 ∪ F2. One of V1 or V2 is not a linear algebra 
over F2 or F1 respectively. 
 
On similar lines we can define weak bivector space. 
 
Example 1.2.6: Let V = V1 ∪ V2 be a bigroup. Let F = Q ∪ Q 

( )2, 3 be a union of two fields, for Q ⊂ Q ( )2, 3 so Q ∪ 

Q ( )2, 3  = Q ( )2, 3  so is a field. This cannot be always 

claimed, for instance if F = Q ( )2  ∪ Q ( )3  is not a field 

only a bifield. Let V1 = Q × Q × Q and V2 = Q ( )2, 3  [x]. V1 

is a vector space, in fact a linear algebra over Q but V1 is not a 
vector space over the field Q ( )2, 3 . V2 is a vector space or 

linear algebra over Q or Q ( )2, 3 . Since Q ⊂ Q ( )2, 3 , 

we see V is a weak bivector space over Q ∪ Q ( )2, 3  infact 

V is a weak linear bialgebra over Q ∪ Q ( )2, 3 . 

 
Example 1.2.7: Let V = V1 ∪ V2 be a bigroup. Let  
F = Q ( )2, 3  ∪ Q ( )5, 7, 11  be a bifield. Suppose  

V1 = Q ( )2, 3  [ x ] be a linear algebra over Q ( )2, 3  and 

V2 = Q ( )5, 7, 11  × Q ( )5, 7, 11  be a linear algebra 

over Q ( )5, 7, 11 . Clearly V = V1 ∪ V2 is a strong linear 

bialgebra over the bifield Q ( )2, 3  ∪ Q ( )5, 7, 11 . 

 
Now we have the following results. 
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THEOREM 1.2.3: Let V = V1 ∪ V2 be a bigroup and V be a 
strong linear bialgebra over the bifield F = F1 ∪ F2. V is not a 
linear bialgebra over F. 
 
Proof: Now we analyze the definition of strong linear bialgebra 
and the linear bialgebra. Clearly the strong linear bialgebra has 
no relation with the linear bialgebra or a linear bialgebra has no 
relation with strong linear bialgebra for linear bialgebra is 
defined over a field where as the strong linear bialgebra is 
defined over a bifield, hence no relation can ever be derived. In 
the similar means one cannot derive any form of relation 
between the weak linear bialgebra and linear bialgebra.  

 
All the three notions, weak linear bialgebra, linear bialgebra 

and strong linear bialgebra for a weak linear bialgebra is defined 
over union of fields F = F1 ∪ F2 where F1 ⊂ F2 or F2 ⊂ F1; F1 
and F2 are fields; linear bialgebras are defined over the same 
field where as the strong linear bialgebras are defined over 
bifields. Thus these three concepts are not fully related. 

 
It is important to mention here that analogous to weak linear 

bialgebra we can define weak bivector space and analogous to 
strong linear bialgebra we have the notion of strong bivector 
spaces. 
 
Example 1.2.8: Let V = V1 ∪ V2 where V1 = {set of all linear 
transformation of a n dimensional vector space over Q to a m 
dimensional vector space W over Q} and V2 = {All polynomials 
of degree ≤ 6 with coefficients from R}. 

Clearly V = V1 ∪ V2 is a bigroup. V is a weak bivector 
space over Q ∪ R. 
 
Example 1.2.9: Let V = V1 ∪ V2 be a bigroup. V1 = {set of all 
polynomials of degree less than or equal to 7 over Q ( )2 } and 

V2 = {set of all 5 × 2 matrices with entries from Q ( )3, 7 }. V 

= V1 ∪ V2 is a strong bivector space over the bifield F = Q ( )2  
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∪ Q ( )3, 7 . Clearly V = V1 ∪ V2 is not a strong linear 

bialgebra over F. 
 
Now we proceed on to define linear subbialgebra and 

subbivector space. 
 
DEFINITION 1.2.4: Let V = V1 ∪ V2 be a bigroup. Suppose V is 
a linear bialgebra over F. A non empty proper subset W of V is 
said to be a linear subbialgebra of V over F if  
 

1. W = W1 ∪ W2 is a subbigroup of V = V1 ∪ V2. 
2. W1 is a linear subalgebra over F. 
3. W2 is a linear subalgebra over F. 

 
Example 1.2.10: Let V = V1 ∪ V2 where V1 = Q× Q× Q× Q and 
V2 ={set of all 4 × 4 matrices with entries from Q}. V = V1∪V2 
is a bigroup under ‘+’ V is a linear bialgebra over Q.  

 
Now consider W = W1 ∪ W2 where W1 = Q × {0} × Q × 

{0} and W2 = {collection of all upper triangular matrices with 
entries from Q}. W = W1 ∪ W2 is a subbigroup of V = V1 ∪ V2. 
Clearly W is a linear subbialgebra of V over Q. 
 
DEFINITION 1.2.5: Let V = V1 ∪ V2 be a bigroup. F = F1 ∪ F2 
be a bifield. Let V be a strong linear bialgebra over F. A non 
empty subset W = W1 ∪ W2 is said to be a strong linear 
subbialgebra of V over F if  
 

1. W = W1 ∪ W2 is a subbigroup of V = V1 ∪ V2. 
2. W1 is a linear algebra over F1 and  
3. W2 is a linear algebra over F2. 

 
Example 1.2.11: Let V = V1 ∪ V2 where V1 = {Set of all 2 × 2 
matrices with entries from Q ( )2 } be a group under matrix 

addition and V2 = {collection of all polynomials in the variable 
x over Q ( )5, 3 }. V2 under polynomial addition is a group. 
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Thus V = V1 ∪ V2 is a strong linear bialgebra over the bifield F 
= Q ( )2  ∪ Q ( )3, 5 .  

Consider W = W1 ∪ W2 where  
 

W1 = ( )0 0
2

0
a Q

a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

 
and W2 = {all polynomials of even degree i.e. p (x) = 

n
2i

i
i 1

p x n Q( 3, 5)
=

∈∑ . Clearly, W = W1 ∪ W2 is a subbigroup 

of V = V1 ∪ V2. Clearly W is a strong linear subbialgebra of V 
over the bifield F = Q ( )2  ∪ Q ( )5, 3 . 

 
DEFINITION 1.2.6: Let V = V1 ∪ V2 be a bigroup. Let V be a 
weak linear bialgebra over the union of fields F1 ∪ F2 (i.e. F1 is 
a subfield of F2 or F2 is a subfield of F1) where V1 is a linear 
algebra over F1 and V2 is a linear algebra over F2. A non empty 
subset W = W1 ∪ W2 is a weak linear sub bialgebra of V over F1 
∪ F2 if  
 

1. W is a subbigroup of V. 
2. W1 is a linear subalgebra of V1. 
3. W2 is a linear subalgebra of V2 . 

 
Example 1.2.12: Let V = V1 ∪ V2 be a bigroup. Let F = Q ∪ Q 

( )3, 7  be the union of fields. V1 be a linear algebra over Q 

and V2 be a linear algebra over Q ( )3, 7 ; where V1 = {all 

polynomials in the variable x with coefficient from Q} and V2 = 
{3 × 3 matrices with entries from Q ( )2, 3 }. V = V1 ∪ V2 is 

a weak linear bialgebra over Q ∪ Q ( )3, 7 . Consider W = 

W1 ∪ W2, W1 = {all polynomial of only even degree in the 
variable x with coefficients from Q} and  
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W2 = ( )
a b 0
e d 0 a,b,c,d Q 3 , 7
0 0 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

. 

 
Clearly W = W1 ∪ W2 is a subbigroup of V = V1 ∪ V2. Further 
W = W1 ∪ W2 is a weak linear subbialgebra of V over F = Q ∪ 
Q ( )2, 3 .  

 
It is very interesting to note that at times a weak linear 

bialgebra can have a subbigroup which happens to be just a 
linear subbialgebra over F1 (if F1 ⊂ F2 i.e., F1 is a subfield of F2) 
and not a weak linear subbialgebra.  

 
We define such structures as special weak linear bialgebra. 

 
DEFINITION 1.2.7: Let V = V1 ∪ V2 be a bigroup. F = F1 ∪ F2 
(where either F1 is a subfield of F2 or F2 is a subfield of F1) be 
union of fields and V is a weak linear bialgebra over F. Suppose 
W = W1 ∪ W2 is a subbigroup of V = V1 ∪ V2 and if W is a 
linear bialgebra only over F1 (or F2) (which ever is the subfield 
of the other). Then we call V = V1 ∪ V2 a special weak linear 
bialgebra. 
 
Example 1.2.13: Let V = V1 ∪ V2 be a bigroup where V1 = Q × 
Q × Q and V2 = {2 × 2 matrices with entries from Q ( )2 }. V = 

V1 ∪ V2 is a weak linear bialgebra over Q ∪ Q ( )2 .  

Consider W = W1 ∪ W2 where W1 = Q × {0} × Q and W2 = 
{set of all 2 × 2 matrices over Q}. Then W = W1 ∪ W2 is a 
linear bialgebra over Q. Clearly W2 is note linear algebra over 
Q ( )2 . We call V = V1 ∪ V2 a special weak linear algebra 

over Q ∪ Q ( )2 . 
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DEFINITION 1.2.8: Let V = V1 ∪ V2 be a bigroup, F = F1 ∪ F2 
be a union fields (i.e., F1 = F or F2 = F), V be the weak linear 
bialgebra over F. We say V is a strong special weak linear 
bialgebra if V has a proper subset W such that W = W1 ∪ W2 is 
a subbigroup of V and there exists subfields of F1 and F2 say K1 
and K2 respectively such that K = K1 ∪ K2 is a bifield and W is 
a strong linear bialgebra over K. 
 
Note: Every weak linear bialgebra need not in general be a 
strong special weak linear bialgebra. We illustrate both by 
examples. 
 
Example 1.2.14: Let V = V1 ∪ V2 where V1 = Q × Q and V2 = 
{Collection of all 5 × 5 matrices with entries from Q ( )2 }.V is 

a weak linear bialgebra over F= Q ∪ Q ( )2 .  Clearly V is 

never a strong special weak linear bialgebra. 
Thus all weak linear bialgebras need not in general be a 

strong special weak linear bialgebras. 
Thus all weak linear bialgebras need not in general be a 

strong special weak linear bialgebras. We will prove a theorem 
to this effect. 
 
Example 1.2.15: Let V = V1 ∪ V2 be a bigroup. V1 = 
Q ( )2, 3  [x] be the polynomial ring over Q ( )2, 3  = F1. 

Clearly V1 is a abelian group under addition. Let 
Q ( )2, 3, 7, 11  = F2 be the field. Let V2 = {the set of all 3 

× 3 matrices with entries from F2}. V2 is an abelian group under 
matrix addition. V = V1 ∪ V2 is a weak linear bialgebra over F1 
∪ F2. 

Now consider the subbigroup, W = W1 ∪ W2 where W1 = 
{Set of all polynomials in x with coefficients from the field 
Q ( )2 } and W2 = {set of all 3 × 3 matrices with entries from 

Q ( )3, 7 }. F = Q ( )2  ∪ Q ( )3, 7  is a bifield and the 

subbigroup W = W1 ∪ W2 is a strong linear bialgebra over the 
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bifield F = Q ( )2  ∪ Q ( )3, 7 . Thus V has a subset W such 

that W is a strong linear bialgebra so V is a strong special weak 
linear bialgebra.  

 
Now we give condition for a weak linear bialgebra to be 

strong special weak linear bialgebra. 
 
THEOREM 1.2.4: Let V = V1 ∪ V2 be a bigroup which has a 
proper subbigroup. Suppose V is a weak linear bialgebra over 
F = F1 ∪ F2. V is not a strong special weak linear bialgebra if 
and only if one of F1 or F2 is a prime field. 
 
Proof: Let V = V1 ∪ V2 be a bigroup and V be a weak linear 
bialgebra over the field F = F1 ∪ F2. Suppose we assume F1 is a 
prime field then clearly F2 has F1 to be its subfield. So F = F1 ∪ 
F2 has no subset say K = K1 ∪ K2 such that K is a bifield. Since 
F has no subset K = K1 ∪ K2 such that K is a bifield, we see for 
no subbigroup W can be a strong linear bialgebra. 

 
Conversely if F = F1 ∪ F2 and if one of F1 or F2 is a prime 

field then there does not exist K ⊂ F, K = K1 ∪ K2 such that K 
is a bifield, then V cannot have a subbigroup which is a strong 
linear bialgebra. 

 
Now we give the conditions for the weak linear bialgebra to 

be a strong special weak linear bialgebra. 
 

1. V = V1 ∪ V2 should have proper subbigroups. 
2. In F = F1 ∪ F2 (F = F1 or F = F2) the subfield must not 

be a prime field and the extension field must contain 
some other non prime subfield other than the already 
mentioned subfield i.e. V should have subset which is a 
bifield. 

3. V should have a subbigroup which is a strong linear 
bialgebra over the bifield. 
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THEOREM 1.2.5: Let V = V1 ∪ V2 be a bigroup. F = F1 ∪ F2 be 
the union of field. V be a weak linear bialgebra over F. If V has 
no proper subbigroup then  
 

1. V is not a strong special weak linear bialgebra over F. 
2. V is not a special weak linear bialgebra.  

 
The proof of the above theorem is left as an exercise for the 
reader. 
 
 
1.3 Fuzzy Vector Spaces  
 
In this section we recall the definition and properties of fuzzy 
vector spaces. The study of fuzzy vector spaces started as early 
as 1977. For more refer [55]. 
 

 Throughout this section V denotes a vector space over a field F. 
A fuzzy subset of a non-empty set S is a function from S into [0, 
1]. Let A denote a fuzzy subspace of V over a fuzzy subfield K 
of F and let X denote a fuzzy subset of V such that X ⊆ A. Let 
〈X〉 denote the intersection of all fuzzy subspaces of V over K 
that contain X and are contained in A. 
 
DEFINITION 1.3.1:  

 
1. A fuzzy subset K of F is a fuzzy subfield of F, if K (1) = 

1 and for all c, d ∈ F, K (c – d) ≥ min {K(c), K (d)} and 
K(cd –1) ≥ min { K( c), K (d)} where d ≠ 0. 

 
2. A fuzzy subset A of V is a fuzzy subspace over a fuzzy 

subfield K of F, if A(0) > 0 and for all x, y ∈ V and for 
all c ∈ F, A (x – y) ≥ min {A(x), A(y)} and A(cx) ≥ min 
{K(c ) , A(x)}. If K is a fuzzy subfield of F and if x ∈ F, x 
≠ 0, then K(0) = K(1) ≥ K(x) = K(–x) = K(+ x–1). 

 
In the following we let L denote the set of all fuzzy subfields of 
F and let AL denote the set of all fuzzy subspaces of V over K ∈ 
L. 
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If A and B are fuzzy subsets of V then A ⊂ B means A(x) ≤ 
B(x) for all x ∈ A. For    0 ≤ t ≤ 1, let At = {x ∈ V | A(x) ≥ t}. 
 
Now we proceed onto recall the concept of fuzzy spanning. 
 
DEFINITION 1.3.2: Let A1 , A2 , …, An be fuzzy subsets of V and 
let K be a fuzzy subset of F. 
 

1. Define the fuzzy subset A1  + … + An  on V by the 
following: for all x ∈ V, (A1 +…+ An )(x) = sup {min 
{A1 (x1 ), …, An (xn )} ⏐x = x1 +…+ xn , xi ∈ V}.  

2. Define the fuzzy subset K o A of V by for all x ∈ V, (K o 
A)(x) = sup{min{K(c), A(y)} | c ∈ F, y ∈ V, x = cy}. 

 
DEFINITION 1.3.3: Let S be a set x ∈ S and 0 ≤ λ ≤ 1. Define the 
fuzzy subset xλ of S by xλ (y) = λ if y = x and xλ (y) = 0 if y ≠ x. 
xλ is called a fuzzy singleton. 
 
DEFINITION 1.3.4: A fuzzy vector space (V, η) or ηV is an 
ordinary vector space V with a map η : V → [0, 1] satisfying 
the following conditions. 
 

1. η (a + b) ≥ min {η (a), η (b)}. 
2. η (– a) = η(a). 
3. η (0) = 1. 
4. η (ra) ≥ η(a) for all a, b ∈ V and r ∈ F where F is a 

field. 
 
DEFINITION 1.3.5: For an arbitrary fuzzy vector space ηV and 
its vector subspace ηW, the fuzzy vector space (V/W, η̂ ) or ηVW 
determined by 
 

η̂  (υ + W) = 
1

( )sup
∈

∈⎧⎪
⎨ +
⎪⎩ W

if W
otherwise

ω

υ
η υ ω  

 
is called the fuzzy quotient vector space, ηV by ηW. 
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DEFINITION 1.3.6: For an arbitrary fuzzy vector space ηV and 
its fuzzy vector subspace ηW, the fuzzy quotient space of ηV by 
ηW is determined by 
 

1
( ) ( )inf

∈

∈⎧⎪+ = ⎨ + ∉⎪⎩ W

W
W W

ω

υ
η ν η υ ω υ  

It is denoted by 
w

vη . 
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Chapter Two 
 
 
 
 
 

SET VECTOR SPACES  
 
 
 
 
 
 
In this chapter for the first time we introduce the new concept of 
set vector spaces and set linear algebra. This new notion would 
help even non-mathematicians to use the tools of set vector 
spaces and set linear algebra over sets in fields like computer 
science, cryptology and sociology. Since the abstract algebraic 
concepts of abelian groups, fields and vector spaces are not 
easily understood by non-mathematicians more so by technical 
experts, engineers and social scientists we in this book try to 
introduce the notion of set vector spaces and set linear algebra 
over sets. 
 This chapter has five sections. In section one we introduce 
the new notion of set vector space over a set and illustrate it 
with examples. In section two set linear transformation of set 
vector spaces is introduced. Section three introduces the notion 
of set linear algebra.  

In the fourth section the new notion of semigroup vector 
spaces are defined and a few of its important properties 
analyzed. The final section for the first time introduces the 
notion of group vector spaces.  
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2.1 Set Vector Spaces and their Properties 
 
In this section we introduce for the first time the notion of set 
vector spaces over sets and illustrate them with examples and 
give some interesting properties about them. 
 
DEFINITION 2.1.1: Let S be a set. V another set. We say V is a 
set vector space over the set S if for all v ∈ V and for all s ∈ S; 
vs and sv ∈ V. 
 
Example 2.1.1: Let V = {1, 2, ..., ∞} be the set of positive 
integers. S = {2, 4, 6, ..., ∞} the set of positive even integers. V 
is a set vector space over S. This is clear for sv = vs ∈ V for all 
s ∈ S and v ∈ V. 
 
It is interesting to note that any two sets in general may not be a 
set vector space over the other. Further even if V is a set vector 
space over S then S in general need not be a set vector space 
over V. 

For from the above example 2.1.1 we see V is a set vector 
space over S but S is also a set vector space over V for we see 
for every s ∈ S and v ∈ V, v.s = s.v ∈ S. Hence the above 
example is both important and interesting as one set V is a set 
vector space another set S and vice versa also hold good inspite 
of the fact S ≠ V. 
 
Now we illustrate the situation when the set V is a set vector 
space over the set S. We see V is a set vector space over the set 
S and S is not a set vector space over V. 
 
Example 2.1.2: Let V = {Q+ the set of all positive rationals} 
and S = {2, 4, 6, 8, …, ∞}, the set of all even integers. It is 
easily verified that V is a set vector space over S but S is not a 

set vector space over V, for 7
3

 ∈ V and 2 ∈ S but 7 .2
3

∉ S. 

Hence the claim.  
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Now we give some more examples so that the reader becomes 
familiar with these concepts. 
 

Example 2.1.3: Let 2 2

a b
M

c d×

⎧ ⎛ ⎞⎪ =⎨ ⎜ ⎟
⎝ ⎠⎪⎩

 a, b, c, d ∈ {set of all 

positive integers together with zero} be the set of 2 × 2 matrices 
with entries from N. Take S = {0, 2, 4, 6, 8, …, ∞}. Clearly 
M2x2 is a set vector space over the set S. 
 
Example 2.1.4: Let V = {Z+ × Z+ × Z+} such that Z+ = {set of 
positive integers}. S = {2, 4, 6, …, ∞}. Clearly V is a set vector 
space over S. 
 
Example 2.1.5: Let V = {Z+ × Z+ × Z+} such that Z+ is the set of 
positive integers. S = {3, 6, 9, 12, …, ∞}. V is a set vector space 
over S. 
 
Example 2.1.6: Let Z+ be the set of positive integers. pZ+ = S, p 
any prime. Z+ is a set vector space over S. 
 
Note: Even if p is replaced by any positive integer n still Z+ is a 
set vector space over nZ+. Further nZ+ is also a set vector space 
over Z+. This is a collection of special set vector spaces over the 
set. 
 
Example 2.1.7: Let Q[x] be the set of all polynomials with 
coefficients from Q, the field of rationals. Let S = {0, 2, 4, …, 
∞}. Q[x] is a set vector space over S. Further S is not a set 
vector space over Q[x].  
 
Thus we see all set vector spaces V over the set S need be such 
that S is a set vector space over V. 
 
Example 2.1.8: Let R be the set of reals. R is a set vector space 
over the set S where S = {0, 1, 2, …, ∞}. Clearly S is not a set 
vector space over R. 
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Example 2.1.9:  be the collection of all complex numbers. Let 

Z+ ∪{0} = {0, 1, 2, …, ∞} = S.  is a set vector space over S 

but S is not a set vector space over .  
 
At this point we propose a problem. 

Characterize all set vector spaces V over the set S which are 
such that S is a set vector space over the set V. 

 
Clearly Z+ ∪{0} = V is a set vector space over S = p Z+ ∪{0}, p 
any positive integer; need not necessarily be prime. Further S is 
also a set vector space over V. 

 
Example 2.1.10: Let V = Z12 = {0, 1, 2, …, 11} be the set of 
integers modulo 12. Take S = {0, 2, 4, 6, 8, 10}. V is a set 
vector space over S. For s ∈ S and v ∈ V, sv ≡ vs(mod 12).  
 
Example 2.1.11: Let V = Zp = {0, 1, 2, …, p – 1} be the set of 
integers modulo p (p a prime). S = {1, 2, …, p – 1} be the set. V 
is a set vector space over S.  
 
In fact V in example 2.1.11 is a set vector space over any proper 
subset of S also. 
 
This is not always true, yet if V is a set vector space over S. V 
need not in general be a set vector space over every proper 
subset of S. Infact in case of V = Zp every proper subset Si of S 
= {1, 2, …, p – 1} is such that V is a set vector space over Si. 

 
Note: It is important to note that we do not have the notion of 
linear combination of set vectors but only the concept of linear 
magnification or linear shrinking or linear annulling. i.e., if v ∈ 
V and s is an element of the set S where V is the set vector 
space defined over it and if sv makes v larger we say it is linear 
magnification. 
 
Example 2.1.12: If V = Z+ ∪{0} = {0, 1, 2, …, ∞} and S = {0, 
2, 4, …, ∞} we say for s = 10 and v = 21, sv = 10.21 is a linear 
magnification. 
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 Now for v = 5 and s = 0, sv = 0.5 = 0 is a linear annulling. 
Here we do not have the notion of linear shrinking.  

So in case of any modeling where the researcher needs only 
linear magnification or annulling of the data he can use the set 
vector space V over the set S. 
 
Notation: We call the elements of the set vector space V over 
the set S as set vectors and the scalars in S as set scalars. 
 
Example 2.1.13: Suppose Q+ ∪ {0} = {all positive rationals} = 
Q* = V and  

S = 2 3

1 1 10, 1, , , , ... .
2 2 2

⎧ ⎫
⎨ ⎬
⎩ ⎭

 

 
Then V is a set vector space over S. We see for 6 ∈ Q* = V and 
1 1S .6 3
2 2
∈ = . This is an instance of linear shrinking. 

Suppose s = 0 and 21v
3

=  then s.v = 0. 21 0
3
=  is an instance of 

linear annulling.  
 
Now we see this vector space is such that there is no method to 
get a linearly magnified element or the possibility of linear 
magnification. 
 
Now we have got a peculiar instance for 1 ∈ S and 1.v = v for 
every v ∈ V linear neutrality or linearly neutral element. The set 
may or may not contain the linearly neutral element. We 
illustrate yet by an example in which the set vector space which 
has linear magnifying, linear shrinking, linear annulling and 
linearly neutral elements. 
 
Example 2.1.14: Let Q+ ∪ {0} = V = {set of all positive 
rationals with zero}.  

 

S = 2

1 10, 1, , , ..., 2,4,6, ...,
3 3

⎧ ⎫∞⎨ ⎬
⎩ ⎭
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be the set. V is a set vector space over the set S. We see V is 
such that there are elements in S which linearly magnify some 
elements in V; for instance if v = 32 and s = 10 then s.v = 10.32 
= 320 is an instance of linear magnification. Consider v = 30 

and s = 1
3

 then s.v. = 1
3

 × 30 = 10 ∈ V. This is an instance of 

linear shrinking. Thus we have certain elements in V which are 
linearly shrunk by elements of the set S. 
  
Now we have 0 ∈ S such that 0 v = 0 for all v ∈ V which is an 
instance of linear annulling. Finally we see 1 ∈ S is such that 
1.v = v for all v ∈ V; which is an instance of linearly neutral. 
Thus we see in this set vector space V over the set S given in 
example 2.1.14, all the four properties hold good. Thus if a 
researcher needs all the properties to hold in the model he can 
take them without any hesitation. Now we define yet another 
notion called linearly normalizing element of the set vector 
space V. Suppose v ∈ V is a set vector and s ∈ S is a set scalar 
and 1 ∈ V which is such that 1.v = v.1 = v and s.1 = 1.s = s for 
all v ∈ V and for all s ∈ S; we call the element scalar s in S to 
be a linearly normalizing element of S if we have v ∈ V such 
that s.v = v.s = 1. 
 

For example in the example 2.1.14, we have for 3 ∈ V and 1
3

 ∈ 

S; 1
3

 . 3 = 1 ∈ S. Thus 1
3

 is a linearly normalizing element of S.  

 
It is important to note that as in case of linearly annulling or 
linearly neutral element the scalar need not linearly normalize 
every element of the set vector space V. In most cases an 
element can linearly normalize only one element.  
 
Having seen all these notions we now proceed on to define the 
new notion of set vector subspace of a set vector space V. 
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DEFINITION 2.1.2: Let V be a set vector space over the set S. 
Let W ⊂ V be a proper subset of V. If W is also a set vector 
space over S then we call W a set vector subspace of V over the 
set S. 
 
We illustrate this by a few examples so that the reader becomes 
familiar with this concept. 
 
Example 2.1.15: Let V = {0, 1, 2, …, ∞} be the set of positive 
integers together with zero. Let S = {0, 2, 4, 6, …, ∞}, the set of 
positive even integers with zero. V is a set vector space over S. 
Take W = {0, 3, 6, 9, 12, …, ∞} set of all multiples of 3 with 
zero. W ⊆ V ; W is also a set vector space over S. Thus W is a 
set vector subspace of V over S. 
 
Example 2.1.16: Let Q[x] be the set of all polynomials with 
coefficients from Q; the set of rationals. Q[x] is a set vector 
space over the set S = {0, 2, 4, …, ∞}. Take W = {0, 1, …, ∞} 
the set of positive integers with zero. W is a set vector space 
over the set S. Now W ⊆ Q ⊆ Q[x]; so W is a set vector 
subspace of V over the set S. 
 
Example 2.1.17: Let V = Z+ × Z+ × Z+ × Z+ a set of vector space 
over the set Z+ = {0, 1, 2, …, ∞}. Let W = Z+ × Z+ × {0} × {0}, 
a proper subset of V. W is also a set vector space over Z+, i.e., 
W is a set vector subspace of V. 
 
Example 2.1.18: Let V = 2Z+ × 3Z+ × Z+ be a set, V is a set 
vector space over the set S = {0, 2, 4, …, ∞}. Now take W = 
2Z+ × {0} × 2Z+ ⊆ V; W is a set vector subspace of V over the 
set S. 
 
Example 2.1.19: Let  

 

V = M3×2 = 
a d
b e
c f

⎧⎛ ⎞
⎪⎜ ⎟
⎨⎜ ⎟
⎪⎜ ⎟
⎝ ⎠⎩

 a, b, c, d, e, f ∈ Z+ ∪ {0}} 
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be the set of all 3 × 2 matrices with entries from the set of 
positive integers together with zero. V is a set vector space over 
the set S = Z+ ∪ {0}. Take  

 

W = 
a 0
b 0
c 0

⎧⎛ ⎞
⎪⎜ ⎟
⎨⎜ ⎟
⎪⎜ ⎟
⎝ ⎠⎩

a, b, c ∈ Z+ ∪{0}} ⊆ V; 

 
W is a set vector subspace of V over the set S. 
 
Now having defined set vector subspaces, we proceed on to 
define the notion of zero space of a set vector space V over the 
set S. We as in the case of usual vector spaces cannot define set 
zero vector space at all times. The set zero vector space of a set 
vector space V exists if and only if the set vector space V over S 
has {0} in V i.e., {0} is the linearly annulling element of S or 0 
∈ V and 0 ∉ S in either of the two cases we have the set zero 
subspace of the set vector space V. 
 
Example 2.1.20: Let Z+ = V = {1, 2, …, ∞} be a set vector 
space over the set S = {2, 4, 6, …, ∞}; V is a set vector space 
but 0 ∉ V, so V does not have a set vector zero subspace. 
 
It is interesting to mention here that we can always adjoin the 
zero element to the set vector space V over the set S and this 
does not destroy the existing structure. Thus the element {0} 
can always be added to make the set vector space V to contain a 
set zero subspace of V. 
 
We leave it for the reader to prove the following theorem. 
 
THEOREM 2.1.1: Let V be a set vector space over the set S. Let 
W1, …, Wn be n proper set vector subspaces of V over S. Then 

1=
∩

n

i
i

W  is a set vector subspace of V over S. Further 
1=

=∩
n

i
i

W φ  
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can also occur, if even for a pair of set vector subspaces Wi and 
Wj of V we have Wi ∩ Wj = φ (i ≠ j). 

 Clearly even if 0 ∈ V then also we cannot say 
1=
∩

n

i
i

W  = {0} 

as 0 need not be present in every set vector subspace of V.  
 
 
We illustrate the situation by the following example. 
 
Example 2.1.21: Let Z+ = {1, 2, …, ∞} be a set vector space 
over the set S = {2, 4, 6, …, ∞}. Take 
 

W1 = {2, …, ∞}, 
W2 = {3, 6, …, ∞}, …,  

and 
Wp = {p, 2p, 3p, …, ∞}. 

 
We see Wi ∩ Wj ≠ φ for every i, j (i ≠ j). 
 
 Will ∩Wi = φ if i = 1 to ∞ ? 

 Will 
n

i
i 1

W
=

≠ φ∩   if i = 1, 2, …, n; n < ∞? 

 
Example 2.1.22: Let V = {1, 2, …, ∞} be a set vector space 
over S = {2, , …, ∞}. W = {2, 22, …, 2n …} is set vector 
subspace of V over the set S. 

W1 = {3, 32, 33, …, ∞} is a proper subset of V but W1 is not 
a set vector subspace of V as W1 is not a set vector space over S 
as 2.3 = 6 ∉ W1 for 2 ∈ S and 3 ∈ W1. Thus we by this example 
show that in general every proper subset of the set V need not 
be a set vector space over the set S. 
 
Now having seen the set vector subspaces of a set vector space 
we now proceed to define yet another new notion about set 
vector spaces. 
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DEFINITION 2.1.3: Let V be a set vector space over the set S. 
Let T be a proper subset of S and W a proper subset of V. If W is 
a set vector space over T then we call W to be a subset vector 
subspace of V over T.  
 
We first illustrate this situation by examples before we proceed 
on to give more properties about them. 
 
Example 2.1.23: Let V = Z+ ∪ {0} = {0, 1, 2, …, ∞} be a set 
vector space over the set S = {2, 4, 6, …, ∞}. Consider W = {3, 
6, 9, …} ∈ V.  

Take T = {6, 12, 18, 24, …} ⊆ S. Clearly W is a set vector 
space over T; so W is a subset vector subspace over T. 
 
Example 2.1.24: Let V = Z+ × Z+ × Z+ be a set vector space 
over Z+ = S. Take W = Z+ × {0} × {0} a proper subset of V and 
T = {2, , 6, …, ∞} ⊆ Z+ = S. Clearly W is a set vector space 
over T i.e., W is a subset vector subspace over T. 
 
Now we show all proper subsets of a set vector space need not 
be a subset vector subspace over every proper subset of S. We 
illustrate this situation by the following examples. 
 
Example 2.1.25: Let V = Z+ × Z+ × Z+ be a set vector space 
over Z+ = S = {0, 1, 2, ..., ∞}. Let W = {3, 32, …, ∞} × {5, 52, 
…} × {0} ⊆ V. Take T = {2, 4, 6, …} ⊆ S. 
 
Clearly W is not a set vector space over T. That is W is not a 
subset vector subspace of V over T. Thus we see every subset of 
a set vector space need not in general be a subset vector 
subspace of the set vector space V over any proper subset T of 
the set S.  

 
We illustrate this concept with some more examples. 

 
Example 2.1.26: Let V = 2Z+ × 3Z+ × 5Z+ = {(2n, 3m, 5t) | n, 
m, t ∈ Z+}; V is a set vector space over the set S = Z+ = {1, 2, 
…, ∞}. Take W = {2, 22, …, ∞} × {3, 32, … } × {5, 52, …} ⊆ 
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V. W is not a subset vector subspace over the subset T = {2, 4, 
…, ∞} ⊆ Z+. Further W is not even a set vector subspace over  
Z+ = S. Take W = {2, 22, …} × {0} × {0} a proper subset of V. 
Choose T = {2, 23, 25, 27}. W is a subset vector subspace of V 
over the subset T ⊆ S.  
 
Example 2.1.27: Let  
 

V = 
a b
c d

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎝ ⎠⎪⎩

 a, b, c, d ∈ Z+ ∪ {0} = {0, 1, 2, …}} 

 
be the set of all 2 × 2 matrices with entries from Z+ ∪ {0}. V is 
a set vector space over the set S = Z+ = {1, 2, …, ∞}. Take  
 

W = 
x y
z w

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎝ ⎠⎪⎩

 x, y, z, w ∈ 2Z+ = {2, 4, 6, …}} ⊆ V. 

 
W is a subset vector subspace over the subset T = {2, 4, ..., ∞}. 
 
Example 2.1.28: Let  
 

V = 
a b c d
e f g h

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎝ ⎠⎪⎩

 a, b, c, d, e, f, g and h ∈ Z} 

 
be the set of all 2 × 4 matrices with entries from the set of 
integers. V is a set vector space over the set S = Z+ = {1, 2, …, 
∞}. Take  

W = 
a b c d
e f g h

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎝ ⎠⎪⎩

 a, b, c, d, e, f, g and h ∈ Z+} ⊆ V. 

 
Clearly W is a subset vector subspace over T = {2, 4, …, ∞} ⊆ 
S = Z+.  
 
Now as in case of vector spaces we can have the following 
theorem. 
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THEOREM 2.1.2: Let V be a set vector space over the set S. 
Suppose W1, …, Wn be a set of n subset vector subspaces of V 

over the same subset T of S. Then either 
1=
∩

n

i
i

W  = φ or 
1=
∩

n

i
i

W  is a 

subset vector subspace over T or if each Wi contains 0 then 

1=
∩

n

i
i

W  = {0}, the subset vector zero subspace of V over T. 

 
The proof is left as an exercise for the reader as the proof 
involves only simple set theoretic techniques.  
 
Note: We cannot say anything when the subset vector subspaces 
of V are defined over different subsets of S. We illustrate this 
situation by some more examples. 

 
Example 2.1.29: Let V = Z+ × Z+ × Z+ be a set vector space 
over a set S = Z+ = {1, 2, …, ∞}. W = {2, 4, 6, 8, …} × {φ} × 
{φ} is a subset vector subspace of V over the subset T = {2, 4, 
8, 16, …}. W1 = {3, 6, 9, …} × φ × φ ⊂ V, is a subset subvector 
space over the subset T1 = {3, 32, …}. Clearly we cannot define 
W ∩ W1 for we do not have even a common subset over which 
it can be defined as T ∩ T1 = φ. 
 
From this example a very natural question is if T ∩ T1 ≠ φ and if 
W1 ∩ W is not empty can we define some new structure. For 
this we make the following definition. 

 
DEFINITION 2.1.4: Let V be a set vector space over the set S. 
Suppose Wi is a subset vector subspace defined over the subset 
Ti of S for i = 1, 2, …, n; n < ∞ and if ∩Wi ≠ φ and T = ∩Ti ≠ φ; 
then we call W to be a sectional subset vector sectional 
subspace of V over T. 
 
Note: We call it a sectional for every subset vector subspace 
contributes to it. 
 
We give illustration of the same. 



 

 

 

41

 
Example 2.1.30: Let V = Z+ × Z+ × Z+ × Z+ be a set vector 
space over the set Z+ = {1, 2, …, ∞}. Let W1 = {2, 4, 6, …} × 
{2, 4, 6, …} × Z+ × Z+ be a subset vector subspace over T1 = {2, 
4, …, ∞}. W2 = {Z+} × {2, 4, 6, ...} × Z+ × Z+ be a subset vector 
subspace over T2 = {2, 22, …, ∞}. Let W3 = {2, 22, …, ∞} × 
{Z+} × {2, 4, 6, …} × {2, 22, …, ∞} be a subset vector subspace 
over T3 = {2, 23, 25, …, ∞}. Consider W1 ∩ W2 ∩ W3 = {2, 22, 
..., ∞} × {2, 4, 6, ...} × {2, 4, 6, ..., ∞} × {2, 22, ..., ∞} = W. 
Now T = T1 ∩ T2 ∩ T3 = {2, 23, 25, …}; W is a sectional subset 
vector sectional subspace of V over T.  
 
We see a sectional subset vector sectional subspace is a subset 
vector subspace but a sectional subset vector sectional subspace 
in general is not a subset vector subspace.  
 
We prove the following interesting theorem. 

 
THEOREM 2.1.3: Every sectional subset vector sectional 
subspace W of set vector space V over the set S is a subset 
vector subspace of a subset of S but not conversely. 
 

Proof: Let V be the set vector space over the set S. W = 
n

i
i 1

W
=
∩  

be a sectional subset vector sectional subspace over T = 
n

i
i 1

T
=
∩   

where each Wi is a subset vector subspace over Ti for i = 1, 2, 
…, n with Wi ≠ Wj and Ti ≠ Tj; for i ≠ j, 1 ≤ i, j ≤ n. We see W 
is a sectional subset vector subspace over Ti ; i = 1, 2, …, n.  
 
We illustrate the converse by an example. 
 
Example 2.1.31: Let V = {2, 22, …} be a set vector space over 
the set S = {2, 22}. W1 = {22, 24, …} is a subset vector subspace 
of V over the set T1 = {2} and W2 = {23, 26, …, ∞} is a subset 
vector subspace of over the set T2 = {22}. Now W1 ∩ W2 ≠ φ 
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but T1 ∩ T2 = φ. We do not and cannot make W1 or W2 as 
sectional subset vector sectional subspace.  
 
That is why is general for every set vector space V over the set 
S we cannot say for every subset vector subspace W(⊂ V) over 
the subset T(⊂ S) we can find atleast a subset vector subspace 
W1(⊂ V) over the subset T1(⊂ S) such that W1 ∩W2 ≠ φ and T 
∩ T1 ≠ φ. Hence the theorem 2.1.3.  
 
Now before we define the notion of basis, dimension of a set S 
we mention certain important facts about the set vector spaces. 
 
1.  All vector spaces are set vector spaces but not conversely. 
 
The converse is proved by giving counter examples.  

Take V = Z+ = {0, 1, 2, …, ∞}, V is a set vector space over 
the set S = {2, 4, 6, …, ∞}. We see V is not an abelian group 
under addition and S is not a field so V can never be a vector 
space over S. But if we have V to be a vector space over the 
field F we see V is a set vector space over the set F as for every 
c ∈ F and v ∈ V we have cv ∈ V. Thus every vector space is a 
set vector space and not conversely. 
 
2. All semivector spaces over the semifield F is a set vector 

space but not conversely. 
 
We see if V is a semivector space over the semifield F then V is 
a set and F is a set and for every v ∈ V and a ∈ F; av ∈ V hence 
V is trivially a set vector space over the set F. 

However take {–1, 0, 1, 2, …, ∞} = V and S = {0, 1} V is a 
set vector space over S but V is not even closed with respect to 
‘+’ so V is not a group. Further the set S = {0, 1} is not a 
semifield so V is not a semivector space over S. Hence the 
claim. 
 
Thus we see the class of all set vector spaces contains both the 
collection of all vector spaces and the collection of all 
semivector spaces. Thus set vector spaces happen to be the most 
generalized concept. 
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Now we proceed on to define the notion of generating set of a 
set vector space V over the set S. 

 
DEFINITION 2.1.5: Let V be a set vector space over the set S. 
Let B ⊆ V be a proper subset of V, we say B generates V if every 
element v of V can be got as sb for some s ∈ S and b ∈B. B is 
called the generating set of V over S. 
 
Example 2.1.32: Let Z+ ∪ {0} = V be a set vector space over 
the set S = {1, 2, 4, …, ∞}. The generating set of V is B = {0, 1, 
3, 5, 7, 9, 11, 13, …, 2n + 1, …} B is unique. Clearly the 
cardinality of B is infinite. 
 
Examples 2.1.33: Let V = Z+ ∪ {0} be a set vector space over 
the set S = {1, 3, 32, …, ∞}. B = {0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, …, 
80, 82, …, 242, 244, …, 36 – 1, …, 36 + 1, …, ∞} ⊆ V is the 
generating set of V. 
 
Example 2.1.34: Let V = {0, 3, 32, …, 3n, …} be a set vector 
space over S = {0, 1, 3}. B = {0, 3} is a generating set for 3.0 = 
0, 3.1 = 3, 3.3 = 32, 3.32 = 33 so on. 
 
Example 2.1.35: Let  
 

V = 
a b
c d

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎝ ⎠⎪⎩

 a, b, c, d ∈ Z+ = {1, 2, …, ∞}} 

 
be the set vector space over the set S = Z+. The generating set of 
V is infinite. 
 
Thus we see unlike in vector space or semivector spaces finding 
the generating set of a set vector space V is very difficult. 
 When the generating set is finite for a set vector space V we 
say the set vector space is finite set hence finite cardinality or 
finite dimension, otherwise infinite or infinite dimension. 
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Example 2.1.36: Let Z+ = V = {1, 2, …, ∞} be a set vector 
space over the set S = {1}. The dimension of V is infinite. 
 
Example 2.1.37: Let V = {1, 2, …, ∞} be a set vector space 
over the set S = {1, 2, …, ∞} = V. Then dimension of V is 1 and 
B is uniquely generated by {1}. No other element generates V. 
 
Thus we see in case of set vector space we may have only one 
generating set. It is still an open problem to study does every set 
vector space have one and only one generating subset? 
 
Example 2.1.38: Let V = {2, 4, 6, …} be a set vector space over 
the set S = {1, 2, 3, …}. B = {2} is the generating set of V and 
dimension of V is one.  
 
Thus we have an important property enjoyed by set vector 
spaces. We have a vector space V over a field F of dimension 
one only if V = F, but we see in case of set vector space V, 
dimension V is one even if V ≠ S. The example 2.1.38 gives a 
set vector space of dimension one where V ≠ S. 
 
Example 2.1.39: Let V = {2, 4, 6, …, ∞} be a set vector space 
over the set S = {2, 22, …, ∞}. B = {2, 6, 10, 12, 14, 18, 20, 22, 
24, …, 30, 34, …} is a generating set of V. 
 
Now in case of examples 2.1.38 and 2.1.39 we see V = {2, 4, 
…, ∞} but only the set over which they are defined are different 
so as in case of vector spaces whose dimension is dependent on 
the field over which it is defined are different so as in case of 
vector spaces whose dimension is dependent on the field over 
which it is defined so also the cardinality of the generating set 
of a vector space V depends on the set over which V is defined. 
This is clear from examples 2.1.38 and 2.1.39. 
 
Now having defined cardinality of set vector spaces we define 
the notion of linearly dependent and linearly independent set of 
a set vector space V over the set S. 
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DEFINITION 2.1.6: Let V be a set vector space over the set S. B 
a proper subset of V is said to be a linearly independent set if x, 
y ∈ B then x ≠ sy or y ≠ s'x for any s and s' in S. If the set B is 
not linearly independent then we say B is a linearly dependent 
set. 
 
We now illustrate the situation by the following examples. 
 
Example 2.1.40: Let Z+ = V = {1, 2, ..., ∞} be a set vector space 
over the set S = {2, 4, 6, …, ∞}. Take B = {2, 6, 12} ⊂ V; B is a 
linearly dependent subset for 12 = 6.2, for 6 ∈ S. B = {1, 3} is a 
linearly independent subset of V. 
 
Example 2.1.41: Let V = {0, 1, 2, …, ∞} be a set vector space 
over the set S = {3, 32, …}. B = {1, 2, 4, 8, 16, …} is a linearly 
independent subset of V. As in case of vector spaces we can in 
case of set vector spaces also say a set B which is the largest 
linearly dependent subset of V? A linearly independent subset B 
of V which can generate V, then we say B is a set basis of V or 
the generating subset of V and cardinality of B gives the 
dimension of V. 
 
 
2.2 Set Linear Transformation of Set Vector Spaces 
 
In this section we proceed on to define the notion of set linear 
transformation of set vector spaces. As in case of vector spaces 
we can define set linear transformation of set vector spaces only 
if the set vector spaces are defined over the same set S. 
 
DEFINITION 2.2.1: Let V and W be two set vector spaces 
defined over the set S. A map T from V to W is said to be a set 
linear transformation if 
      T (v) = w   
and 
      T(sv) = sw = sT(v) 
 
for all v ∈ V, s ∈ S and w ∈ W. 
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Example 2.2.1: Let V = Z+ = {0, 1, 2, …, ∞} and W = {0, 2, 4, 
…, ∞} be set vector spaces over the set S = {0, 2, 22, 23, …}. 
 

T : V → W 
T(0) = 0,  
T(1) = 2,  
T(2) = 4,  
T(3) = 6  

 
and so on. T (2np) = 2n (2p) for all p ∈ V. Thus T is a set linear 
transformation from V to W. As in case of vector spaces we will 
not be always in a position to define the notion of null space of 
T in case of set vector spaces. For only if 0 ∈ V as well as W; 
we will be in a position to define null set of a set linear 
transformation T. 
 
Now we proceed on to define the notion of set linear operator of 
a set vector space V over the set S. 

 
DEFINITION 2.2.2: Let V be a set vector space over the set S. A 
set linear transformation T from V to V is called the set linear 
operator of V. 
 
Example 2.2.2: Let V = Z+ = {1, 2, …, ∞} be a set vector space 
over the set S = {1, 3, 32, …, ∞}. Define T from V to V by T(x) 
= 2x for every x ∈ V. T is a set linear operator on V.  
 
Now it is easy to state that if V is a set vector space over the set 
S and if OS(V) denotes the set of all set linear operators on V 
then OS(V) is also a set vector space over the same set S. 
Similarly if V and W are set vector spaces over the set S and  
TS (V, W) denotes the set of all linear transformation from V to 
W then TS (V,W) is also a set vector space over the set S. For if 
we want to prove some set V is a set vector space over a set S it 
is enough if we show for every s ∈ S and v ∈ V; sv ∈ V. Now 
in case of OS (V) = {set of all set linear operators from V to V}. 
OS (V) is a set and clearly for every s ∈ S and for every T ∈ 
OS(V), sT ∈ Os (V) i.e., sT is again a set linear operator of V. 
Hence OS (V) is a set vector space over the set S. 
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Likewise if we consider the set TS (V, W) = {set of all set linear 
transformations from V to W}, then the set TS (V, W) is again a 
set vector space over S. For if s ∈ S and T ∈ TS (V, W) we see 
sT is also a set linear operator from V to W. Hence the claim. 
Now we can talk about the notion of invertible set linear 
transformation of the set vector spaces V and W defined over 
the set S. 
 
Let T be a set linear transformation from V into W. We say T is 
set invertible if there exists a set linear transformation U from 
W into V such that UT and TU are set identity set maps on V 
and W respectively. If T is set invertible, the map U is called the 
set inverse of T and is unique and is denoted by T–1. 
 
Further more T is set invertible if and only if (1) T is a one to 
one set map that is Tα = Tβ implies α = β (2) T is onto that is 
range of T is all of W.  
 
We have the following interesting theorem. 

 
THEOREM 2.2.1: Let V and W be two set vector spaces over the 
set S and T be a set linear transformation from V into W. If T is 
invertible the inverse map T–1 is a set linear transformation 
from W onto V.  
 
Proof: Given V and W are set vector spaces over the set S. T is 
a set linear transformation from V into W. When T is a one to 
one onto map, there is a uniquely determined set inverse map  
T–1 which set maps W onto V such that T–1T is the identity map 
on V and TT–1 is the identity function on W. 
 Now what we want to prove is that if a set linear 
transformation T is set invertible then T–1 is also set linear. 
 Let x be a set vector in W and c a set scalar from S. To 
show 

T–1 (cx) = cT–1 (x). 
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 Let y = T–1(x) that is y be the unique set vector in V such 
that Ty = x. Since T is set linear T(cy) = cTy. Then cy is the 
unique set vector in V which is set by T into cx and so 

 
T–1 (cx) = cy = c T–1 (x)  

and T–1 is set linear ! 
  
Suppose that we have a set invertible set linear transformation T 
from V onto W and a set invertible set linear transformation U 
from W onto Z. Then UT is set invertible and (UT)–1 = T–1 U–1. 

To obtain this it is enough if we verify T–1 U–1 is both left 
and right set inverse of UT. 

Thus we can say in case of set linear transformation; T is 
one to one if and only if Tα = Tβ if and only if α = β. 

Since in case of set linear transformation we will not always 
be in a position to have zero to be an element of V we cannot 
define nullity T or rank T. We can only say if 0 ∈ V, V a set 
vector space over S and 0 ∈ W, W also a set vector space over S 
then we can define the notion of rank T and nullity T, where T 
is a set linear transformation from V into W. 
 
We may or may not be in a position to have results of linear 
transformation from vector spaces. 
 Also the method of representing every vector space V over 
a field F of dimension n as 

n times

V F ... F
−

≅ × ×��	�
  may not be feasible 

in case of set vector spaces. Further the concept of 
representation of set linear transformation as a matrix is also not 
possible for all set vector spaces. So at this state we make a note 
of the inability of this structure to be always represented in this 
nice form. 
 
Next we proceed on to define the new notion of set linear 
functionals of a set vector space V over a set S. 
 
DEFINITION 2.2.3: Let V be a set vector space over the set S. A 
set linear transformation from V onto the set S is called a set 
linear functional on V, if   

f : V → S 
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  f (cα) = cf (α)  
for all c ∈ S and α ∈ V. 
 
Example 2.2.3: Let V = {0, 1, 2, ..., ∞} and S = {0, 2, 4, …, ∞}. 
f : V → S defined by f(0) = 0, f(1) = 2, f(2) = 4, ..., is a set linear 
functional on V. 
 
Example 2.2.4: Let V = Z+ × Z+ × Z+ be a set vector space over 
Z+. A set linear functional f : V → Z+ defined by f(x, y, z) = x + 
y + z. 
 
Now we proceed onto define the new notion of set dual space of 
a set vector space V. 
 
DEFINITION 2.2.4: Let V be a set vector space over the set S. 
Let L(V,S) denote the set of all linear functionals from V into S, 
then we call L(V,S) the set dual space of V. Infact L(V, S) is also 
a set vector space over S.  

 
The study of relation between set dimension of V and that of 
L(V, S) is an interesting problem. 
 
Example 2.2.5: Let V = {0, 1, 2, …, ∞} be a set vector space 
over the set S = {0, 1, 2, ..., ∞}. Clearly the set dimension of V 
over S is 1 and this has a unique generating set B = {1}. No 
other proper subset of B can ever generate V.  
 
What is the dimension of L (V, S)?  
 
We cannot define the notion of set hyperspace in case of set 
vector space using set linear functionals. We can define the 
concept of set annihilator if and only if the set vector space V 
and the set over which it is defined contains the zero element, 
otherwise we will not be in a position to define the set 
annihilator. 
 
DEFINITION 2.2.5: Let V be a set vector space over the set S, 
both V and S has zero in them. Let A be a proper subset of the 
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set V, the set annihilator of A is the set Ao of all set linear 
functionals f on V such that f(α) = 0 for every α in A. 
 
 
2.3 Set Linear Algebra and its Properties 
 
In this section we define the new notion of set linear algebra and 
enumerate a few of its properties. 
 
DEFINITION 2.3.1: Let V be a set on which is defined a binary 
operation ‘+’ which is closed on V i.e., for every pair a, b in V a 
+ b ∈ V. S any set we call V to be set linear algebra over S if 
for all s ∈ S and v ∈ V, s v ∈ V and s(a+b) = sa + sb for all a, b 
∈ V and s ∈ S.  
 
It is interesting and important to note that all set linear algebras 
are set vector spaces but a set vector space is not in general a set 
linear algebra. For we see in case of set vector space V we may 
not have any closed binary operation on the set V. In some cases 
we may not be in a position to define a closed binary operation 
on V. We see on the other hand, a set linear algebra V over the 
set S is such that V is endowed with a closed binary operation 
on it. 
 
Example 2.3.1: Let V = Zo = {0, 1, 2, …, ∞}, Let ‘+’ be the 
operation on V. Suppose S = {0, 2, 4, …, ∞}, V is a set linear 
algebra over S. We see s (a + b) = sa + sb, ∀ s ∈ S and for all a, 
b ∈ V. 
 
Example 2.3.2: Let  

 

V = M2 × 3 = 
a b c
d e f

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 a, b, c, d, e and f ∈ Z+ ∪ {0}}. 

 
M2 × 3 is a set with addition of matrices as a closed binary 
operation. Take S = {0, 2, 4, …, ∞}. V is a set linear algebra 
over S. 
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Example 2.3.3: Let V = Z+ × Z+ × Z+ = {(a, b, c)| a, b c ∈ Z+}; 
(a, b, c) + (d, e, f) ∈ V. Take S = Z+; V is a set linear algebra 
over S. 
 
Now we define the notion of set linear subalgebra of a set linear 
algebra V. 
 
DEFINITION 2.3.2: Let V be a set linear algebra over the set S. 
Suppose W is a proper non empty subset of V. If W itself is a set 
linear algebra over S then we call W to be a set linear 
subalgebra of V over the set S. 
 
We illustrate this by the following examples. 

 
Example 2.3.4: Let V = Z+ × Z+ × Z+ × Z+ × Z+ be a set linear 
algebra over the set S = Z+. Take W = 2Z+ × Z+ × φ × 2Z+ × Z+ 
⊆ V. Clearly W is also a set linear algebra over the set S = Z+. 
Thus W is set linear subalgebra of V over the set S. 
 
Example 2.3.5: Let V = Z+ be a set linear algebra over the set S 
= {2, 4, …, ∞}. Take W = {2, 4, 6, 8, …} ⊆ V. W is a set linear 
subalgebra of V. 
 
Example 2.3.6: Let  

 

V = 
a b c
d e f

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 a, b, c, d, e, f ∈ Z+} 

 
be a set linear algebra over the set S = Z+. Take  
 

W = 
x y z
u v w

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 x, y, z, u, v and w ∈ 2Z+} ⊆ V. 

 
W is also a set linear algebra over the set S = Z+ i.e., W is a set 
linear subalgebra of V over the set S. 
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Just like a set vector space a set linear algebra may or may not 
contain the zero. If a set linear algebra contains zero then we 
call it a set linear algebra with zero. Examples 2.3.1 and 2.3.2 
are set linear algebras with zero. It is still important to note that 
a set linear subalgebra may or may not contain the zero element 
even if the set linear algebra is one with zero. 

 
It is interesting to note that a set linear subalgebra will contain 
zero if and only if the set S over which the set linear algebra is 
defined contains zero. 

 
Example 2.3.7: Let V = Z+ ∪ {0} × Z+ ∪ {0} × Z+ ∪ {0} be a 
set linear algebra with zero defined over the set S = {0, 2, …, 
∞}. Clearly every set linear subalgebra contains zero as S the set 
over which it is defined contains zero. 
 
Example 2.3.8: Let V = Z × Z be a set vector space over S = Z+ 
= {1, 2, …, ∞}. V is a set linear algebra over S. Take W = Z+ × 
Z+ ⊂ V, W is a set linear subalgebra of V over S. V is a set 
linear algebra with zero but W is not a set linear subalgebra with 
zero but W is only a set linear subalgebra of V over S. 
 
Now we proceed on to define the notion of subset linear 
subalgebra of a set linear algebra over a set S. 
 
DEFINITION 2.3.3: Let V be a set linear algebra over the set S, 
suppose W is a subset of V and W is a set linear algebra over 
the subset P ⊆ S. Then we call W to be a subset linear 
subalgebra of V over P.  
 
We can have many subset linear subalgebras over a subset P ⊂ 
S. Likewise we can have the same subset W of V to be a subset 
linear subalgebra over different subsets of S.  
 
We illustrate a few of these situations by examples. 
 
Example 2.3.9: Let V = Z+ × Z+ × Z+ × Z+ be a set linear algebra 
over the set S = Z+ = {1, 2, …, ∞}. Take W = Z+ × {φ} × Z+ × 
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{φ} ⊂ V W is a subset linear subalgebra over P = {2, 4, 6, …} 
⊆ S = Z+. 
 
Take W1 = 2Z+ × 2Z+ × Z+ × Z+ ⊆ V, W1 is also a subset linear 
subalgebra over P. If W2 = {φ} × 2Z+ × 2Z+ × {0} ⊆ V. W2 is 
also a subset linear subalgebra over P. However if we take W3 = 
{3, 32, …} × {1, 3, 32 …} × {φ} × {φ} ⊆ V. W3 is not a subset 
linear subalgebra over P ⊆ S. However W3 is a subset sublinear 
algebra over the set {1, 3, 32, …}. 
 
