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Preface

This book covers the aspects of linear algebra that are included in most ad-
vanced undergraduate texts. All the usual topics from complex vectors spaces,
complex inner products, The Spectral theorem for normal operators, dual spaces,
quotient spaces, the minimal polynomial, the Jordan canonical form, and the ratio-
nal canonical form are explained. A chapter on determinants has been included as
the last chapter, but they are not used in the text as a whole. A different approach
to linear algebra that doesn’t use determinants can be found in [Axler].

The expected prerequisites for this book would be a lower division course in
matrix algebra. A good reference is for this material is [Bretscher].

In the context of other books on linear algebra it is my feeling that this text
is about on par in difficulty with books such as [Axler], [Curtis|, [Halmos],
[Hoffman-Kunze|, and [Lang]. If you want to consider more challenging texts
I'd suggest looking at the graduate levels books [Greub], [Roman], and [Serre].

Chapter 1 contains all of the basic material on abstract vectors spaces and
linear maps. The dimension formula for linear maps is the theoretical highlight. To
facilitate some more concrete developments we cover matrix representations, change
of basis, and Gauss elimination. Linear indepence which is usually introduced much
earlier in linear algebra only comes towards to end of the chapter. But it is covered
in great detail there. We have also included two sections on dual spaces and quotient
spaces that can be skipped.

Chapter 2 is concerned with the theory of linear operators. Linear differential
equations are used to motivate the introduction of eigenvalues and eigenvectors,
but this motivation can be skipped. We then explain how Gauss elimination can
be used to compute the eigenvalues as well as the eigenvectors of a matrix. This
is used to understand the basics of how and when a linear operator on a finite
dimensional space is diagonalizable. We also introduce the minimal polynomial
and use it to give the classic characterization of diagonalizable operators. In the
latter sections we give a fairly simple proof of the Cayley-Hamilton theorem and
the cyclic subspace decomposition. This quickly leads to the Frobenius canonical
from. This canonical from is our most general result on how to find a simple
matrix representation for a linear map in case it isn’t diagonalizable. The last
section explains how the Frobenius canonical form implies the Jordan-Chevalley
decomposition and the Jordan-Weierstrass canonical form.

Chapter 3 includes material on inner product spaces. The Cauchy-Schwarz
inequality and its generalization to Bessel’s inequality and how they tie in with
orthogonal projections form the theoretical center piece of this chapter. Along the
way we cover standard facts about orthonormal bases and their existence through
the Gram-Schmidt procedure as well as orthogonal complements and orthogonal
projections. The chapter also contains the basic elements of adjoints of linear maps
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and some of its uses to orthogonal projects as this ties in nicely with orthonormal
bases. We end the chapter with a treatment of matrix exponentials and systems of
differential equations.

Chapter 4 covers quite a bit of ground on the theory of linear maps between
inner product spaces. The most important result is of course The Spectral Theorem
for self-adjoint operators. This theorem is used to establish the canonical forms
for real and complex normal operators, which then gives the canonical form for
unitary, orthogonal and skew-adjoint operators. It should be pointed out that the
proof of the Spectral theoem does not depend on whether we use real or complex
scalars nor does it rely on the characteristic or minimal polynomials. The reason
for ignoring our earlier material on diagonalizability is that it is desirable to have
a theory that more easily generalizes to infinite dimensions. The usual proofs
that use the characteristic and minimal polynomials are relegated to the exercises.
The last sections of the chapter cover the singular value decomposition, the polar
decomposition, triangulability of complex linear operators, and quadratic forms and
their uses in multivariable calculus.

Chapter 5 covers determinants. At this point it might seem almost useless to
introduce the determinant as we have covered the theory without needing it much.
While not indispensable, the determinant is rather useful in giving a clean definition
for the characteristic polynomial. It is also one of the most important invariants of
a finite dimensional operator. It has several nice properties and gives an excellent
criterion for when an operator is invertible. It also comes in handy in giving a
formula (Cramer’s rule) for solutions to linear systems. Finally we discuss its uses
in the theory of linear differential equations, in particular in connection with the
variation of constants formula for the solution to inhomogeneous equations. We
have taken the liberty of defining the determinant of a linear operator through the
use of volume forms. Aside from showing that volume forms exist this gives a rather
nice way of proving all the properties of determinants without using permutations.
It also has the added benefit of automatically giving the permutation formula for
the determinant and hence showing that the sign of a permutation is well-defined.