Thus we see in general a subset of V may be a subset linear 
subalgebra over different subsets of S. So we can speak of 
intersection of subset linear subalgebras or set linear subalgebra. 
We may have the intersection to be at times empty. We have to 
overcome all these problems which happen to be challenging. 
 Since in case of set linear algebra we have no means to 
associate matrices with set linear operators or set linear 
transformation. 
 
Now having defined set linear algebra and set linear subalgebra 
we now proceed to give some of its properties. 
 The set linear transformation of a set linear algebra would 
be a little different from that of set vector spaces, we define this 
in the following. 
 
DEFINITION 2.3.4: Let V and W be two set linear algebras 
defined over the same set S. A map T from V to W is called a set 
linear transformation if the following condition holds. 

T (cα + β) = cT (α) + T(β) 
for all α, β ∈ V and c ∈ S.  
 
Note:  1. The set linear transformation of set linear algebras 

are defined if and only if both the set linear algebras 
are defined over the same set S. 

2. The set linear transformation of set linear algebras 
are different from the set linear transformation of 
set vector spaces.  

 
Now we also define the notion of set basis. 
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Set linearly independent set etc are different for set linear 
algebras; as in case of set vector spaces, they are not the same. 
Before we define these notions we just define set linear operator 
of a set linear algebra. 
 
DEFINITION 2.3.5: Let V be a set linear algebra over the set S. 
T be a map from V to V which is a set linear transformation, 
then T is defined to be a set linear operator on V. 
 
Example 2.3.10: Let V = Z+ × Z+ × Z+ be a set linear algebra 
over the set Z+ = S. Define T: V → V by T (x, y, z) = (x + y, y, 
x – z). T is set linear operator on V.  
 
Example 2.3.11: Let  
 

V = { }
a b c

a,b,c,d,e,f Z 0
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 
V is a closed set under the binary operation matrix addition. Let 
S = Z+ ∪ {0}. V is a set linear algebra over the set S.  
Define  

T 
a b c a 0 b
d e f d 0 0

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

for all  
a b c

V;
d e f

⎛ ⎞
∈⎜ ⎟

⎝ ⎠
 

T is a set linear operator on V.  
 
 We see the concept of set vector spaces and set linear 
algebras will find its application in coding theory. They can be 
used to give best type of cryptosystems. 
 
Now having defined set linear operators of a set linear algebra V 
over the set S we ask the reader to find out whether the set of all 
set linear operators of V, a set linear algebra over S. What is its 
dimension if V is a set linear algebra of dimension n? 
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Presently we proceed on to define yet a particular form of vector 
spaces which are different from set vector spaces, vector spaces 
and semivector spaces in the following section.  
 
 
2.4 Semigroup Vector Spaces and their Generalizations 
 
In this section for the first time we proceed on to define a new 
notion of semigroup vector spaces. Clearly from the definition 
the reader will be able to follow all semigroup vector spaces 
will be set vector spaces and not vice versa. Further all vector 
spaces and semivector spaces will be semigroup vector spaces 
and not conversely. We in this section define these new notions 
and illustrate them by examples. 
 
DEFINITION 2.4.1: Let V be a set, S any additive semigroup 
with 0. We call V to be a semigroup vector space over S if the 
following conditions hold good. 
 

1. sv ∈ V for all s ∈ S and v ∈ V. 
2. 0. v = 0 ∈ V for all v ∈ V and 0 ∈ S; 0 is the zero 

vector. 
3. (s1 + s2) v = s1 v + s2 v 

  
for all s1, s2 ∈ S and v ∈ V.  
 
We illustrate this by the following examples. 
 
Examples 2.4.1: Let V = (Z+ ∪ {0}) × 2Z+ ∪ {0} × (3Z+ ∪ {0}) 
be a set and S = Z+ ∪ {0} be a semigroup under addition. V is a 
semigroup vector space over S. 
 
Example 2.4.2: Let  
 

V = 1 2 3 4
i

5 6 7 8

a a a a
a Z {0};1 i 8

a a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 



 56

be a set. Suppose S = 2Z+ ∪ {0} be a semigroup under addition. 
V is a semigroup vector space over S. 
 
Example 2.4.3: Let V = 3Z+ ∪ {0} be a set and S = Z+ ∪ {0} be 
a semigroup under addition. V is a semigroup vector space over 
S. 
 
Example 2.4.4: Let V = {(1 0 0 0 1), (1 0 1 1 1), (0 1 1 1 1), (1 
1 1 1 1), (0 0 0 0 0), (0 1 0 1 0)} be a non empty set. S = {0, 1} 
a semigroup under addition 1 + 1 = 1. V is a semigroup vector 
space over S. 
 
Example 2.4.5: Let V = {(1 1 1 1 1 1), (1 0 1 0 1 0), (1 1 1 0 0 
0), (0 0 1 1 0 0), (0 0 0 0 0 0), (0 1 0 1 0 1)} and S = {0, 1} a 
semigroup under ‘+’ with 1 + 1 = 0 then V is a semigroup 
vector space over S. 
 
Example 2.4.6: Let V = Z12 = {0, 1, 2, …, 11} be a set. V is a 
semigroup vector space over the semigroup S = {0,1} under 
addition modulo 2.  
 
Example 2.4.7: Let V = 5Z+ ∪ {0} be a semigroup vector space 
over the semigroup S = Z+ ∪ {0}. 
 
Example 2.4.8: Let {Z+ ∪ {0}} [x] be a semigroup vector space 
over S = Z+ ∪ {0}. S, a semigroup under addition. 
 
Example 2.4.9: Let  
 

V = 
a b
a b a,b S {0} Z
a b

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ = ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a semigroup vector space over the semigroup Z+ ∪ {0}. 
 
Example 2.4.10: Let V = Z12 × Z12 × Z12, the set of triples 
modulo 12. Suppose S = {0, 3, 6, 9} is a semigroup under 
addition modulo 12. V is a semigroup vector space over the 
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semigroup S, sv ≡ v1(mod 12) i.e., if 6 ∈ S and v = (5, 2, 7); sv 
= (6, 0, 6) = v1 ∈ V.  
 
Now we proceed on to define the notion of independent subset 
and generating subset of a semigroup vector space over the 
semigroup S. 
 
DEFINITION 2.4.2: Let V be semigroup vector space over the 
semigroup S. A set of vectors {v1, …, vn} in V is said to be a 
semigroup linearly independent set if  
 

(i) vi ≠ svj 
for any s ∈ S for i ≠ j; 1 < i, j < n. 
 
We first illustrate this by some examples before we proceed to 
define the generating set of a semigroup vector space. 
 
Example 2.4.11: Let V = Z12 = {0, 1, 2, …, 11} be the set of 
integers modulo 12. S = {0, 1} be the semigroup under addition 
modulo 2. V is a semigroup vector space over the semigroup S. 
T = {1, 2, …, 11} is a linearly independent subset of V. 
 
It is interesting and important to note that always all subsets of 
an independent set is also an independent set of V.  
 
Example 2.4.12: Let V = Z+ ∪ {0} be a set. S = {0, 2, 4, …} be 
a semigroup under addition. Take T = {2, 25, 29, …, ∞} ⊆ V. T 
is not an independent subset of V. Now take P = {3, 9, 27, …} 
⊆ V. P is an independent subset of V. Infact every subset of P is 
also an independent subset of V. 
 
We now proceed on to define the notion of generating subset of 
a semigroup vector space V over a semigroup S. 
 
DEFINITION 2.4.3: Let V be a semigroup vector space over the 
semigroup S under addition. Let T = {v1, …, vn} ⊆ V be a subset 
of V we say T generates the semigroup vector space V over S if 
every element v of V can be got as v = svi, vi ∈ T; s ∈ S. 
 



 58

We now illustrate this situation by the following example. 
 
Example 2.4.13: Let V = 3Z+ ∪ {0} be a semigroup vector 
space over the semigroup S = Z+ ∪ {0}. Take T = {3} ⊆ V; T 
generates V over S.  
 
Example 2.4.14: Let V = Z20 = {0, 1, 2, …, 19} integers 
modulo 20. S = {0, 5, 10} be the semigroup under + modulo 20. 
V is a semigroup vector space over S. T = {1, 2, 3, 4, 6, 7, 8, 9, 
11, 12, 13, 14, 16, 17, 18, 19} is a generating set of V. 
 
Example 2.4.15: Let V = Z20 = {0, 2, 4, 6, …, 18} integers 
modulo 20. S = {0, 1} be the semigroup under addition modulo 
2. V is a semigroup vector space over the semigroup S. Take the 
set T = {2, 4, 6, 8… 18} ⊆ V; T is a generating subset of V. 
 
Example 2.4.16: Let V = Z20 = {0, 1, …, 19} integers modulo 
20. Let S = {0, 10} be a semigroup under addition modulo 20. V 
is a semigroup vector space over the semigroup S. T = {1, 2, 3, 
4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19} ⊆ V is a 
generating set of V over S.  
 
Thus we see from the above examples the generating set of V is 
highly dependent on the semigroup S over which it is defined. 
Further nothing can be said about the dimension of V. 

In the above cases when |V| = 20, we see the dimension of 
V is ≤ 20 and nothing more so we can say, that is if |V| = n < ∞ 
then dimension of V is less than n and nothing more i.e., V is 
finite dimensional. 
 
Now it is left as an exercise to find out that the generating set of 
semigroup vector space is also an independent subset of V. 
 
DEFINITION 2.4.4: Let V be a semigroup vector space over the 
semigroup S. Suppose P is a proper subset of V and P is also a 
semigroup vector space over the semigroup S, then we call P to 
be semigroup subvector space of V. 
 
We now illustrate this situation by the following examples. 
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Example 2.4.17: Let V = (Z+ ∪ {0}) × (Z+ ∪ {0}) × (2Z+ 
∪ {0}) be a semigroup vector space over the semigroup S = Z+ 
∪ {0} , under addition. Take W = Z+ ∪ {0} × {0} × {0} ⊆ V; 
W is also a semigroup vector space over S and we see W is a 
semigroup subvector space of V over S. 
 
Example 2.4.18: Let  
 

V = 1 2 3 i

4 5 6

a a a a Z {0}
a a a 1 i 6

+⎧ ⎫⎛ ⎞ ∈ ∪⎪ ⎪
⎨ ⎬⎜ ⎟ ≤ ≤⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a semigroup vector space over the semigroup S = {Z+ 
∪ {0}}. Take  
 

W = 1 2 3 ia a a a Z {0}
0 0 0 1 i 3

+⎧ ⎫∈ ∪⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ≤ ≤⎝ ⎠⎪ ⎪⎩ ⎭

 ⊂ V; 

 
W is a semigroup vector subspace of V over S. 
 
Example 2.4.19: Let V = {Q+ ∪ {0}} be a semigroup vector 
space over the semigroup S = Z+ ∪ {0}.  Take W = 2Z+ ∪ {0}, 
W is a semigroup subvector space of V over S. 
 
Example 2.4.20: Take V = {(1 1 0 1 0), (0 0 0 0 0), (1 1 1 1 1), 
(1 0 1 0 1), (0 1 1 1 0), (0 0 0), (0 1 1), (0 1 0), (1 0 1)} be a set. 
V is a semigroup vector space over the semigroup S = {0, 1} 
under addition 1 + 1 = 1.  

Take W = {(1 0 1), (0 1 1), (0 0 0), (0 1 0)} ⊆ V; W is a 
semigroup subvector space over the semigroup S = {0, 1}. In 
fact every subset of V with the two elements (0 0 0) and or (0 0 
0 0 0) is a semigroup subvector space over the semigroup S = 
{0, 1}. 
  
Example 2.4.21: Let V = Z+ ∪ {0} be a semigroup vector space 
over the semigroup S = Z+ ∪ {0} under ‘+’. The dimension of V 
is one and the generating set of V is {1}. Take W = {2Z+ 
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∪ {0}} ⊆ V is a semigroup subvector space over S. The 
dimension of W is also one given by the set {2}. This is only 
possible when we have semigroup vector spaces V over the 
semigroup S or set vector spaces over the set S. In fact V has 
infinite number of semigroup vector subspaces defined in the 
semigroup S = Z+ ∪ {0}.  
 
Now we proceed on to define the new notion of semigroup 
linear algebra over the semigroup. 
 
DEFINITION 2.4.5: Let V be a semigroup vector space over the 
semigroup S. If V is itself a semigroup under ‘+’ then we call V 
to be a semigroup linear algebra over the semigroup S, if s (v1 + 
v2) = sv1+ sv2 ; v1, v2 ∈ V and s ∈ S. 
 
We illustrate this definition by examples before we proceed to 
study their properties. 
 
Example 2.4.22: Let V = (Z+ ∪ {0}) be a semigroup under 
addition S = {2Z+ ∪ {0}} also a semigroup under addition. V is 
a semigroup linear algebra over S. Also S is a semigroup linear 
algebra over V. 
 
Example 2.4.23: Let V = (Z+ ∪ {0}) × (Z+ ∪ {0}) × (Z+ ∪ {0}) 
be a semigroup under addition of elements component wise. S = 
Z+ ∪ {0} be a semigroup under addition. V is a semigroup 
linear algebra over S. Clearly S is not a semigroup linear 
algebra over V. Only in example 2.4.22 it so happened that V 
was a semigroup linear algebra over S and S happened to be a 
semigroup linear algebra over V.  
 
Now we proceed on to give more examples of semigroup linear 
algebra. 
 
Example 2.4.24: Let  
 

V = { }1 2 3
i

4 5 6

a a a
a Z 0 ; 1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a semigroup under matrix addition. S = Z+ ∪ {0} a 
semigroup under ‘+’. Clearly V is a semigroup linear algebra 
over S. 
 
Example 2.4.25: Let  

V = { }1 2
i

3 4

a a
a Z 0

a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a semigroup under addition. V is a semigroup linear algebra 
over the semigroup S = Z+ ∪ {0}. 
 
Example 2.4.26: Let V = Q+ ∪ {0} be a semigroup under ‘+’. V 
is a semigroup linear algebra over the semigroup S = Z+ ∪ {0} 
under usual addition. 
 
 We observe the following important properties. 
 
THEOREM 2.4.1: Every semigroup linear algebra is a 
semigroup vector space and a semigroup vector space in 
general is not a semigroup linear algebra. 
 
Proof:  We see every semigroup linear algebra over a 
semigroup is obviously a semigroup vector space over a 
semigroup. Hence the claim. However we prove the converse 
using only a counter example. 

Consider the semigroup vector space V = {(0 1 0 0), (0 0 0 
0), (0 0 1 1), (0 0 0 1), (0 0 0), (1 1 1), (1 0 1)} over the 
semigroup S = {0, 1} under addition with 1 + 1 = 1. We see V is 
not a semigroup. But V is a semigroup vector space over S and 
not a semigroup linear algebra over S. Hence the theorem. 

 
Another property about semigroup linear algebra V over the 
semigroup S is that all linear algebras and semilinear algebras 
are semigroup linear algebras. Thus the notion of semigroup 
linear algebras are a more generalized concept. However all 
semigroup linear algebras are set linear algebras and not 
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conversely. Thus we have examples to show that set linear 
algebras are not semigroup linear algebras.  

 
For instance take the following example. 
 
Example 2.4.27: Let V = {0, 1, 2, …, ∞} be a set. Take S = {0, 
1, 3, 5, …}, S is not a semigroup under addition it is only a set. 
Clearly V is a set linear algebra over S for V is an additively 
closed set. We see V is not a semigroup linear algebra as S can 
never be a semigroup even if V is a semigroup under addition. 

Thus the class of all semigroup linear algebras is a subset of 
the class of all set linear algebras. 

 
Now we proceed on to define the substructure properties and 
transformations on semigroup linear algebras.  
 
DEFINITION 2.4.6: Let V be a semigroup linear algebra over 
the semigroup S. Suppose P is a proper subset of V and P is a 
subsemigroup of V. Further if P is a semigroup linear algebra 
over the same semigroup S then we call P a semigroup linear 
subalgebra of V over S.  
 
We now illustrate this by some examples before we enumerate 
some of its properties. 
 
Example 2.4.28: Let  
 

V =  (Z+ ∪ {0}) × (Z+ ∪ {0}) × (3Z+ ∪ {0})  
  =  {(x, y, z) / x, y ∈ Z+ ∪ {0} and z ∈ 3Z+ ∪ {0}}  
 
be a semigroup under component wise addition. Take S = Z+ ∪ 
{0}, the semigroup under addition. V is a semigroup linear 
algebra over S. Take W = {(3Z+ ∪ {0}) × {0} × (3Z+ ∪ {0})} 
⊆ V. W is a semigroup linear subalgebra of V over S. Take P = 
{Z+ ∪ {0}} × {0} × {0}, P is also a semigroup linear subalgebra 
of V over S.  

However {0, 2, 22, 23, …} × {0} × {0} is not a semigroup 
linear subalgebra over S.  
 



 63

Example 2.4.29: Let  
 

V = { }1 n
i

n 1 2n

a a
a Q 0 ; 1 i 2n

a a
+

+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

"
"

 

 
be a semigroup under matrix addition. S = Z+ ∪ {0} be the 
semigroup under addition. V is a semigroup linear algebra over 
S. Let  

 

W = n 1 2n
n 1 2n

0 0
a , ,a Z {0} V,

a a
+

+
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

"
"

"
 

 
W is a semigroup linear subalgebra over S. 
 
Example 2.4.30: Let V = 2Z+ ∪ {0} be a semigroup under 
addition. S = {2Z+ ∪ {0}} is a semigroup V = S. V is a 
semigroup linear algebra over S.  
 
Example 2.4.31: Let V = {(Z+ ∪ {0}) × (3Z+ ∪ {0}) × (5Z+ 
∪ {0}) × (7Z+ ∪ {0})} be a semigroup linear algebra over the 
semigroup S = Z+ ∪ {0}. Take W = {0} ∪ (3Z+ ∪ {0}) × {0} × 
{0} ⊆ V, W is a semigroup linear subalgebra of V over S. V has 
infinite number of semigroup linear subalgebras. 
 
Example 2.4.32: Let V = (Z+ ∪ {0}) × (4Z+ ∪ {0}) × (Q+ 
∪ {0}) be a semigroup linear algebra over S = Z+ ∪ {0}.  This 
V too has infinite number of semigroup linear subalgebras.  
 
Now as in case of semigroup vector spaces we can define the 
basis and the generating set of a semigroup linear algebra with a 
small difference. B = {v1, …,  vn} ⊂ V is an independent set if  

vi ≠ svj; i ≠ j for some s ∈ S and vk ≠ 
m

i i
i 1

s v
=
∑ ; i < k < n; m < n,  

si ∈ S. 
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We say B is a generating subset of V if B is a linearly 
independent set and every element v ∈ V can be represented as 

v = 
n

i i
i 1

v
=

α∑ ; ai ∈ S; 1 ≤ i ≤ n. 

 
Example 2.4.33: Let V = 2Z+ ∪ {0} be a semigroup linear 
algebra over the semigroup S = Z+ ∪ {0} . The set B = {2} is a 
generating set of V and the number of elements in B is one thus 
V is set dimension 1 over S. 
 
Example 2.4.34: Let V = {Z+ ∪ {0}} × {Z+ ∪ {0}} × {Z+ 
∪ {0}} be a semigroup linear algebra over the semigroup S = Z+ 
∪ {0}.  V is a generated by the set B = {(100), (010), (001)} 
and V is of dimension three over S. 
 
Example 2.4.35: Let V = {Q+ ∪ {0}} be the semigroup linear 
algebra over the semigroup Z+ ∪ {0}= S. V is an infinite 
dimensional semigroup linear algebra over S.  
 
Example 2.4.36: Let V = {Q+ ∪ {0}} be a semigroup linear 
algebra over the semigroup S = {Q+ ∪ {0}}. V is generated by 
the set B = {1} and dimension of V is 1 over S = Q+ ∪ {0}.  
 
Example 2.4.37: Let  
 

V = { }
a b

a,b,c,d Z 0
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a semigroup linear algebra over the semigroup Z+ ∪ {0} = S. 
Then V is generated by  
 

B = 
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
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and dimension of V over S is four. This is the unique subset of 
V which generates V over S and no other subset of V can 
generate V.  
 
Example 2.4.38: Let V = Z+ ∪ {0} be a semigroup linear 
algebra over the semigroup S = 2Z+ ∪ {0}. B = {1} is a 
generating subset of V as 1 ∈ V, 2.1 ∈ V and 2 + 1 ∈ V as V is 
a semigroup.  
 
Thus we see dimension of V over S = 2Z+ ∪ {0} is also 1. If we 
consider S as a semigroup vector space over V then dimension 
of V is not 1 and the generating subset of V is not {2}. 
 
Example 2.4.39: Let V[x] = {all polynomials in the variable x 
with coefficients from the set Z+ ∪ {0}}, V[x] is a semigroup 
under addition. V[x] is a semigroup linear algebra over the 
semigroup S = {Z+ ∪ {0}}. Clearly B = {1, x, x2, x3, …, ∞} is 
the generating subset of V[x] and the dimension of V[x] is 
infinite over S. 
 
Example 2.4.40: Let P[x] = {all polynomials of degree less than 
or equal 7 in the variable x with coefficient from Z+ ∪ {0}}. 
P[x] is a semigroup under polynomial addition. Let S = Z+ ∪ 
{0} be a semigroup under addition. P[x] is a semigroup linear 
algebra over the semigroup S. Let B = {1, x, …, x7} ⊂ P[x]; B 
generates P[x] and dimension of P[x] is 8.  
 
Now having seen examples of semigroup linear algebra and 
their dimension we now proceed on to define the notion of 
subsemigroup subvector spaces of semigroup vector spaces and 
subsemigroup linear subalgebra of semigroup linear algebra. 

 
DEFINITION 2.4.8: Let V be a semigroup vector space over the 
semigroup S. Let P ⊂ V be a proper subset of V and T a 
subsemigroup of S. If P is a semigroup vector space over T then 
we call P to be a subsemigroup subvector space over T. 
 
We now illustrate this situation by the following example.  

 



 66

Example 2.4.41: Let V = Z+ ∪ {0} × Z+ ∪ {0} be a semigroup 
vector space over the semigroup S = Z+ ∪ {0}. Let P = {2Z+ 
∪ {0} × {0}} ⊆ V and T = 2Z+ ∪ {0} subsemigroup under 
addition. P is a subsemigroup subvector space over T = 2Z+ 
∪ {0} ⊆ S 
 
Example 2.4.42: Let V = (3Z+ ∪ {0} × 5Z+ ∪ {0} × 7Z+ ∪ {0} 
× 2Z+ ∪ {0}) be a semigroup vector space over the semigroup S 
= Z+ ∪ {0}. 

Let P = {{0} × 5Z+ ∪ {0} × {0} × {0}} ⊆ V. P is a 
subsemigroup subvector space over the subsemigroup T = 5Z+ 
∪ {0} ⊆ S.  
 
Example 2.4.43: Let V[x] = {set of all polynomials in the 
variable x with coefficients from Z+ ∪ {0}}. Let P [x] = {set of 
all polynomials of even degree with coefficients from Z+ 
∪ {0}} ⊆ V [x]. P [x] is a subsemigroup subvector space over 
the subsemigroup T = 2Z+ ∪ {0}.  
 
Example 2.4.44: Let V = {(0 0 0), (1 1 1), (0 0 1), (1 0 0), (1 1 
0)} be a set which is a semigroup vector space on the semigroup 
S = {0, 1}, under addition such that 1 + 1 = 1. Let P = {(0 0 0), 
(1 0 0)}. P is a subsemigroup subvector space over the set T = 
{1}.  

In fact every subset of V with (0, 0, 0) is a subsemigroup 
subvector space over the set T = {1} which is a subsemigroup of 
S under addition. 

 
Now we proceed on to define the notion of semigroup linear 
subalgebra of a semigroup linear algebra. 
 
DEFINITION 2.4.9: Let V be a semigroup linear algebra over 
the semigroup S. Let P ⊂ V be a proper subset of V which is a 
subsemigroup under ‘+’. Let T be a subsemigroup of S. If P is a 
semigroup linear algebra over the semigroup T then we call P 
to be a subsemigroup linear subalgebra over the subsemigroup 
T.  
 



 67

Note: A subsemigroup linear subalgebra is different from the 
notion of semigroup linear subalgebra. Also a semigroup linear 
subalgebra is not a subsemigroup linear subalgebra.  
 
We now proceed onto describe them with examples.  
 
Example 2.4.45: Let  
 

V = 1 2 6
i

7 8 12

a a a
a Z {0};1 i 12

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

"
"

 

 
be a semigroup linear algebra over the semigroup S = Z+ 
∪ {0}.  Let  
 

P = 1 6
i

7 12

a a
a 2Z {0};1 i 12

a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

"
"

 

 
be a semigroup under matrix addition, P a proper subset of V. T 
= {2Z+ ∪ {0}} the proper subsemigroup of S. P is a 
subsemigroup linear subalgebra of V over T.  
 
Example 2.4.46: Let {(100), (000), (010), (001), (111), (110), 
(011), (101)} = V be a semigroup under addition modulo 2. Let 
Z2 = {0,1} be the semigroup under addition modulo 2. V is a 
semigroup linear algebra over Z2 = {0,1} we see V has no 
subsemigroup linear subalgebras.  

 
Now we are interested in studying and defining such algebras.  
 
DEFINITION 2.4.10: Let V be a semigroup linear algebra over 
the semigroup S. If V has no subsemigroup linear subalgebras 
over any subsemigroup of S then we call V to be a pseudo 
simple semigroup linear algebra. 

 
In fact we have a large class of such semigroup linear algebras. 
Further these classes of semigroup linear algebras find their 
applications in coding theory. 
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Example 2.4.47: Let V = {(00), (10), (01), (11)} be a semigroup 
S = Z2 = {0,1} modulo addition 2. We see V is a pseudo simple 
semigroup linear algebra. 
 
Example 2.4.48: Let V = {(0000), (1111), (1100), (0011)} be a 
semigroup linear algebra over Z2 = {0,1} = S. V is also a pseudo 
simple semigroup linear algebra. (V is a semigroup under 
addition modulo 2). 
 
Example 2.4.49: Let V the 2n elements of the form {(000…0) 
(10…0), …, (011 111 … 1) (111 … 1)}. V is a semigroup linear 
algebra over Z2 = {0,1} the semigroup under addition, (n ≥ 2). 
V is a pseudo simple semigroup linear algebra. (V is a 
semigroup under addition modulo 2). 
 
Now having seen a very large class of pseudo simple linear 
algebras we now proceed on to define the notion of pseudo 
simple group subvector spaces in a semigroup linear algebra 
which are not semigroup linear subalgebras. 
 
DEFINITION 2.4.11: Let V be a semigroup linear algebra over a 
semigroup S. Suppose V has a proper subset P which is only a 
semigroup vector space over the semigroup S and not a 
semigroup linear algebra then we call P to be the pseudo 
semigroup subvector space over S. 
 
We illustrate this situation by the following examples.  
 
Example 2.4.50: Let V = {all polynomials of degree n with co-
efficient from Z+ ∪ {0}}.  V is a semigroup linear algebra over 
the semigroup S = Z+ ∪ {0}.  V is also a semigroup under 
addition of polynomials.  
 
P = {ax + b, px3 + dx + e, qx9 + rx2 + s / a, b, p, d, e, q, r, s ∈ Z+ 
∪  {0}}; P is just a set, P is a semigroup vector space over S. 
However P is not a semigroup linear algebra over S. So P is a 
pseudo semigroup subvector space of V. 
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Example 2.4.51: Let  
 

M2 × 2 = 
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a semigroup under matrix addition. M2×2 is a semigroup 
linear algebra over the semigroup S = Z+ ∪ {0}.  
Take  
 

P = 
a b 0 0

, a,b,c,d P
0 0 d e

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

; 

 
P is only a pseudo semigroup subvector space over S. We see P 
is not closed under matrix addition. 
 
 
Example 2.4.52: Let  

 

V = 1 2 3
i

4 5 6

a a a
| a Z {0}

a a a
+⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭
; 

 
V is a semigroup under matrix addition. V is a semigroup linear 
algebra over the semigroup S = Z+ ∪ {0}.  Take P  
 

= 1 2
1 2 3 4

3 4

a 0 a 0 b 0
, b,c,d,a ,a ,a ,a 2Z {0}

a a 0 0 c d
+

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
P ⊂ V but P is not a semigroup under matrix addition. Thus P is 
only a pseudo semigroup subvector space over S. 

 
Now we proceed on to define the new notion of pseudo 
subsemigroup vector subspace of a semigroup linear algebra. 
 
DEFINITION 2.4.12: Let V be a semigroup linear algebra over 
the semigroup S. Let P be a proper subset of V and P is not a 



 70

semigroup under the operations of V. Suppose T ⊆ S, a proper 
subset of S and T is also a semigroup under the same operations 
of S; i.e., T a subsemigroup of S, then we call P to be a pseudo 
subsemigroup subvector space over T if P is a semigroup vector 
space over T.  
 
We illustrate this situation by the following examples. 
 
Example 2.4.53: Let  
 

V = 1 2 3 4
i

5 6 7 8

a a a a
a Z {0};1 i 8

a a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the semigroup under matrix addition. Let S = Z+ ∪ {0} a 
semigroup under addition. V is a semigroup linear algebra over 
S. Take P  
 

1 1
1 2 1 2

2 2

a 0 0 0 0 0 c 0
, a ,a ,c ,c Z {0} V

a 0 0 0 0 0 c 0
+

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈ ∪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
P is just a subset of V and P is not closed under matrix addition. 
Take T = 2Z+ ∪ {0}, T is a subsemigroup of S. Clearly P is a 
semigroup vector space over T, hence P is a subsemigroup 
pseudo subvector space over T.  
 
Example 2.4.54: Let V5 = {(Z+ ∪ {0}) [x], i.e., set of all 
polynomials of degree less than or equal to 5 with coefficients 
from the semigroup S = Z+ ∪ {0}}.  V5 is a semigroup linear 
algebra over the semigroup S. Take P5 = {ax2 + bx + c, px3 + d, 
qx4 + e/ a, b, c, p, d, q and e ∈ Z+ ∪ {0}}.  Clearly P5 is only a 
proper subset of V5. P5 is not closed under the polynomial 
addition, so P5 is not a semigroup. Take T = 3Z+ ∪ {0} ⊆ S = 
{Z+ ∪ {0}}.  T is a semigroup under addition. Thus P5 is a 
semigroup vector space over the semigroup T. P5 is the pseudo 
subsemigroup vector subspace of V5. 
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An important natural question would be that will every 
semigroup linear algebra have a pseudo subsemigroup vector 
subspace. The answer is no. We prove this by the following 
example. 
 
Example 2.4.55: Consider the semigroup Z2 [x] of all 
polynomials with coefficients from the field Z2 under 
polynomial addition. Z2 [x] is a semigroup linear algebra over 
the semigroup Z2.  

Take P = {all polynomials x3 + 1, x5 + 1,…, xn + 1, n ∈ Z+}, 
P is only a proper subset of Z2[x]. P is not a closed set under 
polynomial addition. P is in fact a pseudo semigroup subvector 
space of Z2 [x]. Now Z2 has no proper subsemigroups other than 
the trivial {0} semigroup. So P is not a pseudo subsemigroup 
subvector space of Z2[x].  

Thus we see every semigroup linear algebra need not 
contain a pseudo subsemigroup vector subspace.  
 
In fact we have a class of such semigroup linear algebras which 
we state in the form of theorem.  
 
THEOREM 2.4.1: Let Zp [x] be the collection of all polynomials 
with coefficient from the prime field Zp of characteristic p. Zp[x] 
is a semigroup under polynomial addition. Further Zp is also a 
semigroup under addition modulo p. Zp [x] is a semigroup 
linear algebra over Zp. In fact Zp [x] has no subsemigroup 
linear subalgebras and Zp [x] has no pseudo subsemigroup 
subvector spaces. 
 
Proof: Given Zp [x] is a semigroup linear algebra over the 
semigroup Zp = {0, 1, …, p – 1}. Clearly Zp has no 
subsemigroups other than {0} and itself. So Zp [x] cannot have 
any non trivial subsemigroup linear subalgebras or pseudo 
subsemigroup vector subspaces. It can have only the {0} to be 
both these structure over {0}. 
 
Now in view of this we define two new algebraic structures.  
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DEFINITION 2.4.13: Let V be a semigroup linear algebra over 
the semigroup S. If V has no subsemigroup linear algebras over 
subsemigroups of S then we call V to be a simple semigroup 
linear algebra.  
 
 We have non trivial classes of simple semigroup linear 
algebras given by the example.  
  
Example 2.4.56: Let  
 

Mn × m = 
11 1m

ij p

n1 nm

a a
a Z ;1 i n ; i j m

a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

"
# #

"
 . 

 
This is a simple semigroup linear algebra. (m=n) can also occur. 
We see Mn×m is taken only as a semigroup under matrix 
addition.  
 
Example 2.4.57: Let V = Zp × … × Zp = {(x1, …, xn) / xi ∈ Ζp / 
1 ≤ i ≤ n}, V is a semigroup under addition. V is also a 
semigroup linear algebra which is a simple semigroup linear 
algebra.  
 
In fact both these semigroup linear algebras do not contain any 
proper pseudo subsemigroup subvector spaces. In view of all 
these we can have the following theorem before which, we just 
recall the definition of a simple semigroup. A semigroup S is S-
simple if S has no proper subsemigroups. The only trivial 
subsemigroups of S being {0} or φ and S itself.  
 
THEOREM 2.4.2: Let V be a semigroup. S a semigroup such that 
it is S-simple. If V is a semigroup linear algebra over S then V is 
a simple semigroup linear algebra over S.  
 
Proof: Given V is a semigroup linear algebra over the 
semigroup S. Also it is given the semigroup S has no proper 
subsemigroups i.e., {0} and S are the only subsemigroups of S 
which are trivial. So if W ⊆ V; W cannot be a subsemigroup 
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linear subalgebra over any T ⊆ S, T a subsemigroup of S. Hence 
the claim. 
 
Now we proceed on to define the new notion of pseudo simple 
semigroup linear algebra. 
 
DEFINITION 2.4.14: Let V be a semigroup under addition and S 
a semigroup such that V is a semigroup linear algebra over the 
semigroup S. If V has no proper subset P (⊆V) such that V is a 
pseudo subsemigroup vector subspace over a subsemigroup, T 
of S then we call V to be a pseudo simple semigroup linear 
algebra. 
 
We illustrate this situation by the following examples. 
 
Example 2.4.58: Let V = Z5 [x] be the collection of all 
polynomials with coefficients from Z5, Z5 a semigroup under 
addition modulo 5. V is semigroup linear algebra over the 
semigroup Z5. Z5 has no proper subsemigroups. Hence for any 
subset P of V; P cannot be a pseudo subsemigroup vector 
subspace. Hence V is a pseudo simple semigroup linear algebra. 
 
Example 2.4.59: Let  

V = M3×5 = ( ){ }ij ij 7a a Z ; 1 i 3;1 j 5∈ ≤ ≤ ≤ ≤  

 
be a semigroup under matrix addition modulo 7, with entries 
from Z7. S = Z7 be the semigroup under addition modulo 7. V is 
a semigroup linear algebra over Z7. Z7 has no proper 
subsemigroup. So for any subset P of V, P is not a pseudo 
subsemigroup vector subspace of V. So V is a pseudo simple 
semigroup linear algebra over Z7. 
 
We prove the following interesting theorem. 
 
THEOREM 2.4.3: Let V be a semigroup, S a S-simple semigroup 
i.e. S has no subsemigroups other than {0} or φ  or S. V be the 
semigroup linear algebra over S. V is a pseudo simple 
semigroup linear algebra over S. 
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Proof: Given V is a semigroup linear algebra over the 
semigroup S, where S is a S-simple semigroup, i.e., S has no 
proper subsemigroups. So for any subset P of V, P cannot be a 
subsemigroup algebraic structure. In particular P cannot be 
subsemigroup subvector space of V. So V is a pseudo simple 
semigroup linear algebra over S. 
 
Now we proceed onto define the notion of linear transformation 
of semigroup linear algebras defined over the same semigroup 
S. As in case of linear algebra transformation where both the 
linear algebras must be defined over the same field we see in 
case of semigroup linear algebras to have a linear 
transformation both of them must be defined over the same 
semigroup S. 
 
DEFINITION 2.4.15: Let V and W be any two semigroup linear 
algebras defined over the same semigroup, S we say T from V to 
W is a semigroup linear transformation if T(cα + β) = cT (α) + 
T (β) for all c ∈ S and α, β ∈ V.  
 
It is left, as an exercise to the reader to prove the set of all 
semigroup linear transformations from V to W is a semigroup 
linear algebra over S with composition of maps as the operation. 
 
Now we give few examples of semigroup linear algebras 
defined over the same semigroup S.  
 
Example 2.4.60: Let  
 

V = 1 2
i

3 4

a a
a Z {0};1 i 4

a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the semigroup under addition of matrices. S = Z+ ∪ {0} is a 
semigroup under addition. V is a semigroup linear algebra over 
S = Z+ ∪ {0}. Let W = {P × P / P = Z+ ∪ {0}}, W is a 
semigroup under component-wise addition. W is a semigroup 
linear algebra over S. Define T from V into W by  
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T ( )1 2
1 2 3 4

3 4

a a
a a ,a a

a a
⎛ ⎞⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

 
T is a semigroup linear transformation of V to W. 
 
Example 2.4.61: Let V and W be as in example 2.4.60. Define 
T1 from W into V by  
 

T1 (x, y) =
x y
y x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
for all (x, y) ∈ P × P.  

Prove T is a semigroup linear transformation from W into 
V.  
 
Now we proceed onto define a new notion of semigroup linear 
operators. 
 
DEFINITIONS 2.4.16: Let V be a semigroup linear algebra over 
the semigroup S. A map T from V to V is said to be a semigroup 
linear operator on V if T (cu + v) = cT (u) + T (v) for every c ∈ 
S and u, v ∈ V.  
 
The reader is left with the task of proving the collection of all 
semigroup linear operators on V is again a semigroup linear 
algebra over S.  
 
We now illustrate this situation by the following examples. 
 
Example 2.4.62: Let V = {set of all 2 × 3 matrices with entries 
from S}, be a semigroup under matrix addition. V is a 
semigroup linear algebra on the semigroup S = Z+ ∪ {0}.  
 
Define T: V → V by  
 

T 1 2 3

4 5 6

a a a
a a a

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
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= 1 2
1 2 4 5 6

4 5 6

0 a a 0
a ,a ,a ,a ,a Z {0}

a 0 a a
+

⎡ ⎤+⎛ ⎞
∈ ∪⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

.  

 
T is a semigroup linear operator on V. 
 
Example 2.4.63: Let V = P × P × P × P where P = Z+ ∪ {0} be 
a semigroup linear algebra over the semigroup S = Z+ ∪ {0}. 
Define T (x, y, z, w) = (x + y, y + z, z – w, x – w) for every 
v = (x, y, z, w) ∈ V. T is a semigroup linear operator on V. 
 
Example 2.4.64: Let V = P × P × P be a semigroup linear 
algebra over the semigroup S = 2Z+ ∪ {0}, where P = Z+ 
∪ {0}. Define T: V → V by T (x, y, z) = (y, z, x). Prove T is a 
semigroup linear operator which is one to one and invertible. 
 
Example 2.4.65: Let V = {all polynomials of degree less than or 
equal to 7 with coefficients from the semigroup S = Z+ 
∪ {0}}.  V is a semigroup under polynomial addition. V is a 
semigroup linear algebra over S. Define T : V → V by T (x) = 
x2, T (x2) = x3 , …, T (x6) = x ; i.e., T(xn) = xn+1 if 1 ≤ n ≤ 5 and 
T(x6) = x. Is T a 1 – 1 invertible semigroup linear operator on 
V?.  

 
Now we define yet another new type of semigroup linear 
operator on a semigroup linear algebra V over the semigroups. 
 
DEFINITION 2.4.17: Let V be a semigroup linear algebra over 
the semigroup S. Let W ⊆ V be a subsemigroup linear algebra 
over the semigroup P, P a proper subsemigroup of S. Let T : V 
→ W be a map such that T (αv + u) = T(α)  T(v) + T(u) for all 
u, v ∈ V and T (α) ∈ P. We call T a pseudo semigroup linear 
operator on V. 
 
We first illustrate this situation by the following example. 
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Example 2.4.66: Let V = P ×  P × P where P = Z+ ∪ {0} be a 
semigroup linear algebra over the semigroup S = Z+ ∪ {0}. Let 
W = 2Z+ ∪ {0} × {2Z+ ∪ {0}} × {2Z+ ∪ {0}} be a subset of V 
and W be a subsemigroup linear subalgebra over the 
subsemigroup L = 2Z+ ∪ {0}. Let T: V → W be defined by 
T(αu + v) = 2α (2u) + 2v, T is a pseudo linear operator on V. 

We call this map T to be a pseudo projection.  
 
We just give the definition of semigroup projection of a linear 
algebra. 
 
DEFINITION 2.4.18: Let V be a semigroup linear algebra over 
the semigroup S. Let W be a semigroup linear subalgebra of V 
over S. Let T be a linear operator on V. T is said to be a 
semigroup linear projection on W if  
 

T(v) = w, w ∈ W  
and  

T (αu + v) = αT (u) + T (v) 
T (v) and T (u) ∈ W  

 
for all α ∈ S and u, v ∈ V.  

 
We illustrate this situation by the following example.  

 
Example 2.4.67: Let V = P × P × P × P where P = Z+ ∪ {0}, V 
a semigroup linear algebra over the semigroup P = Z+ ∪ {0}.  
Let W = 2Z+ ∪ {0} × {2Z+ ∪ {0}} × {0} × {0} ⊆ V be a 
semigroup linear subalgebra of V over P. Define T : V → V by 
T (x, y, z, w) = (2x, 2y, 0, 0). Clearly T is a semigroup linear 
projection of V onto W.  
 
Example 2.4.68: Let  
 

V = 1 2 3 4
i

5 6 7 8

a a a a
a Z {0};1 i 8

a a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a semigroup linear algebra over the semigroup S = Z+ 
∪ {0}.   

Let  

W = 1 2 3 4
i

a a a a
a 2Z {0};1 i 4

0 0 0 0
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V; 

 
W is a semigroup linear subalgebra of V. Define T : V →  V by  
 

T 1 2 3 4 1 2 3 4

5 6 7 8

a a a a 2a 2a 2a 2a
a a a a 0 0 0 0

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
. 

 
Clearly T is a semigroup linear operator on V which is a 
semigroup linear projection of V into W.  
 
Example 2.4.69: Let V = P[x] where P = Z+ ∪ {0}, i.e., all 
polynomials in the variable x with coefficients from P. V is a 
semigroup linear algebra over P.  

Let W = {all polynomials of even degree with coefficients 
from P} ⊆ V; W is a semigroup linear subalgebra over P. 
Define a map  

T : V → W 
by  

T (α1x) = α1(x2) , 
T (α2x2) = α2x4, ...., 

T (αnxn) = αn x2n 
; 1 ≤ n ≤ ∞.  

Τ is clearly a semigroup linear operator which is a 
semigroup linear projection of V into W. 

 
Now having defined the notion of semigroup linear projection 
we proceed on to define semigroup projection of semigroup 
vector spaces. 
 
DEFINITION 2.4.19: Let V be a semigroup vector space over the 
semigroup S. Let W⊆ V be a semigroup vector subspace of V. A 
linear operator on V is said to be a semigroup projection of V 
into W if T: V → W i.e., T (v) = w for every v ∈ V and w ∈ W. 
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We illustrate this situation by the following example.  
 
Example 2.4.70: Let 
 

V = 1 2 5 i j

1 2 5

0 0 0a a a a ,b Z {0};
,

b b b0 0 0 1 i, j 5

+⎧ ⎫⎛ ⎞ ∈ ∪⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟⎜ ⎟ ≤ ≤⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

""
""

 

 
be a semigroup vector space over the semigroup S = Z+ ∪ {0}. 
Let  
 

W = 1 2 5
i

a a a
a 2Z {0};1 i 5

0 0 0
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

"
"

 ⊆ V 

 
be a semigroup subvector space of V. Let T: V → V defined by  

 

T = 1 5 1 5a a a a
0 0 0 0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

" "
" "

 

and 

T 
1 2 5

0 0 0 0 0 0
b b b 0 0 0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

" "
" "

; 

 
then T is a semigroup projection of V on W. 
 
We give yet another example of the semigroup projection of the 
semigroup vector spaces. 
 
Example 2.4.71: Let V = {0, 1, 3, 5, 7, …, (2n + 1)} be a 
semigroup vector space over the semigroup S = {0, 1} where 1 
+ 1 = 1. Let W = {0, 3, 32, …} ⊆ V, W is a semigroup vector 
subspace of V. Let T be a semigroup linear operator on V 
defined by T(x) = x if x is of the form 3n. T(x) = 0 otherwise. T 
is a semigroup linear operator on V, which is a semigroup linear 
projection of V on W. 
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Now we proceed onto define direct union of semigroup vector 
subspaces of a semigroup vector space. 
 
DEFINITION 2.4.20: Let V be a semigroup vector space over the 
semigroup S. Let W1, …, Wn be semigroup vector subspaces of V 
if V = ∪Wi and Wi ∩ Wj = φ or {0}, if i ≠ j then we say V is the 
direct union of the semigroup vector subspaces of the 
semigroup vector space V over S. 

 
We illustrate this situation by some examples. 

 
Example 2.4.72: Let  
 

V = 1 2 3
i j

1 2 3

0 0 0a a a
, a ,b Z {0};1 i 3

b b b0 0 0
+

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a semigroup vector space over the semigroup S = Z+ ∪ {0}. 
Take  
 

W1 = 1 2 3
i

a a a
a Z {0};1 i 3

0 0 0
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

W2 = i
1 2 3

0 0 0
b Z {0};1 i 3

b b b
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be semigroup vector subspaces of V over the semigroup S. 
Clearly V = W1 ∪ W2 and  
 

W1 ∩ W2 = 
0 0 0
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus V is the direct union of vector subspaces over the 
semigroups. 
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Example 2.4.73: Let  
 

1 4
1 2 3 i

2 5
4 5 6

3 6

a a
a a aa b a,b,c,d,a Z {0};

V , , a a
a a ac d 1 i 3

a a

+
⎧ ⎫⎛ ⎞

⎛ ⎞ ∈ ∪⎛ ⎞⎪ ⎪⎜ ⎟= ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ≤ ≤⎝ ⎠ ⎝ ⎠⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

; 

 
V is a semigroup vector space over the semigroup S = {Z+ ∪ 
{0}}. Take  
 

W1 = 
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 
W1 is a semigroup vector subspace of V.  
 

W2 = 1 2 3
i

4 5 6

a a a
a Z {0};1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
is a semigroup vector subspace of V over S.  
 

W3 = 
1 4

2 5 i

3 6

a a
a a a Z {0};1 i 6
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
is a semigroup vector subspace of V over the semigroup S. Thus 
V = W1 ∪ W2 ∪ W3 with Wi ∩ Wj = φ if i ≠ j, 1 ≤ i, j ≤ 3. 
Hence V is a direct union of vector subspaces of the semigroup 
vector space V.  
 
Example 2.4.74: Let V = {3Z+ ∪ {0}, 2Z+ ∪ {0}, 5Z+ ∪ {0}, 
…, nZ+ ∪ {0} / 2 ≤ n ≤ ∞} be a semigroup vector space over the 
semigroup S = Z+ ∪ {0} . Let W1 = 2Z+ ∪ {0}, W2 = (3Z+ ∪ 
{0}}, …, Wn = (n + 1) Z+ ∪ {0}. 2 ≤ n ≤ ∞ be a semigroup 
vector subspaces of V or S. 
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Clearly V = i
i 1

W
∞

=
∪  but Wi ∩ Wj ≠ φ or {0} so V is not a 

direct union of semigroup vector subspaces of V.  
 

In view of this we define yet another new notion called 
pseudo direct union of semigroup vector subspaces of a 
semigroup vector space. 

 
DEFINITION 2.4.21: Let V be a semigroup vector space over the 
semigroup S. Let W1, …, Wn be a semigroup subvector spaces of 

V over the semigroup S. If V = 
1=
∪
n

i
i

W  but Wi ∩ Wj ≠ φ or {0} if i 

≠ j then we call V to be the pseudo direct union of semigroup 
vector spaces of V over the semigroup S. 

 
We illustrate this situation by the following example. 
 
Example 2.4.75: Let 

 

V = 1 2 1 2 1 2

3 4 3 4 3 4

a a b b c c
, ,

a a b b c c
⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

, 

 
1 2 1 2 1 2

3 4 3 4 3 4

d d y y x x
, and

d d y y x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
where a1, a2, a3, a4 ∈ 2Z+ ∪ {0}, b1, b2, b3, b4 ∈ 3Z+ ∪ {0}, c1, 
c2, c3, c4 ∈ 5Z+  ∪ {0}, d1, d2, d3, d4 ∈ 7Z+  ∪ {0}, y1, y2, y3, y4 
∈ 11Z+ ∪ {0} and x1, x2, x3, x4 ∈ 19Z+ ∪ {0}} be the 
semigroup vector space over the semigroup S = Z+ ∪ {0}.  
 
Let  

W1 = 1 2
i

3 4

a a
a 2Z {0};1 i 4

a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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W2 = 1 2
i

3 4

b b
b 3Z {0};1 i 4

b b
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

W3 = 1 2
j

3 4

c c
c 5Z {0}; 1 j 4

c c
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

W4 = 1 2
j

3 4

d d
d 7Z {0};1 j 4

d d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

W5 = 1 2
k

3 4

y y
y 11Z {0}

y y
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and 

W6 = 1 2
i

3 4

x x
x 19Z {0};1 i 4

x x
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be semigroup vector subspaces of V over the semigroup S = Z+ 
∪ {0}.  

Clearly V = 
6

i
i 1

W
=
∪  we see Wi ∩ Wj ≠ φ or {0}, i ≠ j, 1 < i, j 

< 6. So V is the pseudo direct union of semigroup subvector 
spaces over S.  
 
Now we proceed onto define the new notion of direct sum of 
semigroup linear subalgebras of a semigroup linear algebra over 
a semigroup S. 
 
DEFINITION 2.4.22: Let V be a semigroup linear algebra over 
the semigroup S.  We say V is a direct sum of semigroup linear 
subalgebras W1, …, Wn of V if   
 

1. V  = W1 + … + Wn 
2. Wi ∩ Wj  =  {0} or φ if i ≠ j  (1 ≤ i, j ≤ n). 

 
We first illustrate this situation by the following example. 
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Example 2.4.76: Let V = P × P × P × P be a semigroup linear 
algebra over P = {0} ∪ Z+. Let W1 = P × {0} × {0} × {0}, W2 = 
{0} × P × {0} × {0}, W3 = {0} × {0} × P × {0} and W4 = {0} × 
{0} × {0} × P be the semigroup linear subalgebras of V. Clearly 
V = W1 + W2 + W3 + W4 and Wi ∩ Wj = {0} if i ≠ j.  

We see this way of representation in general is not unique. 
For if we take W1' = {0} × P × {0} × {P} and W2' = {P} × {0} × 
P × {0} we get V = W1' + W2' and W1' ∩W2' ={0} thus V is also 
a direct sum of W1' and W2'. Thus the direct sum in general is 
not unique.  
 
We give yet another example. 
 
Example 2.4.77: Let  
 

V = 
1 2 3

4 5 6 i

7 8 9

a a a
a a a a Z {0} and 1 i 9
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a semigroup linear algebra over the semigroup S = Z+ ∪ {0}. 
Let  

W1 = 
1

5 i 5 9

9

a 0 0
0 a 0 a ,a and a Z {0} V
0 0 a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ⊆⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a semigroup linear subalgebra of V. Take  
 

W2 = 
2 3

6 2 3 6

0 a a
0 0 a a ,a ,a Z {0}
0 0 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ⊆ V, 

 
W2 is also a semigroup linear subalgebra of V. Suppose  
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W3 = 4 4 7 8

7 8

0 0 0
a 0 0 a ,a ,a Z {0}
a a 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

⊆V; 

 
W3 a semigroup linear subalgebra of V. Then we see V = W1 + 
W2 + W3 with  

 

Wi ∩ Wj = 
0 0 0
0 0 0
0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 if i ≠ j. 

 
Thus V is a direct sum of W1, W2, W3 of V. We see this is not 
the only way of representing V. For take  
 

P1 = 
1

1 9

9

a 0 0
0 0 0 a , a Z {0} V
0 0 a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ⊆⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
is a semigroup linear subalgebra of V.  

 

P2 = 
2

4 6 2 4 6

0 a 0
a 0 a a , a , a Z {0}
0 0 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
is a semigroup linear subalgebra of V over S = Z+ ∪ {0}.  
Take  

P3 = 
3

5 3 5

0 0 a
0 a 0 a , a Z {0}
0 0 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ⊆ V 

 
is a semigroup linear subalgebra of V. 
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P4 = 7 8

7 8

0 0 0
0 0 0 a , a Z {0}
a a 0

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ⊆ V 

 
is a semigroup linear subalgebra of V. We see V = P1 + P2 + P3 
+ P4 with  

 

Pi ∩ Pj = 
0 0 0
0 0 0 i j 1 i, j 4
0 0 0

⎛ ⎞
⎜ ⎟ ≠ ≤ ≤⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
Thus V is a direct sum of semigroup linear subalgebras over the 
semigroup Z+ ∪ {0}. 
 Thus we see there exists more than one way of writing the 
semigroup linear algebra as the direct sum of semigroup linear 
subalgebras. 
 A semigroup linear algebra is said to be strongly simple if it 
cannot be written as a direct sum of semigroup linear 
subalgebras and has no proper semigroup linear subalgebra. 
Clearly the class of semigroup linear algebras V = Zp = {0, 1, 
…, p – 1}; p a prime over S = Zp = V are strong simple for in 
the first place they do have any semigroup linear subalgebras 
and it cannot be written as direct sum . All simple semigroup 
linear algebras are strongly simple however it is left as an open 
problem for the reader to find whether strongly simple implies 
simple. 
 
 
2.5 Group Linear Algebras  
 
Next we proceed onto define yet another new special class of 
linear algebras called group linear algebras and their 
generalizations group vector spaces. In this section we also 
enumerate a few of its properties.  
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DEFINITION 2.5.1: Let V be a set with zero, which is non empty. 
Let G be a group under addition. We call V to be a group vector 
space over G if the following condition are true. 
 

1. For every v ∈ V and g ∈ G gv and vg ∈ V. 
2. 0.v = 0 for every v ∈ V, 0 the additive identify of G.  

 
We illustrate this by the following examples. 
 
Example 2.5.1: Let V = {0, 1, 2, …, 15} integers modulo 15. G 
= {0, 5, 10} group under addition modulo 15. Clearly V is a 
group vector space over G, for gv ≡ v1 (mod 15), for g ∈ G and 
v, v1 ∈ V.  
 
Example 2.5.2: Let V = {0, 2, 4, …, 10} integers 12. Take G = 
{0, 6}, G is a group under addition modulo 12. V is a group 
vector space over G, for gv ≡ v1 (mod 12) for g ∈ G and v, v1 ∈ 
V. 
 
Example 2.5.3: Let  
 

M2 × 3 = 1 2 3
i

4 5 6

a a a
a { ,..., 4, 2,0,2,4,..., }

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ −∞ − − ∞⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 . 

 
Take G = Z be the group under addition. M2 × 3 is a group vector 
space over G = Z.  
 
Example 2.5.4: Let V = Z × Z × Z = {(a, b, c) / a, b, c ∈ Z}. V 
is a group vector space over Z. 
 
Example 2.5.5: Let V = {0, 1} be the set. Take G = {0, 1} the 
group under addition modulo two. V is a group vector space 
over G. 
 
Example 2.5.6: Let  
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V = 
0 1 1 1 1 0

, , ,
0 0 0 0 1 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

0 1 1 0 0 0
, ,

1 0 0 1 1 0
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  

0 0 0 0
,

0 1 0 0
⎫⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠⎭

 

 
be set. Take G = {0, 1} group under addition modulo 2. V is a 
group vector space over G. 
 
Example 2.5.7: Let  
 

V = 1 2 na a ... a 0 0 ... 0
, ,

0 0 ... 0 0 0 ... 0
⎧⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠⎩

 

i i
1 2 n

0 0 ... 0
a ,b Z; 1 i n

b b ... b
⎫⎛ ⎞ ⎪∈ ≤ ≤ ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
 

 
be the non empty set. Take G = Z the group of integers under 
addition. V is the group vector space over Z. 
 
Example 2.5.8: Let  
 

V = 1 1

2 2

a 0 ... 0 0 b 0 ... 00 0 ... 0
, ,

a 0 ... 0 0 b 0 ... 00 0 ... 0
⎧⎛ ⎞ ⎛ ⎞⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟⎜ ⎟
⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎩

 , 

…, 1
i i i

2

0 0 ... t
a , b ,..., t Z; 1 i 2

0 0 ... t
⎫⎛ ⎞ ⎪∈ ≤ ≤ ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
 

 
be the set of 2 × n matrices of this special form. Let G = Z be 
the group of integers under addition. V is a group vector space 
over Z. 
 
Example 2.5.9: Let  
 

V = 1 2

3

0 0a 0 0 a
, ,

a 00 0 0 0
⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪
⎨ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

,  
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1 2 3 4
4

0 00 0
, a ,a ,a ,a Z

0 a0 0
⎫⎛ ⎞⎛ ⎞ ⎪∈ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎪⎭
 

 
be the set. Z = G the group of integers V is a group vector space 
over Z.  

Now having seen examples of group vector spaces which 
are only set defined over an additive group. 
 
Example 2.5.10: Let V = {(0 1 0 0), (1 1 1), (0 0 0), (0 0 0 0),  
(1 1 0 0), (0 0 0 0 0), (1 1 0 0 1), (1 0 1 1 0)} be the set. Take Z2 
= G = {0, 1} group under addition modulo 2. V is a group 
vector space over Z2.  
 
Example 2.5.11: Let  
 

V = 
1 2 2 1 1

1
2 2

2
3 3

a a a b 0 0 0 c 0
0 0 a '

0 0 0 , b 0 0 , 0 c 0 , ,
0 0 a '

0 0 0 b 0 0 0 c 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎛ ⎞⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎨ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 

i i i 1 2

0 0 0
0 0 0

0 0 0 , a b c Z; a ' ,a ' Z;1 i 3
0 0 0

0 0 0

⎫⎛ ⎞
⎛ ⎞ ⎪⎜ ⎟ ∈ ∈ ≤ ≤ ⎬⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎪⎜ ⎟

⎝ ⎠ ⎭

 

 
be the set, Z = G the group under addition. V is just a set but V 
is a group vector space over Z. 

It is important and interesting to note that this group vector 
spaces will be finding their applications in coding theory. 
 
Now we proceed onto define the notion of substructures of 
group vector spaces. 
 
DEFINITION 2.5.2: Let V be the set which is a group vector 
space over the group G. Let P ⊆ V be a proper subset of V. We 
say P is a group vector subspace of V if P is itself a group 
vector space over G. 
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Example 2.5.12: Let  
 

V = 1 2 1 2
1 2

1 2

0 00 0 a a a 0 0 a
, , , , a ,a Z

a a0 0 0 0 0 0 0 0
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the set. V is a group vector space over the group G = Z the 
group of integers under addition. Take  
 

P = 1 2
1 2

1 2

0 00 0 a a
, , a ,a Z V

a a0 0 0 0
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
P is a group vector subspace of V over Z. It is important and 
interesting to note that every proper subset of V need not be a 
group vector subspace of V. Take  
 

T = 1 2

1

0 0a a
, V

a 00 0
⎛ ⎞⎛ ⎞⎛ ⎞

⊆⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
T is not a group vector subspace of V it is only a set and has no 
additional properties. 
 
Example 2.5.13: Let V = {(1 1 0 0 1), (0 0 0 0 0), (1 0 0 1 0),  
(0 0 0), (1 1 1), (1 1 1 1), (0 0 0 0), (1 1 0 0), (1 0 0 1)} be a 
proper set. Take G = {0, 1} be a group under addition modulo 2. 
V is a group vector space over G. P = {(1 1 0 01), (0 0 0 0 0)} ⊆ 
V; P is a group vector subspace of V over G. 

P1 = {(0 0 0), (1 1 1)} ⊂ V, 
P1 is also a group vector subspace of V over G. 

T = {(1 1 1), (1 1 0 0)} ⊂ V, 
T is not a group vector subspace of V over G. 
 
Example 2.5.14: Let  
 

V = 1 2
i

3 4

a a
a Z; 1 i 4

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a group vector space over the group G = Z. Let  
 

P = 1 2
i

3 4

b b
b 2Z; 1 i 4 V

b b
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
P is a group vector subspace over G.  
 
We now define the notion of linearly independent subset of a 
group vector space. 
 
DEFINITION 2.5.3: Let V be a group vector space over the 
group G. We say a proper subset P of V to be a linearly 
dependent subset of V if for any p1, p2 ∈ P, (p1 ≠ p2) p1 = ap2 or 
p2 = a'p1 for some a, a' ∈ G. If for no distinct pair of elements 
p1, p2 ∈ P we have a, a1 ∈ G such that p1 = ap2 or p2 = a1p1 
then we say the set P is a linearly independent set.  
 
We now illustrate this situation by some examples. 
 
Example 2.5.15: Let  
 

V = 1 2
1 2

1 2

0 0a a 0 0
, , a ,a Z

a a0 0 0 0
⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group vector space over the group of integers Z. Take  

 

P = 
2 4 1 2 6 12 5 10

, , , V
0 0 0 0 0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

; 

 
P is a linearly dependent subset in V over Z. Take  
 

T = 
1 1 0 0

,
0 0 1 1

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

. 
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T is a linearly independent subset of V over Z. 
 

T1 = 
1 1 4 6 2 3

, , V
0 0 0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

. 

 
T1 is a linearly dependent set over Z.  

 

T2 = 
1 1 4 6

, V
0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

, 

 
T is a linearly independent set over Z.  
 
An observation which is important and interesting is that both T 
and T2 are linearly independent subsets of V but both of them 
are distinctly different in their behaviour. To this end we 
proceed onto define the notion of a generating subset of a group 
vector space V over the group G. 
 
DEFINITION 2.5.4: Let V be a group vector space over the 
group G. Suppose T is a subset of V which is linearly 
independent and if T generates V i.e., using t ∈ T and g ∈ V we 
get every v ∈ V as v = gt for some g ∈ G then we call T to be 
the generating subset of V over G. The number of elements in V 
gives the dimension of V. If T is of finite cardinality V is said to 
be finite dimensional otherwise V is said to be of infinite 
dimension. 
 
 We illustrate this situation by the following example. 
 
Example 2.5.16: Let V = P = {(1 1 0 0), (0 0 0 0), (0 0 0 1), (1 1 
1), (0 1 1), (0 1 0), (0 0 0)} be the given set. V is a group vector 
space over the group G = Z2 = {0, 1} addition modulo 2. Take T 
= {(1 1 0 0), (0 0 0 1), (1 1 1), (0 1 1), (0 1 0) ⊆ V; V is linearly 
independent set and dimension of V is 5 as T generates V.  

It is important to note that no proper subset of T will 
generate V. Thus T is the only generating set of V and 
dimension of V is 5. 
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Example 2.5.17: Let  
 

V = 1 1
1

1 1

0 0 a a
, a Z

a a 0 0
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭
 

 
V is a group vector space over the group Z.  
 

T = 
1 1 0 0

, ,
0 0 1 1

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
is the generating set of V and no other set can generate V. Thus 
the group vector space V is of dimension two over Z. Clearly T 
is a linearly independent set. 
 
Example 2.5.18: Let  
 

V = 1 2
1 2

1 2

0 0a a
, a ,a Z

a a0 0
⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 . 

 
V is a group vector space over the group Z. Take  
 

T = 
1 0 0 1 0 0 0 0

, , , V
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

; 

 
T is a linearly independent subset of V but T is not a generating 
subset of V. Take  
 

T1 = 
1 1 0 0 1 0 0 1 0 0 0 0

, , , , , V
0 0 1 1 0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭  

   
T1 is a linearly independent subset of V but T is not the 
generating subset of V over Z. In fact V cannot be generated 
over Z by any finite subset of V. Thus dimension of V over Z is 
infinite. 

Take  
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P =  
0 0 0 0 1 7 2 5

, , ,
1 2 5 7 0 0 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

, 

 
2 2 7 0 5 0

, , V
0 0 0 0 0 0

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⊆⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

. 

 
P is a linearly independent subset of V but not a generating 
subset of V over Z. 
 Take  
 

S = 
0 0 0 0 7 0 1 0

, , , V
1 2 3 6 0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
S is not a linearly independent subset of V over Z. 
 
Example 2.5.19: Let V = Z × Z × Z = {(x1 x2 x3) | xi ∈ Z; 1 ≤ i ≤ 
3}, V is a group vector space over Z. V is of infinite dimension 
over Z. Take T = {(1 1 0), (1 1 0), (0 0 1), (1 0 0), (0 1 0), (0 1 
1)} ⊆ V is a linearly independent subset of V but T cannot 
generate V over Z. Take T1 = {(1 1 1), (5 7 8), (7 8 1), (0 0 1)} 
⊆ V. T1 is again a linearly independent subset of V but not a 
generating subset of V over Z. Take W = Z × {0} × {0} ⊂ V to 
be the group vector subspace of V over Z. If T = {(1 0 0)} ⊂ W 
is the generating subset of W over Z and dimension of W over Z 
is 1. Suppose U = Z × Z × {0} ⊆ V; U is a group vector 
subspace of V over Z. 

T1 = {(1 1 0), (0 1 0), (1 0 0)} ⊂ V is a linearly independent 
subset of U but T1 cannot generate U. In fact no finite subset of 
U can generate U. Thus the group vector subspace U of V is of 
infinite dimension over Z. Thus the group vector space V over Z 
has both group vector subspaces of finite and infinite dimension 
over Z. 

 
Example 2.5.20: Let V = {(a a a a) | a ∈ Z} be a group vector 
space over the group Z. Take T = {(1 1 1 1)} ⊆ V. T is the 
generating subset of V. In fact dimension of V over Z is one. 
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Further if we take W = {〈(5 5 5 5)〉} ⊆ V. W is a proper 
subset of V and W is a proper group vector subspace of V 
generated by the set 〈(5 5 5 5)〉 and dimension of W is also one. 
Thus V is a group vector space over Z of dimension one. W = 
{(x, x, x, x) | x ∈ 5Z} ⊆ V is also of dimension one over Z but 
W is a proper group vector subspace of V.  

It is still interesting to note that V has infinite number of 
proper group vector subspaces of dimension one. Take S = {(x x 
x x), (y y y y) | x ∈ 2Z and y ∈ 3Z} ⊆ V. S is a subset of V, V is 
of dimension one over Z. But S is a proper group vector 
subspace of V over Z and dimension of S over Z is two. The 
generating proper subset of S which generates S is given by T1 
= {(2 2 2 2), (3 3 3 3)} ⊆ S. T1 is a linearly independent subset 
of S and generates S over Z.  

Thus it is still interesting and important to note that a one 
dimensional group vector space over the group has proper group 
vector subspaces of dimension greater than one. This sort of 
situations can occur only in case of group vector spaces. 

This looks as if one cannot algebraically comprehend but 
concrete examples confirm the statement and establish it. In fact 
this one dimensional group vector space has proper group vector 
subspaces of infinite dimension also. 
 
For take S1 = {(xn, xn, xn, xn) | xn a prime} ⊆ V. Thus  

 
S1 = {〈(2 2 2 2)〉, 〈(3 3 3 3)〉, 〈(5 5 5 5)〉 , … } ⊆ V.  

 
Thus S1 is generated by  
 
T = {(2 2 2 2), (3 3 3 3), (5 5 5 5), …, (p p p p), … p, a prime}.  

 
Clearly, cardinality of T is infinite. Thus V = {(x x x x) | x ∈ Z} 
is of dimension one as it is generated by {(1 1 1 1)} but it has a 
proper group vector subspace S1 which is of infinite dimension 
as number of primes in Z is infinite.  
 
Now having seen such types of group vector spaces we proceed 
onto give more examples of infinite dimensional group vector 
spaces. 
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Example 2.5.21: Let V = {R × R × R, R reals} be a group 
vector space over the group Z. V is infinite dimensional. Let W 
= {(x x x) | x ∈ Z} ⊆ V be a proper subset of V, W is a finite 
dimensional group vector subspace of V. In fact T = {(1 1 1)} is 
the generator of W and W is of dimension one over Z. 
 Thus we see an infinite dimension group vector space can 
have as group vector subspaces of dimension one. This is a case 
just opposite to the case given in the earlier example where a 
one dimensional group vector space can have infinite 
dimensional group vector subspaces. 
 
Now we proceed onto define yet another new type of 
substructures in a group vector space called the subgroup vector 
subspaces and illustrate them with examples. 
 
DEFINITION 2.5.5: Let V be a group vector space over the 
group G. Let W ⊆ V be a proper subset of V. H ⊂ G be a proper 
subgroup of G. If W is a group vector space over H and not 
over G then we call W to be a subgroup vector subspace of V. 
 
Example 2.5.22: Let V = Z6 × Z6 × Z6 be a group vector space 
over Z6. W = {(2 2 2), (0 0 0), (1 1 1), (4 4 4)} ⊆ V. W is a 
subgroup vector subspace over the subgroup {0, 2, 4} = H ⊆ Z6. 
Clearly W is not a vector subspace over Z6 as 3 (1 1 1) = (3 3 3) 
∉ W.  
 
We give yet another example of subgroup vector subspace over 
a subgroup of the group over which it is defined. 
 
Example 2.5.23: Let V = Z12 × Z12 × Z12 be a group vector 
space over the group G = Z12. Take H = {0, 6}. Let W = {(1 1 
1), (2 2 2), (6 6 6), (0 0 0), (3 3 3), (4 4 4)} ⊆ V. W is a 
subgroup vector subspace over the subgroup H. Clearly W is 
not a group vector subspace over Z12. 
 
Now it may so happen that a subset W may be a group vector 
subspace as well as subgroup vector subspace. We call in this 
situation W to be a duo subgroup vector subspace. 
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DEFINITION 2.5.6: Let V be a group vector space over the 
group G. Let W ⊆ V. If W is a subgroup vector subspace over a 
proper subgroup, H of G as well as W is a group vector 
subspace of V over G then we call W to be the duo subgroup 
vector subspace of V. 
 
We illustrate this with some examples before we proceed onto 
describe a few of its properties. 
 
Example 2.5.24: Let V = Z12 × Z12 × Z12 be the group vector 
space over the group G = {0, 2, 4, 6, 8, 10}. Let W = {0} × Z12 
× {0} ⊆ V. W is a group vector subspace of V. Clearly W is 
also a subgroup vector subspace over H = {0, 6} a subgroup of 
G. Suppose S = {(0 0 0), (1 1 1), (6 6 6)} ⊂ V. S is a subgroup 
vector subspace over H = {0, 6}. Clearly S is not a group vector 
subspace over G.  
 
In view of this we prove the following theorem. 
 
THEOREM 2.5.1: Let V be a group vector space over the group 
G. If W is a group vector subspace of V then W need not be a 
subgroup vector subspace of V for some subgroup H of G. 
 
Proof: We illustrate this situation by examples. Let V = Z12 × 
Z12 × Z12 × Z12 be a group vector space over the group G = Z12. 
W = Z12 × {0} × {0} × Z12 ⊂ V, W is a group vector subspace of 
V. W is also a subgroup vector subspace of V for every 
subgroup H of G. V = Z11 × Z11 is a group vector space over the 
group Z11. W = Z11 × {0}, W is only a group vector subspace of 
V and not a subgroup vector subspace of V as Z11 has no proper 
subgroups. Thus V has no subgroup vector subspaces. 
 Conversely we have the following theorem. 
 
THEOREM 2.5.2: Let V be a group vector space over a group G. 
Suppose S ⊂ V is a subgroup vector subspace of V then S need 
not in general be a group vector subspace of V. 
 
Proof: We prove this theorem only by a counter example. Let V 
= Z10 × Z10 × Z10 × Z10 be a group vector space over the group 
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Z10. Take S = {(1 1 1 1), (0 0 0 0), (5 5 5 5)} ⊆ V. S is a 
subgroup vector subspace of V over the subgroup H = {0, 5} ⊂ 
Z10. Clearly S is not a group vector subspace of V over Z10 as 
for 3 ∈ Z10, 3 (1 1 1 1) = (3 3 3 3) ∉ S. Hence the claim.  

Thus a subgroup vector subspace of a group vector space V 
in general need not be a group vector subspace of V.  
 
THEOREM 2.5.3: Let V be a group vector space over the group 
G if W ⊂ V is a duo subgroup vector subspace of V then W is 
both a group vector subspace of V as well as W is a subgroup 
vector subspace of V. 
 
Proof: The proof follows from the very definition of duo 
subgroup vector subspaces. 

It may so happen we may find group vector spaces which 
has no subgroup vector subspaces over a proper subgroup. We 
define them in the following. 
 
DEFINITION 2.5.7: Let V be a group vector space over the 
group G. Suppose V has no subgroup vector subspaces then we 
call V to be a simple group vector space.  
 
We first illustrate this situation by the following examples. 
 
Example 2.5.25: Let V = Z7 × Z7 × Z7 be a group vector space 
over the group Z7. Since Z7 has no proper subgroups under 
addition; V cannot have any subgroup vector subspaces. Thus V 
is a simple group vector space over Z7. 
 
Example 2.5.26: Let V = Z5 × Z5 be a group vector space over 
the group G = Z5. V is a simple group vector space over Z5. 
 
Example 2.5.27: Let V = {(1 1 1 1), (0 0 0 0), (1 0 1 1 0), (0 0 0 
0 0), (1 1 0 0 1), (1 1 1), (0 0 0), (1 0 0), (0 1 1)}; V is a group 
vector space over the group Z2 = {0, 1}. Clearly V has no 
proper subset which can be subgroup vector subspace of V i.e., 
V is a simple group vector space.  
 
In view of the above examples we have the following theorem. 
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THEOREM 2.5.4: Let V be a group vector space over a group G 
which has no proper subgroups then V is a simple group vector 
space over G. 
 
Proof: Obvious from the fact that the group G has no proper 
subgroup for a proper subset W to be a subgroup vector 
subspace; we need a proper subgroup in G over which W is a 
group vector space. 

If G has no proper subgroup the existence of subgroup 
vector subspace is impossible. 
 
Now we show we have a large class of simple group vector 
spaces. 
 
THEOREM 2.5.5: Let  

V = ...
−

× ×p p

n times

Z Z  

be a group vector space over the group Zp where p is a prime 
i.e., Zp is a group under addition modulo p. V is a simple group 
vector space. 
 
Proof: Clear from the fact that Zp has no proper subgroups. 
Hence the claim. 
 
Next we proceed on to define the notion of semigroup vector 
subspace of the group vector space V over G. 
 
DEFINITION 2.5.8: Let V be a group vector space over the 
group G. Let W ⊂ V and S ⊂ G where S is a semigroup under 
‘+’. If W is a semigroup vector subspace over S then we call W 
to be pseudo semigroup vector subspace of V.  
 
We illustrate this by some examples. 
 
Example 2.5.28: Let V = Z × Z × Z be a group vector space 
over Z. W = Z+ ∪ {0} × Z+ ∪ {0} × {0} ⊂ V. W is a semigroup 
vector space over the semigroup S = Z+ ∪ {0} ⊆ Z. Thus W is a 
pseudo semigroup vector subspace of V. 
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Example 2.5.29: Let  

V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group vector space over the group Z.  
 

W = 
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
is a subset of V and W is a semigroup vector subspace over S = 
Z+ ∪ {0}. Thus W is a pseudo semigroup vector subspace of V. 
 
Example 2.5.30: Let V = {(1 1 0), (0 0 0), (0 1 1), (1 0 1), (0 0 
1)} be a group vector space over the group Z2 = {0, 1}. Clearly 
V has no pseudo semigroup vector subspace. 
 
Example 2.5.31: Let V = Z5 × Z5 × Z5 × Z5 be a group vector 
space over Z5; V has no pseudo semigroup vector subspace. 
 
Now we define yet another type of subspace viz. pseudo set 
vector subspace of a group vector space V. 
 
DEFINITION 2.5.9: Let V be a group vector space over the 
group G. Suppose W ⊂ V is a subset of V. Let S be a subset of 
G. If W is a set vector space over S then we call W to be a 
pseudo set vector subspace of the group vector space. 
 
We now give some illustrations. 

 
Example 2.5.32: Let V = {(1 1 1 0), (0 0 0 0), (1 1 0 0), (0 0 1 
0)} be a group vector space over the group Z2 = {0, 1}. Take W 
= {(1 1 1 0), (0 0 1 0)} ⊂ V be a subset of V W is a pseudo set 
vector space over the set S = {1} ⊆ Z2. 
 
Example 2.5.33: Let P = Z × Z × Z × Z be a group vector space 
over the group Z.  
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Take W = {(1 1 1 1), (0 0 0 0), (1 2 0 1), (3 3 5 1), (7 1 2 3), 
(1 0 0 1)} a proper subset of P. W is a pseudo set vector 
subspace over the set S = {0, 1} ⊆ Z. 

 
Example 2.5.34: Let V = Z3 × Z3 × Z3 × Z3 be a group vector 
space over Z3. Take W = {(1 1 1), (2 2 2), (0 0 0), (1 0 1), (2 0 
2)} ⊂ V. Let S = {1, 2} a proper subset of Z3 W is a set vector 
space over S. Thus W is a pseudo vector subspace of V. 
 
It is an open problem whether there exists a group vector space, 
which has no pseudo, set vector subspaces. 
 
Now we proceed onto define the notion of transformations of 
group vector spaces, which will be known as group linear 
transformations. 
 
DEFINITION 2.5.10: Let V and W be two group vector spaces 
defined over the same group G. A map T from V to W will be 
called as the group linear transformation if 

T (αv) = αT (v) 
for all α ∈ G and for all v ∈ V.  
 
We illustrate this by the following examples. 
 
Example 2.5.35: Let V = Z × Z × Z and W = Q × Q × Q × Q be 
two group vector spaces over the group Z. Let T : V → W be 
defined by T (x y z) = (z y x y). Clearly T is a group linear 
transformation of V into W. 
 
Example 2.5.36: Let V = {(0 0 0), (1 1 1), (0 1 0), (1 1 1 1), 
(0 0 0 0), (1 1 0 1), (0 1 1 1)} and  

 

W = 
1 1 0 0 0 0 1 1

, , , ,
0 1 1 1 0 0 1 1

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 
0 1 1 1 0 0 1 0 1 0

, , , ,
0 0 1 0 1 1 0 1 0 0

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭
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be the group vector space over the group G = Z2 = (0, 1). 
 

T (x y z) = 
x y
z 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

and   

T (x y z w) = 
x y
z w

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
for (x y, z) and (x y z w) ∈ V 

T (0 0 0) = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (1 1 1) = 
1 1
1 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (0 1 0) = 
0 1
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (1 1 1 1) = 
1 1
1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (0 0 0 0) = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (1 1 0 1) = 
1 1
0 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

T (0 1 1 1) = 
0 1
1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
T is a group linear transformation of V to W. 
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We have for a group linear transformation T, T–1 to exist 
provided the inverse mapping from W to V exists, otherwise we 
may not have T–1 to exist for the T. Thus for a given T, T–1 may 
or may not exist. 
 
Example 2.5.37: Let V = {(a a a a)| a ∈ Z} and  
 

W = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be two group vector spaces over the group Z. A map  
 

T {(a a a a)} = 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
for every (a a a a) ∈ V is both one to one and on to for define 
 

T–1 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

= (a a a a). 

T–1 exists.  
 

T–1 o T (a a a a)   =   T–1 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  =   (a a a a) 
and   

T o T–1 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

  =   T(a a a a) 

       =   
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus T o T–1 is identity map on W and T–1 o T is the identity 
map on V. We call the group linear transformation T to be an 
invertible one. 
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Example 2.5.38: Let V = Z12 × Z12 × Z12 × Z12 and  
 

W = 12

a b
a,b,c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be two group vector spaces over the group Z12. T be a map such 
that  

T(a, b, c, d) = 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

for every a, b, c, d ∈ Z12.  
 
T is a group linear transformation of V into W, in fact T is one 
to one and onto T–1 exists. 
 
Next we proceed onto define the notion of group linear 
operations on V, V a group vector space over the group G. 
 
DEFINITION 2.5.11: Let V be a group vector space over the 
group G. Let T from V to V be a group linear transformation 
then we call T to be a group linear operator on V.  
 
We now illustrate group linear operator on V by some 
examples. 
 
Example 2.5.39: Let V = {(a b c d) | a, b, c, d ∈ Z} be a group 
vector space over Z. Define T from V to V by T {(a b c d)} = (d 
c b a) for every (a, b, c, d) ∈ V. Clearly T is a group linear 
operator on V.  

In fact it can further be verified T–1 exists and T–1 o T = T o 
T–1 = identity group linear operator on V for 
 
 T–1 o T {(a b c d)}  =   T–1 {(d c b a)} 
    =   (a b c d); 
i.e., T–1 o T is identity on V. Now  
 
 T o T–1 {(a b c d)}  =  T {(d c b a)} 
    =  (a b c d). 
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T o T–1 is also the group linear operator which is the identity 
map in this case. 
 
All identity maps on V are identity group linear operator on V. 
 
Example 2.5.40: Let  

V = 10

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
 

 
be the group vector space over the group Z10. Define a map T 
from V to V by  

T 
a b a b
c d 0 0

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
for every a, b, c, d ∈ V. T is a group linear operator on V, but T 
is clearly not an invertible group linear operator on V. 
 
The reader is left with the task of finding  
 

1. The algebraic structure given by the set of all group 
linear operators from the group vector space V to the 
group vector space W both V and W defined over the 
same group.  

2. The algebraic structure of the set of all group linear 
operators from V into V, V the group vector space 
defined over the group G.  

 
We denote the set of all group linear transformations from V to 
W defined over the group G by MG (V,W) and that the set of all 
group linear operators of V by MG (V, V). 
 

1. What is the algebraic structure of MG (V,W) ? 
2. What is the algebraic structure of MG (V,V)? 

 
Now we proceed on to define the notion of group linear algebra 
over a group. 
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DEFINITION 2.5.12: Let V be a group vector space over the 
group G. If V is again a group under addition then we call V to 
be a group linear algebra over G.  
 
It is clear from the very definition every group linear algebra 
defined over a group G is a group vector space over the group G 
but a group vector space is never a group linear algebra i.e., α1 
(v1 + v2) = α1 v1 + α1 v2 for all α1 ∈ G and v1, v2 ∈ V may not be 
always true in V. 
 
Example 2.5.41: Let  

V = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a group linear algebra over Z with matrix addition on V. 
 
Example 2.5.42: Let V = {(0 0 0), (1 1 0), (0 0 1), (1 1 1), (0 0 0 
0), (0 0 1 0), (0 0 1 1)} be a group vector space over Z2 = {0, 1}. 
V is not closed under any additive operation so V is not a group 
linear algebra over G = Z2.  
 
Thus we see in general all group vector spaces are not group 
linear algebras. 
 
Example 2.5.43: Let V = {(aij)m × n | aij ∈ Z12} be the collection 
of all m × n matrices with entries from Z12. V is a group under 
matrix addition. V is a group linear algebra over Z12. 
 
Example 2.5.44: Let V = {(0 0 0 0), (1 0 0 0), (0 1 0 0), (0 0 1 
0), (0 0 0 1), (0 0 1 1), (0 1 0 1), (1 1 0 0), (0 1 1 0), (1 1 1 0), (0 
1 1 1), (1 1 0 1), (1 0 1 1), (1 1 1 1), (1 0 0 1), (1 0 1 0)} with 
entries from Z2 = {0, 1}. V is a group linear algebra over the 
group Z2 = {0, 1}. 
 
Example 2.5.45: Let V = {(a b c) | a, b, c ∈ Z}, V under 
component wise addition is a group; V is a group linear algebra 
over Z. 
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Example 2.5.46: Let V = {Z10 × Z10 × Z10 × Z10 × Z10 = (a1, a2, 
…, a5) | ai ∈ Z10; 1 ≤ i ≤ 5} be a group under component wise 
addition, V is a group linear algebra over Z10.  
 
In case of group linear algebras the linear independence and the 
dimension are little different from that of the group vector 
spaces. 
 
DEFINITION 2.5.13: Let V be a group linear algebra over the 
group G. Let X ⊂ V be a proper subset of V, we say X is a 
linearly independent subset of V if X = {x1, …, xn} and for some 
αi ∈ G, 1 ≤ i ≤ n, α1x1 + … + αn xn = 0 if and only if each αi = 
0. 

A linearly independent subset X of V is said to generate V if 

every element of v ∈ V can be represented as v = 
n

i i
i 1

x
=

α∑ , αi ∈ 

G (1 ≤ i ≤ n).  
 
We illustrate this situation by the following examples. 
 
Example 2.5.47: Let V = {(0 0 0), (1 0 0), (0 0 1), (0 1 0), (1 1 
0), (1 0 1), (0 1 1), (1 1 1)} be the group linear algebra over the 
group Z2 = {0, 1}. V is generated by the set X = {(1 0 0), (0 1 
0), (0 0 1)}. Clearly X is also a linearly independent subset of V 
over Z2 = {0, 1}. 
 
Thus dimension of V is 3. Hence as in case of usual vector 
spaces we say the dimension of a group linear algebra is also the 
cardinality of the linearly independent subset X of V which 
generates V. 

 
Example 2.5.48: Let  
 

V = 1 2 3
i

4 5 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 



 

 

 

108

be the group linear algebra over the group Z. Let  
 

X = 
1 0 0 0 1 0 0 0 1

, , ,
0 0 0 0 0 0 0 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

 
0 0 0 0 0 0 0 0 0

, ,
1 0 0 0 1 0 0 0 1

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

⊆ V 

 
be the generating subset of V which is also linearly independent. 
Thus the dimension of the group linear algebra V is 6. 
 
Example 2.5.49: Let  
 

V = 6

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a group linear algebra over the group Z6. The set  
 

X = 
0 1 1 0 0 0 0 0

V
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

 
is the linearly independent subset of V which generates V. 
Clearly dimension of V is four. 
 
Example 2.5.50: Let V = Z6 × Z6 × Z6 × Z6 be the group linear 
algebra over the group Z6. Now X = {(1 0 0 0), (0 0 0 1), (0 1 0 
0), (0 0 1 0)} is the generating set of V. The dimension of V is 
four over Z6. 
 
Example 2.5.51: Let V = Z6 × Z6 × Z6 × Z6 × Z6 be the group 
linear algebra over the group Z6. For this group linear algebra 
also X = { (1 0 0 0 0), (0 1 0 0 0), (0 0 1 0 0), (0 0 0 1 0), (0 0 0 
0 1)} is the linearly independent subset which generates V and 
dimension is 5. 
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 Now we proceed onto define the notion of group linear 
subalgebra of a group linear algebra. 
 
DEFINITION 2.5.14: Let V be a group linear algebra over the 
group G. Let W ⊆ V be a proper subset of V. We say W is a 
group linear subalgebra of V over G if W is itself a group linear 
algebra over G. 
 
 We illustrate this situation by the following examples. 
 
Example 2.5.52: Let  
 

V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 
V is a group linear algebra over the group Z. Take  
 

W = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

; 

 
W ⊆ V and W is a group linear subalgebra of V over Z. 
 
Example 2.5.53: Let V = {(1 0 0), (0 0 0), (0 1 0), (0 0 1), (1 1 
1), (0 1 1), (1 1 0), (1 0 1)} be the group linear algebra over the 
group Z2 = {0, 1}. Take W = {(0 0 0), (1 1 1)} ⊆ V, W is a 
group linear subalgebra of V. 
 
Example 2.5.54: Let V = Z9 × Z9 × Z9 be the group linear 
algebra over Z9. Let W = Z9 × {0} × Z9 ⊆ V; W is the group 
linear subalgebra of V over Z9. 
 
Example 2.5.55: Let V = Z8 × Z8 be the group linear algebra 
over the group G = {0, 2, 4, 6} addition modulo 8. Let W = {0, 
2, 4, 6} × {0, 2, 4, 6} ⊆ V; W is a group linear subalgebra of V. 
 
 Now having seen several examples of group linear 
subalgebras over the group linear algebra we proceed onto 
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define the notion of direct sum of group linear subalgebras of a 
group linear algebra.  
 
DEFINITION 2.5.15: Let V be a group linear algebra over the 
group G. Let W1, …, Wn be group linear subalgebras of V over 
G. 

We say V is a direct sum of the group linear subalgebras 
W1, W2, …, Wn if 
 

1. V = W1 +  … + Wn 
2. Wi ∩ Wj = {0} if i ≠ j; 1 ≤ i , j ≤ n. 

 
Now we illustrate this situation by the following examples. 

 
Example 2.5.56: Let V be Z14 × Z14 × Z14 be the group linear 
algebra over the group Z14, the group under addition modulo 14. 
Let W1 = Z14 × {0} × {0}, W2 = {0} × Z14 × {0} and W3 = {0} × 
{0} × Z14 be the group linear subalgebras of V. We see V = W1 
+ W2 + W3 and Wi ∩ Wj = {0} if i ≠ j; 1 ≤ i, j ≤ 3. 
 
Example 2.5.57: Let  

V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group linear algebra over Z. Let  

 

W1 = 
a 0

a Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

W2 = 
0 b

b Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

W3 = 
0 0

c Z
c 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  
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W4 = 
0 0

d Z
0 d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group linear subalgebras of V. Clearly W1 + W2 + W3 + 
W4 = V and  
 

Wi ∩ Wj = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 if i ≠ j ; 1 ≤ i, j ≤ 4. 

 
Thus V is the direct sum of group linear subalgebras over Z. 
Now take  

S1 = 
a 0

a,b Z
b 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

S2 = 
0 a

a Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

S3 = 
0 0

b Z
0 b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be group linear subalgebras of V. We see V = S1 + S2 + S3 and  
 

Si ∩ Sj = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, if i ≠ j (1 ≤ i, j ≤ 3). 

Suppose  

T1 = 
a 0

a,b Z
0 b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

and  

T2 = 
0 c

c,d Z
d 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be group linear subalgebras of V then we see V = T1 + T2 and  
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T1 ∩ T2 = 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus V is the direct sum of group linear subalgebras. From this 
example it is evident that we have many ways of writing V as a 
direct sum of group linear subalgebras of V. 
Further suppose  

R1 = 
a b

a,b Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

R2 = 
a 0

a,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

R3 = 
a 0

a,b Z
0 b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be three group linear subalgebras of V over Z we see  
 

V ≠ R1 + R2 + R3 but Ri ∩ Rj ≠ 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 1 ≤ i, j ≤ 3. 

 
Thus we see any set of group subalgebra need not lead to the 
direct sum. Also if  

V1 = 
0 0

a Z
a 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

V2 = 
a b

a,b Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be two group subalgebras of V still V ≠ V1 + V2 though  
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V1 ∩ V2 ≠ 
0 0
0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 

Thus we see in this case 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 with d ≠ 0 cannot find its place 

in V1 + V2. Hence V = V1 + V2 is not a direct sum of V.  
 
Now we proceed onto give yet another example of direct sum of 
group linear subalgebras. 
 
Example 2.5.58: Let V = {(1 0 0 0), (0 1 0 0), (0 0 1 0), (1 1 1 
1), (0 0 0 1), (0 0 1 1), (1 1 0 0), (1 0 0 1), (0 1 1 0), (1 0 1 0), (0 
0 0 0), (0 1 0 1), (1 1 1 0), (0 1 1 1), (1 0 1 1), (1 1 0 1)} be the 
group linear algebra over the group Z2 = {0, 1}. Write V as a 
direct sum of group linear subalgebras. Can we represent V in 
more than one way as a direct sum? 
 
Now we proceed onto define the notion of pseudo direct sum of 
a group linear algebra as a sum of group linear subalgebras. 
 
DEFINITION 2.5.16: Let V be a group linear algebra over the 
group G. Suppose W1, W2, …, Wn are distinct group linear 
subalgebras of V. We say V is a pseudo direct sum if 
 

1. W1 + …+ Wn = V 
2. Wi ∩ Wj ≠ {0}, even if i ≠ j 
3. We need Wi’s to be distinct i.e., Wi ∩ Wj ≠ Wi or 

Wj if i ≠ j. 
 

We now illustrate this situation by the following example. 
 

Example 2.5.59: Let 
 

V = 1 2 3
i

4 5 6

a a a
a Z, 1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group linear algebra over Z. Take  
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W1 = 1 2
1 3 2

3

a a 0
a ,a ,a Z

a 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

W2 = 2 3
1 3

0 a a
a ,a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 

W3 = 1 3
1 3 4 6

4 6

a 0 a
a ,a ,a ,a Z

a 0 a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and 

W4 = 1 4
1 4 5 6

5 6

a a 0
a ,a ,a ,a Z

0 a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
 Clearly W1, W2, W3 and W4 are group linear subalgebras of V. 
We see  

Wi ∩ Wj ≠ 
0 0 0
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, for 1 ≤ i, j ≤ 4 i ≠ j. 

 
Further Wi ∩ Wj ≠ Wi or Wi ∩ Wj ≠ Wj if i ≠ j. Finally V = 

W1 + W2 + W3 + W4, so we say V is the pseudo direct sum of 
group linear subalgebras of V.  
 
We give yet another example before we proceed on to describe 
further properties about group linear algebras. 

 
Example 2.5.60: Let V = {Z18 × Z18 × Z18} be a group linear 
algebra over Z18.  

Take W1 = Z18 × Z18 × {0}, W2 = Z18 × {0} × Z18, W3 = {0 
2 4 6 8 10 12 14 16} × Z18 × Z18 be three group linear 
subalgebras of V. Then V = W1 + W2 + W3 and Wi ∩ Wj ≠ {0}; 
i ≠ j; 1 ≤ i, j ≤ 3 so V is the pseudo direct sum of group linear 
subalgebras.  

 
It is important to note that a group linear algebra can both have 
a pseudo direct sum as well as direct sum. We see we do not 
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have any relation among them. It can so happen a group linear 
algebra can have both way of decomposition. 
 
Now we proceed onto define yet another new algebraic structure 
of a group linear algebra. 
 
DEFINITION 2.5.17: Let V be a group linear algebra over the 
group G. Let W ⊆ V be a proper subgroup of V. Suppose H ⊂ G 
be a semigroup in G. If W is a semigroup linear algebra over H 
then we call W to be a pseudo semigroup linear subalgebra of 
the group linear algebra V. 
 
We illustrate this situation by the following example. 
 
Example 2.5.61: Let  

V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group linear algebra over the group Z. Let Z+ ∪{0} = H ⊂ 
Z be the proper semigroup of Z under addition.  

 

W = 
a a

a Z V
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
W is a semigroup linear algebra over H. We call W to be the 
pseudo semigroup linear subalgebra of the group linear algebra 
V.  
 
We give yet another example. 
 
Example 2.5.62: Let V = {Z × Z × Z} be the group linear 
algebra over the group Z. Let P = Z+ ∪ {0} be the semigroup 
contained in Z. Let W = 2Z × 2Z × 2Z ⊂ V; W is a pseudo 
semigroup linear subalgebra over P. 
 
Example 2.5.63: Let V = Z2 × Z2 × Z2 be the group linear 
algebra over Z2. Z2 has no proper subset which is a semigroup, 
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so V cannot have pseudo semigroup linear subalgebra. In fact 
we have a class of group linear algebras which has no pseudo 
semigroup linear subalgebras. 
 Let V = Zp × … × Zp, Zp the set of primes {0, 1, …, p – 1 } 
under addition modulo p. V is a group linear algebra over Zp. 
But Zp has no proper subset P which is a semigroup. Thus V has 
no pseudo semigroup linear subalgebras. Thus we have a class 
of group linear algebras which has no pseudo semigroup linear 
subalgebras.  
 
Suppose we consider  
 

( ){ }ij ij pm n
V a a Z ; p a prime, 1 i m and 1 i n

×
= ∈ ≤ ≤ ≤ ≤ . 

 
V is a group linear algebra over Zp. This has no pseudo 
semigroup linear subalgebras. 
 For varying primes p we get different classes of group linear 
algebras which has no pseudo semigroup linear subalgebras. We 
have yet another class of group linear algebras which has no 
pseudo semigroup linear subalgebras.  

Consider Zp [x] = {all polynomials in the variable x with 
coefficients from Zp; p a prime}; Zp [x] is a group linear algebra 
over Zp. Clearly Zp has no proper subset which is a semigroup 
under addition modulo p. So Zp [x] has no pseudo semigroup 
linear subalgebras. 
 
In fact we can have yet another substructure in group linear 
algebras which will be known as group vector subspaces of the 
group linear algebras. 

 
DEFINITION 2.5.18: Let V be a group linear algebra over the 
group G. Let P be a proper subset of V. P is just a set and it is 
not a closed structure. If P is a group vector space over G we 
call P to be the pseudo group vector subspace of V. 
 
We illustrate this by the following examples. 
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Example 2.5.64: Let  
 
V  = {(1 0 0), (0 0 1), (0 1 0), (0 0 0), (1 1 0), (0 1 1), (1 0 1), 
  (1 1 1)}  
 
be the group linear algebra over the group Z2 = {0, 1}.  
Take  
 
P  = {(0 0 0), (1 1 0), (0 0 1), (0 1 0)}  

⊆  V.  
 
P is a group vector subspace of V. Thus P is a pseudo group 
vector subspace of V.  
 
Example 2.5.65: Let  
 

V = 3

a b
a, b, c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group linear algebra over Z3.  
Take  
 

P = 
1 0 0 2 0 0 2 0 0 1

, , , ,
0 1 0 1 0 0 0 2 0 2

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ⊂ V; 

 
P is the pseudo group vector subspace of V over Z3.  
Take  
 

X = 
0 0 0 0 0 0 1 1 2 2

, , , ,
0 0 1 1 2 2 0 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ⊂ V. 

 
X is also a pseudo group vector subspace of V over Z3. 
However every proper subset of V is not a pseudo group vector 
subspace of V.  
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For instance 
 

T = 
1 0 1 1 0 0

, ,
0 0 1 1 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ⊂ V 

 
is not a pseudo group vector subspace of V as  
 

1 0 2 0
2 T

0 0 0 0
⎛ ⎞ ⎛ ⎞

= ∉⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

or  
1 1 2 2

2 T
1 1 2 2
⎛ ⎞ ⎛ ⎞

= ∉⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
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Chapter Three 
 
 
 
 
 

SET FUZZY LINEAR ALGEBRAS  
AND THEIR PROPERTIES  
 
 
 
 
In this chapter we define the new notion of set fuzzy linear 
algebra analogous to set vector space; for these algebraic set up 
will be of immense use in application to fuzzy models or in any 
other models for in these set vector spaces and set fuzzy vector 
spaces we can induct any wanted elements without affecting the 
system and the structure. We now just recall the definition of 
fuzzy vector spaces before we proceed on to define set fuzzy 
vector spaces. 
 
DEFINITION 3.1: A fuzzy vector space (V, η) or ηV is an 
ordinary vector space V with a map η : V → [0, 1] satisfying 
the following conditions; 
 

1. η (a + b) > min {η (a), η (b)} 
2. η (– a) = η (a) 
3. η (0) = 1 
4. η (ra) > η (a)  

 
for all a, b, ∈ V and r ∈ F where F is the field.  
 
We now define the notion of set fuzzy vector space or Vη or Vη 
or ηV. 
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DEFINITION 3.2: Let V be a set vector space over the set S. We 
say V with the map η is a fuzzy set vector space or set fuzzy 
vector space if η: V → [0, 1] and η (ra) ≥ η(a) for all a ∈V and 
r ∈ S. We call Vη  or Vη or ηV to be the fuzzy set vector space 
over the set S.  
 
We now illustrate this situation by the following example. 
 
Example 3.1: Let V = {(1 3 5), (1 1 1), (5 5 5), (7 7 7), (3 3 3), 
(5 15 25), (1 2 3)} be set which is a set vector space over the set 
S = {0, 1}.  

Define a map η: V → [0, 1] by  
 

η(x, y, z) = [ ]x y z 0,1
50

+ +⎛ ⎞ ∈⎜ ⎟
⎝ ⎠

 

 
for (x, y, z) ∈ V. Vη is a fuzzy set vector space. 
 
Example 3.2: Let V = Z+ the set of integers. S = 2Z+ be the set. 
V is a set vector space over S. Define η: V → [0, 1] by, for 

every v ∈ V; η(v) = 1
v

 . ηV is a set fuzzy vector space or fuzzy 

set vector space.  
 
Example 3.3: Let V ={(aij) | aij ∈ Z+; 1 ≤ i, j ≤ n} be the set of 
all n × n matrices with entries from Z+.  
 
Take S = 3Z+ to be the set. V is a fuzzy set vector space where 
η: V → [0, 1] is defined by  
 

η(A = (aij)) = 
1 if | A | 0

5 | A |
1 if | A | 0.

⎧ ≠⎪
⎨
⎪ =⎩

 

 
Vη is the fuzzy set vector space.  
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The main advantage of defining set vector spaces and fuzzy 
set vector spaces is that we can include elements x in the set 
vector spaces V provided for all s ∈ S, sx ∈V this cannot be 
easily done in usual vector spaces. Thus we can work with the 
minimum number of elements as per our need and work with 
them by saving both time and money.  

 
We give yet some more examples. 
 
Example 3.4: Let V = 2Z+ × 5Z+ × 7Z+ be a set vector space 
over the set Z+; with η: V → [0, 1] defined by  
 

η((x, y, z)) = 1
x y z+ +

 

 
makes, ηV a fuzzy set vector space. 
 
Now we define the notion of set fuzzy linear algebra. 
 
DEFINITION 3.3: A set fuzzy linear algebra (or fuzzy set linear 
algebra) (V, η) or ηV is an ordinary set linear algebra V with a 
map such η: V → [0, 1] such that η(a + b) ≥ min (η(a), η(b)) 
for a, b ∈ V. 

Since we know in the set vector space V we merely take V to 
be a set but in case of the set linear algebra V we assume V is 
closed with respect to some operation usually denoted as ‘+’ so 
the additional condition η(a + b) ≥ min (η(a), η(b)) is essential 
for every a, b ∈ V. 
 
 We illustrate this situation by the following examples. 
 
Example 3.5: Let V = Z+[x] be a set linear algebra over the set 
S = Z+; η: V → [0, 1].  
 

η(p(x)) = 
1

deg(p(x))
1 if p(x) is a constant.

⎧
⎪
⎨
⎪⎩
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Clearly Vη is a set fuzzy linear algebra.  
 
Example 3.6: Let  
 

V = 
a b

a,b,d,c Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be set linear algebra over 2Z+ = S. Define  
 

η
a b
c d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
1 if ad  bc

| ad bc |
0 if ad bc

⎧ ≠⎪ −⎨
⎪ =⎩

 

 
for every a, b, c, d ∈ Z+. Clearly Vη is a fuzzy set linear 
algebra.  
 
Example 3.7: Let V = Z+ be a set linear algebra over Z+. Define 

η : V → [0, 1] as η(a) = 1
a

. Vη is a fuzzy set linear algebra. 

 
Now we proceed onto define the notion of fuzzy set vector 
subspace and fuzzy set linear subalgebra. 
 
DEFINITION 3.4: Let V be a set vector space over the set S. Let 
W ⊂ V be the set vector subspace of V defined over S. If η: W → 
[0, 1] then Wη is called the fuzzy set vector subspace of V.  
 
We illustrate this by the following example.  
 
Example 3.8: Let V = {(1 1 1), (1 0 1), (0 1 1), (0 0 0), (1 0 0)} 
be a set vector space defined over the set {0, 1}. Define η : V → 
[0, 1] by  
 

η(x y z) = (x y z) (mod 2)
9

+ + . 

So that  
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η (0 0 0) = 0 

η (1 1 1) = 1
9

 

η (1 0 1) = 0 

η (1 0 0) = 1
9

 

η (0 1 1) = 0 
 
Vη is a set fuzzy vector space. Take W = {(1 1 1), (0 0 0), (0 1 
1)} ⊂ V. W is a set vector subspace of V. η: W → [0, 1].  
 

η (0 0 0) = 0 

η (111) = 1
9

 

η (011) = 0. 
  
Wη is the fuzzy set vector subspace of V.  
 
Example 3.9: Let V = {(111), (1011), (11110), (101), (000), 
(0000), (0000000), (00000), (1111111), (11101), (01010), 
(1101101)} be a set vector space over the set S = {0,1}. 

Let W = {(1111111), (0000000), (000), (00000), (11101), 
(01010) (101)} ⊂ V. Define η: W → [0, 1] by  

η(x1, x2, …, xr) = 1
12

. 

ηW is a fuzzy set vector subspace.  
 
We now proceed on to define the notion of fuzzy set linear 
subalgebra. 
 
DEFINITION 3.5: Let V be a set linear algebra over the set S. 
Suppose W is a set linear subalgebra of V over S. Let η : W → 
[0, 1], ηW is called the fuzzy set linear subalgebra if η (a + b) 
> min {η (a), η (b)} for a, b, ∈ W.  
 
We give some examples before we define some more new 
concepts. 
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Example 3.10: Let V = Z+ × Z+ × Z+ be a set linear algebra over 
the set S = 2Z+. W = Z+ × 2Z+ × 4Z+ is a set linear subalgebra 
over the set S = 2Z+. Define η: W → [0, 1] 
 

η (a b c) = 11
a b c

−
+ +

. 

 
Clearly η (x, y) > min {η (x), η (y)} where x = (x1, x2, x3) and y 
= (y1, y2, y3); x, y ∈ W. Wη is a fuzzy set linear subalgebra.  
 
Example 3.11: Let  
 

V = 
a b

a,b,c,d, Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a set linear algebra over the set S = {1, 3, 5, 7} ⊆ Z+. Let  
 

W = 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the set linear subalgebra of V. Define η: W → [0, 1] by  
 

η
a a 11
a a a

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

 
Wη or Wη is a set fuzzy linear subalgebra. 
 
Now we proceed on to define fuzzy semigroup vector spaces. 
 
DEFINITION 3.6: A semigroup fuzzy vector space or a fuzzy 
semigroup vector space (V, η) or Vη where V is an ordinary 
semigroup vector space over the semigroup S; with a map η : V 
→ [0, 1] satisfying the following condition;  
 η (ra) > η (a) for all a ∈ V and r ∈ S. 
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Let us illustrate this structure by some examples. 
 
Example 3.12: Let V = {(1000), (1011), (1110), (0111), (0100), 
(0000), (0001)} be the semigroup vector space over the 
semigroup S = Z2 = {0, 1}. Define η : V → [0, 1] as 
 

η (a b c d) = (a b c d) (mod 2)
6

+ + + . 

Clearly Vη is the semigroup fuzzy vector space. 
 
We give yet another example. 
  
Example 3.13: Let V = Z3 × Z3 × Z3 be the semigroup vector 
space over the semigroup Z3. Define η : V → [0, 1] as  
 

η (x y z) = (x y z) (mod3)
7

+ + . 

 
Vη is a semigroup fuzzy vector space.  

In fact given a semigroup vector space V, we can get many 
semigroup fuzzy vector spaces. 
 For define η1: V → [0, 1] as  
 

η1 (x, y, z) = 
1 if x y z 0 (mod3)

(x y z)(mod3)
0 if x y z 0(mod3)

⎧ + + ≡/⎪ + +⎨
⎪ + + ≡⎩

. 

 
Vη1 is a semigroup fuzzy vector space different from Vη. 
Define η3 : V → [0, 1] as  
 

η3 (x, y, z) = 

1 if x y z 0 (mod3)
2
1 if x y z 1(mod3)
4
1 if x y z 2 (mod3)
6

⎧ + + ≡⎪
⎪
⎪ + + ≡⎨
⎪
⎪

+ + ≡⎪⎩
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Vη3 is a semigroup fuzzy vector space. 

Thus study of semigroup fuzzy vector spaces gives us more 
freedom for it solely depends on η which is defined from V to 
[0, 1].  
 
Next we define semigroup fuzzy vector subspaces of a 
semigroup vector space V.  
 
DEFINITION 3.7: Let V be a semigroup vector space over the 
semigroup S. Let W ⊂ V be a semigroup vector subspace of V 
over S. We say Wη is a semigroup fuzzy vector subspace if η : 
W → [0, 1], such that  
 
 (i) η (x, y) > min (η (x), η (y)) 
 (ii) η (rx) > η (x) for all r ∈ S and x, y ∈ W.  
 
We illustrate this by the following example. 
 
Example 3.14: Let V = Z7 × Z7 × Z7 × Z7 be a semigroup vector 
space over the semigroup S = Z7. Let W = Z7 × {0} × Z7 × {0} 
be the semigroup vector subspace of V. Define the map η : W 
→ [0, 1] by  
 

η (x 0 y 0) = 

1 if x y 1(mod7)
4
1 if x y 2 or 4 (mod 7)
3
1 if x y 3 or 5 (mod7)
8
1 if x y 6 or 0 (mod7).
6

⎧ + ≡⎪
⎪
⎪ + ≡⎪
⎨
⎪ + ≡
⎪
⎪
⎪ + ≡
⎩

 

 
ηW is the semigroup fuzzy vector subspace of V.  
 
Here also using one semigroup vector subspace W we can 

define several semigroup fuzzy vector subspaces.  
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Define η1 : W → [0, 1] 
 

by η1 (x 0 y 0) = 
0 if x y 0 (mod7)
1 if x y 0 (mod7).

+ ≡⎧
⎨ + ≡⎩

 

  
Wη1 is a semigroup fuzzy vector subspace.  

 
We see the definition of fuzzy semigroup vector space is not in 
any way different from the fuzzy set vector space. So this will 
enable one to go from one type of space to another using fuzzy 
concepts defined on them. 

 
So one can easily transfer a study from semigroup vector 

space to set vector space by defining the corresponding fuzzy 
set vector space and the semigroup fuzzy vector space as the 
map η and hence ηV does not give different structures but same 
type of structures. 

 
Now we see even in case of semigroup linear algebra and 

set linear algebra the fuzzy structures are identical. 
 
DEFINITION 3.8: Let V be a semigroup linear algebra defined 
over the semigroup S. We say ηV is a semigroup fuzzy linear 
algebra if η : V → [0, 1] such that η (x + y) > min (η (x), η(y)); 
η (rx)≥ η (x) for every r ∈ S and x ∈ V. 
 
Now we illustrate this situation by the following examples. 
  
Example 3.15: Let V = Z7 × Z7 × Z7 × Z7 be the semigroup 
linear algebra defined over the semigroup S = Z7. Define η : V 
→ [0, 1] by 
 

 η (x y z ω) = 
1 if x y z 0 (mod7)
0 otherwise.

+ + ≡⎧
⎨
⎩

 

 
Vη is a semigroup fuzzy linear algebra. 
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Example 3.16: Let  
 

V = 1 2 3
i

4 5 6

a a a
a Z ;1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the semigroup linear algebra over the semigroup S = Z+. 
Define η: V → [0, 1] as  
 

η 1 2 3

4 5 6 1 4

a a a 11
a a a (a a )

⎧⎛ ⎞
= −⎨⎜ ⎟ +⎝ ⎠ ⎩

 

 
Vη is a semigroup fuzzy linear algebra. 
 
Example 3.17: Let V = Z+ [x] be the polynomials with 
coefficient from Z+ in the variable x; V under addition is a 
semigroup. V is a semigroup linear algebra over Z+.  
 
Define η : V → [0, 1] as  

η(p (x)) = 
1

deg p(x)
1 if deg p(x) 0

⎧
⎪
⎨
⎪ =⎩

. 

 
η is the semigroup fuzzy linear algebra.  
 
Define η1 : V → [0, 1] as  

η1(p(x)) = 
1

deg p(x)
0 if deg p(x) 0

⎧
⎪
⎨
⎪ =⎩

 

 
then also Vη1 is a semigroup fuzzy linear algebra.  

 
 We see as in case of fuzzy set vector spaces and semigroup 
fuzzy vector spaces the notion of fuzzy set linear algebra and 
semigroup fuzzy linear algebra are also identical. This sort of 
making them identical using fuzzy tool will find its use in 
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certain applications. We shall define such structures as fuzzy 
equivalent structures. 
 We see fuzzy set vector spaces and semigroup fuzzy vector 
spaces are fuzzy equivalent structures though set vector spaces 
are distinctly different from semigroup vector spaces. Like wise 
set linear algebras and semigroup linear algebras are fuzzy 
equivalent although set linear algebras are different from 
semigroup linear algebras.  
 
Now we proceed on to define group fuzzy vector spaces and 
group fuzzy linear algebras. 
 
DEFINITION 3.9: Let V be a group linear algebra over the 
group G. Let η : V → [0, 1] such that  
 
 η (a + b)  ≥  min (η (a), η (b)) 
 η (– a)   =  η (a) 
 η (0)  = 1 
 η (ra)  ≥  η (a) for all a, b ∈ V and r ∈ G. 
 
We call Vη the group fuzzy linear algebra. 
 
We illustrate this by an example. 
 
Example 3.18: Let V = Z × Z × Z be the group linear algebra. 
 
Define η : V → [0, 1] by  

η (a)  = 11
| a |

−  

for every a ∈ Z 
η (0) = 1. 

 
η V is the group fuzzy linear algebra. 
 
It is pertinent to mention here that we have not so far defined 
group fuzzy vector spaces. We first mention group vector 
spaces are fuzzy equivalent with set vector spaces and 
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semigroup vector spaces. However for the sake of completeness 
we just define group fuzzy vector spaces. 
 
DEFINITION 3.10: Let V be a group vector space over the group 
G. η : V → [0, 1] is such that η(ra) ≥ η(a) for all r ∈ G and a 
∈ V. We call Vη or ηV to be the group fuzzy vector space.  
 
We see from the very definition the group vector spaces are 
fuzzy equivalent with set vector spaces. 
 
Now we give an example of this concept. 
 
Example 3.19: Let V = Z [x] be a group vector space over the 
group G. Define η : V → [0, 1] by  
 

η(p(x)) = 1
deg p(x)

 

and  
η (constant) = 0. 

Vη is a group fuzzy vector space. 
 
In the same example if we view Z [x] to be a group under 
addition. Clearly Z [x] = V can be viewed as a group linear 
algebra over the group Z. η defined above is such that ηV is a 
group fuzzy linear algebra. 
 
DEFINITION 3.11: Let V be a group linear algebra over the 
group G. Let W ⊂ V, where W is a subgroup of V and W is a 
group linear subalgebra over the group G. η : W → [0, 1] such 
that  
 
 η (a + b)  >  min (η (a), η (b)) 
 η (a)   =  η (–a) 
 (0)   =  1 
 η (ra)   >  rη (a) 
 
for all a, b ∈W and r ∈ G; we call Wη or ηW to be the group 
fuzzy group linear subalgebra.  



 131

 
We illustrate this by the following. 
 
Example 3.20: Let V = Z × Z × Z × Z × Z be a group linear 
algebra over the group G = Z. W = 3Z × {0} × 5Z × {0} ×{0} 
be the group linear subalgebra over Z.  
Define η: W → [0, 1] by 
 

 η(x, y, z, ω, t) = 
0 if x y z t 0

1 if x y z t 0
x y z t

+ + + ω + =⎧
⎪
⎨ + + + ω + ≠⎪ + + + ω +⎩

; 

 
ηW is a fuzzy group linear subalgebra.  
 
The importance of this structure is that we do not demand for a 
field or any other perfect nice structure to work with. Even a set 
will do the work for we ultimately see when we define fuzzy 
vector spaces the field does not play any prominent role. Also 
we see the group linear algebra is the same as ordinary vector 
space, when they are made into respective fuzzy structures. In 
fact these two structures are basically fuzzy equivalent. Any one 
will like to work with least algebraic operations only. So as we 
have already mentioned set vector spaces happens to be the 
most generalized concept of ordinary vector spaces and it is 
easy to work with them.  