An * after a section heading means that the section is not necessary for the
understanding of other sections without an *. We refer to sections in the text by
writing out the title in citation marks, e.g., “Dimension and Isomorphism” and if
needed we also mention the chapter where the section is located.

Now for how to teach a course using this book. My assumption is that most
courses are based on 150 minutes of instruction per week with a problem session or
two added . I realize that some courses meet three times while others only two so
I won’t suggest how much can be covered in a lecture.

First let us suppose that you, like me, teach in the pedagogically impoverished
quarter system: It should be possible to teach Chapter 1, sections 2-13 in 5 weeks,
being a bit careful about what exactly is covered in sections 12 and 13. Then
spend two weeks on Chapter 2, sections 3-5, possibly omitting section 4 covering
the minimal polynomial if timing looks tight. Next spend two weeks on Chapter
3 sections 1-5, and finish the course by covering Chapter 4, section 1 as well as
exercise 9 in 4.1. This finishes the course with a proof of the Spectral Theorem
for self-adjoint operators, although not the proof I'd recommend for a more serious
treatment.
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Next let us suppose that you teach in a short semester system, as the ones at
various private colleges and universities. You could then add two weeks of material
by either covering the canonical forms from Chapter 2, sections 6-8 or alternately
spend two weeks covering some of the theory of linear operators on inner product
spaces from Chapter 4, sections 1-5. In case you have 15 weeks at you disposal it
might be possible to cover both of these topics rather than choosing between them.

Finally, should you have two quarters, like we sometimes do here at UCLA, then
you can in all likelihood cover virtually the entire text. I’d certainly recommend
that you cover all of Chapter 4 and the canonical form sections in Chapter 2,
sections 6-8, as well as the chapter on determinants. If time permits it might even
be possible to include the sections that cover differential equations: 2.2, 3.7, last
part of 4.8, and 5.8.

This book has been used to teach a bridge course on Linear Algebra at UCLA
as well as a regular quarter length course. The bridge course was funded by a
VIGRE NSF-grant and its purpose was to ensure that incoming graduate students
had really learned all of the linear algebra that we expect them to know when
starting graduate school. The author would like to thank several UCLA students for
suggesting various improvements to the text: Jeremy Brandman, Sam Chamberlain,
Timothy Eller, Clark Grubb, Vanessa Idiarte, Yanina Landa, Bryant Mathews,
Shervin Mosadeghi, and Danielle O’Donnol.






CHAPTER 1

Basic Theory

In the first chapter we are going to cover the definitions of vector spaces, linear
maps, and subspaces. In addition we are introducing several important concepts
such as basis, dimension, direct sum, matrix representations of linear maps, and
kernel and image for linear maps. We shall prove the dimension theorem for lin-
ear maps that relates the dimension of the domain to the dimensions of kernel
and image. We give an account of Gauss elimination and how it ties in with the
more abstract theory. This will be used to define and compute the characteristic
polynomial in chapter 2.

It is important to note that the sections “Row Reduction” and “Linear Inde-
pendence” contain alternate proofs of some of the important results in this chapter.
As such, some people might want to go right to these sections after the discussion
on isomorphism in “Dimension and Isomorphism” and then look back at the missed
sections.

As induction is going to play a big role in many of the proofs we have chosen
to say a few things about that topic in the first section.

1. Induction and Well-ordering*

A fundamental property of the natural numbers, i.e., the positive integers N =
{1,2,3,...}, that will be used throughout the book is the fact that they are well-
ordered. This means that any non-empty subset S C N has a smallest element
Smin € S such that sy, < s for all s € S. Using the natural ordering of the
integers, rational numbers, or real numbers we see that this property does not hold
for those numbers. For example, the half-open interval (0,00) does not have a
smallest element.

In order to justify that the positive integers are well-ordered let S C N be
non-empty and select k € S. Starting with 1 we can check whether it belongs to
S. If it does, then sy, = 1. Otherwise check whether 2 belongs to S. If 2 € S and
1 ¢ S, then we have sy, = 2. Otherwise we proceed to check whether 3 belongs
to S. Continuing in this manner we must eventually find kg < k, such that kg € 5,
but 1, 2, 3, ..., kg — 1 ¢ S. This is the desired minimum: Sy, = ko.