Another advantage of working with these special vector 
spaces is we see most of them happen to be fuzzy equivalent 
with some other special space or the ordinary vector space. In 
certain models or study we may have meaning for the solution 
only when they are positive. In such circumstances we need not 
define the vector spaces over a field instead we can define it 
over the set S which is a subset of Z+ ∪  {0} or over the 
semigroup Z+ ∪  {0} or even just Z. 
 
Further as our transformation to a fuzzy set up always demands 
only values from the positive unit interval [0, 1] these 
semigroup vector spaces or set vector spaces would be more 
appropriate than the ordinary vector spaces. 
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Further we see even in case of Markov process or Markov chain 
the transition probability matrix is a square matrix with entries 
which are non negative and the column sum adding up to one. 
So in such cases one can use set vector space where 
 

V = ( ) [ ]
n

ij ij iknxn
i 1

a a 0,1 with a 1for 1 k n
=

⎧ ⎫
∈ = ≤ ≤⎨ ⎬

⎩ ⎭
∑  

 
is a set vector space over the set [0, 1]. So these new notions not 
only comes handy but involve lesser complication and lesser 
algebraic operations. 
 



 
 
 
Chapter Four 
 
 
 
 
 

SET BIVECTOR SPACES AND THEIR 
GENERALIZATION  
 
 
 
 
 

In this chapter for the first time we define the notion of set 
bivector spaces and generalize them to set n vector spaces. We 
enumerate some of the properties. In fact these set n-vector 
spaces happens to be the most generalized form of n-vector 
spaces. They are useful in mathematical models which do not 
seek much abstract algebraic concepts. 
 
DEFINITION 4.1: Let V = V1 ∪ V2 where V1 and V2 are two 
distinct set vector spaces defined over the same set S. That is V1 
⊄ V2 and V2 ⊄V1 we may have V1 ∩ V2 = φ or non empty. Then 
we call V to be a set bivector space over S.  
 
We illustrate this by the following examples.  
 
Example 4.1: Let V = V1 ∪ V2 where V1 = Z5 × Z5 and  
 

V2 = 5

a b
a,b,c,d, Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
are set vector spaces over the set S = {0, 1}. V is a set bivector 
space over the set {0, 1} = S. 
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Example 4.2: Let V = V1 ∪ V2 where V1 = {(1 1 1), (0 0 0), (1 
1 0), (1 1 1 1 1), (0 0 0 0 0), (1 1 0 1 1), (1 1 0 0 0), (1 0 0)} and 
V2 = {(0 1), (1 0), (0 0), (1 1 1 1), (0 0 0 0), (0 1 1 1), (1 1 1 1 1 
1), (0 0 0 0 0 0), (1 0 0 0), (0 0 0 1)} be set vector spaces over 
the set S = {0, 1}. V = V1 ∪ V2 is a set bivector space over the 
set S. 
 
Example 4.3: Let V = V1 ∪ V2 where  
 

V1 = 12

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and 

V2 =  12

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be two set vector spaces over the set S = {0, 1}. V is a set 
bivector space over the set S. 
 
Now we have seen that how a set bivector space is constructed 
from these examples. 
 
Example 4.4: Let  

V1 = 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

V2 = 12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be set vector spaces over the set S = {0, 1}. Clearly V = V1 
∪ V2 is not a set bivector space over S as V2 ⊆ V1. Thus we 
cannot say the union of two set vector spaces defined over the 
same set gives a set bivector space. 
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Now we proceed on to define the notion of set bivector 
bisubspaces of a set bivector space. 
 
DEFINITION 4.2: Let V = V1 ∪ V2 be a set bivector space 
defined over the set S. A proper biset W = W1 ∪ W2 (W1 ⊂ V1 
and W2 ⊂ V2) such that W1 and W2 are distinct and contained in 
V is said to be a set bivector bisubspace of V (or set bivector 
subspace) if W is a set bivector space defined over S.  
  
We now illustrate situation by the following examples. 
 
Example 4.5: Let V = V1 ∪ V2  

 

= 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a b c d) | a, b, c, d ∈ Z12}  

 
be a set bivector space over the set S = {0, 1}.  
Let W = W1 ∪ W2  
 

= 12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a) |a ∈ Z12} 

 
⊆ V1 ∪ V2 = V. W is a set bivector space over S = {0,1}. 
  
 Thus W is a set bivector subspace of V over S. 
 
Example 4.6: Let  
 

V1 = 1 2 3
i 14

4 5 6

a a a
a {0,2,6,8,10,12} Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

V2 = a 14

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 
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V = V1 ∪ V2 is a set bivector space over S = {0,1}. Clearly  
V1 ∩ V2 ≠ φ but V1 and V2 are distinct. Take  
 

W1 = 
a a 0

a (0,2,6,8,10,12)
a a 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V1 

and  

W2 = 14

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊂ V2 . 

 
W = W1 ∪ W2 is a set bivector subspace (or set bivector 
subbispace) of V. 
 Suppose  
 

P1 = 14

a b c
a,b,c (0,2,...,12) Z

a a 0
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V1 

and  

P2 = 14

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V2 

 
then also P = P1 ∪ P2 is a set bivector bisubspace of V. Thus we 
can have several such set bivector subspaces of a given set 
bivector space V.  
 
Now we define the bidimension and the generating biset of a set 
bivector space V = V1 ∪ V2. 
 
DEFINITION 4.3: Let V = V1 ∪ V2 be a set bivector space 
defined over the set S. Let X = X1 ∪ X2 ⊂ V1 ∪ V2, we say X is a 
bigenerating subset of V if X1 is the generating set of the set 
vector space V1 over S and X2 is the generating set of the set 
vector space V2 over S. 
 
The number of elements in X = X1 ∪ X2 is the bidimension of V 
and is denoted by (|X1|; |X2|) or |X1| ∪ |X2|. 
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 We shall illustrate this definition by some examples. 
 
Example 4.7: Let V = V1 ∪ V2 = {(111), (000), (100), (010), 
(001)} ∪ {(1111), (0000), (1110), (1000)} be the set bivector 
space over the set S = {0,1}. Take X = {(111), (100), (010), 
(001)} ∪ {(1111), (1110), (1000)} ⊆  V1 ∪ V2 is the generating 
bisubset of V over the set S. Clearly dim V = (4, 3) or (4 ∪ 3).  
 
Example 4.8: Let  
 

V = V1 ∪ V2 = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z × Z × Z}  

 
be the set bivector space defined over the set S = Z.  
 

X = 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(111), (100), (010), (001), (110), (a b c) …}  

   =  X1 ∪ X2  
 
where X2 is an infinite subset of V2, this alone can generate V so 
bidimension of V is infinite i.e., bidimension of V = {1 ∪ ∞} or 
(1, ∞). 
 
Example 4.9: Let V = V1 ∪ V2 = {Z10 × Z10 × Z10} ∪ {(a a a a 
a) | a ∈ {0, 2, 4, 6, 8} a proper subset of Z10}. V is a set bivector 
space over Z10. Prove bidimension of V is finite over Z10.  
 
Now we proceed onto define the notion of set bilinear algebra or 
equivalently we can call it as set linear bialgebra. 
 
DEFINITION 4.4: Let V = V1 ∪ V2 be such that V1 is a set linear 
algebra over the set S and V2 is also a set linear algebra over S. 
Further V1 ≠ V2, V1 ⊄ V2 or V2 ⊄ V1. Then V = V1 ∪ V2 is 
defined to be the set linear bialgebra over the set S.  
 
We now illustrate this situation by some examples. 
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Example 4.10: Let  
 

V = V1 ∪ V2 = 16

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z16 × Z16} 

 
be the set linear bialgebra over the set Z16. 
 
Example 4.11: Let  
 
V  =  {(000), (010), (100), (001), (110), (011), (101), (111)} 

 ∪  2

a b
a,b,c,d Z {0,1}

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

= V1 ∪ V2 .  
 
V is a set linear bialgebra over the set S = {0 1}. 
 
Example 4.12: Let  

V  = V1 ∪ V2  
=  {Z} ∪ {Z+ × Z+ × Z+}  
 

be the set linear bialgebra over the set S = 2Z+, here V1 and V2 
are set linear algebras over S = 2Z+. 
 
Example 4.13: Let  
V  = V1 ∪ V2  

=  {(a b) / a, b ∈ {0 1}} ∪ {1110}, {0000}, (0011)};  
 
V is not a set linear bialgebra over the set S = {0, 1}. V is only a 
set bivector space over the set S because V2 is not closed under 
the operation ‘+’. 
 
In view of this we have the following result which is left for the 
reader to prove. 
 
Result: Every set linear bialgebra is a set bivector space but all 
set bivector spaces need not in general be a set linear bialgebras. 

The example 4.13 is one such algebraic structure. 
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Now we proceed on to define the notion of set linear 
subbialgebra or equivalently the notion of set bilinear 
subalgebra. 
 
DEFINITION 4.5: Let V = V1 ∪ V2 be a set linear bialgebra over 
the set S. If W ⊂ V i.e., W = W1 ∪ W2 ⊂ V1 ∪ V2 (Wi ⊂ Vi, i = 1, 
2) is a set linear bialgebra over the set S then we call W to be 
the set linear subbialgebra of V. 
 
We now illustrate this by some examples. 
 
Example 4.14: Let  
 

V  =  V1 ∪ V2  

=  
a a a a a a

a Z a Z
a a a a a a

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

; 

 
V is a set linear bialgebra over Z. Take  
 

W = W1 ∪ W2  

= 
a a a 0 a 0

a Z a Z
0 0 a 0 a 0

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

  

 
⊆ V1 ∪ V2 = V, W is a set linear subalgebra of V over S. 
 
Example 4.15: Let V = V1 ∪ V2 = Z[x] ∪ Q be a set linear 
bialgebra over the set S = 2Z. Suppose W = W1 ∪ W2 = {all 
polynomial of even degree with coefficient from 2Z} ∪ {5Z} ⊆ 
V1 ∪ V2 = V. Clearly W is a set linear bisubalgebra over the set 
S = 2Z. 
 
Example 4.16: Let  V = V1 ∪ V2  

 

 = 12 12

x 0 x y z
x Z x, y,z Z

0 x 0 y 0
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

.  
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V is a set linear bialgebra over S = Z12. Take  
 

W  =  W1 ∪ W2  

= 12 12

x 0 x x x
x Z x Z

0 0 0 0 0
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

  

 
⊆ V1 ∪ V2 = V.  
 
W is a set linear bisubalgebra of V over the set S = Z12. 
 
DEFINITION 4.6: Let V = V1 ∪ V2 be a set linear bialgebra over 
the set S. Let X = X1 ∪ X2 ⊂ V1 ∪ V2 = V, if X1 is a generating 
set of V1 and X2 is a generating set of V2 then X = X1 ∪ X2 is the 
generating subset of V. The bidimension of V is the cardinality 
of (|X1|, |X2|).  
 
We illustrate this situation by some examples. 
 
Example 4.17: Let V = V1 ∪ V2 = {Z} ∪ {(a a a) | a ∈ Z} be a 
set linear bialgebra over the set S = Z. Let X = X1 ∪ X2 = {1} ∪ 
{1 1 1} ⊆ V1 ∪ V2. X is the generating biset of V. The 
bidimension of V is (1, 1). 
 
Example 4.18: Let  
 

V =  V1 ∪ V2  

=  
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a b c)| a, b, c ∈ Z}  

 
be the set linear bialgebra over the set S = Z. Let  
 

X =  
1 1
1 1

⎛ ⎞
∪⎜ ⎟

⎝ ⎠
 {(100), {010), (001)}  

= X1 ∪ X2 ⊂ V1 ∪ V2  
=  V.  
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The bidimension of V is {1} ∪ {3} or (1, 3). 
 
Example 4.19: Let V = V1 ∪ V2 = Z[x] ∪ Z × Z × Z be a set 
linear bialgebra over the set Z. Let X = {1, x, x2, …, xn, …} ∪ 
{(100), (010), (001)} generates V and the bidimension of V is 
{∞} ∪ {3} = (∞, 3). 
 
Example 4.20: V = V1 ∪ V2 = Z[x] ∪ Z × Z × Z as a set 
bivector space over the set Z is of bidimension (∞,∞). 
 
This is the marked difference between the set linear bialgebras 
and set bivector spaces.  
 
Now we proceed onto define the notion of semigroup bivector 
spaces, biset bivector spaces and bisemigroup bivector spaces 
and illustrate them by examples. 
 
DEFINITION 4.7: Let V = V1 ∪ V2 be such that V1 is a set vector 
space over the set S1 and V2 be a set vector space over the set 
S2. S1 ≠ S2; S1 ⊆ S2 and S2 ⊆  S1 we define V = V1 ∪ V2 to be 
the biset bivector space over the biset S1 ∪  S2.  
 
Now we will illustrate this definition by some examples. 
 
Example 4.21: Let V = V1 ∪ V2 = Z × Z × Z ∪ Z12 × Z12 × Z12 
× Z12 be a biset bivector space over the biset S = Z ∪ Z12. 
 
Example 4.22: Suppose  
 

V =  V1 ∪ V2  

= Z12 [x] ∪ 10

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

;  

 
take the biset S = Z12 ∪ Z10; then V is the biset bivector space 
over the biset S = Z12 ∪ Z10. i.e., V1 is a set vector space over 
the set Z12 and V2 is a set vector space over the set Z10.  
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It is interesting as well as important to observe that set bivector 
spaces and biset bivector spaces are two different and distinct 
notions. They will find their applications in different sets of 
mathematical models. 
 
Example 4.23: Let  
 

V = V1 ∪ V2  
 

=  {(111), (000), (11111), (00000), (110), (100), (001), 
  (10100), (0000), (1100), (1010)} 

 

 ∪ 5

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.   

 
V1 is a set vector space over the set S1 = Z2 = {0, 1} and V2 is a 
set vector space over the set S2 = Z5. Thus V = V1 ∪ V2 is a 
biset bivector space over the biset S = S1 ∪ S2 = Z2 ∪ Z5. 
 
Example 4.24: Let  
 

V = V1 ∪ V2  
= {(1111), (0011), (0000), (1000), (11), (01), (00)} 

   

∪ 3

a a a
a,b Z

b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a biset bivector space over the biset S = S1 ∪ S2 = Z2 ∪ Z3. 
 
Now we define the notion of biset bivector subspaces. 
 
DEFINITION 4.8: Let V = V1 ∪ V2 be a biset bivector space over 
the biset S = S1 ∪ S2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2; if W is a 
biset bivector space over S then we call W to be the biset 
bivector subspace of V over the biset S = S1 ∪ S2. 
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Example 4.25: Let V = V1 ∪ V2  
= {(000000), (111000), (110110), (111), (000), (100), 

  (011)}  

 ∪ 4

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the biset bivector space over the biset S = S1 ∪ S2 = {0, 1} ∪ 
Z4.   
Let  
 

W = W1 ∪ W2  

= {(000000) (111000)} ∪ 4

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

⊆  V1 ∪ V2,  
 
W is a biset bivector subspace of V over the biset S = S1 ∪ S2. 
 
Example 4.26: Let  
 

V = V1 ∪ V2 = 4

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z5[x]}; 

 
{Z5[x] i.e., all polynomial in the variable x with coefficients 
from Z5} be the biset bivector space over the biset S = S1 ∪ S2 = 
Z4 ∪ Z5 . Let  
 

W =  W1 ∪ W2  

= 4

a 0
a Z

0 a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

{all polynomials of degree 1 with coefficient from Z5}  
⊆  V1 ∪ V2  
=  V;  

 
W is a biset bivector subspace of V over the biset S = Z4 ∪ Z5 . 
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Example 4.27: Let  
 

V  =  V1 ∪ V2  

= {Z6 × Z6} ∪ 7

a b c
a,b,c,d,e,f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

   

 
be the biset bivector space over the biset S = S1 ∪ S2 = {0 2 4} 
∪ Z7. Take  
 

W = W1 ∪ W2  

= {{0, 3} × Z6} ∪ 7

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

⊂ V1 ∪ V2 ;  
 
W is the biset bivector subspace over the biset S = S1 ∪ S2 .  
 
DEFINITION 4.9: Let V = V1 ∪ V2 be a biset bivector space over 
the biset S = S1 ∪ S2. If X = X1 ∪ X2 ⊂ V1 ∪ V2 is such that X1 
generates V1 as a set vector space over the set S1 and V2 is 
generated by the set X2 over the set S2 then we say the biset X1 
∪ X2 is the bigenerator of the biset bivector space V = V1 ∪ V2 
over the biset S = S1 ∪ S2. The bicardinality of X = X1 ∪ X2 
denoted by (|X1|, |X2|) gives the bidimension of V over S.  
 
We illustrate this by the following examples. 
 
Example 4.28: Let V = V1 ∪ V2 be a biset bivector space over 
the biset S = S1 ∪ S2 where V1 = Z5 × Z5 × Z5 with S1 = Z5 and  
 

V2 = 2

a b c
a,b,c,d,e,f Z {0,1}

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
and S2 = Z2. Take  
 

X =  X1 ∪ X2  
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= {(a, b) / a, b ∈ Z5)  

∪  
1 1 1 1 1 1 1 1 1

, ,
1 1 1 1 1 0 0 0 1

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

  
1 1 1 1 1 1 1 1 1

, , ,
1 0 1 0 1 1 0 1 0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

1 1 1 1 1 1 0 0 0
, , ,...

1 0 0 0 0 0 1 1 1
⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎭

 

 
 X is finite biset and bidimension of V = {24 ∪ 63} = (24, 63). 
 
Example 4.29: Let  
 

V  = V1 ∪ V2  

= 
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z3 × Z3}  

 
be a biset bivector space over the biset S = S1 ∪ S2 = Z ∪ Z3 . 
Take  
 

X  =  
1 1 1
1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(11), (12), (10), (01)}  

 =  X1 ∪ X2 ,  
 
X is the bigenerating biset of the biset bivector space V. The 
bidimension of V is {1} ∪ {4}. 
 
Example 4.30: Let = V1 ∪ V2 = {Z5 × Z5} ∪ (Z × Z) be the 
biset bivector space over the biset S = S1 ∪ S2 = Z5 ∪ Z. Take X 
= X1 ∪ X2 = {(11), (10), (01), (12), (13), (14)} ∪ {(a, b) / a b 
∈ Z} bigenerates V. Clearly |X1| = 6 and |X2| = ∞ so the 
bidimension of V is (6, ∞ ). 
 
Thus even if one of the set vector spaces in the biset bivector 
space V is of infinite dimension we say the biset bivector space 
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to be of bidimension infinity. Only if both V1 and V2 are of 
finite dimension we say V, the biset bivector space V is of finite 
bidimension.  
 
Now we proceed on to define the notion of biset bilinear algebra 
or equivalently biset linear bialgebra. 
 
DEFINITION 4.10: Let V = V1 ∪ V2, if V1 is a set linear algebra 
over the set S1 and V2 a different set linear algebra on the set S2 
(S1 ≠ S2, S1 ⊄ S2, S2 ⊄ S1) (V1 ≠ V2, V1 ⊄ V2 or V2 ⊄ V1) then we 
call V = V1 ∪ V2 to be the biset bilinear algebra over the biset S 
= S1 ∪ S2 .  
 
We illustrate this definition by examples. 
 
Examples 4.31: Let  
 

V = V1 ∪ V2 = Z[x] ∪ 5

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the biset bilinear algebra over the biset S = Z ∪ Z5. Clearly 
Z[x] is the set linear algebra over Z and  
 

5

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
is the set linear algebra over the set Z5. 
 
Example 4.32: Let V = V1 ∪ V2 ={Z7 × Z7} ∪ {(a a a a) / a ∈ 
Z6}; V1 is a set linear algebra over the set Z7 and V2 is a set 
linear algebra over the set Z6. Thus V = V1 ∪ V2 is the biset 
bilinear algebra over the biset S = Z7 ∪ Z6. 
 
Example 4.33: Let V = V1 ∪ V2 = {(a, b) / a, b ∈ Z} ∪ {Z9[x] = 
all polynomials in the variable x with coefficients from the set 
Z9}. Take S = Z ∪ Ζ9 = S1 ∪ S2. Now V is the biset bilinear 
algebra over the biset S = S1 ∪ S2. 
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Example 4.34: Let  
 

V = V1 ∪ V2  

= {Z5 × Z5 × Z5} ∪ 2

a a a
a,b Z

b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
Take the biset S = = S1 ∪ S2 = Z5 ∪ Z2. Clearly V is a biset 
bilinear algebra over the biset S = Z5 ∪ Z2.  
 
Now we proceed on to define the bidimension of a biset bilinear 
algebra over the biset S = S1 ∪ S2. 
 
DEFINITION 4.11: Let V = V1 ∪ V2 be a biset linear bialgebra 
over the biset S = S1 ∪ S2. Let W = W1 ∪ W2 ⊂ V1 ∪ V2, if W is 
a biset bilinear algebra over the biset S = S1 ∪ S2 then we call 
W to be the biset bilinear subalgebra of V over the biset S = S1 
∪ S2.  
 
We illustrate this by some simple examples. 
 
Example 4.35: Let  
 

V =  V1 ∪ V2  

=  5

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z4 × Z4}  

 
be the biset bilinear algebra over the biset S = S1 ∪ S2 = Z5 
∪ Z4. Let  
 

W  = W1 ∪ W2  

=  5

a a a
a Z

0 0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {{0,2} × {0,2}}  

⊆  V1 ∪ V2;  
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W is a biset bilinear subalgebra of V over the biset S = S1 ∪ S2 . 
 
Example 4.36: Let V = V1 ∪ V2 = Z7[x] ∪{(000), (111), (100), 
(001), (010), (110), (101), (011)} be the biset bilinear algebra 
over the biset S = Z7 ∪ Z2 . Take W = W1 ∪ W2 = {all 
polynomials of degree 2 with coefficient from Z7} ∪ {000), 
(111)} ⊂ V1 ∪ V2; W is a biset bilinear subalgebra of V over 
the biset S = Z7 ∪ Z2. 
 
Example 4.37: Let  
 

V  =  V1 ∪ V2  

=  {Z2 × Z2 × Z2 × Z2} ∪ 3

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
V is a biset bilinear algebra over the biset Z2 ∪ Z3. 
Take  

W  = W1 ∪ W2  
⊆ V1 ∪ V2  

where  
W1 = Z2 × {0} × Z2 × {0} 

and  

W2 = 3

a 0
a,d Z

0 d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
W is the biset bilinear subalgebra of V over the set Z2 ∪ Z3.  
 
Now having defined the substructure we now proceed on to 
define the notion of the bigenerating set and bidimension of the 
biset bilinear algebra. 
 
DEFINITION 4.12: Let V = V1 ∪ V2 be a biset bilinear algebra 
defined over the biset S = S1 ∪ S2. Let X = X1 ∪ X2 ⊂ V1 ∪ V2 
where X1 generates V1 as a set linear algebra over S1 and X2 
generates V2 as a set linear algebra over S2. Clearly X = X1 
∪ X2 bigenerates V and the bidimension of V is (|X1|; |X2|). 
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We give some examples to illustrate this concept. 
 
Example 4.38: Let  
 

V =  V1 ∪ V2  

=  
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ Z2 × Z2 × Z2 

 
be the biset bilinear algebra over the biset S = Z ∪ Z2 = S1 ∪ S2.  
 
Let 

X =  X1 ∪ X2  

=  
1 1 1
1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

{(001), (000), (100), (010)}  

⊆ V1 ∪ V2,  
 
we see X bigenerates V and bidimension of V is {1} ∪ {3} or 
{1, 3}. 
 
Example 4.39: Let  
 

V  =  V1 ∪ V2  

=  12

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z6 × Z6}  

 
be a biset bilinear algebra over the biset S = Z12 ∪ Z6 . Take  
 

X  = X1 ∪ X2  

= 
1 1 1
1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(11), (10)}  

 
is the bigenerator of V. The bidimension of V is {1} ∪ {2} or 
{1, 2}.  
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Now having seen the bidimension we wish to mention that for 
the same set V treated as a biset bilinear algebra and as a biset 
bivector space over the same biset S = S1 ∪ S2, their 
bidimensions are distinct and not the same.  

Thus in certain cases it is advantageous to work with biset 
bilinear algebra for it will make the cardinality of the 
bidimension relatively small when compared with the biset 
bivector space.  

In spaces where it is possible we can make use of biset 
bilinear algebra instead of biset bivector spaces.  
 
Now we proceed on to define the notion of semigroup bivector 
spaces. 
 
DEFINITION 4.13: Let V = V1 ∪ V2 where V1 is a semigroup 
vector space over the semigroup S.  

If V2 is also a semigroup vector space over the same S and 
if V1 and V2 are distinct (V1 ≠ V2, V1 ⊆  V2 and V2 ⊆  V1) then 
we say V = V1 ∪ V2 to be the semigroup bivector space over the 
semigroup S.  
 
We illustrate this by the following examples. 
 
Example 4.40: Let  
 

V =  V1 ∪ V2  

= {Z+ × Z+ × 2Z+} ∪
a b c

a,b,c,d,e,f 2Z
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup bivector space over the semigroup S = 2Z+, we 
see V1 is a semigroup vector space over the semigroup 2Z+ = S 
and V2 is also a semigroup vector space over the same 
semigroup S = 2Z+.  
 
Example 4.41: Let V = {(111), (000), (100), (001)} ∪ {(a, b) / 
a, b ∈ Z2 = {0, 1}} = V1 ∪ V2. V is a semigroup bivector space 
over the semigroup Z2 = {0, 1} = S.  
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Example 4.42: Let  

V  = {(a, b, c)| a, b, c ∈ Z+} ∪ 
a c

a,c 2Z
0 a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

=  V1 ∪ V2 .  
 
V = V1 ∪ V2 is a semigroup bivector space over the semigroup 
S = Z+. 
 
Example 4.43: Let  
 

V =  {(000), (00), (01), (111), (001), (011)} ∪ {(1111), 
(0000), (0101), (1101), (000), (111), (11111), 
(00000), (10101)}  

=  V1 ∪ V2 .  
 
V is a semigroup bivector space over the semigroup Z2 = {0,1} 
under addition modulo 2. V1 ∩ V2 = {(000), (111)} ≠ φ. But V1 
⊄ V2 and V2 ⊄ V1.  
 
Now we proceed on to define the new notion of semigroup 
bivector subspace of a semigroup bivector space V. 
 
DEFINITION 4.14: Let V = V1 ∪ V2 be a semigroup bivector 
space over the semigroup S. Let W = W1 ∪ W2 ⊂ V1 ∪ V2 = V 
be a proper biset of V, if W is a semigroup bivector space over S 
then we call W to be the semigroup bivector subspace of V over 
the semigroup S. Clearly W1 ≠ W2 and W1 ⊄ W2 and W2 ⊄ W1 
with W1 ⊆ V1 and W2 ⊆ V2.  
 
We now illustrate this definition by some examples.  
 
Example 4.44: Let V = V1 ∪ V2 be a semigroup bivector space 
over the semigroup S = Z+. Let  
 

V1 = 
a a a

a Z {0}
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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and  
V2 = {3Z+ × 5Z+}. 

 
V1 is a semigroup vector space over the semigroup S = Z+ and 
V2 is a semigroup vector space over the semigroup S = Z+.  

Thus V is a semigroup bivector space over the semigroup S 
= Z+.  

Take  

W1 = 
a a a

a 3Z {0}
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆  V1  

and 
W2 = 3Z+ ×{0} ⊆ V2. 

 
W = W1 ∪ W2 is a semigroup bivector space over the semigroup 
S = Z+. W is a semigroup bivector subspace of V = V1 ∪ V2 
over the semigroup S = Z+. 
 
Example 4.45: Let V = {(1110), (0000), (1010), (1000), (00), 
(11), (10)} ∪ {(11111), (00000), (000), (111), (11011), (101)} = 
V1 ∪ V2 be the semigroup bivector space over the semigroup S 
= Z2. W = {(0000), (1111)} ∪ {(000), (101)} ⊆ V1 ∪ V2 is a 
semigroup bivector subspace of V over S = Z2.  
 
Now we proceed on to define the bidimension and bigenerator 
of the semigroup bivector space. 
 
DEFINITION 4.15: Let V = V1 ∪ V2 be a semigroup bivector 
space over the semigroup S.  

Let X = X1 ∪ X2 ⊆ V1 ∪ V2, if X1 generates the semigroup 
vector space V1 over the semigroup S and X2 generates the 
semigroup vector space V2 over the semigroup S then, X = X1 
∪ X2 is the bigenerator of the semigroup bivector space V over 
the semigroup S.  

The bidimension of V is |X1| ∪ |X2| or (|X1|, |X2|) over the 
semigroup S. If even one of |X1| or |X2| is infinite we say the 
bidimension of V is infinite. 
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Example 4.46: Let V = V1 ∪ V2 = {(000), (111), (010), (001), 
(00), (01)} ∪ {(a a a a) / a ∈ Z2 = {0, 1}} be the semigroup 
bivector space over the semigroup S = Z2 = {0,1}. X = {(111), 
(010), (001), (01)} ∪ ((1111)}; bigenerates V over S = Z2 = 
{0,1} so the bidimension of V is (4,1) or {4} ∪ {1) over S. 
 
Example 4.47: Let V = {(a b c) / a, b, c ∈ Z+} ∪ {(a a a a a) / a 
∈ Z+} be the semigroup bivector space over the semigroup S = 
Z+. Take X = {(a b c) / a, b, c ∈ Z+} ∪ {(11111)} ⊆ V1 ∪ V2 , X 
is a bigenerator of V and the bidimension of V over S is {∞} 
∪ {1} = {∞, 1}. Thus V is an infinite bidimensional semigroup 
bivector space over S = Z+.  
 
Now we proceed on to define the notion of semigroup bilinear 
algebra over the semigroup. 
 
DEFINITION 4.16: Let V = V1 ∪ V2 be such that V1 is a 
semigroup linear algebra over the semigroup S and V2 is a 
semigroup linear algebra over the semigroup S. with V1 ≠ V2 , 
V1 ⊄ V2 and V2 ⊄ V1.  

Then we call V to be the semigroup bilinear algebra over 
the semigroup S. 
 
 We illustrate this by few examples. 
 
Example 4.48: Let  
 

V  = V1 ∪ V2  
=  {(111), (000), (110), (101), (100), (010), (001),  

  (011)} ∪ 2

a a
a Z {0,1}

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
V is a semigroup bilinear algebra over the semigroup S = Z2 = 
{0,1}. 
 
Example 4.49: Let V = V1 ∪ V2 = {Z5 [x]} ∪ {Z5 × Z5 × Z5}. V 
is a semigroup bilinear algebra over the semigroup Z5. 
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Example 4.50: Let  

V = V1 ∪ V2 = {Z+ × Z+ × Z+} ∪ 
a a a

a 2Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a semigroup bilinear algebra over the semigroup S = Z+. 
 We see all semigroup bilinear algebras defined over the 
semigroup are semigroup bivector spaces but a semigroup 
bivector space in general is not a semigroup bilinear algebra.  
 
To this end we give an example. 
 
Example 4.51: Let V = V1 ∪ V2 = {(111), (000), (11), (00)} ∪ 
{(0000), (1111), (1101), (0110)}. V is a semigroup bivector 
space over the semigroup S = Z2 = {0,1}.  

Clearly V is not a semigroup bilinear algebra over Z2 = 
{0,1} as V1 is not a semigroup under addition and V2 is also not 
a semigroup under addition. Hence the claim. 
 
 It may so happen in V = V1 ∪ V2 we may have V1 to be a 
semigroup linear algebra over the semigroup S and V2 is only a 
semigroup vector space, in such cases we define a new algebraic 
structure. 
 
DEFINITION 4.17: Let V = V1 ∪ V2 be such that V1 is a 
semigroup linear algebra over the semigroup S and V2 is only a 
semigroup vector space over S with V1, ≠ V2, V1 ⊆  V2 and V2 
⊆  V1. Then we call V = V1 ∪ V2 to be a quasi semigroup 

bilinear algebra over S. 
 
 We illustrate this by the following examples. 
 
Example 4.52: Let  
 

V  = V1 ∪ V2  
= {(000), (111), (01), (10), (11), (00), (100)} 

  ∪ 2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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V1 is only a semigroup vector space over the semigroup S = Z2 
= {0,1}. V2 is a semigroup linear algebra over the semigroup S 
= Z2 = {0, 1}; V1 ≠ V2. So V is a quasi semigroup bilinear 
algebra over the semigroup S = Z2 = {0,1}. 
 
It is interesting to note that all semigroup bilinear algebras are 
quasi semigroup bilinear algebras but converse is never true. 
Also all quasi semigroup bilinear algebras are semigroup 
bivector spaces but the converse is not true. 
 
Example 4.53: Let  

V  =  2

a a b b b
, a,b Z

a a b b b
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

∪  {(110), (0000), (00000), (11111), (1101), (000)}  
=  V1 ∪ V2 .  

 
V is a semigroup bivector space over the semigroup S = Z2 = 
{0, 1}. V1 is only a semigroup vector space also V2 is only a 
semigroup vector space over Z2. So V = V1 ∪ V2 is only a 
semigroup bivector space over Z2 and never a quasi semigroup 
bilinear algebra over S = Z2 = {0,1}. 
 
Example 4.54: Let  
 

V  = V1 ∪ V2  
=  {(000), (111), (110), (111111), (000000), (111000), 

  (101010)}  

 ∪ 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
V1 is only a semigroup vector space over the semigroup S = Z2 
= {0, 1}. V2 is a semigroup linear algebra over the semigroup S 
= Z2 = {0, 1}. Thus V = = V1 ∪ V2 is only a quasi semigroup 
bilinear algebra over Z2 = {0, 1}.  
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Thus a quasi semigroup bilinear algebra can have quasi 
semigroup bilinear subalgebra as well as quasi semigroup 
bivector subspaces. 
 
DEFINITION 4.17: Let V = V1 ∪ V2 be a quasi semigroup 
bilinear algebra over the semigroup S. Here V1 is a semigroup 
linear algebra over S and V2 is a semigroup vector space over 
S.  

Let W = W1 ∪ W2 ⊂ V1 ∪ V2 where W1 is a semigroup 
linear subalgebra of V1 and W2 is only a semigroup vector 
subspace of V2. Then W = W1 ∪ W2 is the quasi semigroup 
bilinear subalgebra of V.  
 
 If P = P1 ∪ P2 ⊂ V1 ∪ V2 is such that P1 is only a semigroup 
vector subspace of the semigroup linear algebra V1 over S and 
P2 is a semigroup vector subspace of the semigroup vector space 
V2 then we call P = P1 ∪ P2 to be the quasi semigroup bivector 
subspace of V = V1 ∪ V2 over the semigroup S. 
 
Example 4.55: Let  
 

V  =  V1 ∪ V2  
=  {(000), (111), (100), (010), (001), (110), (011),  

  (101)} ∪ 2

a a b b b a 0
, , a,b Z

a a b b b a 0
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 . 

 
V is a quasi semigroup bilinear algebra over the semigroup S = 
Z2 = {0,1}. Take  
 

W  = W1 ∪ W2  

=  {(000), (100), (010)} ∪ 2

a a a 0
, a Z

a a a 0
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

⊆  V1 ∪ V2. 
 

W is only a semigroup bivector space over the semigroup S 
= Z2 = {0, 1}. So W is a quasi semigroup bivector subspace of 
V over Z2 = {0, 1}. Let  
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P = P1 ∪ P2  

=  {(000), (111)} ∪ 2

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  

⊆  V = V1 ∪ V2. 
  

P is a quasi semigroup bilinear subalgebra over the 
semigroup S = Z2 = {0,1}. 
 
Now have seen the substructures of a quasi semigroup bilinear 
algebra we proceed on to define bidimension and bigenerating 
subset of the quasi semigroup bilinear algebra. 
 
DEFINITION 4.18: Let V = V1 ∪ V2 be a quasi semigroup 
bilinear algebra over the semigroup S.  Let X = X1 ∪ X2 ⊆ V1 ∪ 
V2 where X1 generates the semigroup linear algebra V1 and X2 
generates the semigroup vector space V2 over S.   

Then X = X1 ∪ X2 is called the bigenerator of V and the 
bidimension of V is (|X1|, |X2|) or (|X1| ∪ |X2|. 
 
We illustrate this situation by some examples. 
 
Example 4.56: Let V = V1 ∪ V2 = {(a, a, a) | a ∈ Z2} ∪ {(1 1 
1), (0 0 0), (1 1 0), (1 1 1 0), (0 0 0 0), (1 1 0 0), (1 1 0 1), (1 1 0 
0 1),  (0 0 0 0 0), (1 1 1 0 1)} be a quasi semigroup linear 
algebra over Z2.  Let X = {(1 1 1)} ∪ {(1 1 1), (1 1 0), (1 1 1 0), 
(1 1 0 0), (1 1 0 1), (1 1 0 0 1), (1 1 1 0 1)} ⊂ V1 ∪ V2, X is a 
bisubset of V which bigenerates V.  The bidimension of X is 
{1} ∪ {7} = (1, 7). 
 
Example 4.57: Let V  = V1 ∪ V2 = {(1 1), (1 0), (0 0), (1 1 1),  
(0 0 0), (1 1 1 1 1), (0 0 0 0 0), (1 1 0 0 0),  (0 1 1 ), (1 0 1 0 1)}  

 

∪ 2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a quasi semigroup linear algebra over the semigroup Z2 = {0, 
1}.   



 158

X  =  {(1 1), (1 0), (1 1 1), (1 1 1 1 1), (1 1 0 0 0),  

    (0 1 1), (1 0 1 01 )} ∪ 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

   

is the bigenerator of V. The bidimension of V is {7} ∪ {1} =  
(7, 1).  

We see from these examples the dimension of the 
semigroup linear algebra V is less than the dimension of 
semigroup vector space V. Same V for which ‘+’ is taken and 
for the other ‘+’ operation is not taken. 

We illustrate this situation by an example. 
 
Example 4.58: Let V = {(1 1 1), (1 0 0), (0 1 0), (0 0 1), (1 1 0), 
(1 0 1), (0 1 1), (0 0 0)} be a semigroup linear algebra over the 
semigroup Z2 = {0, 1}. Suppose V = {(1 1 1), (1 0 0), (0 1 0), (0 
0 1), (1 1 0), (1 0 1), (0 1 1), (0 0 0)} be a semigroup vector 
space over Z2 = {0,1}, the semigroup under addition. Dimension 
of V as a semigroup linear algebra is three given by the 
generating set X = {(1 0 0), (0 1 0), (0 0 1)}. The dimension of 
V as a semigroup vector space is 7 given by the generating set X 
= {(1 1 1), (1 0 0), (0 0 1) (0 1 0), (1 1 0), (0 1 1), (1 0 1)}. Thus 
we see dimension varies or the dimension is small when the 
structure is a semigroup linear algebra V and the dimension is 
large for the same V when it is a semigroup vector space.  
 
Now we proceed onto define the new notion of group bivector 
spaces and group bilinear algebras. 
 
DEFINITION 4.19: Let V = V1 ∪ V2 be such that V1 ≠ V2, V1 
⊆/ V2 and V2 ⊆/  V1, V1 and V2 group vector spaces over the same 
group G, then we call V to be a group bivector space defined 
over the group G.  
 
We illustrate this by the following examples. 
 
Example 4.59: Let V = V1 ∪ V2 where  

V1 = 3

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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and  
V2 = {(a a a a a) | a ∈ Z3}. 

V is a group bivector space over the group Z3 = {0, 1, 2} 
addition modulo 3. 
 
Example 4.60: Let  
 

V = V1 ∪ V2  
=  {(0 0), (1 1), (1 1 1 1 1), (0 1), (0 0 0 0 0)} ∪  

2

a a a a a
, a Z {0,1}

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

.  

 
V is a group bivector space over the group G = Z2 = {0, 1} 
addition modulo 2. 
 
Example 4.61: Let V = V1 ∪ V2 = {Z[x]} ∪ { (Z × Z × Z)} be a 
group bivector space over the group G = Z, group under 
addition. 
 
We now define some interesting substructures of group bivector 
spaces. 
 
DEFINITION 4.20: Let V = V1 ∪ V2 be a group bivector space 
over the group G. W = W1 ∪ W2 ⊆ V1 ∪ V2 is said to be a group 
bivector subspace of V over G if W itself is a group bivector 
space over G. 
 
We illustrate this by some examples. 
 
Example 4.62: Let  
 
V  =  V1 ∪ V2  

= {(0 0 0), (1 1 1), (0 0 0 0), (1 1 1 1), (1 1 0 0), (0 0 1 1)}  

∪ 2

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
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be the group bivector space over the group G = Z2 = {0, 1} 
under addition. Take  
 

W =  W1 ∪ W2  
=  {(0 0 0), (1 1 1), (0 0 0 0), (1 1 1 1)} ∪ 

 2 1 2

a a a
a Z V V

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

;  

 
Clearly W is a group bivector subspace of V over G = Z2. 
 
Example 4.63: Let  
 
V  =  V1 ∪ V2  

= 2

a b a a a
, a,b,c,d Z

c d a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(1 1 1 0 1 1),  

  (0 0 0 0 0 0), (1 1 1 0 0 0), (1 1), (0 0), (1 0)}  
 
be a group bivector space over Z2 = {0, 1}. Take  
 

W = 2

a b
a, b, c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪{(0 0 0 0 0 0), (1 1 1 0 0 0)}  

⊂  V1 ∪ V2,  
 
W is a group bivector subspace of V over Z2 = {0, 1}. 
 
Example 4.64: Let  
 
V =  V1 ∪ V2  

= {Z[x] } ∪ 
a b a b c

, a,b,c,d,e,f Z
c d d e f

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a group bivector space of V over Z. Take  
W = W1 ∪ W2  
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= {2Z[x]} ∪ 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

⊂ V1 ∪ V2;  

 
W is a group bivector subspace of V over Z.  
 
Now we define the notion of pseudo semigroup bivector 
subspace. 
 
DEFINITION 4.21: Let V = V1 ∪ V2 be a group bivector space 
over the group G. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 and H ⊆ G be a 
semigroup of the group G. If W is a semigroup bivector space 
over the semigroup H then we call W to be a pseudo semigroup 
bivector subspace of V. 
 
Example 4.65: Let V = V1 ∪ V2 = {Z[x]} ∪ { (a, b, c) | a, b, c, 
∈ Z} be a group bivector space over the group Z. Take W = W1 
∪ W2 = {Z+ [x]} ∪ {a, b, c) | a, b, c ∈ Z+} ⊂ V1 ∪ V2; W is a 
semigroup bivector space. W is a pseudo semigroup bivector 
subspace of V over the semigroup Z+ ⊆ Z. 
 
Example 4.66: Let  
 

V  =  V1 ∪ V2  

=  
a b c

a,b,c,d,e,f Z
c d b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪  

{(a, b c d) | a, b, c, d ∈ Z}  
 
be a group bivector space over the group Z. Take  
 

W  =  W1 ∪ W2  

=  
a b c

a,b,c,d,e,f Z {0}
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 {(a, b, c, d) | a, b, c, d ∈ 2Z+ ∪ {0}} ⊆ V1 ∪ V2;  
 
W is a pseudo semigroup bivector subspace of V over the 
semigroup 2Z+ ∪ {0}. 



 162

 
Example 4.67: Let  
 

V  =  V1 ∪ V2  
=  {(a b c d) | a, b, c, d ∈ Z} ∪  

a b a a a
, a,b,c,d Z

c d a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a group bivector space over the group Z. Take  
 

W = W1 ∪ W2  
=  {(a 0 b 0) | a, b ∈ Z+ ∪ {0}} ∪   

1 2

a b
a,b,c,d Z {0} V V

c d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ⊆ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
W is a pseudo semigroup bivector subspace of V over the 
semigroup Z+ ∪ {0}.  
 
Now we proceed onto define the substructure pseudo set 
bivector subspace of a group bivector space. 

 
DEFINITION 4.22: Let V = V1 ∪ V2 be a group bivector space 
over the group G. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 = V, take S a 
proper subset of G. If W is a set vector space over the set S then 
we call W to be the pseudo set bivector subspace of V over the 
set S. 
 
We now illustrate this by the following example. 
 
Example 4.68: Let V = V1 ∪ V2 be a group bivector space over 
the group G = Z; where  

V1 = {(a, b, c, d) | a, b, c, d ∈ 2Z} 
and  

V2 = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

Take  
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W = W1 ∪ W2  
= {(a b c d) | a, b, c, d ∈ 2Z+ ∪ {0}} ∪  

a b
a,b,c,d 2Z {0}

c d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 ⊆  V1 ∪ V2 = V,  
 
W is a pseudo set bivector subspace over the set S = {0, 2, 22, 
24, 28, …, 22n | n ∈ N}. 
 
Next we proceed onto define the notion of bisemigroup bivector 
group space. 
 
DEFINITION 4.23: Let V = V1 ∪ V2, where V1 is a semigroup 
vector space over the semigroup S1 and V2 is a semigroup 
vector space over the semigroup S2, (S1 ≠ S2, S1 ⊆/  S2 and S2 ⊆/  
S1). Also V1 ≠ V2, V1 ⊆/  V2 and V2 ⊆/  V1. We call V to be the 
bisemigroup bivector space over the bisemigroup S = S1 ∪ S2.  

 
We illustrate this by the following examples. 

 
Example 4.69: Let V = V1 ∪ V2 where  

V1 = {(a, a, a) | (a ∈ Z6} 
and  

V2 = 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

; 

 
V is a bisemigroup bivector space over the bisemigroup  
S = Z6 ∪ Z+. 
 
Example 4.70: Let V= V1 ∪ V2 = {Z+ [x]} ∪ {Q+ × Q+}, V is a 
bisemigroup bivector space over the bisemigroup 3Z+ ∪ 5Z+. 
 
Example 4.71: Let V = V1 ∪ V2 where  

V1 = 
a a

a 2Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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is a semigroup vector space over the semigroup 2Z+ and V2 = 
{a, a, a} | a ∈ 3Z+} is the semigroup vector space over the 
semigroup 3Z+. V is a bisemigroup bivector space over the 
bisemigroup S = 2Z+ ∪ 3Z+. 
 
Example 4.72: Let V = V1 ∪ V2 where  

V1 = {Z+ × Z+ × Z+} 
and  

V2 = 
a b

a, b, c, d 3Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is bisemigroup bivector space over the bisemigroup S = 2Z+ 
∪ 3Z+. 
 
The notion of bisemigroup bivector subspace can be defined as 
in case of other bivector spaces.  

Next we proceed onto define the notion of bisemigroup 
bilinear algebra defined over the bisemigroup S = S1 ∪ S2. 
 
DEFINITION 4.24: Let V = V1 ∪ V2 where V1 is a semigroup 
linear algebra over the semigroup S1 and V2 is a semigroup 
linear algebra over the semigroup S2 (V1 ≠ V2, V1 ⊆/  V2; V2 ⊆/  
V1) (S1 ≠ S2; S1 ⊆/  S2 and S2 ⊆/  S1). Then we call V to be the 
bisemigroup bilinear algebra over the bisemigroup S = S1 ∪ S2.  

 
We illustrate this by the following examples. 
 
Example 4.73: Let V= V1 ∪ V2 =  
 

V1 = 
a a

a 2Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  
V2 = (a b c d) | a, b, c, d ∈ 3Z+} 

be the bisemigroup bilinear algebra over the bisemigroup S = 
2Z+ ∪ 3Z+. 
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Example 4.74: Let V = V1 ∪ V2 = {(1 1), (0 0), (0 0 0), (1 1 1)} 
∪ {(a b c d) | a, b, c, d ∈ Z+ be the bisemigroup bivector space 
over the bisemigroup S = Z2 ∪ Z+. Clearly V is not a 
bisemigroup bilinear algebra over S. 
 
In view of this we have the following. 

Every bisemigroup bilinear algebra is a bisemigroup 
bivector space but in general a bisemigroup bivector space is 
not a bisemigroup bilinear algebra. The above example is a 
semigroup bivector space which is not a bisemigroup bilinear 
algebra. 
 
We now proceed onto define the notion of bisemigroup bilinear 
subalgebra. 

 
DEFINITION 4.25: Let V = V1 ∪ V2 be a semigroup bilinear 
algebra over the bisemigroup S = S1 ∪ S2. Let W = W1 ∪ W2 ⊂ 
V1 ∪ V2 if (W1 ≠ W2 W1 ⊆/  W2 and W2 ⊆/ W1)and W is itself a 
bisemigroup bilinear algebra over S then we call W to be a 
bisemigroup bilinear subalgebra over the bisemigroup S = S1 ∪ 
S2.  
 
We illustrate this by the following example. 
 
Example 4.75: Let V = V1 ∪ V2 = {Z+ [x]} ∪ Z+ × Z+ × Z+} be 
the bisemigroup bilinear algebra over the bisemigroup S = 3Z+ 
∪ 5Z+. Take W = W1 ∪ W2 = {3Z+ [x]} ∪ {Z+ × {0} × Z+} ⊆ 
V1 ∪ V2, W is a bisemigroup bilinear subalgebra of V over the 
bisemigroup S.  
 
Example 4.76: Let  
 

V  =  V1 ∪ V2  
=  {(a, b) such that a, b ∈ Z10} ∪ 

 
a b

a, b, c,d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a bisemigroup bilinear algebra over the bisemigroup S = Z10 
∪ Z+. Take  
 

W  =  W1 ∪ W2  

 = {(a, a) | a ∈ Z10} ∪ = 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

,  

 ⊆  V1 ∪ V2 
 
W is a bisemigroup bilinear subalgebra of V over the 
bisemigroup S = Z10 ∪ Z+. 
 
Example 4.77: Let  
 

V  = V1 ∪ V2  

=  {(a, a) | a ∈ 5Z+} ∪ 
a a
a a a 7Z
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a bisemigroup bilinear algebra over the bisemigroup S = 5Z+ 
∪ 7Z+. Take  

 
W  = W1 ∪ W2  

=  {(a, a) | a ∈ 15 Z+} ∪ 
a a
a a a 14Z
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆ V1 ∪ V2;  
 
W is a bisemigroup bilinear subalgebra of V over the 
bisemigroup S = 5Z+ ∪ 7Z+. 
 
Example 4.78: Let V = V1 ∪ V2 = {7Z+ [x]} ∪ {5Z+ × 5Z+ × 
5Z+} be a bisemigroup bilinear algebra over the bisemigroup S 
= 7Z+ ∪ 5Z+. Take W = W1 ∪ W2 = {14Z+ [x]} ∪ {5Z+ × φ × 
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5Z+} ⊆ V1 ∪ V2, W is a bisemigroup bilinear subalgebra over 
the bisemigroup S = 7Z+ ∪ 5Z+.  
 
Now having seen the definition of semigroup bilinear 
subalgebra we now proceed on to define the notion of 
bidimension of the bisemigroup bilinear algebra over the 
bisemigroup. 
 
DEFINITION 4.26: Let V = V1 ∪ V2 be the bisemigroup bilinear 
algebra over the bisemigroup S = S1 ∪ S2. Take X = X1 ∪ X2 ⊆ 
V1 ∪ V2; if X1 generates V1 and X2 generates V2 then we say X 
bigenerates V over the bisemigroup S = S1 ∪ S2. 

The cardinality of X1 ∪ X2 is given by |X1| ∪ |X2| or (|X1|, 
|X2|), called the bidimension of the bisemigroup bilinear 
algebra V = V1 ∪ V2. If even one of X1 or X2 is of infinite 
dimension then we say the bidimension of V is infinite, only 
when both X1 and X2 are of finite cardinality we say V is of 
finite bidimension over the bisemigroup S. 

 
Example 4.79: Let V = V1 ∪ V2 = {(1 0), (0 1), (0 0), (1 1 1),  
(0 0 0), (1 0 1)} ∪ {(1 1 1), (3 3 3), (2 2 2), (0 0 0), (1 0 0),  
(2 0 0), (3 0 0)} be the bisemigroup bivector space over the 
bisemigroup S = Z2 ∪ Z4. Let X = {(1 0), (0 1), (1 1 1), (1 0 1)} 
∪ {(1 1 1), (1 0 0)} = X1 ∪ X2 be the bigenerator of V. The 
bidimension of V is (4, 2). 
 
Example 4.80: Let V = V1 ∪ V2 = {Z2 [x} ∪ {(a a a) | a ∈ Z5} 
be the bisemigroup bilinear bialgebra over the bisemigroup S = 
Z2 ∪ Z5. Let X = {1, x, …, x∞ } ∪ {(1 1 1)} = X1 ∪ X2 ⊆ V1 ∪ 
V2 be the bigenerator of V. Clearly bidimension of V is (∞, 1) 
or ∞ ∪ {1} so V is of infinite bidimension over S. 
 
Example 4.81: Suppose V = V1 ∪ V2 = {(1 1 1), (1 1 1 1), (0 0 
1), (0 0 0), (1 0 0), (1 1 0 0), (0 0 0 0)} ∪ {Z3 × Z3 × Z3} be the 
bisemigroup bivector space over the bisemigroup S = Z2 ∪ Z3. 
Let X = {(1 1 1), (1 1 1 1), (0 0 1), (1 0 0), (1 1 0 0)} ∪  
{(1 0 0), (0 1 0) (0 0 1), (1 1 0), (0 1 1), (1 0 1), (1 2 0), (1 1 1), 
(1 0 2), (0 1 2), (1 2 2), (2 1 2), (2 2 1) etc} = X1 ∪ X2 which is 
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the bigenerator of the bisemigroup bivector space over the 
bisemigroup. The bidimension of V over S is (5 ∪ 26). 
 
Example 4.82: Let  

V  =  V1 ∪ V2  

= {2Z+ [x]} ∪ 
a b

a, b, c, d 3Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

,  

 
be a bisemigroup bivector space over the bisemigroup S = 2Z+ 
∪ 3Z+. Clearly the bidimension of V is infinite.  
 
Now we proceed onto define the notion of bigroup bivector 
space over the bigroup. 
 
DEFINITION 4.27: Let V = V1 ∪ V2, such that V1 ≠ V2, V1 ⊆/  V2, 
V2 ⊆/  V1. If V1 is a group vector space over the group G1 and V2 
is a group vector space over the group G2 (G1 ≠ G2 , G1 ⊆/  G2 

and G2 ⊆/  G1) then we say V = V1 ∪ V2 is a bigroup bivector 
space over the bigroup G = G1 ∪ G2. Clearly if V1 and V2 are 
just set it is sufficient to define bigroup bivector space over a 
bigroup. 
 
Example 4.83: Let V = V1 ∪ V2 be a bigroup bivector space 
over the bigroup G = Z3 ∪ Q where V1 = Z3[x] and V2 = Q × Q. 
 
Example 4.84: Let V = V1 ∪ V2 = {(1 1), (0 0 ), (0 1), (1 1 1 0), 
(0 0 0 0), (0 1 0 0), (1 1 1 0 0), (0 0 0 0 0), (0 0 0 1 0)} ∪  

a a a a a
and a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the bigroup bivector space over the bigroup G = G1 ∪ G2 = 
Z2 ∪ Z. Clearly both V1 and V2 are just sets. 
 
Example 4.85: Let V = V1 ∪ V2 = {Z5 × Z5 × Z5} ∪ {Z7[x]} be 
the bigroup bivector space over the bigroup G = Z5 ∪ Z7. 
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Example 4.86: Let V = V1 ∪ V2 = {〈(1 1 1), (2 0 0), (2 2 0), (0 
0 0)〉} ∪ {〈(1 5 7 2), (0 1 0 0), (0 0 0 0), (3 5 4 1), (1 2 3 4), (5 6 
7 0)〉} be the bigroup bivector space over the bigroup G = Z3 ∪ 
Z8. (〈, 〉; denotes generated over the related groups). 
 
Example 4.87: Let  
 

V  =  V1 ∪ V2  

=  6

a b c
a,b,c,d,e,f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

10

x x
x, y Z

y y
⎧ ⎫⎛ ⎞⎪ ⎪∪ ∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

,  

 
be a bigroup bivector space over the bigroup bivector space 
over the bigroup space over the bigroup G = G1 ∪ G2 = Z6 ∪ 
Z10.  
 
Now we proceed onto define the notion of substructures in 
bigroup bivector spaces.  
 
DEFINITION 4.28: Let V = V1 ∪ V2 be a bivector bispace over 
the bigroup G = G1 ∪ G2. Let W = W1 ∪ W2 ⊂ V1 ∪ V2 = V be 
such that W1 ≠ W2. W1 ⊆/  W2 or W2 ⊆/  W1 if W itself is a 
bigroup bivector space over the bigroup G = G1 ∪ G2 then we 
say W is a bigroup bivector subspace of V over the bigroup G = 
G1 ∪ G2. 
 
We now illustrate this situation by the following examples. 
 
Example 4.88: Let  
 

V  =  V1 ∪ V2  

=  {(a, a, a)| a ∈ Z6} ∪ 8

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
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be the bigroup bivector space over the bigroup G = Z6 ∪ Z8. Let  
 

W  =  {(a, a, a) | a ∈ {0, 3}} 8

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

=  W1 ∪ W2.  
 
W is the bigroup bivector subspace of V over the bigroup G = 
Z6 ∪ Z8. 
 
Example 4.89: Let  
 
V  =  V1 ∪ V2  

= {(a a a), (a a), (a a a a)| a ∈ Z} ∪ 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the bigroup bivector space over the bigroup G = Z ∪ Z2.  
 

W  = {(a, a, a) | a ∈ Z} ∪ 2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

=  W1 ∪ W2 ⊆ V1 ∪ V2  
 

is the bigroup bivector subspace of V over the bigroup G = Z ∪ 
Z2. 
 
Example 4.90: Let V = V1 ∪ V2 = {(a a a), (a a a a a), (a a), (a a 
a a a a a)| a ∈ Z5} ∪ Z2 [x] be the bigroup bivector space over 
the bigroup Z5 ∪ Z2.  

Take W = W1 ∪ W2 = {(a a a), (a, a, a, a, a, a, a) | a ∈ Z5} ∪ 
{all polynomial of even degree with coefficients from Z2} ⊆ V1 
∪ V2 is a bigroup bivector subspace of V over the bigroup G = 
Z5 ∪ Z2.  
 