We shall use the well-ordering of the natural numbers in several places in this
text. A very interesting application is to the proof of The Prime Factorization
Theorem: Any integer > 2 is a product of prime numbers. The proof works the
following way. Let S C N be the set of numbers which do not admit a prime
factorization. If S is empty we are finished, otherwise S contains a smallest element
N = Smin € S. If n has no divisors, then it is a prime number and hence has a prime
factorization. Thus n must have a divisor p > 1. Now write n = p-q. Since p,q < n
both numbers must have a prime factorization. But then also n = p- ¢ has a prime
factorization. This contradicts that S is nonempty.

1
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The second important idea that is tied to the natural numbers is that of in-
duction. Sometimes it is also called mathematical induction so as not to confuse it
with the inductive method from science. The types of results that one can attempt
to prove with induction always have a statement that needs to be verified for each
number n € N. Some good examples are

(1) 1+2+3+ - +n="20H)
(2) Every integer > 2 has a prime factorization.
(3) Every polynomial has a root.

The first statement is pretty straight forward to understand. The second is a
bit more complicated and we also note that in fact there is only a statement for
each integer > 2. This could be finessed by saying that each integer n + 1, n > 1
has a prime factorization. This, however, seems too pedantic and also introduces
extra and irrelevant baggage by using addition. The third statement is obviously
quite different from the other two. For one thing it only stands a chance of being
true if we also assume that the polynomials have degree > 1. This gives us the idea
of how this can be tied to the positive integers. The statement can be paraphrased
as: Every polynomial of degree > 1 has a root. Even then we need to be more
precise as 22 4+ 1 does not have any real roots.

In order to explain how induction works abstractly suppose that we have a
statement P (n) for each n € N. Each of the above statements can be used as an
example of what P (n) can be. The induction process now works by first insuring
that the anchor statement is valid. In other words, we first check that P (1) is
true. We then have to establish the induction step. This means that we need to
show: If P (n — 1) is true, then P (n) is also true. The assumption that P (n — 1)
is true is called the induction hypothesis. If we can establish the validity of these
two facts then P (n) must be true for all n. This follows from the well-ordering of
the natural numbers. Namely, let S = {n: P (n) is false}. If S is empty we are
finished, otherwise S has a smallest element k£ € S. Since 1 ¢ S we know that
k > 1. But this means that we know that P (k — 1) is true. The induction step
then implies that P (k) is true as well. This contradicts that S is non-empty.

Let us see if can use this procedure on the above statements. For 1. we begin
by checking that 1 = w This is indeed true. Next we assume that

n—1)n
and we wish to show that
1
1+2+3+~-+n:ﬂﬁ%il
Using the induction hypothesis we see that
n—1)n
(1+243+--+(n-1)+n = (T)—I-n
_ (n=1)n+2n
- 2
_ (n+1D)n
3 .

Thus we have shown that P (n) is true provided P (n — 1) is true.
For 2. we note that 2 is a prime number and hence has a prime factorization.
Next we have to prove that n has a prime factorization if (n — 1) does. This,
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however, does not look like a very promising thing to show. In fact we need a
stronger form of induction to get this to work.

The induction step in the stronger version of induction is: If P (k) is true for
all k < n, then P (n) is also true. Thus the induction hypothesis is much stronger
as we assume that all statements prior to P (n) are true. The proof that this form
of induction works is virtually identical to the above justification.

Let us see how this stronger version can be used to establish the induction step
for 2. Let n € N, and assume that all integers below n have a prime factorization. If
n has no divisors other than 1 and n it must be a prime number and we are finished.
Otherwise n = p- g where p,q < n. Whence both p and ¢ have prime factorizations
by our induction hypothesis. This shows that also n has a prime factorization.

We already know that there is trouble with statement 3. Nevertheless it is
interesting to see how an induction proof might break down. First we note that all
polynomials of degree 1 look like ax + b and hence have —g as a root. This anchors
the induction. To show that all polynomials of degree n have a root we need to
first decide which of the two induction hypotheses are needed. There really isn’t
anything wrong by simply assuming that all polynomials of degree < n have a root.
In this way we see that at least any polynomial of degree n that is the product of
two polynomials of degree < n must have a root. This leaves us with the so-called
prime or irreducible polynomials of degree n, namely, those polynomials that are
not divisible by polynomials of degree > 1 and < n. Unfortunately there isn’t much
we can say about these polynomials. So induction doesn’t seem to work well in
this case. All is not lost however. A careful inspection of the “proof” of 3. can be
modified to show that any polynomial has a prime factorization. This is studied
further in the section “Polynomials” in chapter 2.