Next we define pseudo bisemigroup bivector subspace of a 
bigroup bivector space V. 
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DEFINITION 4.29: Let V = V1 ∪ V2 be a bigroup bivector space 
over the bigroup G = G1 ∪ G2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 
(such that W1 ≠ W2, W1 ⊆/  W2, W2 ⊆/  W1) where W1 is a 
semigroup vector space over the semigroup H1 contained in G1 
and W2 is a semigroup vector space over the semigroup H2 
contained in G2 H1 ⊆/  H2, H2 ⊆/  H1, H1 ≠ H2.  

Then we call W = W1 ∪ W2 to be the pseudo bisemigroup 
bivector subspace of the bigroup bivector space V over  
H = H1 ∪ H2 ⊆ G1 ∪ G2, H the bisemigroup contained in the 
bigroup. 
 
We illustrate thus by the following examples. 
 
Example 4.91: Let  
 

V  =  V1 ∪ V2  

     =    {(a a a a), (a a a) |a ∈ Z} ∪ 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the bigroup bivector space over the bigroup G = Z ∪ Z12. 
 Take  
 

W  = W1 ∪ W2  
=  {(a a a a), | a ∈ Z } ∪  

 
a b

a, b, d {0, 2, 4, 6, 8, 10}
0 d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
  ⊆  V1 ∪ V2.  
 
W is the pseudo bisemigroup bivector subspace over the 
bisemigroup  

Z+ ∪ {0, 6} = H = H1 ∪ H2. 
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Example 4.92: Let  
 

V =   V1 ∪ V2  
 

  =  
a a a

a a
a a a a Z

a a
a a a

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 ∪ 

 
{(a a a a), (a a), (a a a) | a ∈ 2Z}  

 
be the bigroup bivector space over the bigroup 3Z ∪ 2Z.  
Take  
 

W  =  W1 ∪ W2  
 

=  
a a

a 3Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a) | a ∈ 2Z},  

 
W is the pseudo bisemigroup bivector subspace of V over the 
bisemigroup H = 3Z+ ∪ 2Z+ ⊆ 3Z ∪ 2Z. 
 
Example 4.93: Let  

 
V  = V1 ∪ V2  

= {Z[x]} ∪ {(a a a a), (a a) | a ∈ 2Z}  
 
be the bigroup bivector space over the bigroup G = 3Z ∪ 2Z. 
Let  

W  =  {Z+[x]}∪ {(a a) | a ∈ 2Z}  
 
⊆  V1 ∪ V2  

 
be the pseudo bisemigroup bivector subspace over the 
bisemigroup H = 3Z+ ∪ 2Z+. 
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Now we define yet a new mixed structure which we call as 
quasi bigroup bivector space. 
 
DEFINITION 4.30: Let V = V1 ∪ V2 where V1 is a semigroup 
vector space over the semigroup S1 and V2 is the group vector 
space over the group G1. Then we call V = V1 ∪ V2 to be the 
pseudo bigroup bivector space over the pseudo bigroup  
G = S1 ∪ G1.  
 
We illustrate this situation by the following example. 
 
Example 4.94: Let  

 
V  =  V1 ∪ V2  

=  {Z5 [x]} ∪ {Z+ × Z+ × Z+}  
 
be the pseudo bigroup bivector space over the pseudo bigroup G 
= Z5 ∪ Z+. 
 
Example 4.95: Let  
 

V  =  V1 ∪ V2  
 

=  Z+[x] ∪ 12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the pseudo bigroup bivector space over the pseudo bigroup G 
= Z+ ∪ Z12 where Z+ is the semigroup and Z12 is the group under 
addition modulo 12. 
 
Example 4.96: Let  
 

V  =  V1 ∪ V2  
 

=  
a a

a, b 3Z
b b

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z20 [x]}  
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be the pseudo bigroup bivector space over the pseudo bigroup G 
= 3Z+ ∪ Z20. 
 
The author leaves it as an exercise for the reader to define 
various substructures of this structure and bigenerator and 
bidimension.  
 
Now we proceed onto generalize this to n-set n-vector spaces 
set n-vector spaces n ≥ 3, in the following chapter. 
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Chapter Five  
 
 
 
 
 

SET n-VECTOR SPACES AND THEIR 
GENERALIZATIONS  
 
 
 
 
 
In this chapter we for the first time introduce the notion of set n-
vector spaces, semigroup n-vector spaces and group n-vector 
spaces (n ≥ 3) when n = 2 we get set bivector spaces, semigroup 
bivector spaces and so on. 
 
DEFINITION 5.1: Let V = V1 ∪ … ∪ Vn, each Vi is a distinct set 
with Vi ⊆/  Vj or Vj ⊆/  Vi if i ≠ j; 1 ≤ i, j ≤ n. Let each Vi be a set 
vector space over the set S, i = 1, 2, …, n, then we call V = V1 ∪ 
V2 ∪ … ∪ Vn to be the set n-vector space over the set S. 
 
We illustrate this by the following examples. 
 
Example 5.1: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {(1 1 1), (0 0 0), (1 0 0), (0 1 0), (1 1), (0 0),  (1 1 1 1), 
 (1 0 0 0), (0 0 0)} ∪ 

2 2

a a a a a a
a Z a Z {0, 1}

a a a a a a
⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∈ ∪ ∈ =⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

 ∪ {Z2 [x]}.  
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V is a set 4 vector space over the set S = {0, 1}. 
 
Example 5.2: Let  
 

V  =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6  

= 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z+ × Z+ × Z+} ∪ {(a, a, a), 

  (a, a, a, a, a) | a ∈ Z+} ∪ 

a
a

a Z
a
a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {Z+[x]} 

  ∪ 1 2 3
i

4 5 6

a a a
a Z ;1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

   

 
be the set 6-vector space over the set S = Z+. 
 
Example 5.3: Let  
 
V =  V1 ∪ V2 ∪ V3  

= {Z6 [x]} ∪ {Z6 × Z6 × Z6} ∪ 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the set 3 vector space over the set S = {0, 2, 4}. We call this 
also as set trivector space over the set S. Thus when n = 3 we 
call the set n vector space as set trivector space. 
 
We define set n-vector subspace of a set n-vector space V. 
 
DEFINITION 5.2: Let V = V1 ∪ … ∪ Vn be a set n-vector space 
over the set S. If W = W1 ∪ … ∪ Wn with Wi ≠ Wj; i ≠ j, Wi ⊆/  
Wj and Wj ⊆/  Wi, 1 ≤ i, j ≤ n and W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 
∪ V2 ∪ … ∪ Vn and W itself is a set n-vector space over the set 
S then we call W to be the set n vector subspace of V over the 
set S. 
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We illustrate this by a simple example. 
 
Example 5.4: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

= {(a, a, a), (a, a) | a ∈ Z+} ∪ 
a a

a, b Z
b b

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  {Z+[x]} ∪ 
a
a a Z
a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

, 

 
V is a set 4-vector space over the set S = Z+. Take  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4  

= {(a, a, a) | a ∈ Z+} ∪ 
a a

a Z
0 0

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 {all polynomial of even degree} ∪ 
a
a a 2Z
a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

⊆  V1 ∪ V2 ∪ V3 ∪ V4  =  V,  
 
is a set 4-vector subspace of V over the set S = Z+.  

We can find several set 4-vector subspaces of V.  
 
Now we proceed on to define the n-generating set of a set n-
vector space over the set S. 
 
DEFINITION 5.3: Let V = V1 ∪ … ∪ Vn be a set n-vector space 
over set S. Let X = X1 ∪ … ∪ Xn ⊂ V1 ∪ V2 ∪ … ∪ Vn = V. If 
each set Xi generates Vi over the set S, i = 1, 2, …, n then we say 
the set n vector space V = V1 ∪ … ∪ Vn is generated by the n-
set X = X1 ∪ X2 ∪ … ∪ Xn and X is called the n-generator of V. 
If each of Xi is of cardinality ni, i = 1, 2, …, n then we say the n-
cardinality of the set n vector space V is given by |X1| ∪ … ∪ 
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|Xn| = {|X1|, |X2|, …, |Xn|} = {(n1, n2, …, nn)}. If even one of the 
Xi is of infinite cardinality we say the n-cardinality of V is 
infinite. Thus if all the sets X1, …, Xn have finite cardinality then 
we say the n-cardinality of V is finite. 
 
We now illustrate this by the following examples. 
 
Example 5.5: Let  
 
V  = V1 ∪ V2 ∪ … ∪ V5  

=  {(a, a, a) | a ∈ {0, 1}} ∪ 
a a

a {0, 1}
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 
a a a

a {0, 1}
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a, a, a, a)} a ∈ {0, 1}} ∪  

 
a b

a ,b {0, 1},a b
a b

⎧ ⎫⎛ ⎞⎪ ⎪∈ ≠⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a set 5-vector space over the set S = {0, 1}.  
Choose  
 

X  = {(1 1 1)} ∪ 
1 1 1 1 1
1 1 1 1 1

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎪ ⎪∪⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

 ∪ {(1 1 1 1)} ∪ 

  
1 0 0 1

,
1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ … ∪ V5 = V.  
 
It is easily verified each Xi generates Vi, i = 1, 2, …, 5. Thus X 
= X1 ∪ X2 ∪ … ∪ X5 is the 5-generator set of the set 5-vector 
space over the set S. In fact each set Xi is of finite cardinality, so 
V is a set 5-vector space of finite 5-dimension. In fact the 5 
dimension of V is {1, 1, 1, 1, 2}. 
 
One of the important and interesting factor to observe about 
these set n-vector spaces over the set S, is at times they can have 
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one and only one generating set. The example 5.5 is one such 
case.  

Now we proceed onto give yet another example of a set n-
vector space V over a set S. 

 
Example 5.6: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {(a, a, a) | a ∈ Z+} ∪ {Q+ × Q+} ∪ {Z+ [x]} ∪ 
a b

a, b, c, d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
a a a a

a Q
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a set 5-sector space over the set S = Z+. Take  
 
X  = X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5  

=  {(1 1 1)} ∪ {an infinite set of pairs including (1, 1)} ∪ 

  {1, x, …, xn and an infinite set} ∪ 
1 1
1 1

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 with an 

  infinite set of 2 × 2 matrices} ∪ 
1 1 1 1
1 1 1 1

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 together  

  with an infinite set 
a a a a

a Q
a a a a

+
⎫⎛ ⎞ ⎪∈ ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
.  

 
X is a 5-generating set. In fact X is an infinite 5-generating 
subset of V = V1 ∪ … ∪ V5. 
 
Example 5.7: Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

=  {Z+} ∪ {(a a a) | a ∈ Z+} ∪ 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
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{k1 (1 + x2 + x), k2x, k3x3, k4(x7 + 1), k5 (x8+1),  
k6(x13 + 1 + 2x); ki ∈ Z+; 1 ≤ i ≤ 6} ∪ 

a a a a a
a a a a a a Z
a a a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a 5 set vector space over the set S = Z+.  
Take  
 

X  = {1} ∪ {(1 1 1)} ∪ 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {1 + x2 + x, x, x3,  

  x7 + 1, x8 + 1, x13 + 2x + 1} ∪ 
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5.  
 
Clearly X, 5-generates V i.e., X is the unique 5-generator of V. 
Further V is 5-finitely generated and 5-dimension of V is {1 ∪ 1 
∪ 1 ∪ 6 ∪ 1} = (1, 1, 1, 6, 1).  
 

We now proceed onto define the n-set basis of the n-set 
vector space V over S. 

 
DEFINITION 5.4: Let V = V1 ∪ V2 ∪ … ∪ Vn be a set n-vector 
space over the set S. Suppose X = X1 ∪ … ∪ Xn is a n-set 
generating subset of V = V1 ∪ … ∪ Vn then we call X to be the 
n-set basis of V. If X = ( |X1|, |X2|, …, |Xn| ) in which each |Xi| < 
∞, 1 ≤ i ≤ n, then we say V is finitely n set generated by the n-set 
X and is of n-dimension (|X1|, |X2|, …, |Xn|). Even if one of |Xi| = 
∞ we say V is infinitely n-set generated by X. 
 
Now we will give one or two examples of n-set basis before we 
proceed onto define other interesting notions about n-set vector 
spaces. 
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Example 5.8: Let  

V  = {(a, a, a) | a ∈ Z+ ∪ {0}} ∪ 
a a

a Z {0}
0 a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

  {a1(x2 + 1 + 3x), a2(x + 1), a4x7 a3 (x6 + x2 + x3 + x4 + 1), 
  a5x, a6x2, a7(x8 + 5x2 + 1) | ai ∈ Z+ ∪ {0}; 1 ≤ i ≤ 7 } ∪ 

  
a a a a

a Z {0}
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

= V1 ∪ V2 ∪ V3 ∪ V4  
 
be a 4-set vector space over the set S = Z+ ∪ {0}. Now take  
 
X  =  X1 ∪ X2 ∪ X3 ∪ X4  

= {(1 1 1)} ∪ 
1 1
0 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(x3 + 3x+1), x+1, x7, x6 + x2 

  + x3 + x4 + 1, x, x2, x8 + 5x2 + 1} ∪ 
1 1 1 1
1 1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V3.  
 
Clearly V is 4 set generated by X and the basis 4-set of V is X 
and the n-dimension of the n-set X is (1, 1, 7, 1), (n = 4).  
 
We give yet another example. 

 
Example 5.9: Let  
 
V  =  V1 ∪ V2 ∪ … ∪ V5  

=  {(0 0 0 1 1 1), (0 0 1 1 1 1), (0 1 1 1 1 1), (0 0 0 0 0 0), 
  (1 1 1), (0 1 0), (1 1 0), (0 0 0)} ∪ {(1 1 1 1 1 1 1 1 1), 

  (0 0 0 0 0 0 0 0 0)} ∪ 2

a a
a Z {0,1}

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ = ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

  
a a a a
a a a a

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

,
1 1 1 1 1
1 1 0 1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

,
a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

,  
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1 1 1 1
0 0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

,
0 0 0 0 0
0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 2

0 0 0
a Z {0,1}

0 0 0
⎫⎛ ⎞ ⎪∈ = ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
 

 ∪ {1 + x2, 0, x + x2 +1, x3 + 1}  
 

be a 5-set vector space over the set Z2 = {0, 1}.  
 
X  = X1 ∪ … ∪ X5  

=  {(0 0 0 1 1 1), (0 0 1 1 1 1), (0 1 1 1 1 1), (1 1 1),  

  (0 1 0), (1 1 0)} ∪ {(1 1 1 1 1 1 1 1 1)} ∪ 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

  

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, , ,
1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 

  {1 + x2, x2 + x + 1, x3 + 1}  
⊆  V1 ∪ V2 ∪ …∪ V5  

 
be the 5 set which 5-generates V. Thus X is a 5-set- 5-basis of V 
of 5-dimension (6, 1, 1, 4, 3).  
 
Now we proceed on to define n-set linear algebra over the S. 
 
DEFINITION 5.5: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n set vector 
space over the set S. If each Vi is closed under addition then we 
call V to be a n-set linear algebra over S; 1 ≤ i ≤ n.  
 
Now we illustrate this by the following examples. 
 
Example 5.10: Let  
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

=  
a a a a

a Z {0}
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z+ ∪ {0} × Z+ ∪ 

  {0} × Z+ ∪ {0}} ∪ {all polynomials of degree less than 
  or equal to 5 with coefficients from Z+ ∪ {0}} ∪ 

   
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a 4-set vector space over the set S = Z+ ∪ {0}. Clearly V is a 
4-set linear algebra over S. The basis of V as a 4 set linear 
algebra over S is only finite whereas V as a 4-set vector space 
over S is infinite. 
 A 4-set which generates V is given by  
 

X  =  
1 1 1 1
1 1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(1 0 0), (0 1 0), (0 0 1)} ∪ {1, x, 

   x2, x3, x4, x5} ∪ 
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V4.  
 
Clearly the 4-dimension of V is (1, 3, 6, 4). 
 
Note:  It is interesting to observe that V is a 4-set vector space 
over S = Z+ ∪ {0} is not finitely generated. The given X in the 
example 5.10 does not 4-generate V as a 4-set vector space over 
S = Z+ ∪ {0}. 
 
Example 5.11: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {(1 1 1 1), (1 0 0 0), (1 1 0 0), (0 0 1 1), (0 0 0 1),  
  (0 0 1 0), (0 1 0 0), (0 1 1 0), (1 0 0 1), (1 0 1 0),  
  (0 1 0 1), (1 1 1 0), (1 0 1 1) (0 1 1 1), (1 1 0 1),  

  (0 0 0 0)} ∪  2

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  1 2 3
i 2

4 5 5

a a a
a Z {0, 1}, 1 i 5

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ = ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z2 [x] |  

  x an indeterminate of degree less than 4} ∪  
  {(1 1 1 1 1), (0 0 0 0 0)}  
 
be a 5-set vector space over Z2 = {0, 1}. Clearly V is a 5-set 
linear algebra over Z2 = {0, 1}. Take  
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X  = {(1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0 0 1) ∪    

  
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 
1 0 0

,
0 0 0

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 

  
0 1 0
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
0 0 1

,
0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
0 0 0

,
1 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
0 0 0

,
0 1 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  
0 0 0
0 1 0

⎫⎛ ⎞⎪
⎬⎜ ⎟
⎪⎝ ⎠⎭

 ∪ {1, x, x2, x3} ∪ {(1 1 1 1 1)}  

= X1 ∪ X2 ∪ … ∪ X5  
⊆  V1 ∪ V2 ∪ … ∪ V5  
=  V. 

 
Now the 5-dimension of V as a 5-linear algebra is (4, 4, 6, 4, 1). 
Whereas if we consider V as a 5-set vector space over the set 
Z2, X is not the 5-generator of V then  
 
Y  = Y1 ∪ Y2 ∪ … ∪ Y5  

= {(1 1 1 1), (1 0 0 0), (0 1 0 0), (0 0 1 0), (0 0 0 1),  
  (1 1 0 0), (1 0 1 0), (1 0 0 1), (0 1 1 0), (0 1 0 1),  
  (0 0 1 1), (1 1 1 0), (1 0 1 1) (0 1 1 1), (1 1 0 1)} ∪  
  {A set with 15 elements) ∪ {A set with 63 elements} ∪ 
  {A set with 15 elements} ∪ {(1 1 1 1 1)},  
 
5 generates V as a 5 set vector space over {0, 1}. Now the 5-
dimension of V is given by (15, 15, 63, 15, 1).  

Thus we see by making when ever possible or feasible a n-
set vector space into a n-set linear algebra, we can minimize the 
number of elements in the generating n-set.  
 
Now we proceed on to define the notion of n-set linear 
transformation of n-set linear algebras. 

 
DEFINITION 5.6: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set linear 
algebra over the set S. Let W = W1 ∪ W2 ∪ … ∪ Wn be a n-set 
linear algebra over the same set S. Suppose T is a map from V 
to W such that T = T1 ∪ T2 ∪ … ∪ Tn : V1 ∪ V2 ∪ … ∪ Vn → 
W1 ∪ W2 ∪ … ∪ Wn where Ti : Vi → Wi is a set linear algebra 
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transformation i.e., Ti (αx + y) = Ti (αx) + Ti(y); 1 ≤ i ≤ n. Then 
we call T to be a n-set linear transformation from V to W.  
 
We illustrate this by the following example. 
 
Example 5.12: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {(a a a) | a ∈ Z2 = {0, 1}} ∪ 2a a
a Z {0,1}

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

  {(0 0 0 0), (1 1 1 1), (1 1 0 0), (0 0 1 1)} ∪ {Z2 × Z2}  
 
be a 4-set linear algebra over Z2 = {0, 1} and  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4  

=  {Z2 × Z2 × Z2} ∪ 2

a b
a Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

2

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {(1 1 1 1 1), (0 0 0 0 0),  

(1 1 0 0 0), (0 0 1 1 1)} 
 
is also a 4-set linear algebra over the set Z2. Define T: V → W 
by T = T1 ∪ T2 ∪ T3 ∪ T4: V1 ∪ V2 ∪ V3 ∪ V4 → (W1 ∪ W2 ∪ 
W3 ∪ W4) with Ti : Vi → Wi ; 1 ≤ i ≤ 4. T1 : V1 → W1 is given 
by  
  
 T1 ((a a a)) = (a a a). 
 

T2: V2 → W2 is given by 
 

T2 
a a
a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 

 T3 : V3 → W3 is defined by 
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T3 (0 0 0 0)  = 
0 0 0 0
0 0 0 0

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ; 

 

T3 (1 1 1 1) = 
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ; a = 0 

 

T3 (1 1 0 0) = 
1 1 1 1
1 1 1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and 

T3 (0 0 1 1) =  
1 1 1 1
1 1 1 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

 . 

T4 : V4 → W4 is given by  
 
 T4 (x, y) = (1 1 1 1 1) x ≠ 0 
 T4 (0, 0) = (0 0 0 0 0) y ≠ 0 
 T4 (1, 0) = (0 0 1 1 1) 
and  

T4 (0, 1) = (1 1 0 0 0). 
 
It is easily verified that T = T1 ∪ T2 ∪ T3 ∪ T4 is a 4-set linear 
transformation from V to W.  
 
Now we proceed onto define n-set linear operator on a n-set 
linear algebra. 

 
DEFINITION 5.7: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set linear 
algebra over the set S. A map T = T1 ∪ T2 ∪ … ∪ Tn from V to 
V is said to be a n-set linear operator if Ti : Vi → Vi is such that 
Ti (αx + y) = αTi(x) + Ti(y) for x, y ∪ Vi; α ∈ S; 1 ≤ i ≤ n.  
 
We will illustrate this situation by the following example. 
 
Example 5.13: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  
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= {Z+ × Z+} ∪ 
a b

a, b, c, d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z+[x]} ∪ 

  
a b c g

a,b,c,d,e,f ,g,h Z
d e f h

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a 4-set linear algebra over the set Z+. A map T = T1 ∪ T2 ∪ 
T3 ∪ T4 : V → V; such that  
 

T1(x, y) = (y, x); 
 

T2 
a b a b
c d c c

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
T3 (p(x) = p0 + p1x + … + pnxn) = pnxn 

and  

T4 
a b c g a a a a
d e f h d d d d

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

 
It is easily verified that T is a 4-set linear operator on V.  
 
Now in case of n-set linear algebra we can define a notion 
called n-set quasi linear operator on V. 
 
DEFINITION 5.8: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set linear 
algebra over the set S. An map T = T1 ∪ T2 ∪ … ∪ Tn from V = 
V1 ∪ V2 ∪ … ∪ Vn to V = V1 ∪ V2 ∪ … ∪ Vn such that Ti : Vi → 
Vj; i ≠ j, 1 ≤ i, j ≤ n such that Ti (αu +v) = αTi(u) + Ti(v) for u, v 
∈ Vi and α ∈ S for each i, 1 ≤ i ≤ n is called the n-set quasi 
linear operator on V. 
 If on the other hand T = T1 ∪ T2 ∪ … ∪ Tn is such that Ti : 
Vi → Vj for some j ≠ i and Tk : Vk → Vk for some 1 ≤ k ≤ n then 
we call T to be a n-set semiquasi linear operator on V. 
 
We cannot get any interrelation between n-set linear operator, n-
set linear semiquasi operator and n-set linear quasi operator. 
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The reader can substantiate these definitions with examples. 
However problems based on these definitions are given in the 
last chapter of this book. Interested reader can refer to them. 
 Now we proceed on to define the notion of semigroup n-set 
vector space.  
 
DEFINITION 5.9: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set vector 
space over the set S. If S is an additive semigroup then we call V 
to be a semigroup n-set vector space over the semigroup S. 
 
We illustrate this situation by some examples. 
 
Example 5.14: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 4-
set vector space over the semigroup S = Z2 = {0, 1} under 
addition modulo 2, where  
 

V1 = 2

a b
a,b,c,d Z ,

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
V2 = {Z2 × Z2 × Z2}, 

 
V3 = {(1 1 0 1), (0 1 0 0), (0 0 0 0), (1 1 1), (0 0 0), (1 0 0)} 

and  

V4 = 2

a a a a a a
, a Z

a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is a semigroup 4-set vector space over the semigroup S = Z2 = 
{0,1}. 
 
Example 5.15: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6  

= {Z+ × Z+ × Z+} ∪ 
a b c

a, b, c, d, e, f Z
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

  {(a, b, c, d), (a, a, a, a, b, c) | a, b, c, d ∈ Z+} ∪ {(a, b), 
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  (a, a, a, a, a) | a, b ∈ Z+} ∪ {Z+[x]| x an indeterminate} 
  ∪ {3Z+ × 2Z+ × 5Z+× 7Z+}  
is a semigroup n-vector space over the semigroup Z+. 
 
Example 5.16: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

=  3

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z3 × Z3 × Z3} ∪ 

 3 3

a 0 0
a, b, c, d Z Z [x]

b c d
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 3

a b c d
0 c f g

a, b,c,d,e,f ,g,i, j,k Z
0 0 i j
0 0 0 k

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥ ∈⎨ ⎬⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

  

 
be a semigroup 5-set vector space over Z3.  
 
We now prove that all semigroup n-set vector spaces are n-set 
vector spaces but a n-set vector space in general is not a 
semigroup n-vector space. 
 
THEOREM 5.1: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup n set 
vector space over the semigroup S, then V = V1 ∪ V2 ∪ … ∪ Vn 
is the n-set vector space over S. Conversely if V = V1 ∪ V2 ∪ … 
∪ Vn is a n-set vector space over S; then V in general is not a 
semigroup n-set vector space over the set S.  
 
Proof: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup n-set vector 
space over the semigroup S. Now every semigroup is a set S. So 
V is a n-set vector space over the set S. To prove a n-set vector 
space over the set in general is not a semigroup n-set vector 
space. Suppose  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  
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=  {(0 0 0 0), (1 1 1 1), (2 2 2 2), …, (2n 2n 2n 2n)} ∪   

 
2n 2n

n Z
2n 2n

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
2n
2n n Z
2n

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ {2Z+ [x]}  

 
is a 4-set vector space over the set S = {1, 2}. Clearly S is not a 
semigroup under addition. Hence the claim. 
 
Now we proceed onto define some substructures on semigroup 
n-set vector spaces and illustrate them by examples. 
 
DEFINITION 5.10: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set vector space over the semigroup S. Suppose W = W1 ∪ W2 
∪ … ∪ Wn ⊆ V = V1 ∪ V2 ∪ … ∪ Vn and each Wi ⊆ Vi is a 
semigroup set vector space over the semigroup S then we call W 
to be semigroup n-set vector subspace of V over the semigroup 
S, (1 ≤ i ≤ n). 
 
Example 5.17: Let  
 
V =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

=  4

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪{Z4 × Z4} ∪ 4

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 ∪ {(0 0 0 0), (2 2 2 2), (0 0 0), (2 2 2), (0 0 0 0 0),  

 (2 2 2 2 2)} ∪ 4

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 5-set vector space over the semigroup H = {0, 
2} ⊆ Z4 = {0, 1, 2, 3} under addition modulo 4. Take  
W  =  W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 

= 
0 0 0 2 2 2

,
0 0 0 2 2 2

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(0 0), (2 2)} ∪  
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0 0 2 2
0 0 , 2 2
0 0 2 2

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(0 0 0 0), (2 2 2 2)} ∪  

 
0 0 2 2

,
0 0 2 2

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  
=  V,  

 
is a semigroup 5-set vector subspace over the semigroup  
S = {0, 2} under addition modulo 4. 
 
Example 5.18: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {Z5 × Z5 × Z5} ∪ 5

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪    

  5 5

a a a
a a a a Z {Z [x]}
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a semigroup 4-set vector space over the semigroup S = Z5, 
the semigroup under addition modulo 5.  
Let  
 
W  =  W1 ∪ W2 ∪ W3 ∪ W4  

= {(0 0 0), (1 1 1)} ∪
1 1 1 2 2 2 0 0 0

, ,
1 1 1 2 2 2 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

  ∪ 
0 0 0 3 3 3
0 0 0 , 3 3 3
0 0 0 3 3 3

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ∪⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

{a+ax+…+ axn | a ∈ Z5}.  

 
W is not a semigroup 4-set vector subspace over the semigroup 
Z5. 
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Example 5.19: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= 6 6 6 6

a a a
a Z {Z Z Z }

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ × × ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

{Z6[x]} ∪ 

6 6

a (0)
a

a a b
, a a Z a,b,c,d Z

a a c
a

(0) d

⎧ ⎫⎛ ⎞⎧ ⎫⎛ ⎞ ⎪ ⎪⎜ ⎟⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟⎝ ⎠⎩ ⎭ ⎪ ⎪⎝ ⎠⎩ ⎭
 

be a semigroup 5-set vector space over the semigroup S = {0, 3} 
under addition modulo 6.  
 
W  = W1 ∪ W2 ∪ … ∪ W5  

= 
1 1 1 0 0 0 2 2 2 3 3 3

, , ,
1 1 1 0 0 0 2 2 2 3 3 3

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(1 1 1), 

  (0 0 0), (2 2 2), (3 3 3)} ∪ {a + ax + ax2 + … + axn | a ∈ 

  Z6} ∪ 6 6

a (0)
a a a

a Z a Z
a a a

(0) a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

⊆ V1 ∪ V2 ∪ … ∪ V5  
=  V 

 
is a semigroup 5-set subvector space over the semigroup S = {0, 
3}. 
 
Example 5.20: Let  
V  =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6  

= {Z2 × Z2} ∪ {Z2[x]} ∪ 2

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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2

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∪ 2

a (0)
a

a Z
a

(0) a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

∪ {(a a a a a a), (a a a) | a ∈ Z2}  
 
is a semigroup set 6-vector space over the semigroup S = Z2 
under addition modulo 2. Let  
 
W  =  W1 ∪ W2 ∪ … ∪ W6  

= {(0 0), (1 1)} ∪ {a + ax + … + axn | a ∈ Z2} ∪   

  2

1 1 0 0
a a a

1 1 , 0 0 a Z
a a a

1 1 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎪ ⎪⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎩ ⎭⎝ ⎠ ⎝ ⎠⎩ ⎭

  

∪ 

0 0 0 0 0
0 0 0 0 0

,0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎧⎛ ⎞
⎪⎜ ⎟
⎪⎜ ⎟⎪⎜ ⎟⎨
⎜ ⎟⎪
⎜ ⎟⎪⎜ ⎟⎪⎝ ⎠⎩

 

1 (0)

(0) 1

⎫⎛ ⎞
⎪⎜ ⎟
⎪⎜ ⎟⎬⎜ ⎟⎪⎜ ⎟⎪⎝ ⎠⎭

  

∪ {(a a a) |a ∈ Z2}  
 
is a semigroup 6-set subvector space over S = {1, 0} ⊆ Z2.  
 
Now we proceed on to define the new type of substructure in 
semigroup n-set vector space. 
 
DEFINITION 5.11: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set vector space over the semigroup S. Let W = W1 ∪ W2 ∪ … 
∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn, where W is a n-set vector space 
over the set P then W is a pseudo n-set vector space over the 
subset P ⊆ S. 
 
We illustrate them by some examples. 
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Example 5.21: Let  
 
V  = V1 ∪ V2 ∪ … ∪ V5  
 

=  12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 12

a a a a a a a a
, a Z

a a a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

  

1

2

3 1 2 5 12

4

5

a 0
a

a a , a , ..., a Z
a

0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪{Z12[x]} 

  ∪ {(a a a a a), (a a a), (a a a a) | a ∈ Z12}  
 
be a semigroup 5-set vector space over the semigroup S = Z12, a 
semigroup under addition modulo 12. Take  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5  
 

= 12

1 1 0 0 6 6 a a a
, , a Z

1 1 0 0 6 6 a a a

⎧ ⎫⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪⎪ ⎪ ⎪ ⎪∪ ∈⎨⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩⎪ ⎪⎩ ⎭

 ∪ 

12

a 0 0 0 0
0 a 0 0 0

a Z0 0 a 0 0
0 0 0 a 0
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {a + ax + … + axn | a 

∈ Z12} ∪ {(a a a a a) | a ∈ Z12 }  
⊆  V1 ∪ V2 ∪ … ∪ V5;  

 
W is a pseudo 5-set vector subspace of V over the set S = {0, 1, 
6} ⊆ Z12. 
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Example 5.22: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {Z+ [x]} ∪ {Z+ × Z+ × Z+} ∪
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

 

 
a a a

a a a a
, a a a a Z

a a a a
a a a

+

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 ;  

 
be a semigroup 4-set vector space over the semigroup S = Z+, 
semigroup under addition.  
 
W  =  W1 ∪ W2 ∪ W3 ∪ W4  

= {a + ax + … + axn | a ∈ Z+} ∪ {(a a a) | a ∈ Z+} ∪  
  

 
2n 2n

n Z
2n 2n

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 
a a a
a a a a Z
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪ V3 ∪ V4,  
 
is a pseudo 4-set vector subspace of V over the subset {0, 2, 4, 
3, 7} ⊆ Z+. 
 
Now we proceed on to define the notion of semigroup n-set 
linear algebra over the semigroup. 
 
DEFINITION 5.12: Let V = V1 ∪ … ∪ Vn be a semigroup n-set 
vector space over the semigroup S. If each Vi is a semigroup 
under addition, 1 ≤ i ≤ n; then we call V to be the semigroup n 
set linear algebra over the semigroup S.  
 
We now illustrate this definition by some examples. 
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Example 5.23: Let  
 
V  =  V1 ∪ V2 ∪ … ∪ V5   

= 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

{(a a a a) | a ∈ Z+} ∪ {Z2[x]} ∪  

a b c d
a,b,c,d,e,f ,g,h Z

e f g h
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 

a b c
d e f a, b, c, d, e, f , g, h, i Z
g h i

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 

 
be the semigroup 5-set linear algebra over the semigroup Z+. 
 
Example 5.24: Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

=  2

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ {Z2 [x]} ∪ {Z2 × Z2 × Z2 × Z2} 

  ∪ 2

a a a a a
a Z

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 4-set linear algebra over the semigroup Z2.  
 
Example 5.25: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {Z3[x]} ∪ {Z3 × Z3 × Z3} ∪ 3

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
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{(a a a a a a) | a ∈ Z3} ∪ 3

a a a a
a a a a a Z
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

be a semigroup 5-set linear algebra over Z3. 
 
Example 5.26:  Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

= { }7 7 7 7

a a a
a a a a Z Z Z Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ × × ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

{Z7[x]} ∪ 

  7

a a a a
a, b Z

b b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 4-set linear algebra over the semigroup Z7. 
 
DEFINITION 5.13: Let V = V1 ∪ V2 ∪ V3 ∪ … ∪ Vn be a 
semigroup n-set linear algebra over the semigroup S. Let W = 
W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ … ∪ Vn = V be a n-subset of 
V such that W is a semigroup n-set linear algebra over the 
semigroup S, then we call W to be the semigroup n-set linear 
subalgebra of V over S.  
 
We illustrate this by the following example. 
 
Example 5.27: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {Z6 × Z6 × Z6} ∪ {Z6[x]} ∪ 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

6

a b
c d a,b,c,d,e,f Z
e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  
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6

a b c
d e f a,b,c,d,e,f ,g,h,i Z
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a semigroup 5-set linear algebra over the semigroup Z6, Z6 a 
semigroup under addition modulo 6. Take  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5  

=  {Z6 × Z6 × {0}} ∪ {a + ax + … + axn | a ∈ Z} ∪  

a a a
a {0,2,4}

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

6

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ 

6

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
is a semigroup 5-set linear subalgebra over the semigroup Z6. 
 
Example 5.28: Let  
 
V  = V1 ∪ V2 ∪ … ∪ V6  

=  {Z+ × Z+ × Z+} ∪ 
a a a

a Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z+[x]} ∪ 

  
a a a a

a Z
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

  
a a a
a b b a, b,c Z
c c c

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a semigroup 6 set linear algebra over the semigroup Z+ under 
addition. 
 Take  
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W = {3Z+ × 3Z+ × 3Z+} ∪ 
a a a

a 2Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {a + ax 

 + … + ax6| a ∈ 5Z+} ∪ 
a a a a

a 3Z
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

 
a a a

a a
a 2Z a a a a 3Z

a a
a a a

+ +

⎧ ⎫⎛ ⎞⎧ ⎫⎛ ⎞ ⎪ ⎪⎪ ⎪ ⎜ ⎟∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎜ ⎟⎩ ⎭ ⎝ ⎠⎩ ⎭

  

= W1 ∪ … ∪ W6  
⊆ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6  
=  V.  

 
W is a semigroup 6-set linear subalgebra of V over the 
semigroup Z+. We call W to be a semigroup 6 – set linear 
subalgebra over the semigroup Z+. 
 
Example 5.29: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4   

=   {Z8 × Z8} ∪ {Z8 [x] | Z8 [x] contains all polynomials of 
  degree less than or equal to 7} ∪  

8

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 8

a a
a a a

, a a a Z
a a a

a a

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

  

 
be a semigroup 4-set vector space over Z8.  This can never be 
made into a semigroup 4-set linear algebra over Z8. 
 Thus all semigroup n-set vector spaces are not in general 
semigroup n-set linear algebras.  
 
Now we define yet another new subalgebraic structure of 
semigroup n-set vector spaces and semigroup n-set linear 
algebras. 
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DEFINITION 5.14: Let V = V1 ∪ …∪ Vn be a semigroup n – set 
vector space over the semigroup S. If W = W1 ∪ W2 ∪ … ∪ Wn 
⊆ V1 ∪ V2 ∪ ... ∪ Vn = V is a proper subset of V and W is a 
semigroup n-set vector space over a proper subsemigroup P of 
S then we call W to be the subsemigroup n set vector subspace 
of V over the subsemigroup of the semigroup S. 
  
 Suppose V1 ∪ V2 ∪ ... ∪ Vn is a semigroup n – linear 
algebra over the semigroup S and W = W1 ∪ W2 ∪ ...  ∪ Wn be 
a proper subset of V such that Wi ⊆ Vi and Wi is a 
subsemigroup of Vi for each i, 1 < i < n and if P ⊆ S is a proper 
subsemigroup of the semigroup S and if W is a semigroup n-
linear algebra over the semigroup P ⊂ S then we call W to be 
the subsemigroup n-linear subalgebra of V over the 
subsemigroup P of the semigroup S.  
 
Now we illustrate this situation by a few examples. 
 
Example 5.30: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {(1000), (0000), (0011), (1100)} ∪ {Z2 × Z2 × Z2} ∪ 
  {(111), (001), (000), (11100), (00011), (100),   

  (00000)} ∪ 2

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 4 set vector space over the semigroup Z2 = 
{0,1}. Clearly V has no subsemigroup 4-set vector space as Z2 
has no proper subsemigroup.  
 
Example 5.31: Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

= 4

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a, a, a, a) / a ∈ Z4} ∪ {Z4 

  × Z4 × Z4}∪ {(Z4 [x]}  
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be a semigroup 4-set vector space over the semigroup Z4. Take  
 

W  = 4

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪{(0000), (2222)}∪ {(a a a)| a ∈ Z4} 

  ∪ {a1 + a2x2 + a3x4 + a4x6 + a5x8 | a1, a2, a3, a4, a5 ∈ Z4}  
 
is a subsemigroup 4-set vector subspace of V over the 
subsemigroup S = {0, 2} addition modulo 4.  
 
On similar lines we can define the notion of subsemigroup n set 
linear subalgebra of V as follows. 
 
DEFINITION 5.15: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set linear algebra over the semigroup S. If W = W1 ∪ W2 ∪ … 
∪ Wn be a proper subset of V and if P is any proper 
subsemigroup of the semigroup S. We call W to be the 
subsemigroup n-set linear subalgebra of V over the 
subsemigroup P of the semigroup of S; if W is a semigroup n-set 
linear algebra over P. 
 
Example 5.32: Let  
V  = V1 ∪ V2 ∪ … ∪ V5  

=  {Z16 × Z16 × Z16} ∪ {Z16[x]; all polynomials of degree 

  less than or equal to 5} ∪ 16

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  16

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 16

a a a a
0 a a a

a Z
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a semigroup 5-set linear algebra over the semigroup S = Z16. 
Take  
 
W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5  

= {S × S × S | S = {0,4,8}} ∪ {a + ax + ax2 + ax3 + ax4 +  
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 ax5 | a∈Z16} ∪ 
a a a

a {0,2,4,6,8,10,12,14}
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

      
a a

a {0,8}
a a

⎧ ⎫⎛ ⎞⎪ ⎪∪ ∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 

a a a a
0 a a a

a {0,4,8,12}
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
is a subsemigroup 4-set linear subalgebra over the 
subsemigroup S = {0, 4, 8, 12} ⊆ Z16. 
 Not all semigroup n-set linear algebras have subsemigroup 
n-set linear subalgebras. We give classes of semigroup n-set 
vector spaces and semigroup n-set linear algebras which do not 
contain this type of substructures. 
 
THEOREM 5.2: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup n-set 
vector space over the semigroup Zp (p a prime) under addition 
modulo p. V does not contain any proper subsemigroup n-set 
semigroup vector subspaces. 
 
Proof: Given V = V1 ∪  … ∪ Vn is a semigroup n-set vector 
space over the semigroup Zp, p a prime. Clearly Zp has no 
proper subsemigroup. So even if W = W1 ∪  … ∪ Wn ⊆ V1 
∪ V2 ∪ … ∪ Vn = V a proper subset of V then also W is not a 
subsemigroup n-set vector subspace of V as Zp has no proper 
subsemigroups under addition modulo p. Hence the claim. 
 
 Thus in view of this theorem we give the following 
interesting definition. 
 
DEFINITION 5.16: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-set vector 
space over a semigroup S. If S has no proper subsemigroup n-
set vector subspace then we call V to be a pseudo simple 
semigroup n-set vector space.  

 
Now we will also prove we have a class of semigroup n-set 
vector spaces which are pseudo simple. 
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THEOREM 5.3: Let V = V1 ∪  … ∪ Vn be a semigroup n-set 
linear algebra over the semigroup Zp,  p a prime. Then V has no 
proper subsemigroup n-set linear subalgebra. 
 
Proof: Given V = V1 ∪  … ∪ Vn is a semigroup n-set linear 
algebra over the semigroup Zp. Clearly Zp has no proper 
subsemigroup as p is a prime so even if W is a proper subset of 
V with each Wi ⊂ Vi a subsemigroup of Vi for each i; 1 ≤ i ≤ n 
still V has no proper subsemigroup n-set linear subalgebra as Zp 
has no proper subsemigroups. Thus V has no subsemigroup n-
set linear subalgebra.  
 
Hence we can define such V’s described in this theorem as 
pseudo simple semigroup n-set linear algebras. 
 
THEOREM 5.4: Let V = V1 ∪  … ∪ Vn be a semigroup n-set 
vector space over the semigroup S= Z+ or Zn, n a composite 
number for appropriate V’s we can have in V subsemigroup n-
set vector subspaces. 
 
Proof: When  V = V1 ∪  … ∪ Vn has a proper subset W = W1 
∪ … ∪ Wn such that for some proper subsemigroups S of Z+ or 
Zn (n-composite number) W is a semigroup n-set vector space 
of V over S then W is the subsemigroup n-set vector subspace 
of V. Hence the claim.  
 
Now we give some examples of them. 
 
Example 5.33: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

=  {Z10 × Z10} ∪ {Z10 [x]} ∪ 10

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  10

a a a a a a a a
, a Z

a a a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
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be a semigroup 4-set vector space over the semigroup S = Z10. 
Take  
 
W  = {(a, a) | a ∈ Z10} ∪ {All polynomials of even degree in 

  x with coefficients from Z10} ∪ 10

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 

  10

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

= W1 ∪ W2 ∪  W3 ∪ W4 ⊆ V ;  
W is a subsemigroup 4 vector subspace over the subsemigroup 
S = {0, 5} ⊆ Z10. In fact W is also a subsemigroup 4-set vector 
subspace over the subsemigroup P = {0, 2, 4, 6, 8} ⊆ Z10. Thus 
we see W is a subsemigroup 4 set vector subspace over all the 
subsemigroups of Z10.  
 
Now we proceed on to define yet another type of substructure of 
these semigroup n-set vector spaces and semigroup n-set linear 
algebras. 
 
DEFINITION 5.17: Let V = V1 ∪ V2 ∪  … ∪ Vn be a semigroup 
n-set vector space over the semigroup S. If P1, …,  Pn is the 
complete set of subsemigroups of S (n can also be infinite). 
Suppose W = W1 ∪ W2 ∪ ... ∪ Wn ⊆ V1 ∪ V2 ∪  ... ∪ Vn is a 
proper subset of V and W is a subsemigroup n – set vector 
subspace of V for every subsemigroup Pi of S for i = 1, 2, …, n 
then we call W to be the strong subsemigroup n set vector 
subspace of V. 
 
(All subsemigroup n-set vector subspaces of V need not be a 
strong subsemigroup n-set vector subspaces of V). Similarly if 
V = V1 ∪ V2 ∪  … ∪ Vn is a semigroup n set linear algebra 
over the semigroup S and if P1, P2, … Pn is the set of all 
subsemigroups of S and if W = W1 ∪ W2 ∪  … ∪ Wn ⊆ V1 
∪ V2 ∪  … ∪ Vn is such that W is the subsemigroup n-set linear 
subalgebra of V over every subsemigroup Pi, for i = 1, 2, …, n 
then we call W to be the strong subsemigroup n-set linear 
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subalgebra of V. As in case of semigroup n set vector spaces we 
see in case of semigroup n-set linear algebras all subsemigroup 
n-set linear algebras need not always be strong subsemigroup n-
set linear subalgebras of V. 
 
We now illustrate this situation by a simple example. 
 
Example 5.34: Let  
 
V  = V1 ∪ V2 ∪  … ∪ V5   

= {Z6 × Z6 × Z6} ∪ 6

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z6[x]; all  

  polynomials of degree less than or equal to 5 with 

   coefficients from Z6} ∪ 6

a b c
a,b,c,d,e,f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

  ∪ 6

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

 
be a semigroup 5-set linear algebra over the semigroup Z. The 
subsemigroups of Z6 are P1 = {0, 3} and P2 = {0, 2, 4}.  
Take  

W  = {(a, a, a) / a ∈ Z6} ∪ 
a a

a {0,2,4}
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {All 

  polynomial of the form a + ax + ax2 + ax3 + ax4 + ax5 | a 

  ∈ Z6}∪ 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
a a a
a a a a {0, 3}
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆ V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  
 
is a strong subsemigroup 5-set linear subalgebra as W is a 
subsemigroup 5 set linear subalgebra over both the 
subsemigroups P1 and P2.  
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Now we proceed on to define the notion of group n-set vector 
spaces and group n-set linear algebras. 
 
DEFINITION 5.18: Let V = V1 ∪ V2 ∪  … ∪ Vn, V is said to be a 
group n-set vector space over the group G where Vi are sets 
such that g vi ∈ Vi for all vi ∈ Vi and g ∈ G, 1 ≤ i ≤ n. Here G is 
just an additive abelian group.  
 
We now illustrate this definition by some examples. 
 
Example 5.35: Let  
 
V = V1 ∪ V2 ∪  V3 ∪ V4  

= 7

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z7[x]} ∪ {Z7 × Z7 × Z7} ∪  

   7

a a a a a a a
a a a

, a a a , a a a a a Z
a a a

a a a a a a a

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭

,  

 
V is a group 4-set vector space over the group Z7 under addition 
modulo 7. 
 
Example 5.36: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

=  {Z × Z × Z} ∪ {Z [x]} ∪ 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

  ∪ 
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪

a a a a
0 a a a

a Z
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a group n-set vector space (n = 5) over the group Z under 
addition. 
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Example 5.37: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {(0000), (1100), (0011)} ∪ {(000), (010), (00), (10)} ∪ 

  2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {Z2 [x]}  

 
be a group n set vector space over the group Z2 = {0, 1}, a 
group under addition modulo 2.  
 
Now we proceed on to define the notion of group n-set linear 
algebra over a group and illustrate them by some examples. 
 
DEFINITION 5.18: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n-set 
vector space over the additive group G. If each Vi is an additive 
group then we call V to be a group n-set linear algebra over G 
for 1 ≤  i ≤  n. 
 
Example 5.38: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

=  {Z × Z × Z} ∪ {Z [x]} ∪ 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

a a a
a 2Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {(a a a a a) / a ∈ Z}  

 
be a group 5-set linear algebra over the additive group Z. 
 
Example 5.39: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {(000), (111), (100), (001), (010), (110), (011), (101)} 
  ∪ {Z2 [x]} ∪ {(1111), (0000), (1100), (0011)}   

  ∪ 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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be a group 4 set linear algebra over the additive group Z2 
modulo 2. 
 
Example 5.40: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4  

= 10

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 10

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

Z10[x] ∪ {Z10 × Z10 × Z10 × Z10};  
 
V is a group 4 set linear algebra over the group Z10, group under 
addition modulo 10. 

 
Now we define a few substructures of these two concepts. 
 
DEFINITION 5.19: Let V = V1 ∪ ... ∪ Vn be a group n set vector 
space over the group G. If W = W1 ∪ W2 ∪  … ∪ Wn is a proper 
subset of V and W is a group n set vector space over the group 
G then we call W to be a group n-set vector subspace of V over 
G.  

 
We illustrate this by some examples. 
 
Example 5.41: Let  
 
V =  V1 ∪ V2 ∪  V3 ∪ V4  

=  {Z6 × Z6} ∪ 6

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

∪ 6

a a a a a a a
, a Z

a a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ Z6[x]  

 
all polynomials of degree less than or equal to 4}, V is a group 
4-set vector space over the group Z6, group under addition 
modulo 6. Take  
W  = W1 ∪ W2 ∪  W3 ∪ W4  
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= {(a, a) / a ∈ Z6} ∪  6

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪     

  6

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {all polynomials of the form 

  a + ax + ax2 + ax3 + ax4 / a ∈ Z6}  
⊆  V1 ∪ V2 ∪  V3 ∪ V4  
=  V,  

 
W is a group 4-set vector subspace of V over the group Z6. 
 
Example 5.42: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {Z × Z} ∪ {Z [x]} ∪  
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪       

  

a b c d
0 e f g

a,b,c,d,e,f ,g,h,i, j Z
0 0 h i
0 0 0 j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a group 5-set vector space over the additive group Z. Take  
 
W = W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

= {(a, a) | a ∈ Z} ∪ {a + ax + … + axn | a ∈ Z}  

∪ 
a a a

a 2Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪  
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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∪  

a a a a
0 a a a

a 2Z
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  
=  V.  

 
W is clearly a group 5 set vector subspace of V over the group 
G. 
 
We now prove the following interesting result. 
 
THEOREM 5.6: Every group n-set linear algebra V = V1 ∪ ... ∪ 
Vn over the group G is a group n-set vector space over the 
group G but a group n set vector space over the group G in 
general need not be a group n-set linear algebra over G. 

 
Proof: Let V = V1 ∪ V2 ∪ … ∪ Vn be a group n set linear 
algebra over the additive group G. Clearly V is a group n-set 
vector space over the additive group G for every n-group is a n-
set. 
 To prove a group n set vector space V over a group G is not 
in general a group n-set linear algebra over the group G. We 
give a counter example. Consider the group 5 set vector space  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {(111), (000), (100), (00), (11), (01), (10)} ∪  

 2

a b a a a
, a,b,c,d Z {0,1}

c d a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

2

a a
a a a

a a
0 a a , a Z {0,1}

a a
0 0 a

a a

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟

⎪ ⎪⎜ ⎟ ⎜ ⎟ ∈ =⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {Z2 [x]} ∪  

{Z2 × Z2 × Z2 × Z2}  
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over the additive group Z2 = {0, 1}. Clearly V1, V2 and V3 are 
not groups under addition so V is not a group 5-set linear 
algebra over the group Z2 = {0, 1} under addition modulo 2. 
Hence the claim. 
 
Now we define group n set linear subalgebra over the group G. 
 
DEFINITION 5.21: Let V = V1 ∪ V2 ∪  … ∪ Vn be the group n-
set linear algebra over the additive group G, where each Vi is a 
group under addition, i = 1, 2, …, n. Take W = W1 ∪ W2 ∪  … 
∪ Wn, a subset of V such that W the group n set linear algebra 
over the same group G i.e., each Wi ⊆ Vi is a proper subgroup 
of Vi, i = 1, 2, …, n. We call W = W1 ∪ W2 ∪  … ∪ Wn to be a 
group n-set linear subalgebra of V over the additive group G.  

 
Now in case of group n set linear algebra V; we can define the 
notion of pseudo group n-set vector subspaces of V which is 
given below. 
 
DEFINITION 5.22: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n set 
linear algebra over the group G. If W = W1 ∪ W2 ∪  … ∪ Wn be 
a proper n-subset, where at least one of the Wi’s is not a 
subgroup of the group Vi and if W is a group n-set vector space 
over G then we call W = W1 ∪ W2 ∪  … ∪ Wn to be the pseudo 
group n-set vector subspace of V;(1 ≤  i ≤ n). 

 
Now we illustrate these definitions by the following examples. 
 
Example 5.43: Let  
 
V = V1 ∪ V2 ∪  V3 ∪ V4  

=  12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z12 [x]} ∪ {Z12 × Z12 × Z12} ∪  

 
1 2 3

4 5 6 i 12

7 8 9

a a a
a a a a Z ; 1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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be a group 4 set linear algebra over the group Z12, addition 
modulo 12.  
Let  

W  = 
6 6 0 0

,
6 6 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(ax2 + ax + a, ax7 + ax3 + a, 

  a + ax7 + ax5 + ax2 | a ∈ Z12} ∪ {(a a 0), (0 a a),  
  (a 0 a) | a ∈ Z12} ∪   

12

a a a 0 0 0 0 0 0
0 0 0 , a a a , 0 0 0 a Z
0 0 0 0 0 0 a a a

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

  

 
= W1 ∪ W2 ∪  W3 ∪ W4  
⊆  V1 ∪ V2 ∪  V3 ∪ V4 = V.  

 
Clearly W2, W3 and W4 are not even closed under addition. So 
W is verified easily to be a pseudo group 4 set vector subspace 
of V over Z12. 
 
We further say all proper subsets of V need to be pseudo group 
4 set vector subspaces of V over the group Z12. For take  
 

W  = 
1 1 5 5

,
1 1 5 5

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {3x + 2x2 + 1, 5x3 + 1} ∪ {(321), 

  (123)} ∪ 
3 7 2
1 2 0
5 1 4

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

=  W1 ∪ W2 ∪  W3 ∪ W4  
⊆   V1 ∪ V2 ∪  V3 ∪ V4.  

 
Clearly for W1 we take  

1

1 1
W

1 1
⎛ ⎞

∈⎜ ⎟
⎝ ⎠

 

and  
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6 ∈ Z12 , 6 
1 1 6 6
1 1 6 6

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∉ W1. 

Likewise 3x + 2x2 + 1 ∈ W2 and 7 ∈ Z12; 7 (3x + 2x2 + 1) = 9x 
+ 2x2 + 7 ∉ W2, (3, 2, 1) is in W3 and 5 ∈ Z12, 5(3, 2, 1) = (3, 
10, 5) ∉ W3.  
Finally  

4

3 7 2
1 2 0 W
5 1 4

⎛ ⎞
⎜ ⎟∈⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and 0 ∈ Z12.  

0. 4

3 7 2 0 0 0
1 2 0 0 0 0 W
5 1 4 0 0 0

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ∉⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

So W = W1 ∪ W2 ∪  W3 ∪ W4 ⊆ V is just a 4-subset of V, but 
is not a pseudo group 4 set vector subspace of V over the group 
Z12. Thus the 4-subsets of V are not pseudo group 4 set vector 
subspace of V. 

 
Now we proceed on to define the notion of subgroup n-set linear 
subalgebra of a group n set linear subalgebra of a group n-set 
linear algebra over the group G.  
 
DEFINITION 5.23: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n set 
linear algebra over the group G. Let W = W1 ∪ ... ∪ Wn be a 
proper subset of G ie. Wi ⊆ Vi and Wi is a subgroup of Vi, 1 < i 
< n. Let H be a proper subgroup of G. If W is a group n-set 
linear algebra over the group H, then we call W to be the 
subgroup n-set linear subalgebra of V over the subgroup H of 
the group G.  
 
Example 5.44: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {Z6[x]} ∪ {Z6 × Z6 × Z6} ∪ 6

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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∪ 6

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the group 4-set linear algebra over the group Z6 under 
addition modulo 6. Let  
 
W  =  W1 ∪ W2 ∪  W3 ∪ W4  

= {a + ax + ax2 + … axn / a∈ Z6} ∪ {(a, a, a) / a ∈ Z6} 

 ∪ 6

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 6

a a a a
a {0,3} Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊂⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be the group 4 set linear subalgebra of V over the group Z6. 
 
Example 5.45: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4   

 
= {Z × Z × Z} ∪ {Z [x]} ∪   

 
a a a
0 a a a Z
0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z; 1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a group 4 set linear algebra over the group G = Z. Take  
 
W  = W1 ∪ W2 ∪  W3 ∪ W4   

=  {(a a a) | a ∈ Z} ∪ {all polynomials of even degree with  
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coefficients from Z} ∪ 
2n 2n 2n
0 2n 2n n Z
0 0 2n

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

∪ 

a 0 0 0
a a 0 0

a Z
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆   V1 ∪ V2 ∪  V3 ∪ V4 = V.  

 
It is easily verified W is a group 4 set linear subalgebra of V 
over the group G = Z.  
 
Example 5.46: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {Z14 × Z14 × Z14 × Z14} ∪ {Z14 [x]} ∪ 14

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

∪ 14

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group 4 set linear algebra over the group Z14. Take  
 
W  = W1 ∪ W2 ∪  W3 ∪ W4  

= {(a, a, a, a) | a ∪ Z14} ∪ {a + ax + … + axn | a ∈ Z14} 

  ∪ 
a a
a a a {0,7}
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  14

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

⊆  V1 ∪ V2 ∪  V3 ∪ V4 = V.  
 