The type of statement and induction argument that we will encounter most
often in this text is definitely of the third type. That is to say, it certainly will
never be of the very basic type seen in statement 1. Nor will it be as easy as in
statement 2. In our cases it will be necessary to first find the integer that is used for
the induction and even then there will be a whole collection of statements associated
with that integer. This is what is happening in the 3rd statement. There we first
need to select the degree as our induction integer. Next there are still infinitely
many polynomials to consider when the degree is fixed. Finally whether or not
induction will work or is the “best” way of approaching the problem might actually
be questionable.

The following statement is fairly typical of what we shall see: Every subspace
of R™ admits a basis with < n elements. The induction integer is the dimension n
and for each such integer there are infinitely many subspaces to be checked. In this
case an induction proof will work, but it is also possible to prove the result without
using induction.

2. Elementary Linear Algebra

Our first picture of what vectors are and what we can do with them comes from
viewing them as geometric objects in the plane. Simply put, a vector is an arrow of
some given length drawn in the plane. Such an arrow is also known as an oriented
line segment. We agree that vectors that have the same length and orientation are
equivalent no matter where they are based. Therefore, if we base them at the origin,
then vectors are determined by their endpoints. Using a parallelogram we can add
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such vectors. We can also multiply them by scalars. If the scalar is negative we
are changing the orientation. The size of the scalar determines how much we are
scaling the vector, i.e., how much we are changing its length.

This geometric picture can also be taken to higher dimensions. The idea of
scaling a vector doesn’t change if it lies in space, nor does the idea of how to add
vectors, as two vectors must lie either on a line or more generically in a plane. The
problem comes when we wish to investigate these algebraic properties further. As
an example think about the associative law

(T+y)+z=a+(y+2).

Clearly the proof of this identity changes geometrically from the plane to space. In
fact, if the three vectors do not lie in a plane and therefore span a parallelepiped
then the sum of these three vectors regardless of the order in which they are added
is the diagonal of this parallelepiped. The picture of what happens when the vectors
lie in a plane is simply a projection of the three dimensional picture on to the plane.
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The purpose of linear algebra is to clarify these algebraic issues by looking at
vectors in a less geometric fashion. This has the added benefit of also allowing
other spaces that do not have geometric origins to be included in our discussion.
The end result is a somewhat more abstract and less geometric theory, but it has
turned out to be truly useful and foundational in almost all areas of mathematics,
including geometry, not to mention the physical, natural and social sciences.

Something quite different and interesting happens when we allow for complex
scalars. This is seen in the plane itself which we can interpret as the set of complex
numbers. Vectors still have the same geometric meaning but we can also “scale”
them by a number like i = +/—1. The geometric picture of what happens when
multiplying by ¢ is that the vector’s length is unchanged as |i| = 1, but it is rotated
90°. Thus it isn’t scaled in the usual sense of the word. However, when we define
these notions below one will not really see any algebraic difference in what is hap-
pening. It is worth pointing out that using complex scalars is not just something
one does for the fun of it, it has turned out to be quite convenient and important to
allow for this extra level of abstraction. This is true not just within mathematics
itself as can be seen when looking at books on quantum mechanics. There complex
vector spaces are the “sine qua non” (without which nothing) of the subject.

3. Fields

The “scalars” or numbers used in linear algebra all lie in a field. A field is
simply a collection of numbers where one has both addition and multiplication.
Both operations are associative, commutative etc. We shall mainly be concerned
with R and C, some examples using Q might be used as well. These three fields
satisfy the axioms we list below.

A field F is a set whose elements are called numbers or when used in linear
algebra scalars. The field contains two different elements 0 and 1 and we can add
and multiply numbers. These operations satisfy

(1) The Associative Law:

at(B+v)=(a+p)+7
(2) The Commutative Law:

a+8=0+a.
(3) Addition by 0:
a+0=qa.
(4) Existence of Negative Numbers: For each a we can find —« so that
a+ (—a)=0.

(5) The Associative Law:

a(By) = (af)~.
(6) The Commutative Law:
af = Ba.
(7) Multiplication by 1:
al = a.
(8) Existence of Inverses: For each a # 0 we can find a~! so that

aa”t=1.
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(9) The Distributive Law:
a(f+7)=af+ay.

Occasionally we shall also use that the field has characteristic zero, this means
that

n times
/—/;
n=14---+1#0
for all positive integers n. Fields such as Fy = {0,1} where 1+ 1 = 0 clearly do
not have characteristic zero. We make the assumption throughout the text that all
fields have characteristic zero. In fact, there is little loss of generality in assuming
that the fields we work are the usual number fields Q, R, and C.
There are several important collections of numbers that are not fields:
N = {1,2,3,...}
c No={0,1,2,3,...}
C Z={0,£1,4+2,+3,...}
= {0,1,-1,2,-2,3,-3,...}.