W is clearly a subgroup 4-set linear subalgebra over the 
subgroup {0,7} ⊆ Z14.  
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Example 5.47: Let  
 
V = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {Z × Z × Z × Z} ∪ 
a a a a

a Z
a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 

a b c d
0 e f g

a,b,c,d,e,f ,g,h,i, j Z
0 0 h i
0 0 0 j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {Z[x]}  ∪ 

 
1 2 3

4 5 6 i

7 8 9

a a a
a a a a Z; 1 i 9
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a group 5-set linear algebra over the additive group Z. Take  
 
W  = W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

= {(2Z × 3Z × 4Z × 5Z)} ∪ 
a a a a

a 2Z
a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

a a a a
0 a a a

a Z
0 0 a a
0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪ {(a + ax + ax2 +… + axn |  

a ∈ Z} ∪ 
a a a
a a a a 2Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  
= V.  

 
W is a subgroup 5-set linear subalgebra of V over the subgroup 
2Z ⊆ Z. 
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Let us define the n-generating subset of a group n-set vector 
space and group n-set linear algebra over the group G. 
 
DEFINITION 5.23: Let V = V1 ∪ V2 ∪ … ∪ Vn be a group n-set 
vector space over the group G. Suppose W = W1 ∪ W2 ∪ … ∪ 
Wn is a proper subset of V and if W is a semigroup n-set vector 
space over some proper subset H of G where H is a semigroup, 
then we call W to be the pseudo semigroup n-set vector 
subspace of V over the semigroup H of G.  
 
We illustrate it by the following examples. 

 
Example 5.48: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {Z × Z × Z} ∪ {Z [x]} ∪
a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z;1 i 10
a a a 0
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a group 5-set vector space over the additive group Z.   
 
W  = W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

=  {Z+ × Z+ × Z+} ∪ {Z+ [x]} ∪ 
a a a
a a a a Z
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  
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a a
a Z

a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪

1

2 3
i

4 5 6

7 8 9 10

a 0 0 0
a a 0 0

a Z ;1 i 10
a a a 0
a a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

⊆  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  
=  V 

 
is a pseudo semigroup 5-set vector subspace of V over the 
semigroup Z+ of Z.  
 
Example 5.49: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4  

=  
a a a
a a a a 2Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  
a a a a

a 3Z
a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

 {Z × Z × Z × 3Z} ∪ 
a a
a a a 5Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
be a group n-set vector space over the group Z. Take  
 
W  =  W1 ∪ W2 ∪  W3 ∪ W4  

=  
a a a
a a a a 2Z
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 
a a a a

a 3Z
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

  {Z+ × Z+ × Z+ × 3Z+} ∪ 
a a
a a a 5Z
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

⊆  V1 ∪ V2 ∪  V3 ∪ V4    
=  V 
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is easily verified to be a pseudo semigroup n-set vector 
subspace over the semigroup Z+ ⊆ Z. 
 
Now we proceed to define n-generating set and n-basis. 
 
DEFINITION 5.24: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n-set 
vector space over the group G. If we have a n-set X = X1 ∪ X2 
∪ … ∪ Xn ⊆ V1 ∪ V2 ∪  … ∪ Vn = V such that each Xi 
generates Vi over the group G, for i = 1, 2, …, n, then we call X 
to be the n-set generator of V. If the cardinality of each Xi is 
finite we say V is generated finitely and the n-dimension of V is 
(|X1|, |X2| , …, |Xn|). If even one of the Xi of X happens to have 
infinite cardinality then we say n-dimension of V is infinite. We 
call the n-generating n-subset of V to be the n-basis of V over 
the group G.  
 
We illustrate this by the following examples. 
 
Example 5.50: Let V = V1 ∪ V2 ∪  V3 ∪ V4 be a group 4-set 
vector space over the group Z2 = {0,1} where V1 = {(1100), 
(0011), (1111), (0000), (111), (101), (000)}, V2 = {Z2 [x] / 
every polynomial is of degree less than or equal to 2},  
 

V3 = 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

V4 = 2

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

Take  
 
X  = {(1111), (1100), (0011), (111), (101)} ∪ {1, x, x2 1 + x, 

 1+x2 , x+x2 , 1+x+x2} ∪  

  
0 1 1 0 0 0 0 0 1 1

, , , ,
0 0 0 0 1 0 0 1 0 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

,  
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1 0 0 1
,

1 0 0 1
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 
0 0 1 0 0 1

, ,
1 1 0 1 1 0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

1 0 1 1 0 1 1 1 1 1
, , , ,

1 1 0 1 1 1 1 0 1 1
⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

∪ 

1 1 1 1
1 1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

= X1 ∪ X2 ∪  X3 ∪ X4  
⊆ V1 ∪ V2 ∪  V3 ∪ V4.  

 
X n-generates V (n=4). Further V is finitely 4-generated and the 
number of 4-generators is given by (5,7,15,1). 
 
We give yet another example. 
 
Example 5.51: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {Z × Z} ∪ Ζ[x] ∪ {(a, a, a) | a ∈ Z} ∪ 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 ∪ {(a, a, a, a, a), (a, a, a, a, a, a, a) | a ∈ Z} 
 
be the group 5 set vector space over the group Z under addition. 
Now if we consider the 5-generating subset of V as X = X1 
∪ X2 ∪  X3 ∪ X4 ∪ X5 ⊆ V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5 where X1, 
X2 are infinite sets which alone can generate V1 and V2 
respectively, but X3 = {(111)},  

X4 = 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

 
and X5 = {(11111), (1111111)}. Thus the 5-dimension of V is 
infinite given by (∞,∞, 1, 1, 2).  
 Now we find the n-basis and n-dimension of group n-set 
linear algebras over the group. We just define the n-basis in case 
of group n-set linear algebras. 
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DEFINITION 5.25: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n-set 
linear algebra over the additive group G. Let X = X1 ∪ X2 ∪  … 
∪ Xn ⊆ V1 ∪ V2 ∪  … ∪ Vn = V be the n-generator of V. If each 
Xi generates Vi as a group linear algebra over the group G then 
we call X to be the n-generating set of V; i = 1, 2, …, n. Here 
each Vi is a group under addition; 1 < i < n. If each Xi of X is 
finite then we say V is n-finitely generated by X over G. If even 
one of the Xi’s is infinite we say V is infinitely generated over G.  
 
The n-cardinality of X is called as the n-dimension of V and X 
is called as the n-set basis of V over the group G.  

 
Now we illustrate this situation by some examples. 
 
Example 5.52: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

=  12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {Z12 × Z12} ∪ {Z12 [x]; all 

  polynomials of degree less than or equal to 10} ∪  

  12

a b c
a,b,c,d,e Z

0 d e
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a group 4-set linear algebra over the group G = Z12, group 
under addition modulo 12. Take  
 
X  =  X1 ∪ X2 ∪ X3 ∪ X4  

= 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {(1, 0), (0, 1)} ∪ {1, x, x2, …, x10} 

∪   
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

, , , ,
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 

⊆  V1 ∪ V2 ∪  V3 ∪ V4 .  
 
X, 4-generates V over Z12. Now the 4-dimension of V is (1, 2, 
11, 5). Thus X is a 4-basis of V and V is 4-finite dimensional.  
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Example 5.53: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

=  {Z × Z × Z} ∪ {Z[x]; all polynomials of degree less  

  than or equal to 4} ∪  
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪    

  
a b
0 d a,b,c,d Z
0 c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ i

0 0 0 0
a 0 0 0

a Z
a a 0 0
a a a 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a group 5-set linear algebra over the additive group Z. Take  
 

X  =  {(100), (010), (001)} ∪ {1, x, x2 x3, x4} ∪ 
1 1
1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

 
1 0 0 1 0 0 0 0
0 0 , 0 0 , 0 1 , 0 0
0 0 0 0 0 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 

 

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
= X1 ∪ X2 ∪ X3 ∪ X4 ∪ X5 ,  

 
clearly X 5-generates V as a group 5-set linear algebra over the 
group Z. Now the 5-cardinality of V as a group 5-linear algebra 
over Z is finite and is given by (3, 5, 1, 4, 1). 

It is important at this juncture to mention the essential fact 
that even if V = V1 ∪ ... ∪ Vn is a group n-linear algebra over 
the additive group G as well as if the same V is treated as a 
group n-vector space over the same group G, the dimension is 
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distinctly different. One cannot say because V is the same the n-
dimension is also the same over the group G. In view of this we 
give some concrete examples. 
 
Example 5.54: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= {Z × Z × Z} ∪ {Z[x] | all polynomials of degree less 

  than or equal to 7} ∪
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a, a, a, 

  a, a) | a ∈ Z} ∪ 

a 0
0 b

a,b,c,d, Z
d 0
0 c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a group 5-set linear algebra over the group Z. Now take a 5-
subset of V to be  
 
X  = X1 ∪ X2 ∪  X3 ∪ X4 ∪ X5  

=  {(100), (010), (001)} ∪ {1, x, x2, …, x7}∪    

  
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 0 1 1 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ {(11111)} ∪  

  

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

  

⊆  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  
=  V.  

 
Clearly X 5-generates V over Z and is a 5-basis of V. The 5-
dimension of V over Z is {(3, 8, 4, 1, 4)}. 
 
Now we can think of V as a group 5-set vector space over the 
group Z. Take Y = = Y1 ∪ Y2 ∪  Y3 ∪ Y4 ∪ Y5 = {infinite 
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generating subset of V1 alone can generate the group vector 
space (as V1 is just a set) over Z} ∪ {only an infinite subset can 
generate V2} ∪ {only an infinite subset can generate V3, as a 
group vector space over Z} ∪ {(11111)} ∪ {only an infinite 
subset can generate V5 as a group vector space over the group G 
= Z}. Thus Y is an infinite 5-subset of V which 5-generates V 
as a group 5-set vector space over the group Z. So the 5-
dimension of V is (∞,∞,∞, 1, ∞).  

Thus we see from this example when we use the group n-set 
vector space over an additive group it can be infinite 
dimensional but at the same time if V is realized as a group n-
set linear algebra it can be finite dimensional. 

 
We provide yet another example  
 
Example 5.55: Let  
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {Z2 × Z2 × Z2} ∪ {Z2 [x] all polynomials of degree less 

  than or equal to 4} ∪ 2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  

  2

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a group 4-vector space over the group Z2 = {0,1}. V is also 
group liner algebra over the group Z2 = {0,1}.  

Now the 4-basis of V as a group 4-set vector space is given 
by the 4-set  

 
X  = X1 ∪ X2 ∪  X3 ∪ X4  

= {(100), (001), (010), (110), (011), (101), (111)} ∪ {1, 
x, x2, x3, x4, 1+x, 1+x2, x+x2, 1+x3, 1+x4, x+x3, x+x4, 
x2+x3, x2+x4, x4+x3, 1+x+x2, 1+x+x3, 1+x+x4, 1+x2+x3, 
1+x2+x4, 1+x3+x4, x2+x3+x4, x+x2+x3, x+x2+x4, 
x+x3+x4, 1+x+x2+x3, 1+x+x2+x4, 1+x+x3+x4, 
1+x2+x3+x4, x+x3+x4+x2, 1+x + x2 + x3 + x4} ∪  

 



 225

1 0 0 1 0 0 0 0 1 0
, , , ,

0 0 0 0 1 0 0 1 1 0
⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

,  

1 1 0 1
,

0 0 0 1
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 
0 0 1 0 0 1

, ,
1 1 0 1 1 0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, 

1 1 1 1 0 1 1 0 1 1
, , , ,

0 1 1 0 1 1 1 1 1 1
⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎭

∪ 

1 1 1 1
1 1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

  

 
⊆  V1 ∪ V2 ∪  V3 ∪ V4  
= V  

is a 4-basis of V and the 4-dimension of V is given by {7, 31, 
15, 1)}. Now consider V as a group 4-set linear algebra over the 
group Z2 = {0,1}. Take  
 
X  =  X1 ∪ X2 ∪  X3 ∪ X4  

= {(100), (001), (010)} ∪ {1, x, x2, x3, x4} ∪ 
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∪ 
1 1 1 1
1 1 1 1

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

⊆ V1 ∪ V2 ∪  V3 ∪ V4 ,  
 
now X is a 4-basis and 4-generates V as a group 4-set linear 
algebra over the group Z2 = {0,1}. The four dimension of V is 
given by {(3, 5, 4, 1)}. Thus we see when some additional 
structure is imposed the n-cardinality reduces drastically.  
 
Now having defined the notion of n-generating set of group n-
vector spaces and group n-linear algebra, we now proceed on to 
define the notion of n-group transformation. 
 
DEFINITION 5.26: Let V = V1 ∪ V2 ∪  ... ∪ Vn and W = W1 
∪ W2 ∪  ... ∪ Wn be two group n set vector space and group m-
set vector space over the same group G; m > n. Let T: V → W 
be a n map from V into W defined by Ti : Vi → Wj (i ≠ j) (i = 1, 
2, …, n) is a group set linear map where T = T1 ∪ T2 ∪  ... ∪ Tn. 
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(Now when m>n we say we can have several ways of defining 
T’s). We call T = T1 ∪ T2 ∪  ... ∪ Tn as the quasi group n-linear 
map of V into W over G or quasi n-linear transformation.  
 
We first illustrate this by an example. 
 
Example 5.56: Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a group 4-vector 
space over Z2 = {0,1} where  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

=  {Z2 × Z2 × Z2} ∪  2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪    

  2

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪{Z2[x] all polynomials of  

  degree ≤ 4}.  
 
Let  
W  =  W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

=  2

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z2 × Z2 × Z2 × Z2}  ∪ 

a a a a a a a a
,

a a a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∪ 

2

a a
a a a a

, a Z
a a a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎜ ⎟ ⎝ ⎠⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {Z2[x] all polynomials of 

degree less than or equal to 8}  
 

be a group 5 set vector space over the group Z2 = {0,1}. Let T = 
T = T1 ∪ T2 ∪   T3 ∪   T4 . V → W, such that  
T1 : V1 → W2 defined by  
 

T1 (x, y, z) = (x , y, z, x + y + z); 
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T2 : V2 → W1 defined by  

2

a b
T

c d
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
T3 : V3 → W4 defined by 

T3 

a a
a a a a a a
a a a a a a

a a

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

. 

 
and T4 : V4 → W5 

 
T4 (a) = a if a ∈ Z2, T4 (xn) = x2n ; 1 ≤ n ≤ 4  
 

i.e., p (x) = x2 + x + 1 then T4 (p(x)) = x4 + x2 + 1. It is easily 
verified T = T1 ∪ T2 ∪  T3 ∪ T4 is a quasi group n-linear map of 
V into W. We can have several T’s for some group n-linear map 
S = S1 ∪ S2 ∪  S3 ∪ S4; V → W which can be defined by  

 
S1 : V1 → W5 
S2 : V2 → W1 
S3 : V3 → W2 
S4 : V4 → W3  

 
such that S is a quasi group n-linear map. So we have several 
such quasi group n-linear maps. 

 
Next we define the notion of pseudo quasi group n linear 
transformations. 
 
DEFINITION 5.27: Let V = V1 ∪ ... ∪ Vn and W = W1 ∪ ... ∪ Wm 
(n>m) be group n set vector space and group m set vector space 
over the same group G.  
 A n-map T = T1 ∪ ... ∪ Tn from V into W defined by Ti : Vi 
→ Wj where at least more than one Vi will be mapped onto the 
same Wj (1 ≤ i ≤ n and 1 ≤ j ≤ m). If each Ti is a group set linear 
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transformation then we call T to be a pseudo quasi n-set linear 
transformation of V into W.  
 
We give an example. 
 
Example 5.57: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

=  {Z × Z × Z} ∪ 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

a a a
a a a a a a

, a Z
a a a a a a

a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎛ ⎞⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

{Z[x] all polynomials 

of degree less than or equal to 4} ∪  
a 0 0 0
b c 0 0

a,b,c,d,e,f ,g,h,i, j Z
d e f 0
g h i j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
is a group 5-set vector space over the group Z. Take  
 
W =  W1 ∪ W2 ∪  W3 ∪ W4  

=  {Z[x] all polynomials of degree less than or equal to 2} 

∪ 
a a a a a a
a a a a , a a a Z
a a a a a a

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 ∪ 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

∪ 

a b c d
0 e f g

a,b,c,d,e,f ,g,h,i, j Z
0 0 h i
0 0 0 j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
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be a group 4-set vector space over Z. 
 Define T = T1 ∪ T2 ∪ T3 ∪ … ∪ T5 from V to W by  
 
T1 : V1 → W1 defined by 

T1 (a, b, c) = ax2 + bx + c 
 

T2 : V2 → W3 defined by  

T2 
a b
c d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
T3 : V3 → W2 defined by  

T3 
a a

a a a
a a

a a a
a a

⎛ ⎞
⎛ ⎞⎛ ⎞ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟

⎝ ⎠

 

T3 

a a a
a a a a

a a a
a a a a

a a a
a a a a

a a a

⎛ ⎞⎛ ⎞
⎛ ⎞⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠

 

T4 : V4 → W1 
T4 (c)  = c ∀ c ∈ Z  
T4 (x)  = x 
T4 (x2)  = x2 
T4 (x3)   = x 
T4 (x4)  = x2 

and  
T5 : V5 → W4 defined by  
 

T5 

a 0 0 0 a b c d
b c 0 0 0 e f g
d e f 0 0 0 h i
g h i j 0 0 0 j

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

i.e.; 
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T5 

4 0 0 0
7 8 0 0
9 6 1 0
2 1 3 5

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= 

4 7 8 9
0 6 1 2
0 0 1 3
0 0 0 5

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 
 Now T = T1 ∪ T2 ∪ T3 ∪ Τ4 ∪ T5 : V = V1 ∪ V2 ∪  V3 ∪ 
V4 ∪ V5 → W1 ∪ W2 ∪  W3 ∪ W4 is a pseudo quasi 5-set linear 
transformation V into W. 
 It is important to mention here that the study of what is the 
structure of q

GH (V, W) where q
GH  (V, W) denotes the collection 

of all quasi group n-set linear transformations of V into W, is an 
interesting and innovative problem. Likewise the study of the 
algebraic structure of pq

GHom (V, W) where pq
GHom  (V, W) is 

the set of all pseudo quasi group n-set linear transformations of 
V into W is left as an exercise for the readers.  
 
Now we proceed onto discuss about the n-projection. 
 
DEFINITION 5.28: Let V = V1 ∪ V2 ∪ … ∪ Vn be a (m1, …, mn) 
dimensional group n-set vector space over the group G; each mi 
is finite 1 ≤ i ≤ n. Suppose W = W1 ∪ W2 ∪ … ∪ Wn be a (t1 ,…, 
tn) dimensional group n-set vector subspace of V over the group 
G; ti < mi, 1 ≤ i ≤ n.  

Let T = T1 ∪ T2 ∪ … ∪ Tn → V into W be such that Ti : Vi 
→ Wi is a projection of Vi into Wi ; 1 ≤ i ≤ n. Then T = T1 ∪ T2 
∪ … ∪ Tn is defined as the group n set projection of the group n 
set vector space V into the group n-set vector subspace W of V. 
 
We now illustrate this by simple examples. 
 
Example 5.58:Let  
V  = V1 ∪ V2 ∪  V3 ∪ V4  

=  
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z[x] all polynomials of  

  degree less than or equal to 5} ∪ {Z × Z × Z × Z} ∪  
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a b
c d

a,b,c,d,e,f ,g,h Z
e f
g h

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be the group 4 set vector space over the group G.  
Let  
W  = W1 ∪ W2 ∪  W3 ∪ W4  

=  
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z [x] all polynomials of degree 

less than or equal to 3} ∪ {Z × Z × Z × {0} × {0}} 

∪ 

a a
a a

a Z
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a proper group 4 set vector subspace of V over G. Define P = 
P1 ∪ P2 ∪  P3 ∪ P4 from V into W by Pi : Vi → Wi; i = 1, 2, 3, 4 
by  
P1 : V1 → W1 is such that  

P1 
a b
c d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
P2 : V2 → W2 is defined by  

 
P2 (a)  = a, for all a ∈ Z. 
P2 (x)  = x 
P2 (x2)  = x2 
P2 (x3)  = x3 
P2 (x4)  = 0 
P2 (x5)  = 0. 

 
P3 : V3  → W3 is such that by  

P3 ((x, y, z, w, t))  = (x, y, z, 0, 0) 
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and P4 : V4 → W4 is given by 
 

P4 

a b a a
c d a a
e f a a
g h a a

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

It is easily verified P = P1 ∪ P2 ∪  P3 ∪ P4 is a group 4 set 
projection of the group 4 set vector space V = V1 ∪ V2 ∪  V3 ∪ 
V4 into the group 4-set vector subspace W = W1 ∪ W2 ∪  W3 ∪ 
W4 of V. 
 
P o P = P1 o P1 ∪ P2 o P2 ∪  P3 o P3 ∪ P4 o P4 is given by 

P o P = P1 o P1 
a b
c d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∪ P2 o P2 ((ao + a1x +a2x2+ a3x3+ 

   a4x4+a5x5)) ∪  P3 o P3 ((x, y, z, ω, t)) ∪ P4 o P4  

   

a b
c d
e f
g h

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

=  P1 
a a
a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∪ P2 ((ao + a1x +a2x2+ a3x3)) ∪ P3 ((x 

y z 0 0))  ∪ P4 

a a
a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

= 
a a
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

∪(ao+ a1x +a2x2+ a3x3) + (x y z 0 0) ∪

a a
a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

=  P; 
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i.e.; the group 4-set projection of the group 4 set vector space is 
an idempotent 4-map. 
 
It is left as an exercise for the reader to prove that the n-
projection of a group n-set linear transformation from V = V1 
∪ ... ∪  Vn into its n-subspace is an idempotent n-map. 
 We illustrate this situation by another example. 
 
Example 5.59: Let  
 
V  =  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

= 3

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z3 [x] all polynomials of 

degree less than or equal to 5} ∪ { Z3 × Z3 × Z3 × Z3 × 

Z3} ∪ 3

a b c d e
a,b,c,d,e,f ,g,h,i, j Z

f g h i j
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪   

3

a b
c d

a,b,c,d,e,f ,g,h Z
e f
g h

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a group 5-set vector space over the group Z3. Take a proper 5 
subset W of V i.e.,  
 
W  =  W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

= 3

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {all polynomials of even degree 

  only from V2} ∪{(a, a, a, a, a) / a ∈ Z3} ∪     

  3

a a a a a
a Z

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 3

a a
a a

a Z
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

⊆  V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5 =  V.  
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Define a group 5 set linear transformation P: V → V by P = P1 
∪ P2 ∪  P3 ∪ P4 ∪ P5 : V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5 → V1 ∪ V2 
∪  V3 ∪ V4 ∪ V5 by  

P1 = 
a b a a
c d a a

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 

where P1 : V1 → V1  
P2 : V2 → V2 given by  

P2 ((ao + a1x + a2x2+ a3x3+ a4x4 + a5x5)) = ao + a2x2 + a4x4; 
P3 : V3 → V3 defined by  

P3 ((x, y, z, ω, t)) = (x, x, x, x, x); 
P4 : V4 → V4 defined by  

P4 
a b c d e a a a a a
f g h i j a a a a a

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ =⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

and P5 : V5 → V5  

P5 

a b a a
c d a a
e f a a
g h a a

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
We see P = P1 ∪ P2 ∪  P3 ∪ P4 ∪ P5 can be treated as a 5-
projection map of V = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5 into its group 
5 set vector subspace W = W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5 . 

It is easily further verified that P o P = P1 o P1 ∪ P2 o P2 
∪  P3 o P3 ∪ P4 o P4 ∪ P5 o P5 = P1 ∪ P2 ∪ … ∪ P5.  

 
Now we can have for any group n-set linear algebra a new 
substructure a pseudo group semigroup n-set linear subalgebra. 

 
DEFINITION 5.29: Let V = V1 ∪ V2 ∪  … ∪ Vn be a group n-set 
linear algebra over the group G. Let W = W1 ∪ W2 ∪ … ∪ Wn 
be a proper n-subset of V = V1 ∪ V2 ∪  … ∪ Vn ; each Wi ⊂ Vi; 
Wi is an additive subsemigroup of the additive group Vi; i = 1, 
2, …, n. If we have a proper subset H of G where H is a 
semigroup under the operations of G and W = W1 ∪ W2 ∪ … ∪ 
Wn is a semigroup n set linear algebra over the semigroup H, 
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then we call W = W1 ∪ W2 ∪ … ∪ Wn to be the pseudo group 
semigroup n-set linear subalgebra of V over the subsemigroup 
H of G.  
 
We illustrate this situation by the following examples. 
 
Example 5.60: Let  
 
V  = V1 ∪ V2 ∪  V3 ∪ V4  

= {Z × Z × Z} ∪ {Z[x] all polynomials of degree less than 

or equal to five} ∪  
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

a a a a a
a Z

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a group 4-set linear algebra over the additive group Z. Let  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4  

= {(Z+ × Z+ × Z+)} ∪ {Z+ [x], all polynomials of degree 

less than or equal to five} ∪ 
a b

a,b,c,d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

a a a a a
a 2Z

a a a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
⊆  V1 ∪ V2 ∪  V3 ∪ V4   
=  V.  

 
It is easily verified that W is a pseudo group semigroup 4 set 
linear subalgebra of V.  
 
Example 5.61: Let  
V  = V1 ∪ V2 ∪  V3 ∪ V4 ∪ V5  

=  {Z × Z × Z × Z × Z} ∪ {Q[x] all polynomials of degree 
less than or equal to 5}∪  
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a b d
c f g a,b,c,d,e,f ,g,h,i, j Q
h i j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  

a a a a a
0 a a a a

a Q0 0 a a a
0 0 0 a a
0 0 0 0 a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪
a a a a a
b b b b b a,b,c Q
c c c c c

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

. 

 
V is a group 5-set linear algebra over the additive group Z. Take  
 
W  = W1 ∪ W2 ∪  W3 ∪ W4 ∪ W5  

= {3Z+ × 3Z+ × 3Z+ × 3Z+ × 3Z+} ∪ {2Z+[x] | all 
polynomials of degree less than or equal to 5 with 
coefficients for 2Z+} ∪  

a b d
c f g a,b,c,d,e,f ,g,h,i, j 5Z
h i j

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪  

a a a a a
0 a a a a

a 7Z0 0 a a a
0 0 0 a a
0 0 0 0 a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪  

a a a a a
a a a a a a 3Z
a a a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

⊆ V1 ∪ V2 ∪ ... ∪ V5.  
 
It is easily verified that W is a pseudo group semigroup 5 set 
linear subalgebra of V over the semigroup Z+. 
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Chapter Six 
 
 
 
 
 

SET FUZZY LINEAR BIALGEBRA AND ITS 
GENERALIZATION  
 
 
 
 
 
In this chapter we define the notion of set fuzzy linear bialgebra 
and its generalized structure namely fuzzy linear n-algebra. 
 
DEFINITION 6.1: Let V = V1 ∪ V2 be a set vector bispace over 
the set S. We say the set vector bispace V = V1 ∪ V2 with the 
bimap η = η1 ∪ η2 is a fuzzy set bivector space or set fuzzy 
bivector space if η = η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] and  
η (r1a1 ∪ r2a2) = (η1 ∪ η2) (r1a1 ∪ r2a2) = η1 (r1a1) ∪ η2 (r2a2) 
≥ η1(a1) ∪ η2(a2) for all ai ∈ Vi; i = 1, 2 and r ∈ S. We call Vη 
= Vη = (V1 ∪ V2) 1 2∪η η or ηV = (η1 ∪ η2) (V1 ∪ V2), to be the 
fuzzy set bivector space over the set S.  
 
We illustrate this by the following simple examples. 

 
Example 6.1: Let V = V1 ∪ V2 where V1 = {(4 0 0 1), (5 2 2 1)  
(1 5 5 1), (7 8 9 2), (1 1 1 1), (7 2 7 2), (1 0 5 3)} ∪ {(1 1 2), (2 
3 4), (5 6 7), (2 3 1), (4 –1 2), (0 1 7), (0 8 0)} be the biset 
which is a set vector bispace over the set S = {0, 1}. Define a 
map η = (η1 ∪ η2): V = V1 ∪ V2 → [0, 1] by ηi: Vi → [0, 1] for 
i = 1, 2 defined by  
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 η1 (x, y, z, w)  = x y z w [0, 1]
100

+ + +
∈  

  η2 (x, y, z, w)  = x y z [0, 1]
50

+ +
∈  

 
 Vη = ( )

1 2
1 2V V

η ∪η
∪  is a fuzzy set vector bispace. 

 
Example 6.2: Let V = (3Z+ ∪ 2Z+), Z+ the set of positive 
integers. Take S = Z+, V is a set vector bispace over S. Define η 
= η1 ∪ η2 : V1 ∪ V2 → [0, 1] by; for every  vi ∈ Vi ,  
 

ηi(vi) = 
i

1
v

, i = 1, 2. 

Clearly ηV or 
1 2

Vη ∪η  = ( )
1 2

1 2V V
η ∪η

∪ is a set fuzzy vector 
bispace or fuzzy vector bispace or fuzzy set vector bispace. 
 
Example 6.3: Let V1 = {(aij) | aij ∈ Z+, 1 ≤ i, j ≤ 7} ∪ {(aij) | aij 
∈ 2Z+, 1 ≤ i, j ≤ 5} = V1 ∪ V2 be a biset. V = V1 ∪ V2 is a set 
vector bispace over the set S = Z+.  

Define η = η1 ∪ η2 : V1 ∪ V2 → [0, 1] by  

η1 (A1 = (aij) ) = 1

1

1 | A |
8 | A |

 

where A1 ∈ V1 and |A1| denotes the determinant value of A.  

η2 (A1 = (aij) ) = 2

2

1 | A |
7 | A |

 

where A2 ∈ V2 and if |Ai| = 0, 1 ≤ i ≤ 2 then ηi (Ai) = 0. Vη = 
(V1 ∪ V2)

1 2η ∪η
 is a fuzzy set vector bispace. 

 
One of the main advantages of using the concept of set vector 
bispaces and fuzzy set vector bispaces is that we can at liberty 
include any element in V1 or V2 provided sx ∈ V1 or V2. This 
cannot in general be done when we use usual vector bispaces. 
Another advantage of this system is that we can work with the 
minimum number of elements i.e., we can just delete any 
element in V1 or V2 (V = V1 ∪ V2); if it is not going to be useful 
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for us. So we can as per our need increase or decrease the 
number of elements in the set bivector spaces. This is one of the 
chief advantages, when the use of elements mean economy and 
time.  

We give yet another example. 
 

Example 6.4: Let V = V1 ∪ V2 where V1 = {p(x) ∈ Z+[x], all 
polynomials in x with coefficients from Z+} and V2 = {Z + × 3Z+ 
× 5Z+ × 7Z+}; V is a set vector bispace over the set Z+. Define η 
= η1 ∪ η2 from V = V1 ∪ V2 to [0, 1] by  

η1(p(x)) = 
1

deg p(x)
1 if deg(p(x)) 0

⎧
⎪
⎨
⎪ =⎩

 

 
where η1 : V1 → [0, 1] and η2 : V2 → [0, 1] defined by  

η2 (x, y, z, w) = 1
x y z w+ + +

. 

Clearly Vη = (V1 ∪ V2) 1 2η ∪η is a set fuzzy vector bispace.  
 
Now we proceed of to define notion of set fuzzy linear 
bialgebra. 
 
DEFINITION 6.2: A set fuzzy linear bialgebra (V, η) = (V1 ∪ V2, 
η1 ∪ η2) or  (η1 ∪ η2) (V1 ∪ V2) is an ordinary set linear 
bialgebra. V with a bimap η = η1 ∪ η2 : V1 ∪ V2 → [0, 1] such 
that η1(a1 + b1) ≥ min (η1(a1), η1 (b1)); η2(a2 + b2) ≥ min 
(η2(a2), η2(b2)) and η1(r1 a1) ∪ η2(r2 a2) ≥ η1(a1) ∪ η2(a2) for a1, 
b1 ∈ V1 and a2, b2 ∈ V2.  

Since we know in the set vector bispace V = V1 ∪ V2 we 
merely take V to be a biset, but in case of the set linear 
bialgebra V =V1 ∪ V2 we assume V is closed with respect to 
some operation usually denoted by ‘+’; so the additional 
condition η1 (a1+b1) ≥ {min (η1 (a1), η1(b1)} and η2 (a2 + b2) ≥ 
min {(η2(a2), η2(b2)} is essential for every ai, bi ∈ Vi, i = 1,2.  
 
We denote this by some examples. 
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Example 6.5: Let V = V1 ∪ V2 where V1 = Z+ × Z+ × Z+ and  
 

V2 = 
a b

a, b, c, d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
V is clearly a set linear bialgebra over the set S = Z+. Define η : 
V → [0, 1] where η = η1 ∪ η2 : V1 ∪ V2 → [0, 1] with η : V1 → 
[0, 1] and  η2 : V2 → [0, 1] as  
 

η1 ((x, y, z)) = 
1

x y z+ +
 

and  

η2 
a b
c d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
ad bc if ad bc

5(ad bc)
0 if ad bc

−⎧ ≠⎪ −⎨
⎪ =⎩

. 

 
Clearly Vη = (V1 ∪ V2)

1 2η ∪η
 is a fuzzy set linear bialgebra. 

 
Example 6.6: Let  V = V1 ∪ V2 where  
 

1

a b c d
V a, b, c, d, e, f , g, h Z

e f g h
+

⎧ ⎫⎛ ⎞⎪ ⎪= ∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  

2

a
b

V a, b, c, d, e 2Zc
d
e

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟= ∈⎨ ⎬

⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a set linear bialgebra over Z+. Define η = η1 ∪ η2 : V = V1 ∪ 
V2 → [0, 1] by 
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1

a b c d 1
e f g h (a b c d) (e f g h)

⎛ ⎞
η =⎜ ⎟ + + + + + +⎝ ⎠

 

 
as both a + b + c + d ≠ 0 and e + f + g + h ≠ 0 which is true. 
 

2

a
b

1c
a c e

d
e

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟η =
⎜ ⎟ + +⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. 

 
Clearly Vη = (V1 ∪ V2) η1 ∪ η2 is a set fuzzy linear bialgebra. 
 
Example 6.7: Let V = V1 ∪ V2 where V1 = Z10[x] and V2 = Z10 
× Z10 × Z10 × Z10. V = V1 ∪ V2 is a set linear bialgebra. Define η 
= η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] by  
 

η1(p(x)) = 
1

deg p(x)
1 if p(x) is constant or 0

⎧
⎪
⎨
⎪⎩

 

and  

η2(a, b, c, d) = 
1 if a b c d (mod10)

a b c d
1 otherwise

⎧ + + + ≡⎪
+ + +⎨

⎪⎩

 

 
Vη is a set fuzzy linear bialgebra.  

Now we proceed onto define the notion of fuzzy set vector 
subspace and fuzzy set linear subalgebra. 
 
DEFINITION 6.3: Let V = V1 ∪ V2 be a set vector bispace over 
the set S. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 be the set vector 
bisubspace of V defined over S. If η = η1 ∪ η2 :  W = W1 ∪ W2 
→ [0, 1] then Wη = (W1 ∪ W2) 1 2η ∪η  is called the fuzzy set 
vector bisubspace of V.  
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We illustrate this by the following example. 
 

Example 6.8: Let V = {(1 1 1), (0 1 1), (1 0 1), (0 1 0), (1 1 0), 
(0 0 0)} ∪ {Z2[x]} = V1 ∪ V2 be a set vector bispace over Z2 = 
{0, 1}. Define η = η1 ∪ η2:  V = V1 ∪ V2 → [0, 1] by η1 : V1 → 
[0, 1] and η2 : V2 → [0, 1]  

 η1 (1 1 1) = 1 η1 (1 0 1)  = 0 
 η1 (0 1 1) = 0 η1 (0 1 0)  = 0 
 η1 (1 1 0) = 0 η (0 0 0)  = 0 

and  

η2 [p(x)] = 
1

deg p(x)
0 if p(x) is constant or 0

⎧
⎪
⎨
⎪⎩

 

 
Take W = W1 ∪ W2 = {(1 1 1), (0 0 0)} ∪ {All polynomials of 
degree less than or equal to 4}. 

Now η = η1 ∪ η2 : W → [0, 1] is well defined and Wη = 
(W1 ∪ W2) 1 2η ∪η  is a fuzzy set vector bisubspace of V = V1 ∪V2. 
 
Example 6.9: Let  
 
V  =  V1 ∪ V2  

=  {Z15 × Z15 × Z15} ∪ 15

a b
a, b. c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be a set vector bispace over Z15. Define η = η1∪η2 : V = V1 ∪ 
V2 → [0, 1] by  
 

η1(a b c) = 
0 if a b c 15 or 0(mod 15)

1 if a b c 0
a b c

+ + ≡⎧
⎪
⎨ + + ≠⎪ + +⎩
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2

a b
c d

⎛ ⎞⎛ ⎞
η ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 = 

0 if a b c d 0(mod 15)
1 if a b c d 0(mod15)

a b c d

+ + + ≡⎧
⎪
⎨ + + + ≡⎪ + + +⎩

 

 
Now Vη = (V1 ∪ V2) 1 2η ∪η  is a fuzzy set vector space. Take W = 
W1 ∪ W2 ⊆ V1 ∪ V2 where  
 

W1 = {0} × Z15 × Z15 ⊆ V1 
and 

W2 = 15

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
Wη = (W1∪W2)η1∪η2 is a fuzzy set vector subspace of V. 
 

η1 (a b 0) = 
0 if 0 a b 0(mod 15)
1 if 0 a b 0(mod15)

0 a b

+ + ≡⎧
⎪
⎨ + + ≡⎪ + +⎩

 

 

η2
a b
0 d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= 
0 if a b 0 d 0(mod 15)
1 if a b 0 d 0(mod15)

a b 0 d

+ + + =⎧
⎪
⎨ + + + ≠⎪ + + +⎩

 

 
Wη = (W1∪W2)η1∪η2 is a fuzzy set vector subspace of V. 
 
Example 6.10: Let V = V1 ∪ V2 where  
 

V1 = 
a b c

a, b, c, d, e, f Z
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and 
V2 = {Q+ × Q+ × Z+ × Z+}. 

 
V = V1 ∪ V2 is a set vector bispace over the set S = Z+ . 
 Define η = η1 ∪ η2 : V1 ∪ V2 = V → [0, 1] by  
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η1 
a b c
d e f

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 1
a b c d e f+ + + + +

 

 

η2 (a b c d) = 
1 if a b c d 1 and an int eger

a b c d
0 if a b c d 1 or a proper rational

⎧ + + + ≥⎪ + + +⎨
⎪ + + + <⎩

 

 
of the form p/q, q ≠ 0. Vη = (V1 ∪ V2) 1 2η ∪η  is a fuzzy set vector 
bispace. Take  W  = W1 ∪ W2 ⊆ V1 ∪ V2 = V where  
 

W1 = 
a a a

a Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

and  
W2 = 5Z+ × 3Z+ × 2Z+ × 7Z+ ⊆ V2. 

 
Clearly Wη = (W1 ∪ W2) 1 2η ∪η  is a fuzzy set vector bisubspace 
of V.  
 
Now we proceed onto define the notion of fuzzy set bilinear 
algebra. 
 
Example 6.11: Let V = V1 ∪ V2 where  
 

V1 = 

a a
a a

a Za a
a a
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
and  
V2 = {Z+[x]| all polynomials in the variable x with coefficients 
from Z+}. V = V1 ∪ V2 is a set linear bialgebra over Z+. Define 
η = η1 ∪ η2 : V1 ∪ V2 → [0, 1] by  
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η1 

a a
a a

1a a
8a

a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 and  η2 (p(x)) = 
1

deg p(x)
. 

Clearly Vη = (V1 ∪ V2) 1 2η ∪η  is a fuzzy set linear bialgebra. 
Take W = W1 ∪ W2 ⊆ V1 ∪ V2 = V where  
 

W1 = 1

3a 3a
3a 3a

V3a 3a
3a 3a
3a 3a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⊆
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and  
W2 = {All polynomial in the variable x of even degree} ⊆ V2; 

 
Wη = (W1 ∪ W2)η1∪η2 is a fuzzy set linear subbialgebra of V. 
 
Example 6.12: Let V = V1 ∪ V2 where   

V1 ={Z12 × Z12 × Z12 × Z12} 
and 

V2 = 12

a b c
d e f a, b, c, d, e, f , i Z
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

. 

 
We see V is a set linear subbialgebra of V over Z12. Take  
 
W = W1 ∪ W2 = 

{Z12×{0}×Z12 ×{0}} ∪ 12

a b c
0 e f a, b, c, d,e, f , i Z
0 0 i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭
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Define  η = η1  ∪ η2 : V1 ∪V2 → [0, 1] by  
 

η1 (a b c d) = 
0 if a b c d 0(mod 12)
1 if a b c d 0(mod12)

a b c d

+ + + ≡⎧
⎪
⎨ + + + ≡⎪ + + +⎩

 

 

2

a b c
d e f
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟η ⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 = 
1 if a 0
a
0 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

. 

 
Now Vη = (V1 ∪ V2) 1 2η ∪η  is a fuzzy set linear bialgebra.  Wη = 
(W1 ∪ W2) 1 2η ∪η  is a fuzzy set linear bisubalgebra of Vη.  
 
Now we proceed onto define fuzzy semigroup vector bispaces. 
 
DEFINITION 6.4: A semigroup fuzzy vector bispace or a fuzzy 
semigroup vector bispace Vη (or ηV) is an ordinary semigroup 
vector bispace V over the semigroup S; with a bimap  η = η1 ∪ 
η2; V = V1 ∪ V2 → [0, 1] satisfying the following conditions 
η(ra) =  η1(r1a1) ∪ η2(r2a2) is such that η1(r1a1) ≥ η1(a1) and 
η2(r2a2) ≥ η2(a2) for all a1 ∈ V1 and a2 ∈ V2 and r1, r2 ∈ S i.e., η 
(ra) = η1(r1a1) ∪ η2(r2a2) ≥ η1 (a1) ∪ η2(a2).  
 
We illustrate this by some examples. 
 
Example 6.13: Let V = V1 ∪ V2 where V1 = {( 1 1 1 1 1), (0 1 1 
1 0), (1 0 0 0 1), (0 0 0 0 0)} and V2 = {Z2 × Z2 × Z2 × Z2 × Z2}. 
V is a semigroup vector bispace over the semigroup  Z2 = {0, 
1}. Define η = η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] by  
 

η1 (a b c d) = (a b c d) (mod 2)
5

+ + +  

and  

η2 (a b c d e) = (a b c d e) (mod 2)
7

+ + + +  
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Clearly  Vη = (V1 ∪ V2) 1 2η ∪η  is a fuzzy semigroup vector 
bispace. 
 
Example 6.14: Let V = {Z5 × Z5 × Z5} ∪ {Z5[x]; all 
polynomials in x of degree less than or equal to 10 with 
coefficients from Z5} = V1 ∪ V2. V is a semigroup vector 
bispace over the semigroup Z5. 
Define η = η1 ∪ η2 : V → [0, 1]; η1 : V1 → [0, 1] with  
 

η1 (x y z) = 
1 if x y z 0(mod5)

(x y z)
0 if x y z 0(mod5)

⎧ + + ≡⎪ + +⎨
⎪ + + ≡⎩

. 

 
η2 : V2 → [0, 1] given by  

η2 (p (x)) = 
1

deg (p(x))
; η2(p(x)) = 0 if p(x) is a constant. 

 
Clearly Vη = (V1 ∪ V2)η1∪η2 is a fuzzy semigroup vector 
bispace. Define another bimap  δ : V → [0, 1] as δ = δ1 ∪ δ2 : 
V1 ∪ V2 → [0, 1] by δ1 : V1 → [0, 1],  δ2 : V2 → [0, 1] where  
 

δ1 (x y z) = 
1 if x y 0;not modulo addition

5(x y z)
0 if x y z 0;i.e., x y z 0

⎧ + ≠⎪ + +⎨
⎪ + + = = = =⎩

 

 
 

( )2
1p(x)

3 deg p(x)
δ = ; δ2(p(x)) = 0 if p(x) is a constant. 

 
Vδ = (V1 ∪ V2) 1 2δ ∪δ  is yet another fuzzy semigroup vector 
bispace. Thus given any semigroup vector bispace, we can 
obtain infinite number of fuzzy semigroup vector bispaces. 
 Thus we can have several semigroup fuzzy vector bispaces 
for a given semigroup vector bispace. This is the advantage of 
using the notion of fuzzy semigroup vector bispaces. 
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 Now we proceed onto define the notion of fuzzy semigroup 
vector bispaces. 
 
DEFINITION 6.5: Let V = V1 ∪ V2 be a semigroup vector 
bispace over the semigroup S. Suppose Vη = (V1 ∪ V2) 1 2η ∪η  is a 
semigroup fuzzy vector bispace of V and if  W = W1 ∪ W2 ⊆ V1 
∪ V2 is a semigroup vector subbispace of V, then Wη = (W1 ∪ 
W2) 1 2η ∪η  is defined to be the semigroup fuzzy vector subbispace 
of V; where η : W → [0, 1] i.e., η is the restriction of η to W 
i.e., 1η : W1 → [0, 1] and 2η : W2 → [0, 1].  
 
 We illustrate this by some examples. 
 
Example 6.15: Let  
 
V  = V1 ∪ V2  

=  
a b c
d e f a, b, c, d, e, f , g, h, i Z {0}
g h i

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

  ∪  

   {Z0 × Z0 × Z0 × Z0 | Z0 = Z+ ∪ {0}}  
 
be a semigroup vector bispace over the semigroup Z0 = Z+ ∪ 
{0}. Define η = η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] by 
 

1

a b c
d e f
g h i

⎛ ⎞
⎜ ⎟η ⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
1 if a e i 0

a e i
0 if a e i 0

⎧ + + ≠⎪ + +⎨
⎪ + + =⎩

. 

 
η2 : V2 → [0, 1] is defined by  
 

η2 (a, b, c, d) = 
1 if a b c d 0

a b c d
0 if a b c d 0

⎧ + + + ≠⎪ + + +⎨
⎪ + + + =⎩

. 



 

 

 

249

Vη = (V1 ∪ V2) 1 2η ∪η  is a semigroup fuzzy vector bispace.  
Take  
 
W  =  W1 ∪ W2  

=  0

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ {(a a a a) | (a ∈ Z0}  

⊆   V1 ∪ V2  
 
is a proper semigroup vector subbispace of V. Now η 1 : W1 → 
[0, 1] is given by  
 

η 1 

a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
1 if 3a 0
3a
0 if 3a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

and η 2 : W2 → [0, 1] given by  

η 2 (a a a a) = 
1 if a 0
4a
0 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

is such that Wη = (W1 ∪ W2) 1 2η ∪η  is a semigroup fuzzy vector 
subbispace of V. 
 
Example 6.16: Let  
V  = V1 ∪ V2  

= {Z16 × Z16 × Z16 × Z16} ∪ 16

a a a a a
a Z

a a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup vector bispace over the semigroup Z16. Let  
 
W  = W1 ∪ W2  

= {S × S × S × S | S = {0, 2, 4, 6, 8, 10, 12, 14}}  

∪ 
a a a a a

a S
a a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
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⊆ V = V1 ∪ V2.  
 
W is a semigroup vector bisubspace over the semigroup Z16. 
Define η = η1 ∪ η2 : W1 ∪ W2 → [0, 1] as follows : 
η1 : W1 → [0, 1] defined by 

η1 (a b c d)  =  
1 if a 0
a
0 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

. 

η2 : W2 → [0, 1] defined by  
 

η2 
a a a a a
a a a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  
1 if a 0

10a
0 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

. 

 
 Clearly W η = (W1 ∪ W2) 1 2η ∪η  is a semigroup fuzzy vector 
bisubspace.  
 
 Now we proceed onto define semigroup fuzzy linear bialgebra. 
 
DEFINITION 6.6: Let V = V1 ∪ V2 be a semigroup linear 
bialgebra defined over the semigroup S. We say Vη or η V or 
(V1 ∪ V2) 1 2∪η η  or (η1∪η2) (V1 ∪ V2) is a semigroup fuzzy linear 
bialgebra if η : V1 ∪ V2 → [0, 1] where η = η1 ∪ η2 such that 
η1 : V1 → [0, 1] and η2 : V2 → [0, 1] satisfying the conditions 
ηi(xi + yi) ≥ min(ηi(x), ηi(y)); ηi(rxi) ≥ ηi(xi) ; i = 1, 2 for every r 
∈ S; yi, xi ∈ Vi; i = 1,2.  
 
Now we illustrate this by a few examples. 
 
Example 6.17: Let  
V = V1 ∪ V2  

= {Z8 × Z8 × Z8} ∪ 1 2 3
i 8

4 5 6

a a a
a Z ; 1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

be a semigroup linear bialgebra over the semigroup Z8. Define η 
= η1 ∪ η2 : V → [0, 1] as follows : 
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 η1 : V1 → [0, 1] is defined by 

η1 (x y z) = 
1 if x 0
x
0 if x 0

⎧ ≠⎪
⎨
⎪ =⎩

. 

η2: V2 → [0, 1] defined by  
 

η2 1 2 3

4 5 6

a a a
a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 6
6

6

1 if a 0
a
0 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

. 

  
Vη = (V1 ∪ V2) 1 2η ∪η  is a semigroup fuzzy linear bialgebra. 
 
Example 6.18: Let V = V1 ∪ V2 = {p(x) | p(x) ∈ Z9

+ [x] where 
p(x) is of degree less than or equal to 9 with coefficients from 
Z+} ∪  

a b c d
e f g h

a, b, ..., p Z
i j k l
m n o p

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

is a semigroup linear bialgebra over the semigroup Z+. Define η 
= η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] by  
 
η1 : V1 → [0, 1] such that  

η1 (p(x)) = 
1

deg p(x)
; η1(p(x)) = 0 if p(x) is constant or 0 

η2 : V2 → [0, 1] is such that 

2

a b c d
e f g h 1
i j k l a b k p
m n o p

⎛ ⎞
⎜ ⎟
⎜ ⎟η =
⎜ ⎟ + + +
⎜ ⎟
⎝ ⎠

. 

Vη = (V1 ∪ V2) 1 2η ∪η  is a semigroup fuzzy linear bialgebra.  
 We see as in case of fuzzy set vector spaces and semigroup 
fuzzy vector spaces the notion of fuzzy set vector bispaces and 
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semigroup fuzzy vector bispaces are identical. Likewise the 
notion of fuzzy set linear bialgebra and fuzzy semigroup linear 
bialgebra are also identical. This sort of visualizing them as 
identical algebraic structures is done using the fuzzy tool which 
will be useful in applications. We as in case of fuzzy set linear 
algebras define these structures as fuzzy equivalent algebraic 
structures. 
 Thus we see fuzzy set linear bialgebra and semigroup fuzzy 
linear bialgebra are fuzzy equivalent though set linear bialgebra 
and semigroup linear bialgebra are different from each other. 
 Now we proceed onto define group fuzzy vector bispaces 
and group fuzzy linear bialgebras. 
 
DEFINITION 6.7: Let V = V1 ∪ V2 be a group linear bialgebra 
over the group G. Let η = η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] such 
that  
 ηi (ai + bi) ≥ min (ηi (ai), ηi(bi)) 
 ηi (-ai)  = ηi (ai) 
 ηi (0)  = 1 
 ηi (rai)  ≥ ηi (ai) for all ai, bi ∈ Vi and r ∈ G, i = 1, 2. 
We call Vη = (V1 ∪ V2) 1 2η ∪η  to be the group fuzzy linear 
bialgebra. 
 
Likewise the same definition holds good for group fuzzy vector 
bispaces as both group fuzzy vector bispaces and group fuzzy 
linear bialgebras are fuzzy equivalent.  
 
Now we illustrate this by some examples. 
 
Example 6.19: Let  
V  =  V1 ∪ V2  

= {Z × Z × Z} ∪ 
a b c

a,b, c,d,e,f Z
d e f

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a group vector bispace over the group Z. Define η = η1 ∪ η2 
: V = V1 ∪ V2 → [0, 1] where  
η1 : V1 → [0, 1] is  such that 
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η1 (a b c) = 
1 if a b c 0

5 |(a b c)|
1 if a b c 0

⎧ + + ≠⎪ + +⎨
⎪ + + =⎩

. 

η2 : V2  → [0,1] such that  
  

2

a b c
d e f

⎛ ⎞
η ⎜ ⎟

⎝ ⎠
 = 

1 if a b c e 0
| a b c e |

1 if a b c e 0

⎧ + + + ≠⎪ + + +⎨
⎪ + + + =⎩

; 

 
η = η1 ∪ η2 : V → [0, 1] is well defined. Vη = (V1 ∪ V2) 1 2η ∪η  
is a group fuzzy linear bialgebra. 
 
Example 6.20: Let V = V1 ∪ V2 be such that V1 = {Z[x] all 
polynomials of degree less than or equal to 25} ∪ {Z × Z × Z × 
Z} be a group linear bialgebra over the group Z. Define  
 η = η1 ∪ η2 : V1 ∪ V2 → [0, 1] as follows 
η1 : V1 → [0,1] by  

η1 (p(x)) = 1

1

1(p(x))
deg p(x)

(a) 1 a Z

⎧η =⎪
⎨
⎪η = ∈⎩

 

η2 : V2 → [0, 1] is defined by 

η2 (a b c d) = 
1 if a b c d 0

| a b c d |
1 if a b c d 0

⎧ + + + ≠⎪ + + +⎨
⎪ + + + =⎩

. 

 
Vη = (V1 ∪ V2) 1 2η ∪η  is a group fuzzy linear bialgebra.  
 
Now we proceed onto define the notion of fuzzy group vector 
bisubspace and fuzzy group vector bisubalgebra. 
 
DEFINITION 6.8: Let V = V1 ∪ V2 be a group vector bispace 
over the group G. Let  W = W1 ∪ W2 ⊆ V1 ∪ V2 = V, where W is 
a group vector subspace of V. 
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 Define η = η1 ∪ η2: W = W1 ∪ W2 → [0, 1] such that η1 : 
W1 → [0, 1],  η2 : W2 → [0, 1] where ηi (ai + bi) ≥ min 
(ηi(ai), ηi (bi))  
   ηi (ai) = ηi (– ai) 
   ηi (0) = 1 
   ηi (rai) ≥ rηi (ai) for all ai ∈ Vi and r ∈ G; i = 1, 2. 
We call Wη = (W1 ∪ W2) 1 2η ∪η  to be the group fuzzy bivector 
subspace. 
  
 We illustrate this definition by an example. 
 
Example 6.21: Let  
V  = V1 ∪ V2  

= {Z × Z × Z × Z} ∪ 
a a a a a

a Z
a a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

,  

 
be a group vector bispace over the group Z. Take  
W  = W1 ∪ W2  

= {2Z × 2Z × 2Z × {0}} ∪ 
a a a a a

a 2Z
a a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

⊆  V = V1 ∪ V2  
 
is a group vector subbispace of V. Define η = η1 ∪ η2 : W = W1 
∪ W2 → [0, 1]; η1 : W1 → [0, 1] and η2 : W2 → [0, 1] with  
 

η1 (x y z 0) = 
1 if x y z 0

x y z
1 if x y z 0

⎧ + + ≠⎪ + +⎨
⎪ + + =⎩

. 

 

η2 
a a a a a
a a a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
1 if a 0

10a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 . 
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Wη = (W1 ∪ W2) 1 2η ∪η  is a group linear fuzzy subalgebra. 
Further as our transformation to a fuzzy set up always demands 
only values from the positive unit interval [0, 1] these 
semigroup vector bispaces or set vector spaces would be more 
appropriate than the ordinary vector bispaces. 
 Further we see even in case of Markov biprocess or Markov 
bichain, the transition probability bimatrix is a square bimatrix 
whose entries are non negative adding up to one. So in such 
cases one can use set vector bispaces where 

 V = V1 ∪ V2 = ( ){ }
1 1

1 1
ij ija a [0, 1]

η ×η
∈  

∪ ( ){ }
2 2

2 2
ij ija a [0, 1]

η ×η
∈  

with 
1

k 1

1

n
1
i k

i 1
a

=
∑  = 1  for 1 ≤ k1 ≤ n1 

and  
2

2 2

2

n
2
i k

i 1
a

=
∑  = 1  for 1 ≤ k2 ≤ n2 

is a set vector bispace over the set [0, 1]. So these new notion 
not only comes handy but involve lesser complication and lesser 
algebraic structures. 
 
DEFINITION 6.9: Let V = V1 ∪ V2 be such that V1 is a set vector 
space over the set S1 and V2 is a set vector space over S2 ; S1 ≠ 
S2. We define V = V1 ∪ V2 to be the biset bivector space or biset 
vector bispace over the biset S = S1 ∪ S2. 
Let  η = η1 ∪ η2 : V = V1 ∪ V2  → [0, 1] 
where  η1 : V1  → [0, 1]  and 

  η2 : V2  → [0, 1]   
such that  

η1(r1a1)  ≥  η1(a1) for all r1 ∈ S, and a1 ∈ V1. 
  η2 (r2 a2) ≥ η2 (a2) for all r2 ∈ S2 and a2 ∈ V2. 
Vη = (V1 ∪ V2)η1∪η2 is a biset fuzzy vector bispace.  
 
We illustrate this by some simple examples. 
 
Example 6.22: Let  
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V  =  V1 ∪ V2  

= {Z+ × Z+ × Z+) ∪ 10

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a biset bivector space over the biset S = 3Z+ ∪ Z10 ie V1 is a 
set vector space over the set 3Z+ and V2 is a set vector space 
over Z10. 
  η = η1 ∪ η2 : V = V1 ∪ V2  → [0, 1] 
i.e.,  η1 : V1 → [0, 1] and η2 : V2 → [0, 1]  

η1 (x y z) = 
1

x y z+ +
. 

η2 
a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1 if a 0
6a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

Vη is a biset fuzzy bivector space. 
 
We give yet another example. 
 