4. Vector Spaces

A wector space consists of a set of vectors V and a field F. The vectors can
be added to yield another vector: if x,y € V, then x +y € V. The scalars can
be multiplied with the vectors to yield a new vector: if « € F and = € V, then
ax = xa € V. The vector space contains a zero vector 0, also known as the origin
of V. It is a bit confusing that we use the same symbol for 0 € V and 0 € F.
It should ways be obvious from the context which zero is used. We shall use the
notation that scalars, i.e., elements of F are denoted by small Greek letters such
as a, 3,7, ..., while vectors are denoted by small roman letters such as z,y, z, ....
Addition and scalar multiplication must satisfy the following axioms.

(1) The Associative Law:
(@+yt+z=z+y+2).
(2) The Commutative Law:
rT+y=y+zx.
(3) Addition by 0:
z+0==z.
(4) Existence of Negative vectors: For each x we can find —z such that
x+ (—z)=0.
(5) The Associative Law for multiplication by scalars:
a(fz) = (af)z.
(6) The Commutative Law for multiplying by scalars:
ar = ra.
(7) Multiplication by the unit scalar:

lx = .
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(8) The Distributive Law when vectors are added:
a(x+y) =ar+ ay.

(9) The Distributive Law when scalars are added:
(a+pB)z = azx+ Bz.

The only rule that one might not find elsewhere is ax = za. In fact we could just
declare that one is only allowed to multiply by scalars on the left. This, however,
is an inconvenient restriction and certainly one that doesn’t make sense for many
of the concrete vector spaces we will work with. We shall also often write x — y
instead of z + (—v) .

These axioms lead to several “obvious” facts.

PROPOSITION 1. (1) 0z =0.
(2) a0 =0.
(3) —lz = —=.

(4) If ax =0, then either o =0 or x = 0.
PrOOF. By the distributive law
0z + 0z = (04 0) z = Ox.

This together with the assocoative law gives us

0z = Oz+ (0z—0x)
= (0z+ 0z) — Oz
= 0z -0z
0.

The second identity is proved in the same manner.
For the third consider:

0 = 0Oz
= (1-1)=
= lza+(-D=z
— o+ (-,
adding —x on both sides then yields
—z=(-1)z.

Finally if ax = 0 and « # 0, then we have

r = (ofloz) T

= o !(ax)
a0
0.
O
With these matters behind us we can relax a bit and start adding, subtract-

ing, and multiplying along the lines we are used to from matrix algebra. Our
first construction is to form linear combinations of vectors. If aq,...,a,, € F and
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T1,...; Ty € V, then we can multiply each x; by the scalar «; and then add up the
resulting vectors to form the linear combination
T=01T1 + 0+ Ty
We also say that x is a linear combination of the z;s.
If we arrange the vectors in a 1 x m row matrix
[ '1:1 ... :I:m ]
and the scalars in a column m x 1 matrix we see that the linear combination can
be thought of as a matrix product
m a1
Zail‘i:o{l$1—|—...+amzm:[xl e T, ]
=1 m
To be completely rigorous we should write the linear combination as a 1 x 1 matrix
[a1x1 + - - - + amy,) but it seems too pedantic to insist on this. Another curiosity
here is that matrix multiplication almost forces us to write
o
zia + ot Ty = [ @1 T |
A
This is one reason why we want to be able to multiply by scalars on both the left

and right.
Here are some important examples of vectors spaces.

EXAMPLE 1. The most important basic example is undoubtedly the Cartesian
n-fold product of the field .

(€51
F* = : Ty, ...,0n EF
Qg
= {(oq,...,an):1,...,ap € F}.

Note that the n x 1 and the n-tuple ways of writing these vectors are equiva-
lent. When writing vectors in a line of text the m-tuple version is obviously more
convenient. The column matrix version, however, conforms to various other natural
choices, as we shall see, and carries some extra meaning for that reason. The P
entry a; in the vector z = (a1, ...,q,) is called the i coordinate of z.

EXAMPLE 2. The space of functions whose domain is some fized set S and
whose values all lie in the field F is denoted by Func (S,F) ={f:S — F}.
In the special case where S = {1,...,n} it is worthwhile noting that

Func ({1,...,n},F) =F".

Thus vectors in F™ can also be thought of as functions and can be graphed as either
an arrow in space or as a histogram type function. The former is of course more
geometric, but the latter certainly also has its advantages as collections of num-
bers in the form of n x 1 matrices don’t always look like vectors. In statistics the
histogram picture is obviously far more useful. The point here is that the way in
which vectors are pictured might be psychologically important, but from an abstract
mathematical perspective there is no difference.
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There is a slightly more abstract vector space that we can construct out of a
general set S and a vector space V. This is the set Map (S, V) of all maps from S
to V. Scalar multiplication and addition are defined as follows

(af)(x) = of(z),
(it f)(x) = fi(z)+f2().

The space of functions is in some sense the most general type of vector space as
all other vectors spaces are either of this type or subspaces of such function spaces.
A subspace M C V of a vector space is a subset that contains the origin and is
closed under both scalar multiplication and vector addition: if « € F and z,y € M,
then

ar € M,
r+y € M.
Clearly subspaces of vector spaces are also vector spaces in their own right.
ExXAMPLE 3. The space of n X m matrices

a1 o Qi
Mat,, s, (IF)

toy; €F
On1  * Qpm
= {lay) : aij € F}.
n X m matrices are evidently just a different way of arranging vectors in F™™.

This arrangement, as with the column version of vectors in F™ imbues these vectors
with some extra meaning that will become evident as we proceed.

ExXAMPLE 4. The set of polynomials whose coefficients lie in the field F
Ft] = {p(t) —ag+art+--+apt’ 1 k € Ny, ag, a1, ...,a5 € IF}

is also a vector space. If we think of polynomials as functions, then we imagine them
as a subspace of Func{F,F} . However the fact that a polynomial is determined
by its representation as a function depends on the fact that we have a field of
characteristic zero! If, for instance, F ={0,1}, then the polynomial t> +t vanishes
when evaluated at both 0 and 1. Thus this nontrivial polynomial is, when viewed as
a function, the same as p (t) = 0.

We could also just record the coefficients. In that case F[t] is a subspace of
Func (No,F) and consists of those infinite tuples that are zero except at all but a
finite number of places.

If

p(t) =ap+art+---+a,t" €F[t],
then the largest integer k < n such that ay # 0 is called the degree of p. In other
words
p(t)=ao+art+ -+ at"
and ay, # 0. We use the notation deg (p) = k.

ExXAMPLE 5. The collection of formal power series
F[[t]] = {a0+a1t+--~+aktk+~-~:a07a17...7ak,...€F}

{Zaiti ca; €Fi e No}
1=0
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bears some resemblance to polynomials, but without further discussions on conver-
gence or even whether this makes sense we cannot interpret power series as lying
in Func (F,F). If, however, we only think about recording the coefficients, then we
see that F[[t]] = Func (No,F). The extra piece of information that both F[t] and
F[[t]] carry with them, aside from being vector spaces, is that the elements can also
be multiplied. This extra structure will be used in the case of F [t] . Powerseries will
not play an important role in the sequel. Finally note that F[t] is a subspace of

F{[].

EXAMPLE 6. For two (or more) vector spaces V,W we can form the (Cartesian)
product

VxW={(v,w):veV andwe W}.

Scalar multiplication and addition is defined by
a(v,w) = (av,aw),
(v1,w1) + (va,w2) = (v1+ v2, w1 +ws).
Note that V x W is not in a natural way a subspace in a space of functions or maps.

4.1. Exercises.

(1) Find a subset C C F? that is closed under scalar multiplication but not
under addition of vectors.

(2) Find a subset A C C? that is closed under vector addition but not under
multiplication by complex numbers.

(3) Find a subset @ C R that is closed under addition but not scalar multi-
plication.

(4) Let V. = Z be the set of integers with the usual addition as “vector
addition”. Show that it is not possible to define scalar multiplication by
Q, R, or C so as to make it into a vector space.

(5) Let V be a real vector space, i.e., a vector space were the scalars are R.
The complezification of V is defined as Ve = V x V. As in the construction
of complex numbers we agree to write (v, w) € V¢ as v+iw. Define complex
scalar multiplication on V¢ and show that it becomes a complex vector
space.

(6) Let V be a complex vector space i.e., a vector space were the scalars are
C. Define V* as the complex vector space whose additive structure is that
of V but where complex scalar multiplication is given by A%z = Az. Show
that V* is a complex vector space.