Example 6.23: Let  
 
V  =  V1 ∪ V2  

= {(1111), (0000), (0011), (1100), (1001), (0110)}  

 ∪ 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a biset vector bispace over the biset S = S1 ∪ S2 where S1 = 
{0, 1} and S2 = Z12. 
Define η = η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] by η1 : V1 → [0, 1] , 
η2 : V2 → [0, 1]; with   
 

η1 (a b c d) =  
1 if a b c d 0

4(a b c d)
1 if a b c d 0

⎧ + + + ≠⎪ + + +⎨
⎪ + + + =⎩

. 
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η2 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1 if ad bc 0

3(ad bc)
0 if ad bc 0

⎧ − ≠⎪ −⎨
⎪ − =⎩

. 

 
Now we proceed onto define the notion of biset fuzzy vector 
bisubspaces. 
 
DEFINITION 6.10: Let V = V1 ∪ V2 be a biset vector bispace 
over the biset S = S1 ∪ S2. Let W = W1 ∪ W2 ⊆ V1 ∪ V2 = V be 
a proper bisubset of V which is a biset vector bispace over the 
same biset S = S1 ∪ S2.  
 Define η = η1 ∪ η2 : W → [0, 1] by η1 : W1 → [0, 1] and 
η2 : W2 → [0, 1] then we call Wη = (W1 ∪ W2)η1∪η2 to be the 
biset fuzzy vector subbispace.  
 
We illustrate this by some examples. 
 
Example 6.24: Let V = V1 ∪ V2 = {Z10 × Z10 × Z10} ∪ {Z12 × 
Z12 × Z12 × Z12 × Z12} be a biset vector bispace over the biset S 
= Z10 ∪ Z12. Let W = {S1 × S1 × S1 where  S1 = {0, 2, 6, 4, 8}} 
∪ {S2 × S2 × S2 × {0} × S2 where S2 = {0, 3, 6, 9} } = W1 ∪ W2 
⊂ V1 ∪ V2 be a biset vector subbispace of V over the biset S = 
Z10 ∪ Z12. Define the bimap η = η1 ∪ η2 : W1 ∪ W2 → [0, 1] : 
by η1 : W1 → [0 , 1] and  
 
η2 : W2 → [0 , 1] given by 

η1 (x y z) = 
1 if x y z 0(mod10)

x y z
1 if x y z 0(mod10)

⎧ + + ≡⎪ + +⎨
⎪ + + ≡⎩

 

 

η2(x y z 0 t) = 
1 if x y z 0 t 0(mod12)

x y z 0 t
1 if x y z 0 t 0(mod12)

⎧ + + + + ≡⎪ + + + +⎨
⎪ + + + + ≡⎩

  

 
Wη  = (W1 ∪ W2)η1∪η2 is a biset fuzzy vector bispace. 
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Example 6.25: Let  
 
V  = V1 ∪ V2  

=  {Z × Z × Z × Z} ∪ 15

a b c
a, b, c, d, e, f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a biset vector bispace over the biset S = Z ∪ Z15. Consider  
W  = W1 ∪ W2  

=  {2Z× 2Z × {0} × {0} } ∪ 15

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

⊆  V1 ∪ V2 = V  
 
be a biset vector subbispace of V over the same biset S = Z ∪ 
Z15. Now consider η the fuzzy set where η = η1 ∪ η2 with η1 : 
W1 → [0, 1] and η2 : W2 → [0, 1] defined by  
 

η1 (a b 0 0) = 
1 if a b 0

a b
1 if a b 0

⎧ + ≠⎪
+⎨

⎪ + =⎩

 

and  

η2 
a a a
a a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

. 

 
Clearly Wη = (W1 ∪ W2)η1∪η2 is a biset fuzzy bivector space. 
 
DEFINITION 6.11: Let V = V1 ∪ V2 be a biset linear bialgebra 
over the biset S = S1 ∪ S2. Define η = η1 ∪ η2 : V = V1 ∪ V2 → 
[0 ,1] in the following way ηi : Vi → [0, 1],  i = 1, 2 such that 
ηi(ai + bi) ≥ min (ηi (ai), ηi (bi)) for all ai, bi ∈ Vi, i = 1, 2.  
 Vη = (V1 ∪ V2)η1∪η2 is a biset fuzzy bilinear algebra.  
  
We illustrate this by some simple examples. 
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Example 6.26: Let  
 
V  = V1 ∪ V2  

=  12

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 {Z5 × Z5 × Z5 × Z5}  

 
be a biset linear bialgebra over the biset S = Z12 ∪ Z5. Define η 
= η1∪η2 : V → [0, 1] by η1 : V1 → [0, 1], η2 : V2 → [0, 1] such 
that  
 

η1 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 =  
1 if a b c d 0(mod12)

a b c d
1 if a b c d 0(mod12)

⎧ + + + ≡⎪
+ + +⎨

⎪ + + + ≡⎩

. 

 

η2 (a b c d)  = 
1 if a d 0(mod5)

a d
1 if a d 0(mod5)

⎧ + ≡⎪
+⎨

⎪ + ≡⎩

. 

 
Clearly Vη = (V1 ∪ V2)η1∪η2 is a biset linear fuzzy bialgebra.  
  
Example 6.27: Let V = V1 ∪ V2 = {Z+[x]} all polynomials in 
the variable x with coefficients from Z+} ∪  
 

1 2 3 4

5 6 7 8 i

9 10 11 12

a a a a
a a a a a 2Z
a a a a

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ∈⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

. 

 
V is a biset linear bialgebra over the biset Z+ ∪ 2Z. Define the 
bimap η = η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] by   

η1(p(x)) = 
1

deg p(x)
; η1(p(x)) = 1 if p(x) is a constant 

and  
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η2

1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

1 2 3 4
1 2 3 4

1 2 3 4

1 if a a a a 0
a a a a

1 if a a a a 0

⎧ + + + ≠⎪ + + +⎨
⎪ + + + =⎩

 

 
We see Vη = (V1 ∪ V2)η1∪η2 is a biset fuzzy linear bialgebra.  
 
 Now we proceed onto define the notion of biset fuzzy linear 
bialgebra. 
 
DEFINITION 6.12: Let V = V1 ∪ V2 be a biset linear bialgebra 
over the biset S = S1 ∪ S2.  Let W = W1 ∪ W2 ⊆ V1 ∪ V2 = V be 
a biset linear subbialgebra of W over the biset  S = S1 ∪ S2. 
Define η = η1 ∪ η2 : W1 ∪ W2 → [0, 1] by η1 : W1 → [0, 1] and  
η2 : W2 → [0, 1]. We see Wη = (W1 ∪ W2)η1∪η2 is a biset fuzzy 
linear subbialgebra.  
 
We illustrate this by some examples. 
 
Example 6.28: Let  
 
V  = V1 ∪ V2  

= 5

a b c
a, b, c, d, e, f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ Z4 × Z4 × Z4 × Z4  

 
be the biset linear bialgebra over the biset S = Z5 ∪ Z4. Let  
 
W  = W1 ∪ W2  

= 5

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a) | a ∈ Z4}  

⊆ V = V1 ∪ V2  
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be the biset linear subbialgebra. Define η = η1 ∪ η2 : W → [0, 
1] as ηi : W1 → [0, 1] and η2 : W2 → [0, 1] as  
 

η1 
a a a
a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  = 
1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

η2 = (a a a a) = 
1 if a 0
4a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

 
Wη = (W1 ∪ W2)η1∪η2 is a biset fuzzy linear subbialgebra.  
 
Example 6.29: Let  
V  = V1 ∪ V2  

= {Z [x]} ∪ 23

a b c g
a, b, c, d, e, f , g, h Z

d e f h
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a biset linear bialgebra over the biset S = Z ∪ Z23. Take  
 
W  = W1 ∪ W2  

= {all polynomials of even degree with coefficients from 

  Z} ∪ 23

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

⊆  V1 ∪ V2  
 
which is clearly a biset linear bialgebra over the same biset S = 
Z ∪Z23. Define the bimap η = η1 ∪ η2 : W1 ∪ W2 → [0, 1] as η1 
: W1 → [0, 1], η2 : W2 → [0, 1] as,  

η1(p(x)) = 1
deg p(x)

; η1(p(x)) = 1 if p(x) is a constant 

 η2 
a a a a
a a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  = 
1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

. 
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 Now Wη = (W1 ∪ W2)η1∪η2 is a biset fuzzy linear 
subbialgebra.  
 
Example 6.30: Let  
 
V  = V1 ∪ V2  

=  o

a b
c d

a, b, c, d, e, f , g, h Z {0} Z
e f
g h

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ∪ =⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪  

  {2Z × 2Z × 2Z}  
 
be a biset linear bialgebra over the biset S = Zo ∪ 2Z. Take  

 
W  = W1 ∪ W2  

=  o

a a
a a

a Z
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ {2Z × 2Z × {0}}  

⊆  V1 ∪ V2 = V,  
 
W is a biset linear subbialgebra of V. Define the bimap η = η1 
∪ η2 : W = W1 ∪ W2 → [0, 1] as η1 :  W1 → [0, 1] and η2 : W2 
→ [0, 1] defined by  
 

η1 

a a
a a
a a
a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 
1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

 

η2 (a b 0) = 
1 if a b 0

a b
1 if a b 0

⎧ + ≠⎪
+⎨

⎪ + =⎩

. 
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We see Wη = (W1 ∪ W2)η1∪η2 is a biset fuzzy linear 
subbialgebra.  
 
Now we proceed onto define the notion of quasi semigroup 
fuzzy bialgebra. However it is pertinent to mention though quasi 
semigroup bilinear algebra is different from semigroup linear 
bialgebra but semigroup fuzzy bilinear bialgebra and quasi 
semigroup fuzzy linear bialgebra are one and the same. 
 
DEFINITION 6.13: Let V = V1 ∪ V2 be a quasi semigroup linear 
bialgebra over the set S. Define η = η1 ∪ η2 : V → [0, 1] as η1 
: V1 → [0, 1] and η2 : V2 → [0, 1] such that Vη = (V1 ∪ V2)η is 
a quasi semigroup fuzzy linear bialgebra.  
 
We illustrate this by the following example. 
 
Example 6.31: Let  
 
V  = V1 ∪ V2  

= {(1 0 0 0), (0 0 0 0), (1 1 1 0 0), (0 0 0 0 0),  (1 1 0),  

 (0 1 1), (0 0 0), (1 0 1)} ∪ 2

a b
a, b c d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a quasi semigroup, linear bialgebra over the set Z2. Define η 
= η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] by η1((1 0 0 0)) = 1, η1((0 0 0 

0)) = 0, η1((0 0 0 0 0)) = 0, η1((1 1 0)) = 1
2

, η1((0 0 0)) = 0, 

η1((0 1 1)) = 1
2

, η1 ((1 0 1)) = 1
2

 where η1: V1 → [0, 1] and η2: 

V2 → [0, 1];  
 

η2 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1 if a b c d 0(mod 2)

a b c d
1 if a b c d 0(mod 2)

⎧ + + + ≠⎪
+ + +⎨

⎪ + + + =⎩

. 
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Clearly Vη = Vη1∪η2 = (V1 ∪ V2)η1∪η2 is a quasi semigroup 
fuzzy linear bialgebra. 
 
Now we proceed onto define the notion of bisemigroup fuzzy 
bivector space over a bisemigroup S = S1 ∪ S2. 
 
DEFINITION 6.14: Let V= V1 ∪ V2 be a bisemigroup bivector 
space over the bisemigroup S = S1 ∪ S2. Let η = η1 ∪ η2 be a 
bimap from V = V1 ∪ V2 into [0, 1], if ηi (ai + bi) ≥ min (ηi(ai), 
ηi(bi)) and ηi(riai) ≥ riηi(ai) for all ai, bi ∈ Vi and ri ∈ Si ;  i = 1, 
2. Then we call Vη = (V1∪V2)η1∪η2 to be a bisemigroup fuzzy 
vector bispace or bisemigroup fuzzy bivector space.  
 
We illustrate this by a simple example. 
 
Example 6.32: Let  
 
V  = V1 ∪ V2  

= {(a a a) | a ∈ Z6} ∪ 
a b

a, b, c, d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a bisemigroup vector bispace over the bisemigroup S = Z6 ∪ 
Z+. Define a bimap  η = η1 ∪ η2 : V = V1 ∪ V2 → [0, 1] by η1 : 
V1 → [0, 1] is such that  
 

η1 (a a a) = 
1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

. 

η2 : V2 → [0, 1] is such that  

η2 
a b 1
c d a d

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

. 

 
Clearly Vη = (V1∪V2)η1∪η2 is a bisemigroup fuzzy vector 
bispace. 
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We define now the notion of bisemigroup fuzzy linear 
bialgebra. 
 
DEFINITION 6.15: Let V = V1 ∪ V2 be a semigroup linear 
bialgebra over the bisemigroup  S = S1 ∪ S2. Suppose η = η1 ∪ 
η2: V = V1 ∪ V2 → [0, 1] is a bimap such that V1η1 is a 
semigroup fuzzy linear algebra and V2η2 is a semigroup fuzzy 
linear algebra then  Vη = (V1 ∪ V2)η1∪η2 is a bisemigroup fuzzy 
linear bialgebra.  
 
We illustrate this by some examples. 
 
Example 6.33: Let  
V  = V1 ∪ V2  

= 
1 2 3

4 5 6 i

7 9

a a a
a a a a 3Z {0};1 i 9
a al a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ {2Z+ × 2Z+ 

  × 2Z+ × 2Z+}  
 
be a bisemigroup linear bialgebra over the bisemigroup  S = 
(3Z+ ∪ {0}) ∪ 2Z+. Define the bimap η = η1 ∪ η2 : V = V1 ∪ 
V2 → [0, 1] such that η1 : V1 → [0, 1] 
 

η1 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

= 1 5 9
1 5 9

1 5 9

1 if a a a 0
a a a

1 if a a a 0

⎧ + + ≠⎪ + +⎨
⎪ + + =⎩

 

 

 η2: V2 → [0, 1];  η2 (a b c d) = 1
a b c d+ + +

. 

 
Vη = (V1∪V2) η1∪η2 is a bisemigroup fuzzy linear bialgebra. 
 
Example 6.34: Let V = V1 ∪ V2 = {Z+[x]} ∪ {3Z × 3Z × 3Z × 
3Z} be a bisemigroup linear bialgebra over bisemigroup S = Z+ 
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∪ 3Z. Define η = η1 ∪ η2 : V = V1 ∪ V2 → [0, 1]; η1 : V1 → [0, 
1] and η2 : V2 → [0, 1].  
 

η1(p(x)) = 
1

deg p(x)
; η1(p(x)) = 1 if p(x) is a constant 

 

η2 (a b c d) =  
1 if a b c d 0

a b c d
1 if a b c d 0

⎧ + + + ≠⎪
+ + +⎨

⎪ + + + =⎩

 

 
V1η1 and V2η2 are semigroup, fuzzy linear algebras so  Vη = (V1 
∪ V2)η1∪η2 is a bisemigroup fuzzy linear bialgebra. 
 
Now we proceed onto define the notion of bisemigroup fuzzy 
linear subbialgebra. 
 
DEFINITION 6.16: Let V = V1 ∪ V2 be a bisemigroup linear 
bialgebra over the bisemigroup S = S1 ∪ S2. Let W = W1 ∪ W2 
⊆ V1 ∪ V2 = V be a bisemigroup linear subbialgebra of V. 
Define a bimap η = η1 ∪ η2 : W1 ∪ W2 → [0, 1] such that  η1 : 
W1 → [0, 1] and η2 : W2 → [0, 1] so that W1 η1 and W2 η2 are 
semigroup fuzzy linear subbialgebras. We call Wη =  
(W1 ∪ W2)η1∪η2 to be a bisemigroup fuzzy linear subbialgebra.  
 
We illustrate this by the following examples. 
 
Example 6.35:  Let  
V  = V1 ∪ V2  

= {3Z+ × 3Z+ × 3Z+ × 3Z+ × 3Z+} ∪      

  20

a b
a, b, c, d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a bisemigroup linear bialgebra over the bisemigroup  S = 3Z+ 
∪ Z20.  
Take  
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W  =  W1 ∪ W2  

=  {3Z+ × {0} × {0} × 3Z+ × 3Z+} ∪ 20

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

⊆ V1 ∪ V2 = V,  
 
W is a bisemigroup linear subbialgebra of V. 
 Define η = η1 ∪ η2 : W1 ∪ W2 → [0, 1] by  

 

η1 (x 0 0 y z) = 1
x y z+ +

 

 
so that W1η1 is a semigroup fuzzy linear algebra. 
 η2 : W2 → [0, 1] defined by  
 

η2 
a a
a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

, 

 
W2η2 is a semigroup fuzzy linear algebra so that Wη = W1η1 ∪ 
W2η2  (W1 ∪ W2)η1∪η2 is a bisemigroup fuzzy linear bialgebra.  
 
Now we proceed onto define the notion of bigroup fuzzy 
bivector space. 
 
DEFINITION 6.17: Let V = V1 ∪ V2 be a bigroup fuzzy bivector 
space over the bigroup  G = G1 ∪ G2. Let η = η1 ∪ η2 : V = V1 
∪ V2 → [0, 1] be such that V1η1 is a group fuzzy vector space 
and V2η2 is a group fuzzy vector space where η1 : V1 → [0, 1] 
and  η2 : V2 → [0, 1], so that Vη = (V1 ∪ V2)η1∪η2 is a bigroup 
fuzzy vector bispace.  
 
We illustrate this by some simple examples. 
 
Example 6.36: Let V = V1 ∪ V2 = Z3 [x] ∪ Q × Q be a bigroup 
vector bispace over the bigroup G = Z3 ∪ Q. Define η = η1 ∪ η2 
: V = V1 ∪ V2 → [0, 1] where  
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η1 : V1 → [0, 1] is given by  

η1(p(x)) = 
1

deg p(x)
1 if p(x) 0

⎧
⎪
⎨
⎪ =⎩

 

 
η2 : V2 → [0, 1] is given by 
 

η2 (a b) = 
1 if a b 0,a b is an integer

a b
1 if a b 0 or a b is a rational number

⎧ + ≠ +⎪
+⎨

⎪ + = +⎩

 

Vη = (V1 ∪ V2)η1∪η2 is a bigroup fuzzy vector bispace. 
 
Now we proceed onto define bigroup fuzzy vector subbispace. 
 
DEFINITION 6.18: Let V = V1 ∪ V2 be a bigroup vector bispace 
over the bigroup G = G1 ∪ G2. Take W = W1 ∪ W2 ⊆ V1 ∪ V2 
be a bigroup vector subbispace of V over the same bigroup G = 
G1 ∪ G2. Define η = η1 ∪ η2 : W1 ∪ W2 → [0, 1] such that  (W1 
∪ W2)η1∪η2 is a bigroup fuzzy vector bispace then we call W to 
be a bigroup fuzzy vector subbispace.  
 
Now we define set n-fuzzy vector space. 
 
DEFINITION 6.19: Let V = V1∪V2 ∪ … ∪ Vn be a set n-vector 
space over the set S. If  η : η1 ∪ η2 ∪ … ∪ ηn : V = V1 ∪ V2 ∪ 
… ∪ Vn → [0, 1] is such that ηi : Vi → [0, 1] so that Viηi is a 
set fuzzy vector space for each i = 1, 2, …, n, then we call  Vη = 
(V1 ∪ V2 ∪ … Vn)η1 ∪ η2∪  … ∪ ηn to be a set fuzzy n-vector space. 
 
We illustrate this by an example. 
 
Example 6.37: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  
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= {(1 1 1), (0 0 0), (1 0 0), (0 1 0), (1 1 1), (0 0), (1 1 1 1), 

  (1 0 0 0), (0 0 0 0)} ∪ 2

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

  2

a a a a
a Z

a a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {Z2[x]}.  

 
V is set 4-vector space over the set S = {0, 1}. Define η = η1 ∪ 
η2 ∪ η3 ∪ η4 : V = V1 ∪ V2 ∪ V3 ∪ V4 → [0, 1]; η1 : V1 → [0, 
1] by  

η1 (a b c) = 
1 if a b c 0

a b c
1 if a b c 0

⎧ + + ≠⎪
+ +⎨

⎪ + + =⎩

 

 
η2 : V2  → [0, 1] by 

 

η2 
a a
a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
1 if a 0
a
1 if a 1

⎧ ≠⎪
⎨
⎪ =⎩

 

 
η3 : V3 → [0, 1]  defined by 
 

 η3 
a a a a
a a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 =  
1 if a 0

8a
1 if a 1

⎧ ≠⎪
⎨
⎪ =⎩

  

 
and η4 : V4 → [0, 1]  given by 

η4 (p(x) = 1
deg p(x)

; η4(p(x)) = 1 if p(x) is a constant. 

 
Clearly Viηi ’s are set fuzzy vector spaces for each i. Thus Vη = 
(V1 ∪ V2 ∪ V3 ∪ V4)η1∪η2∪η3∪η4 is a set fuzzy n-vector space. 
 
Now we proceed onto define set fuzzy n-vector subspace. 
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DEFINITION 6.20: Let V = V1 ∪ V2 ∪ … ∪ Vn be a set n-vector 
space over the set S. If W = W1 ∪ W2 ∪ … ∪ Wn ⊆ V1 ∪ V2 ∪ 
… ∪ Vn with Wi ≠ Wj if i ≠ j; Wi ⊆/ Wj, Wj ⊆/  Wi; 1 ≤ i, j ≤ n and 
W is a set n-vector subspace of V over the set S. If η = η1∪η2 ∪ 
… ∪ ηn : W = W1 ∪ W2 ∪ … ∪ Wn → [0, 1] where ηi : Wi → 
[0, 1]; 1 ≤ i ≤ n are set fuzzy vector subspaces then we call Wη 
= (W1 ∪ W2 ∪ … ∪ Wn)η1∪η2∪ … ∪ ηn to be the set fuzzy n-vector 
subspace.  
 
 Now we illustrate this by a simple example. 
 
Example 6.38: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

=  {(a a a), (a a)| a∈Z+} ∪
a b

a, b, c, d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪   

 

 Z+[x] ∪

1

2
i

3

4

a
a

a Z 1 i 4
a
a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a set 4-vector space over the set S = Z+. Take  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4  

= {(a a a) | a ∈ Z+} ∪ 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 {all polynomials of even degree} ∪ 

a
a

a 2Z
a
a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

⊆   V1 ∪ V2 ∪ V3 ∪ V4 = V  
 



 

 

 

271

is a set 4 vector subspace of V over the set S = Z+. Define  η = 
η1 ∪ η2 ∪ η3 ∪ η4 : W = W1 ∪ W2 ∪ W3 ∪ W4 → [0, 1] by η1 : 
W1 → [0, 1] with  

η1 (a a a) = 1
3a

 , 

η2 : W2 → [0, 1] with  

η2 
a a
a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 1
4a

 ; 

η3 : W3 → [0, 1];  

η3 (p (x)) = 1
deg p(x)

; 

and η4 : W4 → [0, 1] by 

η4 

a
a
a
a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 = 
1

3(a a a a)+ + +
. 

Clearly each Wiηi is a set fuzzy vector subspace. Thus Wη = 
(W1 ∪ W2 ∪W3 ∪ W4)η1∪η2∪η3∪η4 is a set fuzzy 4-vector 
subspace.  
 
Now we proceed onto define set fuzzy n-linear algebra. We see 
both set fuzzy n-vector space and set fuzzy n-linear algebra are 
fuzzy equivalent. 
 
DEFINITION 6.21: Let V = V1 ∪ V2 ∪ … ∪ Vn be a set n-vector 
space over the set S. If each Vi is closed under addition then we 
call V to be a n-set linear algebra over S;  1 ≤ i ≤ n. If in a set n-
linear algebra V = V1 ∪ V2 ∪ … ∪ Vn we define a n-map  η = 
η1∪η2 ∪ … ∪ ηn from V = V1 ∪ V2 ∪ … ∪ Vn into [0, 1] such 
that each Viηi is a set fuzzy linear algebra for i = 1, 2, …, n; 
then Vη = (V1 ∪ V2 ∪ … ∪ Vn)η1∪η2∪ …∪ ηn , is called the set n 
fuzzy linear algebra.  
 
We illustrate this by the following example. 
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Example 6.39: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

= 
a a a a

a Z {0}
a a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  {So × So × So × So 

× So such that So = Z+ + ∪ {0}} ∪ {all polynomials of 
degree less than or equal to 5 with coefficients from So 

= Z+ ∪ {0}} ∪ oa b
a,b, c,d is in S

c d
⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

is a 4-set linear algebra over So = Z+ ∪ {0}.  
 

Define  η = η1 ∪ η2 ∪ η3 ∪ η4 : V = V1 ∪ V2 ∪ V3 ∪ V4 → 
[0, 1]; such that ηi : Vi → [0, 1], i = 1, 2, 3, 4 with  

 

η1 
a a a a
a a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= 
1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

; 

 

η2 (a b c d e) = 
1 if a b c d e 0

a b c d e
1 if a b c d e 0

⎧ + + + + ≠⎪
+ + + +⎨

⎪ + + + + =⎩

 

η3 (p(x)) = 1
deg p(x)

 ; 

η3(p(x)) = 1 if p(x) is a constant polynomial or 0 
and 

η4 
a b
c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
1 if a d 0

a d
1 if a d 0

⎧ + ≠⎪
+⎨

⎪ + =⎩

 

 
Clearly each Viηi is a set fuzzy linear algebra, thus Vη = (V1 ∪ 
V2 ∪ V3 ∪ V4)η1∪η2∪η3∪η4 is a set 4-linear algebra.  
Now we proceed onto define the notion of semigroup n set 
fuzzy vector space. 
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DEFINITION 6.22: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set vector space over the semigroup S. If the n-map η = η1∪ 
η2∪ … ∪ ηn : V = V1 ∪ V2 ∪ … ∪ Vn →  [0, 1] where ηi : Vi → 
[0, 1] and Viηi is a semigroup set fuzzy vector space for each i,  
i = 1, 2, ..., n then we call Vη = (V1 ∪ V2 ∪ … ∪ Vn)η1∪η2∪ … ∪ ηn 
to be a semigroup n set fuzzy vector space. 
 
We illustrate this by a simple example. 
 
Example 6.40: Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4  

=  3

a b
a, b, c, d Z {0, 1}

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  {Z3 × Z3 × Z3 ×  

 
Z3} ∪ { (1 1 0 1), (2 0 2 0), (2 2 0 2), (1 0 1 0), (0 0 0 
0), (1 0 1),  (2 0 2), (0 0 0), (1 1 1), (2 2 2)} ∪  
 

3

a a a a a a a a
, a Z

a a a a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

  

 
be a semigroup 4-set vector space over the semigroup Z3.  
 
Define η = η1 ∪ η2 ∪ η3 ∪ η4 : V = V1 ∪ V2 ∪ V3 ∪ V4 → [0, 
1] (with ηi : Vi → [0, 1]; i = 1, 2, 3, 4) such that  
 

η1 
a b
c d

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= 
1 if a b 0

a b
1 if a b 0

⎧ + ≠⎪
+⎨

⎪ + =⎩

 

 

η2 (a b c d) = 
1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩
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η3 (1 1 0 1) = 0, η3 (2 0 2 0) = 1, 

η3 (2 2 0 2) = 0, η3 (1 0 1 0) = 1
2

, 

η3 (0 0 0 0) = 0, η3 (1 0 1)  = 1
2

, 

η3 (1 1 1) =  0, η3 (2 2 2)  = 0 
 
and 

η4 
a a a
a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=  
1 if a 0
6a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

 

η4 
a a a a a
a a a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
1 if a 0

10a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

 
Clearly each Viηi is a semigroup set fuzzy vector space hence 
Vη = (V1 ∪ V2 ∪ V3 ∪ V4)η1∪η2∪η3∪η4 is a semigroup 4-set fuzzy 
vector space. 
 
We can as in case of other set fuzzy n-vector subspaces define 
the notion of semigroup n set fuzzy vector subspaces.  
 
Now we proceed onto define the notion of semigroup n set 
fuzzy linear algebras. 
 
DEFINITION 6.23: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set linear algebra over the semigroup S. η = η1 ∪ η2 ∪ … ∪ 
ηn : V = V1 ∪ V2 ∪ … ∪ Vn → [0, 1] where each ηi : Vi → [0, 
1] is such that Vi ηi is a semigroup set fuzzy linear algebra for 
each i, i = 1, 2, …, n. Vη = (V1 ∪ V2 ∪ … ∪ Vn)η1∪η2∪ … ∪ ηn is a 
semigroup n set fuzzy linear algebra.  
 
We illustrate this situation by an example. 
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Example 6.41: Let  
V  =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

= {So[x] where So = Z+ ∪ {0}} ∪ {So × So × So × So × So 

  × So} ∪ o

a b c
d e f a, b, c, d, e, f , g, h, i S
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  

 

o

a a a a a
a a a a a a S
a a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪  

 

o

a b c d
0 e f g

a,b, c, d, e, f , g, h, i, j S
0 0 h i
0 0 0 j

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a semigroup 5-set linear algebra over the semigroup So.  
 
Define η = η1 ∪ η2 ∪ η3 ∪ η4 ∪ η5 : V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ 
V5 → [0, 1] by ηi : Vi → [0, 1] ; 1 ≤ i ≤ 5 by 
 

 η1 (p(x)) = 
1

deg p(x)
1 if p(x) = constant

⎧
⎪
⎨
⎪⎩

 

 

 η2 ((a1, a2, a3, a4, a5, a6)) = 1
1

1

1 if a 0
a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

 

 η3 
a b c
d e f
g h i

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 = 
1 if a e i 0

a e i
1 if a e i 0

⎧ + + ≠⎪
+ +⎨

⎪ + + =⎩
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 η4 
a a a a a
a a a a a
a a a a a

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 = 
1 if a 0

15a
1 if a 0

⎧ ≠⎪
⎨
⎪ =⎩

 

 
and 
 

η5 

a b c d
0 e f g
0 0 h i
0 0 0 j

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 = 
1 if a e h j 0

a e h j
1 if a e h j 0

⎧ + + + ≠⎪ + + +⎨
⎪ + + + =⎩

 

 
Thus Vη is a semigroup 5 set fuzzy linear algebra.  
 
Now we proceed onto define the notion of semigroup n-set 
fuzzy linear subalgebra. 
 
DEFINITION 6.24: Let V = V1 ∪ V2 ∪ … ∪ Vn be a semigroup 
n-set linear algebra over the semigroup S. Let W = W1 ∪ W2 ∪ 
… ∪ Wn ⊆ V1 ∪ … ∪ Vn = V be a n-subset of V such that W is a 
semigroup n set linear subalgebra over the semigroup S.  

Let η = η1 ∪ η2 ∪ … ∪ ηn : W = W1 ∪ W2 ∪ … ∪ Wn → 
[0, 1] is such that each Wiηi is a semigroup set fuzzy linear 
subalgebra for i = 1, 2, …, n; then we call Wη = (W1 ∪ W2 ∪ … 
∪ Wn)η1∪η2∪…∪ηn to be a semigroup n set fuzzy linear 
subalgebra.  
 
We illustrate this by an example. 
 
Example 6.42: Let  
 
V  = V1 ∪ V2 ∪ V3 ∪ V4  

 
= {Z24 × Z24 × Z24 × Z24} ∪ {Z24 [x] } ∪  
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24 24

a a
a a

a b e
a, b, c, d, e, f Z a Za a

c d f
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  

 
be a semigroup 4 set linear algebra over the semigroup Z24.  
Let  
 
W  =  W1 ∪ W2 ∪ W3 ∪ W4  

= {S1 × S1 × S1 × S1 where S1 = {0, 2, 4, 6, 8, …, 22}}  
∪ {Z24' [x] polynomials of only even degree with 

 coefficients from Z24} ∪  
 

24 1

a a
a a a a a

a Z a S
a a a a a

a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⎧ ⎫⎛ ⎞⎪ ⎪ ⎪ ⎪⎜ ⎟∈ ∪ ∈⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
⊆  V1 ∪ V2 ∪ V3 ∪ V4  
=  V  

 
is a semigroup 4-set linear subalgebra of V over the same 
semigroup Z24. Let η = η1 ∪ η2 ∪ η3 ∪ η4 : W = W1 ∪ W2 ∪ 
W3 ∪ W4 → [0, 1] where each  ηi : Wi → [0 1] is such that Wiηi 
is a semigroup set fuzzy linear subalgebra for  i = 1, 2, 3, 4. 
Now Wη = (W1 ∪ W2 ∪ W3 ∪ W4)η1∪η2∪η3∪η4 is a semigroup 4-
set fuzzy linear subalgebra. 
 
Now we proceed onto define the notion of group n set fuzzy 
vector space. 
 
DEFINITION 6.25: Let V = V1 ∪ V2 ∪ … ∪ Vn be a group n set 
vector space over the group G. Let η = η1 ∪ η2 ∪ … ∪ ηn. V = 
V1 ∪ V2 ∪ … ∪ Vn → [0, 1] such that  ηi : Vi → with Viηi is a 



 

 

 

278

group set fuzzy vector space for each i = 1, 2, … , n;  Vη = (V1 
∪ V2 ∪ … ∪ Vn)η1∪η2∪…∪ηn is a group n-set fuzzy vector space.  
 
We illustrate this an example. 
 
Example 6.43: Let  
 
V  =  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  

=  1 2 3
i 11

4 5 6

a a a
a Z ;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z11[x]} ∪  

{Z11 × Z11 × Z11 × Z11 × Z11} ∪  
 

1 2

3 4

5 6 i 11

7 8

9 10

a a
a a
a a a Z ; 1 i 10
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈ ≤ ≤⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪  

 

11

a a a a a
a a a

a a a a a a a
a a a , , a Z

a a a a a a a
a a a

a a a a a

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 

 
be a group 5 set vector space over the group Z11.  
Take  
 
W  = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5  

= 11

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {Z11[x]; all polynomials of  

 even degree with coefficients from Z11} ∪ {(a a a a a) | 
  a ∈ Z11}  
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∪ 11

a a
a a

a Za a
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟ ∈⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 ∪ 11

a a a
a a

a a a , a Z
a a

a a a

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎜ ⎟ ⎝ ⎠⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

  

 
⊆  V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5  
=  V,  

 
to be a group set 5-vector subspace over the group Z11. Define  
η = η1 ∪ η2 ∪ η3 ∪ η4 ∪ η5 : W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 
→ [0, 1] such that  ηi : Wi → [0, 1] with Wiηi a group set fuzzy 
vector subspace for each i = 1, 2, …, 5. Clearly Wη = (W1 ∪ W2 
∪ … ∪ W5)η1∪η2∪ … ∪η5 is a group set fuzzy 5-vector subspace. 
 
Now we proceed onto define the notion of group n set fuzzy 
linear algebra. It is important to mention here that the notion of 
group n set fuzzy vector space and group n-set fuzzy linear 
algebra are fuzzy equivalent. 
 
DEFINITION 6.26: Let V = V1 ∪ V2 ∪ … ∪ Vn be a group n set 
linear algebra over the group G. Let η = η1 ∪ η2 ∪ … ∪ ηn : 
V→ [0, 1] where ηi : Vi → [0, 1] such that Viηi is a group set 
fuzzy linear algebra for each i = 1, 2, …, n, then we call Vη = 
(V1 ∪ V2 ∪ … ∪ Vn)η1∪η2∪…∪ηn to be a group n set fuzzy linear 
algebra.  
 
 
Now we proceed onto indicate the applications of these new 
algebraic structures before which we give few differences. 
 

1. If we use a set vector space over the set [0, 1] working 
can easily be carried out for we do not demand 1 + 1 = 
0. We can use them in fuzzy models. 
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2. If we use n set vector space then we can use several sets 
to model the problem that too when the elements are not 
compatible with any of the operation, that is even the 
closure axiom under any operation cannot be expected. 

 
3. When we give algebraic structures with many abstract 

operations on them, the use of these algebraic structures 
by students/ researchers other than mathematicians is 
absent. But as the world at present is in a  computer age 
the mathematical models should be constructed with 
least abstractness. These algebraic structures given in 
this book will certainly cater to this need. 

 
Now we give a sketch where these structures can be applied. 
 

Applications to Markov Chains 
 
Suppose we have a n set of states which is a time dependent 
model which has many transition matrices representing the 
transition possibilities. Suppose we have k such transition 
matrices given by T1, …, Tk, where each Ti is a n × n matrix,  i 
= 1, 2, …, k. Suppose G(Ti) denotes the graph having vertex set 
{1, 2, …, n}. The arc set (i, j) : tij > 0. For each G(Ti), we get the 
four classes 
 
 i

1C  = {
1i

n , …, 
ki

n } essential class 
 
 i

2C  = {
1j

n , 
2j

n , …, 
pj

n } inessential class (self   
   communicating) 
 
 i

3C  = {
1r

n , …, 
sr

n } inessential non self communicating  
 
 i

4C  = {
1mn , …, 

tmn } essential class (non self    
   communicating) 
 
such that  
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 (1) k ≥ 1, p ≥ 1, s ≥ 1 and t ≥ 1. 
 (2) i i

p jC C if p j∩ = φ ≠   

 (3) i i i i
1 2 3 4C C C C {1, 2, ...,n}∪ ∪ ∪ = . 

 
Now we see G(Ti), varies; for suppose V = {T1, …, Tk} then we 
can take V as a set vector space over [0, 1] or as a semigroup set 
vector space over [0, 1]. 
 Further the transition matrices vary from expert to expert 
for the ith expert may start his study from the jth state and say a 
kth expert (i ≠ k) may start his study from the pth state and so on. 
Thus the very transition matrix may be different. One can use 
the semigroup set vector space to represent the collection of all 
transition matrices and work with them. If  
 
Vo = {T1, …, Tn} is a set vector space over the set [0, 1]. 
 
V1 = 2 2

1 n{T , ..., T }  is again a set vector space over the set [0, 1], 
…,  
 
Vk = k 1 k 2

1 n{T , ..., T }− −  is a set vector space. 
 

The best limiting case would the best chosen set vector 
space. 
 It is pertinent at this juncture to mention that the entries of 
Ti can be any value lying between [0, 1] further even the 
assumption the row sums adds to one can be chosen. 
 Their is no loss of generality in assuming some of the 
columns or rows in Ti have only zero entries. 
 
These types of applications like studying the behaviour of 
children, war-peace situation and the related behaviour of 
military personals like stress, strain, relaxation, taking to drugs, 
taking to drink, taking to women, taking leave on basis of false 
ailments, taking medical leave and so on or like the study of 
students tensions during exams. 
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Another practical use of fuzzy Markov chains can be in 
statistical software testing. 
 It can be used in web monitoring, testing or counting. Thus 
when we use in web monitoring or testing and if the web pages 
or sometimes ‘n’ entries are taken as the set of states one has to 
keep in mind the states vary so when we use the set fuzzy  n-
vector space or semigroup fuzzy n-vector space or group fuzzy 
n-vector space it would be easy to handle the bulk problems at a 
time! 
 

• These algebraic structures can be used by 
cryptologists and coding theorists. 

• They can also be used in fuzzy models, by social 
scientists and doctors. 

• The set fuzzy vector spaces in which the elements 
form ni × ni matrices can be used by computer 
scientists. 
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Chapter Seven  
 
 
 
 
 

SUGGESTED PROBLEMS  
 
 
 
 
 
In this book we suggest over 300 problems so that the reader 
becomes familiar with the new notion of set vector spaces and 
their particularization. All vectors spaces and semivector spaces 
are set vector spaces, thus set vector spaces are the most 
generalized concept. 

1. Let V = {–1, 0, 2, 3, …, ∞} and S = {1, 2, …, ∞}. Is V a set 
vector over S. Justify your claim. 

2. Let V = R, the set of reals. Let S = {1, 2, …, ∞}. Is R a set 
vector space over the set S?  

3. Let V = R, the set of reals. Let S = Q+ (the set of positive 
rationals). What is the difference between the set vector 
space defined in problem (2) and in this problem. 

4. Let V = {1, 2, ..., ∞}. Can V be a set vector space over the 
set S = Q+? 

5. Let V = {1, 2, …, ∞}. Can V be a set vector space over the 
set S = {–1, 1}? Justify your claim. 

6. Is Z the set of integers a set vector space over the set S =  
{–1, 1}? 
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7. Is Z the set of integers a set vector space over the set S = {1, 
1/2, 1/3, …, 1/n}? 

8. Prove the set of positive rationals is not a set vector space 
over the set of positive reals. 

9. Let V = {0, 2, 4, …, ∞}; prove V is a set vector space over 
the set S = {0, 1, 2, …, ∞} = Z+ ∪ {0}. 

10. Can V = {2, 22, 23, …} be a set vector space over the set S = 
Z+? 

11. Prove V = {0, 3, 6, …, ∞} is a set vector space over the set 
S = Z+ = {1, 2, …, ∞}. 

12. Prove V = {1, 3, 6, …, ∞} is not a set vector space over the 
set S = Z+ = {1, 2, …, ∞}. 

13. Prove V = {1, p, 2p, …, ∞} is not a set vector space over 
the set S = {1, 2, ..., ∞}. 

14. Can we say for V to be a set vector space over S, S must be 
a proper subset of V? 

15. Is it true if S ⊂ V; V is a set vector space over S? 

16. Can M = 
a b c
d e f

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 a, b, c, d, e, f ∈ Z+} be a set vector 

space over Q+ (the set of positive rationals)? 

17. Prove M = 
a b
c d

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 a, b, c, d ∈ Z+} is a set vector space 

over the set S = Z+. 

18. Can the set V = 
1 2 0 1 5 7 1 2

, , ,
3 4 2 3 8 10 3 0

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 be 

a set vector space over the set S = {0, 1, 2, …, ∞}? 
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19. Find a set of linearly independent elements in the set vector 
space V = {1, 2, ..., ∞} defined over the set S = {2, 4, …, 
∞}. 

20. Find a set basis for the set vector space V = {1, 2, ..., ∞} 
over the set S = {2, 4, …, ∞}. 

21. Is the set basis for the set vector space V = Z+ × Z+ over the 
set S = Z+ unique?  

22. Does there exist a set vector space V over the set S which 
has more than one set basis? 

23. Let V = +a b
a, b, c, d  Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a set vector space 

over the set S = Z+. Find a set basis for V? Is it unique? 

24. Find a set basis for the set vector space V = {–1, 0, 1, 2, 3, 
…, ∞} over the set S = {0, 1}. Is the set basis unique? Is it 
finite dimensional? 

25. Give an example of a set vector space of dimension 7? 

26. Give an example of a set vector space V over the set S 
which is also a set vector space S over V. 

27. Give an example of a set vector space V over S which is not 
a set vector space of S over V (i.e., show if V is a set vector 
space over S then S is not a set vector space over V). 

28. Let V = Q+ × Z+ × 2Z+ × R+ be a set vector space over the 
set S = {1, 2, …, ∞}. Find a basis for V? What is the 
dimension of V? Does V have a unique set basis? Give a 
finite set independent set in V. 

29. Characterize those set vector spaces V on the set S of finite 
dimension such that V ≅ S × … × S. 
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30. Give an example of set vector spaces V of set finite 
dimension over the set S which cannot be written as V ≅ S × 
… × S. 

31. Let V = Z+ ∪ {0} = {0, 1, …, ∞} be a set vector space over 
the set S = {0, 1, 3 , 5, 7, …}. Is V ≅

n times

S ... S ?
−

× ×��	�
 , (n, finite). 

32. Give some interesting properties of set vector spaces. 

33. Does there exist a set vector space V over the set S which 
has no set vector subspaces? 

34. Let V = Z+ be a set vector space over S = {2, 4, …, ∞}. 
How many set vector subspaces does V have? 

35. Find at least two set vector subspaces of V = 
a b c
d e f

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 

a, b, c, d, e and f ∈ Z+}; where V is a set vector space over 
the set S = {1, 2, …, ∞}. 

36. Give an example of a set vector space V over the set S 
which has no set vector subspace. 

37. Characterize those set vector spaces V over the set S which 
has no set vector subspaces. 

38. Does there exist for any set vector space V over the set S, a 
set vector subspace over S such that it is also a subset of S? 

39. Find a generating set of the set vector space V = Z+ × 2Z+ 

over 2Z+ = S = {2, 4, …, ∞}. 

40. Find a set basis for V given in problem 39. Does the V have 
a unique set basis? 



 

 

 

287

41. How many generating sets does the set vector space V = 
a b

a,b,c,d Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 have, V defined over the set S = 

Z+? 

42. Find at least two set vector subspaces of V = Z+ over the set 
S = 2Z+ = {2, 4, …, ∞}, which have non empty intersection. 

43. Let V = Z+ × Z+ × Z+ be a set vector space over the set S = 
Z+. Find three set vector subspaces W1, W2 and W3 of V 
which have a non empty intersection. If W = W1 ∩ W2 ∩ 
W3 ⊂ V; is W a set vector subspace of V? 

44. Let V be a set vector subspace over the set S. Suppose W1, 
W2, …, Wn be set vector subspaces of V. Will W =  

n

i
i 1

W V
=

⊆∩  be always a proper set vector subspace of V? 

45. Let V = 
a b c
d e f

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

 a, b, c, d, e and f ∈ Z+} be a set 

vector space over S. Find 3 subset vector subspaces over 
subsets of S. Does there exists W1, W2 and W3, subset 
vector subspaces of V defined over the subsets T1, T2 and T3 
of S such that  

  (1)  
3

i
i 1

W
=

= φ∩  but 
3

i
i 1

T
=

≠ φ∩  or  

  (2)   
3

i
i 1

W
=

≠ φ∩  but 
3

i
i 1

T
=

= φ∩  or 

  (3)   W = 
3

i
i 1

W
=

≠ φ∩  and 
3

i
i 1

T T
=

= ≠ φ∩  and W a  

   subset vector subspace over T. 

46. Can V = {–1, 0, 2, 4, …, ∞} be set vector space over the set 
S =  {1}? 
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i. If V is a set vector space over S; what is the 
dimension of V? 

ii. Find a generating set G of V over S. Is G = V? 

iii. Can V have subset vector subspaces over subsets 
of S? 

iv. Does V contain set vector subspaces? 

v. Is every singleton in V a set vector subspace of 
V? 

47. Let V = Z+ × Z+ × Z+ × Z+ be a set vector space over the set 
S = Z+. Does V contain subsets which are subset vector 
subspaces over the subsets; T1 = {2, 22, …}, T2 = {3, 32, 
…}, T3 = {p, p2, …, pn …, p a prime} and T4 = {n, n2, …; n 
a non prime} in S? 

48. Let V = 2Z+ × 3Z+ × 5Z+ × 2Z+ be a set vector space over 
the set S = Z+. Find a set basis for V. Is the basis of V 
unique? Can V have more than one generating subset? 
Justify you claim. Find at least 4 subset vector subspaces of 
V such that their intersection is empty! 

49. Let V = 3Z+ and W = 2Z+ be two set vector spaces over the 
set Z+. Prove the collection of all set linear transformation 
LS (V, W) from V to W is a set vector space over the set Z+. 

50. Find a generating subset of LS (V, W). What is the set 
dimension of LS (V, W) given in problem 49? What is the 
dimension of V = 3Z+ over Z+?  What is the dimension of 
W = 2Z+ over Z+? Find generating subsets of V and W over 
Z+. Does their exist two subset vector subspaces of V and W 
which are defined over the same subset of Z+? If so find a 
set linear transformation between them. 

51. Give an example of a finite set linear algebra. 

52. Give an example of an infinite set linear algebra. 
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53. Let V = Z+ be the set under addition. V a set linear algebra 
over the set S = 3 Z+. What is the set dimension of V?  

  Can V have set linear subalgebra defined over S? 

  Can V have subset linear subalgebra defined over the 
set T = 32Z+? 

54.       Prove V = +a b c
a, b, c, d, e and f  Z {0}

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  is 

a set linear algebra over the set S = Z+. (V, +), a set with 
closure operation. Find a subset linear subalgebra over the 
subset T = 3Z+. Give an example of a set linear subalgebra 
of V. 

  Find three subset linear subalgebras of V such that their 
intersection is non empty. 

             Suppose W = +a 0 e
a, d, e and f are in Z  V

d 0 f
⎧ ⎫⎛ ⎞⎪ ⎪ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

; is 

W a subset linear subalgebra over the subset T = 2 Z+? If W 
is a subset linear subalgebra find its set dimension over T. 

55.        Does there exist a set linear algebra which has no set linear 
subalgebra? 

56. Does their exist a set linear algebra which has no subset 
linear subalgebra? 

57. Give an example of a set linear algebra which has only a 
finite number of subset linear subalgebras. 

58. Let A1 = {3 Z+ under the operation +}, be a set linear 
algebra over the set S = Z+. Let A2 = {5 Z+ under the 
operation +} be a set linear algebra over the set Z+. Let T be 
a set linear transformation from A1 to A2. Is the set of all set 
linear transformations from A1 to A2 a set linear algebra 
over Z+? Give a set basis for A1 and A2 over Z+. 
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59. Let V be the set vector space over the set S. Prove the set of 
all set linear operators from V to V is a set linear vector 
space over the set S. 

60. Let V = Z+ × 3Z+ × 5Z+ be a set vector space over Z+. Is 
T(x, y, z) = (5x, 6y, 10z) for all x, y, z ∈ V a set linear 
operator on V. What is the set dimension of the set vector 
space of all set linear operators of V on the set Z+. 

61. Let V = 3Z+ × Z+ × Q+ be a set vector space over the set S = 
3Z+. What is the dimension of V over S? Is the basis of V 
unique over S? Is T(x, y, z) = (x, y, 2z) a set linear 
operator? What is the dimension of the set of all set linear 
operators on V? Find a generating set for the set vector 
space of set linear operators on the set Z+. 

62. Let V = +a b c
a, b, c, d, e, f  Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a set vector 

space over the set S = Z+. Is 
a b c

T
d e f

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

= a + b + c + d 

+ e + f a set linear operator on V? Justify your claim. 

             Suppose 
a b c a b b c d

T
d e f e b f e f

⎧ ⎫ + +⎛ ⎞ ⎛ ⎞⎪ ⎪ =⎨ ⎬⎜ ⎟ ⎜ ⎟+ +⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
; is T a set 

linear operator on V? What is the dimension of V over Z+? 

  Can 
2a 3b 5c

W a,b,c,d,e,f Z
2d 5e 3f

+
⎧ ⎫⎛ ⎞⎪ ⎪= ∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a set 

vector subspace of V over Z+? 

63. Let V = {Z8
+ [x] be the set of all polynomials of degree less 

than or equal to 8 with coefficients from the set Z+}. Is V is 
a set vector space over Z+? What is the set dimension of V 
over Z+? 
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 If V is endowed with polynomial addition, can V be a set 
linear algebra over Z+. What is the dimension of V over Z+ 
as a set linear algebra? 

 Suppose W = {All polynomials of degree less than or equal 
to four} ⊆ V; will W be a set vector subspace of V over Z+? 

64. Give an example of a set linear algebra of dimension 6 
which has a subset linear subalgebra of dimension 3. 

65. Give an example of a set linear algebra of dimension 4 
which has a set linear subalgebra of dimension 2. 

66. Give an example of an infinite dimensional set linear 
algebra which has both a subset linear subalgebra and a set 
linear subalgebra. 

67. Does there exist a set linear algebra of infinite dimension 
which has no subset linear subalgebra and no set linear 
subalgebra? 

68. Does there exist a set linear algebra of infinite dimension 
which has no subset linear subalgebra? 

69. Does there exists a set vector space which does not have a 
unique set basis? 

70. Does there exists a set linear algebra with a unique set 
basis? 

71. Give any interesting result on set linear algebra. 

72. Enumerate at least 3 differences between a set vector space 
and the usual vector space. 

73. Define a set linear operator T on a set linear algebra V = 
2Z+ (set under addition) over the set S = Z+ which is 
invertible. Give a set linear operator U on V which is non 
invertible. 
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74. Let V = {{0} ∪ Z+} × {Z+ ∪ {0}} and U = 
a b

a, b, c Z {0}
0 c

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be two set vector spaces 

defined over Z+. Can we define a set linear transformation 
from V to U which is invertible? 

 Does their exists a set linear operator from U to V which is 
invertible? Find a set basis for the set vector space of all set 
linear operators from V to U. Is the set basis unique? What 
is the dimension of this set vector space? 

75. Does there exists a set vector space V defined over the set S 
such that every subset of V is a set vector subspace of V 
over S? 

76. Does there exists a set vector space V over the set S such 
that for every subset W of V there exists a subset T of S 
such that W is a subset vector subspace over T? 

77. Does there exists a set vector space V over the set S such 
that V has a subset W which is a subset vector space over 
every subset of S? 

78. Does there exists a set vector space V over the set S such 
that every subset of V is a subset vector subspace over a 
unique subset T of S? 

79. Let V = Z+ × Z+ × Z+ be a set vector space over Z+ = S. 
Show that the set of all set linear functionals from V to S is 
a set vector space over S. What is the dimension of this set 
vector space? Is the set basis unique? 

80. Let V = 1 2 3 +
i

4 5 6

x x x
x Z {0};1 i 6

x x x
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the set 

vector space over the set S = Z+ ∪ {0}. Define fi : V → S by 
1 2 3

i
4 5 6

x x x
f

x x x
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 = xi for i = 1, 2, …, 6. 
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  Prove fi’s are set linear functionals of V. Is the set {f1, 
…, f6} a set linearly independent set? 

81. Find a basis of V for the V given in the above problem. Is it 
unique? 

82. Let V = Z+ ∪ {0} × Z+ ∪ {0} a set vector space with zero 
defined over the set S = 2Z+ ∪ {0}. Let T be a set linear 
operator on V given by T(x, y) = (x – y, x + y). Find the set 
nullity of T! Is it a set vector subspace of V over S? 

83. If V is a set vector space with zero can we say every set 
linear operator on V which has a non trivial nullity T is a set 
vector subspace of V? 

84. If nullity T ≠ φ can we say T is non invertible? 

85. Let V = 3Z+ × 2Z+ × Z+ be a set vector space over the set S 
= Z+. Is the set {(6, 4, 10), (3, 8, 11), (9, 2, 11)} a set 
linearly independent subset of V? 

86. Let V = (3Z+ ∪ {0}) × (5Z+ ∪ {0}) × (2Z+ ∪ {0}) be a set 
vector space over the set S = Z+ ∪ {0}. Is the set {(3, 0, 0) 
(0, 5, 0), (0, 0, 2)} a set basis of V over S? 

 If V has a set basis over S, is it unique? What is the set 
dimension of V? 

87.        Let V = 
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, V a set vector space 

over Z+ ∪ {0}. Is the set G = 
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 a set basis of V? 

  Is the set G a set linearly dependent subset of V? What 
is the dimension of V? 
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88. If V is a set vector space over the set S. Can we find set 
vector subspaces W1, …, Wn of V such that V = W1 ∪ W2 
∪ ... ∪ Wn such that Wi ∩ Wj = φ, i ≠ j, 1 ≤ i, j ≤ n? 

89. If A is a set linear algebra over the set S = Z+ ∪ {0} where 

A = 
a b

a,b,c,d Z {0}
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 Can  
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

 generate V? 

What is the set dimension of this set linear algebra over the 
set S? 

90. Let V = Z+ ∪ {0} × 2Z+ ∪ {0} × 3Z+ ∪ {0} be a set vector 
space over the set S = Z+ ∪ {0}. 

 Can V be represented uniquely as W1 ∪ W2 ∪ W3 where 
Wi’s are set vector subspace of V; i = 1, 2, 3 defined over S; 
with Wi ∩ Wj = {0}, if i ≠ j; 1 ≤ i, j ≤ 3? 

91. Give examples of set vector spaces V defined over the set S 

such that V = 
n

i
i 1

W
=
∪  ; Wi set vector subspaces of V. (Wi ∩ 

Wj = {0} or φ, i ≠ j; 1 ≤ i, j ≤ n). 

 92. Give an example of a set linear algebra A defined over the 
set A such that  

 A = A1 + A2 + … + An where Ai’s are set linear subalgebras 
of A defined over the set A; i = 1, 2, …, n with Ai ∩ Aj = 0 
or φ if i ≠ j; 1 ≤ i, j ≤ n. 

 93. Is every set linear algebra A representable as A = A1 + … + 
An; Ai set linear subalgebra of A ; i = 1, 2, …, n. Ai ∩ Aj = 
0 or φ; 1 ≤ i, j ≤ n? 
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94. Let V be a set vector space over the set S. Let W1, W2, ..., 
Wn be subset vector subspaces over the subsets T1, T2, …, 
Tn respectively of S.  

 Can V = 
n

i
i 1

W
=
∪  and S = 

n

i
i 1

T
=
∪ ? 

95. In problem 94 can V = 
n

i
i 1

W
=
∪  and S ≠ 

n

i
i 1

T
=
∪ ? 

96. Give an example of a set vector space in which conditions 
of problem 94 is true. (Does such an example exist?) 

97. Can V = Z15 = {0, 1, 2, …, 14} integers modulo 15 be a set 
vector space over the set S = {0, 1}? 

98. What is dimension of V? Can V have more than one set 
basis (V given in problem 97)? 

99. Let V = Zn = {0, 1, 2, …, n} where n = p1 p2 … pt ; pi’s are 
distinct primes be a set vector space over the set S = {1, 0}. 

 What is the set dimension of V over S. How many set basis 
has V? 

 Study when  n  =  2.3.5   =  30 
     n  =  3.5.11.13 =  2145 
 and    n  =  2.5.17  =  170. 
 
100. Let V = Zp = {0, 1, 2, …, p – 1}, p a prime, Zp a set vector 

space over the set S = {1}. What is the set dimension of V? 

101. Let V = Z7 = {0, 1, 2, …, 6} be a set vector space over the 
set S = {1}. What is the set dimension of V? Is the set basis 
for V unique? 

102. Let V = Z11 = {0, 1, 2, …, 10} be a set vector space over the 
set S = {1, 0}. What is the set dimension of V? Is the set 
basis unique? Can V have set vector subspaces? 
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103. Let V = Z5 = {0, 1, 2, 3, 4} be a set vector space over the set 
S = {0, 1}. What is set dimension of V over S? Is the set 
basis unique? Is W = {2, 3} a set vector subspace of V over 
{1, 0}? Is W = {2, 3} a subset vector subspace of V over 
{1}? 