(7) Let P, be the space of polynomials in F [¢] of degree < n.

(a) Show that P, is a vector space.

(b) Show that the space of polynomials of degree n is P, — P,_; and
does not form a subspace.

(c) If f(t): F—F, show that V ={p(t) f (t) : p € P} is a subspace of
Func {F,F}.

(8) Let V.= C* = C—{0}. Define addition on V by By = xy. Define scalar

multiplication by a [ x = e“x
(a) Show that if we use Oy = 1 and —x = 2~ !, then the first four axioms
for a vector space are satisfied.
(b) Which of the scalar multiplication properties do not hold?
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5. Bases

We are now going to introduce one of the most important concepts in linear
algebra. Let V' be a vector space over F. A finite basis for V is a finite collection
of vectors x1,...,z, € V such that each element z € V can be written as a linear
combination

rT=a1T1+ -+ apTy

in precisely one way. This means that for each x € V we can find ay,...,a, € F
such that

T=a1T1 + -+ QpTy.
Moreover, if we have two linear combinations both yielding x
a1+ F ey, =2 =121+ -+ B,%n,
then
o1 =B, 00 =06,

Since each = has a unique linear combination we also refer to it as the expansion
of x with respect to the basis. In this way we get a well-defined correspondence
V «— F" by identifying

r=a1x1 + -+ apTy

with the n-tuple (ay,...,a,). We note that this correspondence preserves scalar
multiplication and vector addition since

ar = a(agxy+ -+ apxy)

(aar)zy + -+ (o) Ty,

r+y = (uz1+- -+ anwy) + (B + o+ B,wn)
(1 +By)z1+ -+ (an + By) T

This means that the choice of basis makes V' equivalent to the more concrete vector
space F™. This idea of making abstract vector spaces more concrete by the use
of a basis is developed further in “Linear maps as Matrices” and “Dimension and
Isomorphism”.

We shall later prove that the number of vectors in such a basis for V' is always
the same. This allows us to define the dimension of V over F to be the number of
elements in a basis. Note that the uniqueness condition for the linear combinations
guarantees that none of the vectors in a basis can be the zero vector.

Let us consider some basic examples.

EXAMPLE 7. In " define the vectors
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Thus e; is the vector that is zero in every entry except the i'" where it is 1. These
vectors evidently form a basis for F™ since any vector in F™ has the unique expansion

aq
F* > z= “
Qp
1 0 0
0 1 0
= o +ax| |+t
0 0 1
= qie] +ager + -+ ape,
aq
Q2
= [e e - en]
Qp

ExXAMPLE 8. In F? consider

(3] 1]

These two vectors also form a basis for F? since we can write

« 1 1
5] - o la]eo]i]
_ |t 1] (@=p)
o 0 1 15}
To see that these choices are unique observe that the coefficient on xo must be 3
and this then uniquely determines the coefficient in front of x1.

EXAMPLE 9. In F? consider the slightly more complicated set of vectors

an[ ] (1]

This time we see

Again we can see that the coefficients are unique by observing that the system
Y+6 = «a
—y+4 = B

has a unique solution. This is because v, respectively §, can be found by subtracting,
respectively adding, these two equations.

EXAMPLE 10. Likewise the space of matrices Maty, xm (F) has a natural basis
E;i; of nm elements, where Ey; is the matrixz that is zero in every entry except the
(i, 7)™ where it is 1.
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If V= {0}, then we say that V has dimension 0. Another slightly more
interesting case that we can cover now is that of one dimensional spaces.

LEMMA 1. Let V be a vector space over F. If V' has a basis with one element,
then any other finite basis also has one element.

PROOF. Let 1 be a basis for V. If z € V, then x = ax; for some a. Now
suppose that we have z1, ..., z, € V, then z; = ayx1. If 21, ..., 2z, forms a basis, then
none of the vectors are zero and consequently «; # 0. Thus for each i we have
T = ozi_lzi. Therefore, if n > 1, then we have that x; can be written in more than
one way as a linear combination of z,...,2,. This contradicts the definition of a
basis. Whence n =1 as desired. O

The concept of a basis depends quite a lot on the scalars we use. The field of
complex numbers C is clearly a one dimensional vector space when we use C as
the scalar field. To be specific we have that x1 = 1 is a basis for C. If, however,
we view C as a vector space over the reals R, then only real numbers in C are
linear combinations of z1. Therefore x1 is no longer a basis when we restrict to real
scalars.