104. Let V = Z5 × Z3 be a set vector space over the set  S = {(0, 
1), (0, 0) (1, 0), (1, 1)}. What is the set dimension of V over 
S? Find a set basis of V. Is the set basis of V unique? 

105. Let V = Z7 × Z5 × Z3 be a set vector space over the set S = 
{0, 1}. Does their exists set vector subspaces W1, …, Wn 

such that V = 
n

i
i 1

W
=
∪ ? 

106. Prove if V is a finite set which is a set vector space over 
another finite set S; the set dimension of V is finite. 

107. If V is an infinite set which is a set vector space over a set 
S. Can V have a finite set dimension? Justify your claim ! 

108. Let V = Z7 × Z12 be a set vector space over the set S = {0, 
1}. What is the dimension of V? Can V have subset vector 
subspaces? Can V have set vector subspaces? Is the set 
basis of V unique over S? 

109. Let V = Z4 × Z10 × Z16 × Z2 be the set vector space over the 
S = {0, 1}. What is the set dimension of V? Can we write V 
as a union of set vector subspaces? Can V have more than 
one subset vector subspace? 

110. Let V = Z7 [x] be a set vector space defined over the set {0, 
1}. What is the set dimension of V? 

111. If V = Z6 [x] is a set linear algebra over the set S = {0, 1}. 
Find a set basis of V. Find a set linear subalgebra of V? 

112. If V = 2
5Z [x]  = {all polynomials of degree less than or 

equal to two} be a set linear algebra over the set S = {0, 1}. 
What is the set dimension of V? Is the set basis of V 
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unique? Can V have a subset linear subalgebra over the 
subset {1}? Can V have set linear subalgebra? 

113. Give some interesting properties of semigroup vector 
spaces. 

114. Obtain some properties enjoyed by semigroup linear algebra 
and not by semigroup vector spaces. 

115. Find pseudo semigroup vector subspaces of the semigroup 
linear algebra V = 

1 2 3

4 5 6 i

7 8 9

a a a
a a a a 2Z {0}, 1 i 9
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 over the 

semigroup S = Z+ ∪ {0}. Does V have semigroup linear 
subalgebras? 

116. Does there exist any semigroup linear algebra without a 
pseudo semigroup vector subspace? 

117. Obtain any interesting result about semigroup linear algebra 
and its substructures. 

118. Does there exist a semigroup linear algebra which has no 
pseudo subsemigroup vector subspace? 

119. Let F[x} be the semigroup under polynomial addition over 
the prime field F = Z3 = {0, 1, 2} of characteristic 3. Let S = 
Z3 = {0, 1, 2} be the semigroup under addition. F[x] is a 
semigroup linear algebra over Z3 = S. Can F[x] have a 
pseudo subsemigroup vector subspace? 

120. Give an example of a simple semigroup linear algebra 
defined over a semigroup which has proper subsemigroups. 

121. Can a semigroup linear algebra V defined over a non simple 
semigroup S be a pseudo simple semigroup linear algebra? 

122. Define a semigroup linear operator on the semigroup linear 
algebra V = P × P × P × P × P where P = 2Z+ ∪ {0} over the 
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semigroup S = Z+ ∪ {0} which is invertible. Prove the set 
of all semigroup linear operators on V is a semigroup linear 
algebra over S. What is the dimension of HomS(V, V) = {all 
semigroup linear operators on V}? 

123.  Let V = 1 2 7
i

8 9 14

a a ... a
a Z {0};1 i 14

a a ... a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a 

semigroup linear algebra over the semigroup S = Z+ ∪ {0}. 
Define a semigroup linear operator on V which is non 
invertible. What is the dimension of HomS (V, V)? Is HomS 
(V, V) a semigroup linear algebra over S? Suppose  

  W = 1 2 7
i

a a ... a
a Z {0}; 1 i 7 V

0 0 ... 0
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

be   a semigroup linear subalgebra of V. Define a 
semigroup linear operator   T on V which is a 
semigroup projection of V into W. Is T o T = T? 

124. Let V = 1 2 3 4 5
i

6 7 8 9 10

a a a a a
a Z {0},1 i 10

a a a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be 

a semigroup linear algebra over the semigroup S = Z+ ∪ 
{0}. 

 W = 1 2
1 2 6 7

6 7

a a 0 0 0
a ,a ,a ,a Z {0} V

a a 0 0 0
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be 

a semigroup linear subalgebra of V over the subsemigroup 
T = 2Z+ ∪ {0}. Define pseudo projection U : V → W. Is U 
o U = U? 

125. Obtain some interesting properties about 

1. semigroup projection operator of a semigroup linear 
algebra 

2. pseudo semigroup projection operator of a subsemigroup 
linear subalgebra. 
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 Find the difference between them. 

126. Is every semigroup linear projection operator on a 
semigroup linear subalgebra an idempotent map? 

127. Is every pseudo semigroup linear projection operator of V 
an idempotent map? 

128. Let V be a semigroup vector space over the semigroup S. Is 
it always possible to represent V as a direct union of the 
semigroup vector subspaces of V? Justify your claim. 

129. Let V = 1 2

3 4

a a
a a

⎧⎛ ⎞⎪
⎨⎜ ⎟
⎪⎝ ⎠⎩

, (a1 a2 a3 a4), 
1 2 3 4

0 0 0 0
a a a a
⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

1 2 +
i

3 4

a 0 a 0
a Q {0};1 i 4

0 a 0 a
⎫⎛ ⎞ ⎪∈ ∪ ≤ ≤ ⎬⎜ ⎟

⎝ ⎠ ⎪⎭
 be a semigroup 

vector space over the semigroup S = Z+ ∪ {0}.  

 Is V representable as the direct union of semigroup vector 
subspaces of V? Does V contain subsemigroup vector 
subspaces? 

130. Does there exist a semigroup vector space which cannot be 
represented as a direct union of semigroup vector 
subspaces? 

131. Is it possible to represent a semigroup vector space over the 
semigroup S both as a direct union of semigroup vector 
subspaces and pseudo direct union of semigroup vector 
subspaces of V? Justify your claim. 

132. Let V = 1 2 3
i

4 5 6

a a a
a Q {0}; 1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a 

semigroup linear algebra over the semigroup S = Q+ ∪ {0}. 
Is the set of all semigroup linear operators on V a 
semigroup linear algebra over S? Justify your answer. 
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133. Let V be as in problem 132 suppose W = 

1 2 3
i

4 5 6

a a a
a Q {0}; 1 i 6

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈ ∪ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a 

subsemigroup linear subalgebra of V over the subsemigroup 
T = Z+ ∪ {0}. Define a projection from V to W. Represent 
V as a direct union of semigroup linear subalgebras of V 
over S. 

 Can V be represented as a pseudo direct union of 
subsemigroup linear subalgebras? 

134. Does there exist a semigroup vector space which cannot be 
written as a direct union of semigroup subvector spaces? 

135. Does there exist a semigroup vector space V which cannot 
be written as a pseudo direct union of semigroup subvector 
spaces of V? 

136. Can the semigroup vector space V = {(a1, a2, …, a5), (a1, a2, 

a3), (a1 a2 … a7), 1 2
i

3 4

a a
a Z {0}

a a
+⎛ ⎞

∈ ∪⎜ ⎟
⎝ ⎠

; 1 ≤ i ≤ 7 over the 

semigroup S = Z+ ∪ {0} be represented as a direct union of 
semigroup vector subspaces of V? 

137. Can the semigroup vector space V = {0, 1, 3, 5, 7, …} over 
the semigroup S = {0, 1} be such that 1 + 1 = 1 be 
represented as the direct union of semigroup subvector 
spaces of V? 

138. Let P[x] = {all polynomials in the variable x with 
coefficients from Z+ ∪ {0}}, be a semigroup linear algebra 
over the semigroup S = Z+ ∪ {0}. W[x] = {all polynomials 
of even degree with coefficients from S = Z+ ∪ {0}} be a 
semigroup linear subalgebra of P[x].  

 Define a projection from P[x] into W[x]. 

 Is that projection semigroup operator idempotent semigroup 
linear operator on P[x]? 
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139. Let V = {0, 1, 3, 32, 33, …} be a semigroup vector space 
over the semigroup {0, 1} with 1 + 1 = 1. Can V be 
represented as a pseudo direct union of semigroup subvector 
spaces of V? Is V representable as the direct union of 
semigroup subvector spaces of V? 

140. Does there exists semigroup linear algebra V which has a 
unique direct sum? 

141. Let V = P × P where P = Z+ ∪ {0} be a semigroup linear 
algebra over P. Can V have many direct sum 
representations? 

142. Suppose V = {(a, b, c) | a, b, c ∈ Z+ ∪ {0}}, be a semigroup 
linear algebra over S = Z+ ∪ {0}. How many ways can V be 
represented as a direct sum? 

143. Does their exists a semigroup linear algebra V which can be 
represented as a direct sum in infinite number of ways? 

144. We know V = Z+ ∪ {0} is a semigroup linear algebra over 
S = Z+ ∪ {0} = V. Clearly dimension of V is one but V has 
infinitely many semigroup linear subalgebras over V given 
by Wn = {nZ+ ∪ {0} | n ∈ Z+} ⊆ V, as n can take infinite 
number of values. V has infinite number of semigroup 
linear subalgebras. Can V be written as a finite direct sum 
of semigroup linear subalgebras? 

145. Let V = Q+ ∪ {0} be a semigroup linear algebra over the 
semigroup S = Z+ ∪ {0}. What is the dimension of V? Can 
V be represented as a finite direct sum of semigroup linear 
subalgebras of V? 

146. Characterize all those semigroup linear algebras V which 
can be written as a finite direct sum of semigroup 
subalgebras of V. 

147. Characterize all those semigroup linear algebras V of 
dimension one which is an infinite direct sum of semigroup 
linear subalgebras of V. 
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148. Let V = Z7 = {0, 1, 2, …, 6} be a semigroup under addition 
modulo 7. S = Z7 = V the semigroup. V is a semigroup 
linear algebra of dimension one over S. Can V have any 
semigroup linear subalgebras? Can V be written as a non 
trivial direct sum of semigroup linear subalgebras? 

149. Find all semigroup linear subalgebras of the semigroup 
linear algebra Zp[x] = {all polynomials in the variable x 
with coefficients from Zp} over the semigroup Zp, p any 
prime. Can Zp [x] be a direct sum of semigroup linear 
subalgebras? 

150. Let V = Zp × Zp × Zp × Zp be the semigroup linear algebra 
over the semigroup S = Zp under addition. Can V be a direct 
sum of semigroup linear subalgebras, p be any prime? 

151. Let V = Z6 × Z6 × Z6 be the semigroup linear algebra over 
the semigroup S = Z6. Can V be a direct sum of semigroup 
linear subalgebras? 

152. Let V = Z6 × Z6 × Z6 be the semigroup linear algebra over 
the semigroup S = {0, 1}. Can V be a direct sum of 
semigroup linear subalgebras? 

153. Let V = Z6 × Z6 × Z6 be the semigroup linear algebra over 
the semigroup S = {0, 1}? What can we say about its direct 
sum? 

154. Let V = Z9 × Z9 × Z9 × Z9 be a group vector space over the 
group H = {0, 3, 6}. Find group vector subspaces of V. Can 
V have subgroup vector subspaces? Justify your claim. 

155. Give some interesting results about group vector spaces.  

156. Let 

V=
1 1 1 1
0 0 0 1
0 0 0 1

⎧⎛ ⎞
⎪⎜ ⎟
⎨⎜ ⎟
⎪⎜ ⎟
⎝ ⎠⎩

,
0 0 0 0
0 0 0 0
0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,
1 1 0
1 1 0
1 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
0 0 0
0 0 0
0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ,  
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(1 1 1 1 1), (0 0 0 0 0)}, 

 Is V a group vector space over the group Z2 = G (group 
under addition modulo 2)? Can V have proper group vector 
subspaces? Is W = {(1 1 1 1 1), (0 0 0 0 0)} ⊂ V a proper 
group vector subspace of V? 

157. Does their exists a group vector space V over the group G; 
G has proper subgroups, yet V is a simple group vector 
space? 

158. Let V = Z5 × Z5 × Z5 × Z5 be a group vector space over the 
group G = Z5. What is the dimension of V over Z5? Find a 
generating subset of V. Is T = {(1 1 1 1 1)} a generating 
subset of V? 

159. Let V = Z × Z be a group vector space over the group Z. 
What is the dimension of V? Can a finite subset of V be a 
generating subset of V? 

160. Let V = 1 2
i

3 4

a a
a Z, 1 i 4

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group vector 

space over Z. 

 Can 
1 0 0 1 0 0 0 0 1 1 1 0

, , , , , ,
0 0 0 0 1 0 0 1 0 0 1 0

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪
⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

 

  
0 1 1 0 0 1 0 0 1 1

, , , ,
0 1 0 1 1 0 1 1 1 1

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪
⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎭

 ⊂ V be the 

generating subset of V? 
 What is the dimension of V over Z? Find proper subgroup 

vector subspaces of V? Give a proper group vector subspace 

of V? Is W = 
a a

a Z V
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊂⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 a group vector subspace 

of V? What is the dimension of W over Z? Is 
1 1

W
0 0

⎧ ⎫⎛ ⎞⎪ ⎪ ⊂⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 a generating subset of W? Can 
5 5
0 0

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
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be a generating subset of V? Can W have more than one 
generating set? 

161. Let V = {(a1 a2, …, an) | ai ∈ R} be a group vector space 
over the group 2Z. Find proper subgroup vector subspaces 
of V? Does V have subgroup vector subspaces? Is W = {(a, 
a, …, a) | a ∈ Z}, a group vector subspace of V? What is the 
dimension of W? What is the dimension of V? Find a 
generating subset of W? Find a generating subset of V? Is V 
finite dimensional over 2Z? Suppose V is defined over the 
group R will V be finite dimensional? 

162. Let V = Z5 × Z5 × Z5 × Z5 be a group vector space over Z5. 
Can V have subgroup vector subspaces? Find all group 
vector subspaces of V. What is dimension of V over Z5? 
Find the finite set which generates V over Z5.  

163. Let V = Z2 × Z2 × Z2 be a group vector space over Z2. Prove 
V is a simple group vector space. Find all group vector 
subspaces of V. Is B = {(0 0 0), (1 0 0), (0 1 0), (0 0 1), (1 1 
0), (0 1 1), (1 1 1), (1 0 1)} a basis of V over Z2? 

164. Let V = Z16 × Z16 × Z16 × Z16 be a group vector space over 
the group G = {0, 4, 8, 12} under addition modulo 16. Find  

a. Subgroup vector subspaces of V using the 
subgroup H = {0, 8} contained in G. 

b. W = Z16 × Z16 × {0} × {0}, a group vector 
subspace of V. What is dimension of W? 

c. How many group vector subspaces can V have? 

d. What is dimension of V over G? 

165. Give examples of a one dimensional group vector space 
which has a group vector subspace of infinite dimension? 

166. Let V = Z × Z × Z be a group vector space over Z. Let W = 
{(p, p, p) | p is a prime} ⊂ V. Is W a group vector subspace 
of V? What is dimension of V over Z? What is the 
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dimension of W over Z? Suppose S = {(x1, x2, x3) | xi ∈ 2Z; 
1 ≤ i ≤ 3} ⊆ V; is S a group vector subspace of V? What is 
dimension of S over Z? 

167. Let V = {(a, a, a, a) | a ∈ Z} a group vector space over Z. 
What is the dimension of V over Z? Can V have group 
vector subspaces of higher dimension than V? Suppose S = 
{(7, 7, 7, 7), (2, 2, 2, 2), (5, 5, 5, 5), (1, 1, 1, 1), (0, 0, 0, 0)} 
⊆ V. Can S be a group vector subspace of V? Justify your 
claim? 

168. Let V = 
1 1 1 0 0 0

1 1 0 0
0 1 1 , 0 0 0 , ,

1 1 0 0
0 0 1 0 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟

⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 be a 

group vector space over the group Z2 = {0, 1}. Prove V is a 
simple group vector space. Prove V has only two group 
vector subspaces. Is dimension of V over Z2 four? 

169. Let V = {1 1 1 1 1 1 1), (1 1 1 0 0 0 0), (0 0 0 0 0 0 0), (0 1 
0 1 0 1 0), (1 0 1 0 1 0 1)} be a group vector space over the 
group Z2 = {0, 1}. Find all group vector subspaces of V. 
What is dimension of V over Z2? 

170. Let V = Q × Q be a group vector space over Q. What is 
dimension of V over Q? Find group vector subspaces of V. 
Does V contain subgroup vector subspaces of V? Does V 
contain subgroup vector subspaces? Let W = Z × Z ⊂ Q × 
Q, is W a subgroup vector subspace of V over the subgroup 
Z? What is dimension of W? Suppose V1 = Q × Q is a group 
vector space over the group 3Z. What is the dimension of 
V1 over 3Z. Find generating subsets of V and V1 over Q and 
3Z respectively. 

171. Give examples of group vector spaces V such that 
dimension of V is the same as cardinality of V? 

172. Let V =  ×  ×  be a group vector space over . What is 

dimension V over ? 
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 If V1 =  ×  ×  is a group vector space over R. What is 
dimension of V1 over R? 

 If V2 =  ×  ×  is a group vector space over Q. What is 
dimension of V2 over Q? 

 If V3 =  ×  ×  is a group vector space over Z what is 
dimension of V3 over Z? 

 If V4 =  ×  ×  is a group vector space over 5Z what is 
dimension of V4 over 5Z? 

 Find group vector subspaces of V, V1, V2, V3 and V4. 
 Can V, V1, V2, V3 and V4 have duo subgroup vector 

subspaces? 

173. Give an example of a group vector space which has no duo 
subgroup vector subspaces? 

174. Let V = Z5 × Z5 × Z5 be a group vector space over the group 
Z5. Can V have duo subgroup vector subspaces? 

175. Does their exists a group vector space V over a group G in 
which every group vector subspace is a subgroup vector 
subspace and vice versa? 

176. Let V = Z13 × Z13 × Z13 × Z13 be group vector space over 
Z13. Can V have duo subgroup vector subspace? 

177. Let V = Z17 × Z17 × Z17 be a group vector space over the 
group Z17. Prove V is a simple group vector space. Can V 
have group vector subspace? What is dimension of V? 

178. If V = p p p

n times

Z ... Z , Z
−

× ×
��	�


 the group under addition modulo 

p. V the group vector space over Zp. What is dimension of 
V over Zp? How many generating subsets can V have? 

179. Let V = Z6 × Z6 × Z6 be a group vector space over Z6, what 
is dimension of V. Find one subgroup vector subspace and 
group vector subspace of V? 
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180. Let V = n n

t times

Z ... Z
−

× ×��	�
  where n is not a prime. Prove V is 

not simple as a group vector space over Zn. What is 
dimension of V over Zn? Find a generating subset of V. 
Does V contain group vector subspaces? 

181. Let V = 5

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group vector space over the 

group Z5. Prove V is simple? What is the dimension of V 

over Z5? Is S = 
1 1 0 0

,
1 1 0 0

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 the generating subset of 

V? Can V contain group vector subspaces? Justify your 
claim. 

182. Let V = p

m n

a a ... a
a Z

a a ... a
×

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

# # #  be a group vector space 

over Zp, p a prime; prove V is simple. What is the 
dimension of V over Zp? Can V have group vector 
subspace? 

183. Let V = 12

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group vector space over 

Z12. Is V simple? Find group vector subspaces of V. What is 
dimension of V over Z12? 

184. What is the dimension of V = Zp as a group vector space 
over Zp? Is V simple? Can V have group vector subspaces? 

185. Let V = n

m n

a a ... a
a a ... a

a Z

a a ... a ×

⎧⎛ ⎞
⎪⎜ ⎟
⎪⎜ ⎟ ∈⎨⎜ ⎟⎪⎜ ⎟⎪⎝ ⎠⎩

# # #
; n not a prime} be a 

group vector space over the group Zn. Prove V is not 
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simple! What is the dimension of V over Zn. Find proper 
group vector subspaces of V.  

186. Let V = {(aij)m×n | aij ∈ Zn; 1 ≤ i ≤ m and 1 ≤ j ≤ n} be a 
group vector space over Zn. What is dimension of V over 
Zn? When is V simple? When is V not simple? Find group 
vector subspaces of V. 

187. Let V = 1 2 3
i 9

4 5 6

a a a
a Z ; 1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the group 

vector space over Z9. What is the dimension of V over Z9? 
Is V simple? If V is defined over G = {0, 3, 6} what can one 
say about subgroup vector subspaces of V? What is the 
dimension of V over G = {0, 3, 6}? 

188. Let V = n
1 2 3

i 3
4 5 6

a a a
a Z ; n 2; 1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≥ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  be a 

group vector space over Z3n. What is the dimension of V 
over Z3n? Prove V is not simple. Find subgroup vector 
subspace W of V which is simple. 

189. Let V = 
c c

a a b b b
, , c c a,b,c Z

a a b b b
c c

⎧ ⎫⎛ ⎞
⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎜ ⎟

⎝ ⎠⎩ ⎭

 be a 

group vector space over Z. Find the subgroup vector 
subspace over 5Z. Prove V is not simple. What is the 
dimension of V over Z? Find some group vector subspaces 
of V. 

190. Let V = 

a c c
a b

a c c
a b , a,b,c Z

a c c
a b

a c c

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 be the group 

vector space over Z. Is V simple? What is dimension of V 
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over Z? Prove W = 
a b
a b a,b Z
a b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 is a group subspace 

of V.  

191. Let V = 

a
a

a a
, b , a,b Z

a b
a

b

⎧ ⎫⎛ ⎞
⎛ ⎞⎪ ⎪⎜ ⎟ ⎛ ⎞⎪ ⎪⎜ ⎟⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎪ ⎪⎜ ⎟⎜ ⎟ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

 be a group vector space 

over the group Z. What is dimension of V over Z? Find 
proper group vector subspaces of V. Prove V is not simple. 
What is the dimension of the group vector subspace W1 = 

a
a

a, b Z
a
b

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

? Let W2 = 
a
b a, b Z
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 be a group 

vector subspace of V. What is the dimension of W2? Let W3 

= 
a

a, b Z
b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the group vector subspace of V. What 

dimension of W3 over Z? Is dimension of W1 = dimension 

of W2 = dimension of W3? W' = 

a
a

a 2Z
a
a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 is a 

subgroup vector subspace over the subgroup H = 2Z. What 
is dimension of W' over 2Z? Is the generating subset of W' 
unique? 

192. Does there exist a group vector space which has more than 
one generating set? 
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193. Let V = {(x, x, x), (y, y, y, y) | x ∈ 2Z and y ∈ 3Z} be the 
group vector space over Z. What is dimension of V over Z? 
Is V simple? What is the dimension of W = {(x x x) | x ∈ 
2Z} over Z. What is dimension of W over 2Z? 

194. Let X = {(a, a) (a, b) | a ∈ Z, b ∈ 4Z} be a group vector 
space over Z. What is dimension of X over Z? Find a 
generating subset of X. Is it unique? 

195. Let Y = {(a, a, a), (b, b, b, b), (x1, x2, x3, x4, x5) | a, b xi ∈ Z; 
1 ≤ i ≤ 5} be a group vector space over the group Z. Is Y 
simple? What is the dimension of Y over Z? Find a 
generating subset S of Y. Is S unique? T = {(a, a, a), (b, b, 
b, b) (c, c, c, c, c)} ⊆ Y, is a group vector subspace of Y 
over Z. Find dimension of T over Z? 

196. Let V = Z12 × Z12 be a group linear algebra over Z12. What is 
the dimension of V? Find a generating subset X of V.  

 
197. Let V = Z12 × Z12 be a group linear algebra over G = {0, 2, 

4, 6, 8, 10}. What is the dimension of V over G? Give a 
generating subset of V. 

 
198. Let V = Z12 × Z12 be a group linear algebra over the group G 

= {0, 3, 6, 9}. What is dimension of V over G'? Give a 
generating subset of V? 

 
199. Let V = Z12 × Z12 be the group linear algebra over the group 

S = {0, 6}. What is the dimension of V over S? Give a 
generating subset of V over S. 

 
200. Let V = Z12 × Z12 be the group linear algebra over the group 

P = {0, 4, 8}. What is the dimension of V over P? Give a 
generating subset of V over P. 

 
201. Does the dimension of a group linear algebra dependent on 

the group over which it is defined? Find the relation 
between the dimension of V in problems (196-200) and the 
cardinality of the group over which they are defined. Can 
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one say the dimension increases with the decrease of the 
cardinality of the group over which V is defined? 

 
202. Let V = Z12 × Z12 × Z12 × Z12 be the group linear algebra 

over the group Z12. Does V have pseudo semigroup linear 
subalgebra? Find in V a pseudo group vector subspace over 
the group Z12. 

 
203. Let V = Z5 × Z5 × Z5 be the group linear algebra over Z5. 

Can V have pseudo semigroup linear subalgebra over Z5? 
 
204. Let V = Z × Z × Z be the group linear algebra over Z. W = 

2Z × Z × Z × 2Z be the group linear algebra over Z. Define 
a group linear transformation from V to W so that T is 
invertible. Define a group linear transformation from V to 
W, which is not invertible. 

 
205. Let V = Z7 × Z7 × Z7 be a group linear algebra over G = Z7. 

Define a group linear operator T on V which has T–1 such 
that T o T–1 = T–1 o T; is the identity group linear operator 
on V.  Is T (x y z) = T (0 y x) from V to V an invertible 
group linear operator on V? If T (x y z) = (x + y x-y 0) from 
V to V, is T an invertible group linear operator on V?  What 
is the structure of MG (V, V) = 

7ZM (V, V)? Is 
7ZM (V, V) a 

group linear algebra over Z7 with composition of maps as an 
operation on it? Prove your claim. 

 
206. Let V be a group linear algebra over a group G. Let MG (V, 

V) denote the set of all group linear operators from V to V. 
What is the algebraic structure of MG (V, V) ? Can MG (V, 
V) be a group linear algebra over G? 

 
207. Let V and W be two group linear algebras over the group G. 

Let MG (V, W) denote the collection of all group linear 
transformations from V to W. What is the algebraic 
structure of MG (V, W)? Is MG (V, W) a group linear 
algebra over G? Is MG (V, W) a group vector space over G? 
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208. Let V = Z2 × Z2 and W = Z2 × Z2 × Z2 × Z2 be group linear 
algebras over the group Z2. Find MG (V, W). What is the 
dimension of MG (V, W)? Find MG (V, V) and MG (W, 
W) and determine their dimensions. If T (x, y) = (x, x + y,  
x – y, y) is the map from V to W; is T a group linear 
transformation? Is T a invertible group linear 
transformation? 

 

209. Let V = 
a a a

a Z
a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 and W = {Z × Z × Z} be group 

linear algebras over Z. Find dimensions of V and W. What 
is the dimension of Mz (V, W)? 

 

210. Let V = 15

a b c
a,b,c,d,e,f Z

d e f
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group linear 

algebra over G = {0, 5, 10}, group under addition modulo 
15. What is dimension of V over G? Can V have pseudo 
semigroup linear subalgebras? Justify your claim. Is W = 

15

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 a proper group linear subalgebra of 

V? Find a proper linear subalgebra of V with dimension 3.  
 
211. Let V = Z2 [x] be a group linear algebra over Z2. What is the 

dimension of V over Z2? 
 Find 

2ZM [V, V]. What is the dimension of 
2ZM [V, V] over 

Z2? 
 
212. Let V = Z8 × Z8 × Z8 be a group linear algebra over the 

group G = {0, 4} under addition modulo 8. Find the 
dimension of V over G. Find MG [V, V]. What is the 
dimension of MG [V, V]? Does their exist any relation 
between dimension of V and MG [V, V]? Which has higher 
dimension V or MG [V, V]?  

 
213. Let V be a group vector space over the group G. Suppose H 

is a subgroup of G, V be also a group vector space over H. 
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Will the dimension of V increase with the subgroups on 
which V is defined or decrease when V is defined on the 
subgroups of G. 

 
214. Let V = Z12 × Z12 × Z12 × Z12 be a group vector space over 

the group Z12. What is dimension of V over Z12? Let V1 = 
Z12 × Z12 × Z12 × Z12 be the group vector space over the 
subgroup H = {0, 2, 4, 6, 8, 10} ⊆ Z12. What is the 
dimension of V1 over H? Suppose V2 = Z12 × Z12 × Z12 × Z12 
group vector space over the subgroup P = {0, 3, 6, 9}, find 
the dimension of V2 over P. If V3 = Z12 × Z12 × Z12 × Z12 
group vector space over the subgroup K = {0, 6} find the 
dimension of V3 over K. Compare the dimensions of group 
vector spaces V, V1, V2 and V3. 

 

215. Let V = 1 2 3
i 8

4 5 6

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the group linear 

algebra over Z8. Find dimension of V over Z8. If V1 = 

1 2 3
i 8

4 5 6

a a a
a Z ;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, what is the dimension of 

V1 over the subgroup H = {0, 4} ⊂ Z8 as a group linear 
algebra over H ⊂ Z8. Let V2 = 

1 2 3
i 8

4 5 6

a a a
a Z ;1 i 6

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈ ≤ ≤⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group linear algebra 

over the subgroup K = {0, 2, 4, 6} ⊆ Z8. What is the 
dimension of V2 over K. Compare the dimensions of V, V1 
and V2.  

 
216. Let V be a group linear algebra over the group G, and also 

proper subgroups H1, H2 , …, Hn of G. Find dimensions of 
the group linear algebra V over the subgroup H1, …, Hn and 
compare them. Compare dimension of the group linear 
algebra V over the group G with the group linear algebra 
over Hi’s; i = 1, 2, …, n.  
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217. Let V = 4

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the group linear algebra 

over Z4. What is dimension of V over Z4. Suppose V = 

4

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the group linear algebra over H 

= {0, 2} ⊆ Z4. What is dimension of V over H? Let V = 

4

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group vector space over Z4 

what is dimension of V as a group vector space over Z4? 
Does dimension of V as a group vector space over Z4 
different from V as a group linear algebra over Z4? What is 
the dimension of V as a vector space over H = {0, 2}? 

 
218. Let V = Z5 × Z5 × Z5 be a group vector space over Z5. What 

is dimension of V over Z5? Let V be the group linear 
algebra over Z5. What is the dimension of V as a group 
linear algebra over Z5? 

 
219. Let V = Z × Z × Z × Z × Z be a group linear algebra over Z. 

What is dimension of V over Z? If W = 11Z × 2Z × 3Z × 5Z 
× 7Z ⊂ V be the group linear subalgebra of V over Z. What 
is dimension of W over Z?  Let P = Z × {0} × {0} × {0} × 
{0} ⊂ V be a group linear subalgebra of V over Z. What is 
dimension of P over Z? 

 
220. Give an example of a fuzzy vector space over the field of 

reals. 
 
221. Given V = {Z12 × Z12 × Z12} is the set vector space over the 

set S = Z12. Define a map η : V → [0, 1] so that Vη is a 
fuzzy set vector space. 
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222. Let V = 4

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a set vector space over 

the set {0, 2}.  Define a map η : V → [0, 1] so that Vη is a 
fuzzy set vector space.  

 
223. Let V = {(0001), (1100), (000), (0000), (111), (110), (010), 

(00000), (10000), (10101), (01010)} be the set vector space 
over the set S = {0, 1}. Define η : V → [0, 1] so that Vη is a 
fuzzy set vector space. 

 

224. Let V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a set linear algebra over 

the set Z. Define the map η : V → [0, 1] so that Vη is a 
fuzzy set linear algebra. 

 

225. Let V = 12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a set linear algebra over the 

set S = {0, 2, 5, 7, 3}. Define η : V → [0, 1] so that Vη is a 
fuzzy set linear algebra. 

 

226. Let V = 8

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a semigroup vector 

space over the semigroup S = {0, 2, 4, 6} under addition 
modulo 8. Define η : V → [0, 1] so that Vη is a semigroup 
fuzzy vector space. 

 

227. Let V = 
a b c d

a,b,c,d,e,f ,g,h Z
e f g h

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the 

semigroup vector space over the semigroup Z+. Does there 
exist a η : V → [0, 1] so that Vη is a semigroup fuzzy vector 
space? 
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228. Let V = 
a b

a,b,c,d 3Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group vector space 

over G = Z the group under addition. Define η : V → [0, 1] 
so that Vη is a group fuzzy vector space? 

 
229. Let V = {(a b c d e) | a, b, c, d, e ∈ Z20} be a group vector 

space over Z20. Define η : V → [0, 1] so that Vη is a group 
fuzzy vector space. 

 
230. Let V = Z20 × Z20 × Z20 × Z20 be a group vector space over 

the group G = {0, 5, 10, 15}. Define η : V → [0, 1] so that 
Vη is a group fuzzy vector space. 

 
231. Let V = {(00111), (01000), (11000), (10001), (00001), 

(00000)} be a group vector space over the group Z2 = {0, 
1}. Define η: V → [0, 1] so that Vη is a group fuzzy vector 
space. 

 
232. Given any group vector space V over the group G. Does 

there always exists a group fuzzy vector space Vη? 
 

233. Let V = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group linear algebra 

over the group Z. Define map η : V → [0, 1] so that Vη is a 
group fuzzy linear algebra. Find a group fuzzy linear 
subalgebra of V. 

 
234. Let V = {(a a a a a) | a ∈ Z} be a group linear algebra over 

the group Z. Define η : V → [0, 1] so that Vη is a group 
fuzzy linear algebra. Find a group linear fuzzy subalgebra of 
V. 

 
235. Obtain some interesting properties about set bivector 

spaces. 
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236. Let V = V1 ∪ V2 = {(a a a a) | a ∈ Z+} ∪ 
a a a

a 2Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the set bivector space over the set 

Z+. Find a generating bisubset of V. What is the 
bidimension of V? Find for V a set bivector subbispace.  

 

237. Let V = V1 ∪ V2 = 
a 0 b

a,b,c Z
0 c 0

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

a b 0
a,b,d Z

0 0 d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a set bivector space over the 

set Z+. Find the generating bisubset of V. What the 
bidimension of V? 

 

238. Given V1 = 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 the group vector space 

over the group G = Z. V2 = {Z × Z × Z} the group vector 
space over the same group G = Z. V = V1 ∪ V2 is the group 
bivector space over G. Find the bidimension of V. 
Determine the generating bisubset of V. 

 
239. Let V = V1 ∪ V2 be a semigroup bivector space over the 

semigroup Z12 where V1 = {(a a a) | a ∈ Z12} and V2 = 

12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. Find a bigenerating subset X = X1 ∪ X2 

of V1 ∪ V2 . What is the bidimension of V? 
 
240. Let V = {Z12 × Z12 × Z12} ∪ Z12[x] be the semigroup 

bivector space over the semigroup S = {0, 6} under addition 
modulo 12. Find the bidimension of V. Find a semigroup 
bivector subspace of V. 

 
241. Let V = V1 ∪ V2 = {(1111), (333), (456), (000)} ∪ {Z12 × 

Z12}. Is V a semigroup bivector subspace? Justify your 
claim. 
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242. Let V = 3

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {(a a a a) | a ∈ Z3} be a 

semigroup bivector space over Z3. What is bidimension of 
V over Z3 as a semigroup bivector space. Suppose V is 
viewed as a semigroup bilinear algebra over Z3, what is the 
bidimension of V over Z3 as a semigroup bilinear algebra 
over Z3. Hence or other wise can one prove if V is a 
semigroup bivector space over the semigroup S, if V be 
viewed as a semigroup bilinear algebra them bidimension V 
as a semigroup bivector space is always greater than the 
bidimension of V as a semigroup bilinear algebra over the 
semigroup S. 

 Does their exists a semigroup bivector space V whose 
bidimension is same as that of V viewed as a semigroup 
bilinear algebra? 

 

243. Let V = {Z4 × Z4 × Z4} ∪ 4

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 = V1 

∪ V2 be a semigroup bivector space over Z4. If V = V1 ∪ V2 
is a semigroup bilinear algebra over Z4. What are the 
bidimension of V as a semigroup bivector space over Z4 and 
as a semigroup bilinear algebra over Z4? 

 
244. Let V = V1 ∪ V2 = {(1110), (1111), (0000), (011), (000), 

(100), (101)} ∪ {(1111111), (1101100), (0000000)} be a 
semigroup bivector space over the semigroup S = {0, 1} = 
Z2. Find the bidimension of V. Find a bigenerating subset of 
V. Can this V be made into a semigroup bilinear algebra? 

 

245. Let V = V1 ∪  V2 = 
a a b a a a

, , a Z
a a b a a a

+
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 

a b
,(a b) a, b, c, d Z

c d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

be the semigroup bivector 
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space over the semigroup Z+. What is the bidimension V? 
Find a nontrivial semigroup bivector subspace of V?  

 
246. Obtain some interesting results about semigroup bivector 

subspaces of a semigroup bivector space V. 
 
247. Given V = V1 ∪ V2 is a quasi semigroup bilinear algebra 

over the semigroup S = Z+, here V1 = {(a a a) | a ∈ Z+} is a 
semigroup linear algebra over S and V2 = 

a a a a
, a Z

a 0 0 a
+

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 is only a semigroup vector space.  

  (1)   Find the bigenerating subset of V.  
  (2)   What is the bidimension of V?  
  (3)   Find a proper quasi semi linear subalgebra of V. 
 
248. Let V = V1 ∪ V2 be a quasi semigroup linear algebra over 

Z8 where V1 = Z8 [x] is the semigroup linear algebra over Z8 
and V2 = {(1110), (2220), (3330), (4440), (5550), (6660), 
(7770), (0000), (000a) | a ∈ Z8} is the semigroup vector 
space over Z8. Find a quasi semigroup linear subalgebra of 
V. What is bidimension of V? Is W = {ax + b / a, b ∈ Z8} ∪ 
{(2220), (4440), (0000), (0002), (0004), (6660), (0006)} a 
quasi semigroup subalgebra of V. What is the bidimension 
of W? Find the generating bisubset of V and W. 

 
249. Give some interesting properties about group bivector 

spaces defined over a group G.  
 
250. Define bisemigroup bivector subspace of a bisemigroup 

bivector space V over the bisemigroup S = S1 ∪ S2. 
Illustrate this by an example. 

 
251. Let V = V1 ∪ V2 = {Z6[x]} ∪ {Z+ [x]} be the bisemigroup 

bivector space defined over the bisemigroup S = S1 ∪ S2 = 
Z6 ∪ Z+ . Find a bisemigroup bivector subspace of V. Find 
the bigenerating biset of V over S. What the bidimension of 
V?  
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252. Give an example of a (7,4) bidimensional bisemigroup 
bivector space V = V1 ∪ V2 over the bisemigroup S = S1 
∪ S2. 

 
253. Let V = {(1110), (0001), (110), (000), (0000), (101), (011), 

(0110)} ∪ {(000), (210), (320), (020), (200)} = V1 ∪ V2 be 
a bisemigroup bivector space over the bisemigroup S = S = 
Z2 ∪ Z3. What is the bidimension of V over the bisemigroup 
S = S1 ∪ S2 ? 

 
254. Find the bidimension of the group bivector space V = V1 

∪ V2 = {Z[x]} ∪ 
a b

a,b,c,d Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 over the group G 

= Z. 
 
255. Obtain some interesting properties about bigroup bivector 

spaces over the bigroup G = G1 ∪ G2.  
 

256. Let V = {2Z [x]} ∪ 
a a

a 3Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

= V1 ∪ V2 be the 

bigroup bivector space over the bigroup G = 2Z ∪ 3Z. Find 
the bidimension of V over G. What the bigenerating subset 
of V? 

 
257. Let V = {Z7 [x]} ∪ {(a, a, a) | a ∈ Z9} be the bigroup 

bivector space over the bigroup Z7 ∪ Z9. What is the 
bidimension of V? Find a bigenerating bisubset X = X1 
∪ X2 of V. Does V have a bigroup bivector subspace? 

 
258. Let V = V1 ∪ V2 = {2Z × 2Z × 2Z} ∪ {9Z × 9Z × 9Z × 9Z} 

be a bigroup bivector space over the bigroup G = 2Z ∪ 9Z. 
Find a bigenerating subset of X1 ∪ X2 ⊆ V = V1 ∪ V2 . 
Suppose V = V1 ∪ V2 is just considered as a group bivector 
space over the group G = Z. What is the bidimension of V? 
Find a bigenerating subset of V. Compare the properties of 
these spaces. 
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259. Let V = V1 ∪ V2 = 
a a

a Z
a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪
a b

a,b,c Z
0 c

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

be the group bivector space over the group G = Z. What is 
the bidimension of V? Find a bigenerating bisubset X of V. 

 

260. Let V = V1 ∪ V2 = 
a b

a,b,c,d 3Z
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

a b
a,b,c,d 5Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be the bigroup bivector space over 

the bigroup G = 3Z ∪ 5Z. Find at least two proper bigroup 
bivector subspaces of V. If = X1 ∪ X2 ⊆ V1 ∪ V2 is a proper 
subset of V which is the bigenerator V. What is bidimension 

of V over the bigroup? Is W =  
a a

a 3Z
0 0

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

a a
a 5Z

0 0
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

a bigroup bivector subspace of V? What 

is the bidimension of W over G = 3Z ∪ 5Z? 
 
261. Let V = V1 ∪ V2 = {(a, a, a, a, a) / a ∈ Z11} ∪ {(a a a) / a 

∈ Z31} be a bigroup bivector space over the bigroup G = Z11 
∪ Z31.What is the bidimension of V over the bigroup G = 
Z11 ∪ Z31? Does V have bigroup bivector subbispaces? Find 
a bigenerating bisubset X = X1 ∪ X2 ⊆ V1 ∪ V2 over G? Is 
X unique or can V have several generating bisubsets? 
Justify your claim. 

 
262.  Let V = V1 ∪ V2 = { } { }7 8

5 6Z Z∪  be a bigroup bivector 

space over the bigroup G = = Z5 ∪ Z6 . What is the 
bidimension of V over G? Does these exist a pseudo 
bisemigroup bivector subspace of W of V? 
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263. Can every bigroup bivector space over a bigroup have 
pseudo bisemigroup bivector subspace? Justify your claim. 

 
264. Can every bigroup bivector space over a bigroup have 

bigroup bivector subspace? 
 Substantiate your claim! 
 
265.  Let V = V1 ∪ V2 = {Z11 [x]} ∪ {Z14 × Z14 × Z14 × Z14} be a 

bigroup bivector space over the bigroup G = Z11 ∪ Z14 . Can 
V have a pseudo bisemigroup bivector subspace over a 
bisemigroup H = H1 ∪ H2 ⊆ Z11 ∪ Z14 ? Justify your claim. 

 

266. Let V = V1 ∪ V2 = 7

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

5

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a bigroup bivector space over the 

bigroup G = Z7 ∪ Z5. Find bigroup bivector subspace of V 
over the bigroup G. 

 
267. Does the bigroup G = Z7 ∪ Z3 (addition the operator on Z7 

and Z3) have nontrivial bisubsemigroups? 
 

268. Let V = V1 ∪ V2 = {Z3[x]} ∪ 7

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a 

bigroup bivector space over the bigroup G = Z3 ∪ Z7 . Can 
V have pseudo bisemigroup bivector space over any 
bisubsemigroup H = H1 ∪ H2 of the bigroup G = Z3 ∪ Z7? 

 
269. Define a bigroup bilinear transformation T of the bigroup 

bivector spaces V and W defined over the same bigroup G = 
G1 ∪ G2. Hint: V = V1 ∪ V2 and W = W1 ∪ W2 ; Vi and Wi 
are group vector spaces over the group Gi ; i = 1, 2;  T : V 
→ W is such that T = T1 ∪ T2 : V1 ∪ V2 → W1 ∪ W2. Ti : 
Vi → Wi, i = 1, 2. 
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270.  Let 
1 2G GHom ∪ (V, W) be the collection of all bigroup 

bilinear transformations from V to W. Is 
1 2G GHom ∪  (V, W) 

a bigroup bilinear bivector space over G = G1 ∪ G2? 
 
271. Define a bigroup bilinear operator on a bigroup bivector 

space V = V1 ∪ V2 over the bigroup G = G1 ∪ G2. Will 
1 2G GHom ∪  (V, V) the collection of all bigroup bilinear 

operators form a bigroup bivector space over the bigroup G 
= G1 ∪ G2? 

 
272. Let V = {Z5 [x]} ∪  {Z7 × Z7} and W = 

5

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 7

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be bigroup 

bivector bispaces over the bigroup G = Z5 ∪ Z7 . Define a 
bigroup bilinear transformation from V to W. What is the 
bidimension of V and W over G? Find 

1 2G GHom ∪  (V, W). 
Is 

1 2G GHom ∪ (V, W) a bigroup bivector bispace over G = G1 
∪ G2 = Z5 ∪ Z7? Justify your claim! 

 
273. Let V = V1 ∪ V2 be a bigroup bivector space over the 

bigroup G = Z7 ∪ Z11 where V1 = Z7 × Z7 and Z11 × Z11 × 
Z11 = V2. Find 

1 2G GHom ∪ (V, V). Is 
1 2G GHom ∪ (V, V) a 

bigroup linear bialgebra over G = G1 ∪ G2 = Z7 ∪ Z11 under 
composition of maps? 

 
274. Let V = V1 ∪ V2 = {Z5 × Z5 × Z5} ∪ {Z7 × Z7 × Z7} be a 

bigroup bivector bispace over the bigroup G = Z5 ∪ Z7. Can 
we define for W = W1 ∪ W2 = {Z5 × {0} × Z5} ∪ {{0} × Z7 
× Z7} a bigroup bivector subspace of V a biprojection E of 
V to V? Is E o E = E? Define E explicitly E from V to V. 

 
275. Let V = {Z7 × Z7 × Z7} ∪ {Z5 × Z5 × Z5} a bigroup bivector 

space over the bigroup G = Z7 ∪ Z5. Write V as a direct sum 
of bigroup bivector subspaces of V. Suppose V = i

i
W⊕  . 
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Can we for each i define Ei a biprojector?  Will Ei o Ej = 0 if 
i ≠ j and Ei o Ej  = Ei if i = j ? Justify your claim. 

 

276. Let V = V1 ∪ V2 = 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

18

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a bigroup bivector space over 

the bigroup G = Z12 ∪ Z18. Define biprojection operators on 

V. Suppose W = W1 ∪ W2 = 12

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

18

a a
a Z

a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ⊆ V1 ∪ V2 be a bigroup bivector 

subspace of V over G = Z12 ∪ Z18 can we have biprojection 
of V to W? 

 

277. Let V = V1 ∪ V2 = {Z+ [x]} ∪
a b

a,b,c,d 5Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a 

bisemigroup bivector space over the bisemigroup G = G1 
∪ G2 = 3Z+ ∪ 5Z+. Find the bidimension of V. Is V finite 
bidimensional? Find proper bisemigroup bivector subspaces 
of V over the bisemigroup G = 3Z+ ∪ 5Z+. Define a 
bisemigroup bilinear operator on V. Find 

1 2G GHom ∪  (V, V). 
Is 

3Z 5Z
Hom + +∪

 (V, V) again a bisemigroup bivector space 
over the bisemigroup G = 3Z+ ∪ 5Z+. 

 
 
278. Let V = V1 ∪ V2 and W = W1 ∪ W2 be bisemigroup 

bivector space over the bisemigroup S = S1 ∪ S2. Find P = 
1 2S SHom ∪  (V, W). Is P again a bisemigroup bivector space 

over S1 ∪ S2? Find bidimension of P if V is (n1, n2) 
bidimension and W is of (m1, m2) bidimension over S = S1 
∪ S2. 
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279. Let V = 
a b

a,b,c,d 3Z
c d

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {(a, a) | a ∈ 5Z+} be a 

bisemigroup bivector space over the bisemigroup S = S1 
∪ S2 = 3Z+ ∪ 5Z+. What the bidimension of V? 

 If P = 
1 2S SHom ∪  (V, V) where S = S1 ∪ S2 = 3Z+ ∪ 5Z+, 

what is the bidimension of P over S1 ∪ S2? 
 
280. Let V = V1 ∪ V2 = {Z2 × Z2 × Z2} ∪ {3Z+ × 3Z+ × 3Z+} a 

bisemigroup bivector space over the bisemigroup S = S1 
∪ S2 = Z2 ∪ 3Z+. 

  1.  Find bidimension of V. 
  2.  Find 

2Z 3Z
Hom +∪

 (V, V) over S = Z2 ∪ 3Z+. 
  3.  Does V have proper bisemigroup bivector 

subspace? Find at least two distinct proper bisemigroup 
bivector subspaces of V of same bidimension. 

 
281. Let V = V1 ∪ ... ∪ V5 = {Z7 × Z7} ∪ {Z7 [x]} ∪  

7

a a a
a Z

a a a
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 7

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

7

a a
a a a Z
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 be a 5-set vector space over S = Z7. Find 

a generating 5-set subset of Z7. What is the 5-dimension of 
5 set vector space over Z7, Z7 is taken just as a set and not as 
a semigroup? 

 If the same V is taken as a semigroup 5-set vector space 
over Z7 what the 5-dimension of V over Z7 as a semigroup? 
Is V is a semigroup 5 set linear algebra over Z7? 

 
282. Let V = V1 ∪ V2 ∪ V3 ∪ V4 = {Z+ × Z+ × Z+} ∪ 

a a a
a Z

a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪  
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
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a a a
a a a a Z
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 be a semigroup 4 set linear algebra 

over the semigroup Z+ = S. Find semigroup 4 set linear 
operator on V. Is 

Z
Hom +  (V, V) a semigroup set linear 

algebra over Z+ where 
Z

Hom + (V, V) = {T : V → V where 
T = T1 ∪ T2 ∪ T3 ∪ T4}? 

 
283. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 = {Z+ × Z+} ∪ 

a b
a,b,c,d Z

c d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 
a a a

a Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

a 0 0
b c 0 a,b,c,d,e,f Z
d e f

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 

a a
a a

a Z
a a
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 be a 

semigroup 5 set linear algebra over Z+. Let W = W1 ∪ W2 ∪ 
W3 ∪ W4 ∪ W5 = {Z+ × Z+ × Z+ × Z+} ∪ 

a b c
0 d e a,b,c,d,e,f Z
0 0 f

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ ∪⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

a a a a a
a Z

a a a a a
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

∪ 

a a
a a

a Z
a a
a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪ 
a a

a Z
a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. V1 ∪ V2 ∪ … ∪ 

V5 = V be a semigroup 5-set linear algebra over Z+. Let 
Z

Hom +  (V, W) = {T = T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5: V → W /Ti 
: Vi → Wi be the collection of all semigroup linear algebra 
transformation; 1 ≤ i ≤ 5}. Is 

Z
Hom + (V, W) a semigroup 5 

set linear algebra over Z+? 
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284.  Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 = 

2

a a
a Z {0,1}

0 a
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ (Z2 × Z2 × Z2} ∪  

2

a a
a a

a Z {0,1}
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈ =⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∪  2

a a a
a a a a Z {0,1}
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈ =⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ 

2

a a a
a Z {0,1}

b b b
⎧ ⎫⎛ ⎞⎪ ⎪∈ =⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a semigroup 5 set linear 

algebra over Z2. Find  
(a)  semigroup 5 set linear subalgebra of V over Z2.  
(b)  find a pseudo semigroup 5-set linear subalgebra of V 

over Z2. 
(c) Find a semigroup 5 linear operator on V.  
(d) Is 

2ZHom  (V, V) a semigroup set 5-linear algebra over 
Z2? 

 
285. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 = {Z12 × Z12} ∪ {Z12 [x] | 

all polynomials of degree less than or equal to 4} ∪  {(a,a,a, 

a)|a∈ Z12}∪ 12

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ 12

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

  

be a semigroup set 5 linear algebra over Z12. What is the 5-
dimension of V over Z12? Find a semigroup set 5 linear 
subalgebra of V over Z12. Is 

12ZHom (V, V) a semigroup set 
4 -linear algebra over Z12? 

 
286. Let V = V1 ∪ V2 ∪ V3 ∪ V4 = {3Z+ ×3Z+ × 3Z+} ∪ Z+[x] 

∪
a a a

a Z
a a a

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪
a b c
0 d e a,b,c,d,e,f Z
0 0 f

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 be 

a semigroup 4-set linear algebra over Z+. 
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(a) Find a semigroup 4-linear subalgebra of V over Z+. 
(b) Find a pseudo semigroup 4-linear subalgebra of V over 

Z+. 
(c) Find 

Z
Hom +  (V, V). 

(d) What is the 4-dimension of V over Z+? 
 
287. Let V = V1 ∪ V2 ∪ V3 ∪ V4 = {Z9 × Z9 × Z9} ∪ {Z9[x] | all 

polynomials of degree less than or equal to three} 

∪ 9

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ {(a, a, a, a, a, a ) , (a a a a) / a 

∈ Z9} be a semigroup 4-set vector space over Z9 = {0, 1,2, 
…, 8}. Find a semigroup 4-set vector subspace of V. What 
is the 4-dimension of V over Z9?  

 Find a 4-generating subset of V. Is 
9ZHom  (V, V) a 

semigroup set vector space over Z9? 
 
288. Let V = V1 ∪ V2 ∪ V3 ∪ V4 = {Z15 × Z15 × Z15} 

∪ 15

a a a
a a a a Z
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

∪ {Z15 [x] / all polynomials of 

degree less than or equal to 10} ∪  15

a a
a a

a Z
a a
a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 be a 

semigroup 4-linear algebra over the semigroup Z15. Find a 
semigroup 4-linear subalgebra of V over Z15. What is the 4-
dimension of V over Z15? Find a 4-generating subset X of V 
over Z15. Is 

15ZHom  (V, V) a semigroup 4-linear algebra 
over the semigroup Z15?  
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289. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 = {Z10 × Z10 × Z10} ∪ 

10

a a a a a
, a Z

a a a a a
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∪ 10

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ 

a a a
a a a

a {0,5}
a a a
a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

  ∪ {(a a a a a a), (a a), (a a a a a) | a 

∈ Z10} be a semigroup 5-set vector space over the 
semigroup S = Z10. Find a semigroup 5-set vector subspace 
of V. Find a semigroup 5-set linear operator on V? Can V 
be made into a semigroup 5-set linear algebra over Z10? 

 
 
290. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 = {Z+ [x]} ∪ 

a b
a,b,c,d Z

c d
+

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∪ {Z+ × Z+ × Z+} 

∪  
a a a a a a a a a a

, a Z
a a a a a a a a a a

+
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ 

( )
a a a
a a a , a a a Z
a a a

+

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 be a semigroup 5 set vector 

space over Z+. Find a semigroup 5-set vector subspace of V. 
Find a 5-dimension generating subset of V.  

 
291. Give some interesting properties about semigroup n set – 

vector space over a semigroup S. 
 
292. Obtain some interesting properties about semigroup n-set 

linear algebra over a semigroup S. 
 
293. Characterize those semigroup n-set linear algebras over a 

semigroup S which has pseudo semigroup n-linear algebras. 
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294. Let V = V1 ∪ ... ∪ Vn be a group n-set vector space over the 
group G and W = W1 ∪ W2 ∪ ... ∪ Wm (m > n) be a group 
m set vector space over the same group G. Let q

GHom  (V, 
W) denote the collection of all quasi n-set linear 
transformation of V into W. What is the algebraic structure 
of q

GHom  (V, W)? Is q
GHom  (V, W) a group n- set vector 

space over the group G? 
 
295. Obtain some interesting properties about q

GHom  (V, W). 
 
296. Let V = V1 ∪ V2 ∪ … ∪ Vn be a group n-set vector space 

over the group G. W = W1 ∪ W2 ∪ … ∪ Wn (n > m) be a 
group m-set vector space over the group G. Let pq

GHom  (V, 
W) denote the collection of all pseudo quasi group n-set 
linear transformation of V into W. What is the algebraic 
structure of pq

GHom  (V,W) ? Will pq
GHom  (V, W) be a group 

n-set vector space over G? 
 
297. Find some interesting results about pq

GHom  (V, W). 
 
298. If V = V1 ∪ ... ∪ Vn be a group n-set vector space over the 

group G. If the n-dimension of V is (t1, …, tn). Suppose W = 
W1 ∪ ... ∪ Wm (m > n) be the group m set vector space over 
the group G. If the m-dimension of W is (r1, r2, …, rm). 
What are the dimension of q

GHom  (V, W)? Likewise if (m < 
n) what is the dimension of pq

GHom  (V, W)? 
 
299. Find some good applications of set fuzzy vector spaces to 

other fields other than the ones mentioned in this book. 
 
300. Let V = V1 ∪ ... ∪ Vn be a set n-vector space over the set S. 

How many set fuzzy n-vector spaces can be constructed? 
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301. Let V = V1 ∪ V2 ∪ V3 = {Z+[x]} ∪ {Z+ × Z+ × Z+ × Z+ × 

Z+} ∪ 
a b c

a,b,c,d,e,f Z
d e f

+
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a set 3-vector 

space over the set Z+. Find at least 5-distinct set fuzzy 3 
vector spaces. 

 
302. Let V = {Ai = (aij) | (aij) ∈ [0, 1] be a n × n matrix with sum 

of the rows equal to one i = 1, 2, …, k} be a set vector space 
over the set [0, 1]. i.e., V = (A1, …, Ak), V1 = ( )1 1

1 kA ,...,A , 

V2 = ( )2 2
1 kA ,...,A , … , Vt = ( )t t

1 kA ,...,A . Construct a fuzzy 
markov chain using V and apply it to web related problems. 

 
303. Let V = V1 ∪ V2 be a group vector bispace where V1 = {A 

= [aij]; m × n matrices with entries from Z} 

∪ 
a a a a a a

a Z
a a a a a a

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 be a group vector bispace 

over the group G = Z.  
(1) Find at least four group fuzzy vector bispace  
(2) Find at least 4 distinct group fuzzy vector subbispace. 

 
304. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 = {Z5[x]} 

∪  5

a b
a,b,c,d Z

c d
⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 ∪ {Z5 × Z5} ∪ 

  5

a b
c d a,b,c,d,e,f Z
e f

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 ∪ 5

a a a a
a a a a a Z
a a a a

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 be 

a group 5 vector space over the group Z5. Find a group 
fuzzy vector space. 
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