It is also possible to have infinite bases. However, some care must be taken
in defining this concept as we are not allowed to form infinite linear combinations.
We say that a vector space V' over F has a collection x; € V, where i € A is some
possibly infinite index set, as a basis, if each z € V is a linear combination of a finite
number of the vectors x; is a unique way. There is, surprisingly, only one important
vector space that comes endowed with a natural infinite basis. This is the space
IF [¢] of polynomials. The collection z; = ¢, i = 0, 1,2, ... evidently gives us a basis.
The other spaces F [[t]] and Func (S,F), where S is infinite, do not come with any
natural bases. There is a rather subtle theorem which asserts that every vector
space must have a basis. It is somewhat beyond the scope of this text to prove
this theorem as it depends on Zorn’s lemma or equivalently the axiom of choice. It
should also be mentioned that it is a mere existence theorem as it does not give a
procedure for constructing infinite bases. In order to get around these nasty points
we resort to the trick of saying that a vector space is infinite dimensional if it does
not admit a finite basis. Note that in the above Lemma we can also show that if V'
admits a basis with one element then it can’t have an infinite basis.

Finally we need to mention some subtleties in the definition of a basis. In most
texts a distinction is made between an ordered basis x1,....,z, and a basis as a
subset

{1, c,zn} C V.

There is a fine difference between these two concepts. The collection x1, s where
r1 = 29 = x € V can never be a basis as £ can be written as a linear combination
of 1 and x5 in at least two different ways. As a set, however, we see that {z} =
{z1,z2} consists of only one vector and therefore this redundancy has disappeared.
Throughout this text we assume that bases are ordered. This is entirely reasonable
as most people tend to write down a collection of elements of a set in some, perhaps
arbitrary, order. It is also important and convenient to work with ordered bases
when time comes to discuss matrix representations. On the few occasions where
we shall be working with infinite bases, as with F [¢], they will also be ordered in a
natural way using either the natural numbers or the integers.
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. Exercises.

Show that 1,t,...,t"™ form a basis for P,.

Show that if pg,...,pn € P, satisfy deg (px) = k, then they form a basis
for P,.

Find a basis p1,...,p4s € P3 such that deg (p;) = 3 for i = 1,2, 3, 4.

For a € C consider the subset

Qo] ={p(a):peQli]} cC.
Show that

(a) If € Q then Qo] =Q

(b) If v is algebraic, i.e., it solves an equation p () = 0 for some p € Q[t],
then Qo] is a field that contains Q. Hint: Show that o must be the
root of a polynomial with a nonzero constant term. Use this to find
a formula for ! that depends only on positive powers of a.

(¢) If « is algebraic, then Q [o] is a finite dimensional vector space over
Q with a basis 1, a, a?, ...,a™ ! for some n € N. Hint: Let n be the
smallest number so that a™ is a linear combination of 1, o, a2, ..., ™%
You must explain why we can find such n.

(d) Show that « is algebraic if and only if Q [«] is finite dimensional over
Q.

(e) We say that « is transcendental if it is not algebraic. Show that if
a is transcendental then 1,a, a?,...,a", ... form an infinite basis for
QJa]. Thus Q[a] and Q[t] represent the same vector space via the
substitution ¢t «— a.

Show that

OO
Too
Tos
o = O
—= -0 O

0

o
—_

span C4, i.e., every vector on C* can be written as a linear combination of
these vectors. Which collections of those six vectors form a basis for C*?
Is it possible to find a basis 1, ..., z, for F” so that the i*" entry for all
of the vectors z1, ..., x, is zero?

If e, ..., e, is the standard basis for C™, show that both

€1y eeey €,y 0€1, .ony i€y, and
€1,1€1, vy €n, i€

form bases for C" when viewed as a real vector space.

If x1,...,z, is a basis for the real vector space V, then it is also a basis
for the complexification V¢ (see the exercises to “Vector Spaces” for the
definition of V¢).

Find a basis for R® where all coordinate entries are +1.

A subspace M C Mat, x, (F) is called a two-sided ideal if for all X €
Maty, xn, (F) and A € M also XA, AX € M. Show that if M # {0}, then
M = Mat,xn (F). Hint: Find A € M such some entry is 1. Then show
that we can construct the standard basis for Mat,,x,, (F) by multiplying
A by the stardard basis matrices for Mat,,«,, (F) on the left and right.
Let V be a vector space.
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(a) Show that z,y € V form a basis if and only if x + y,x — y form a
basis.

(b) Show that z,y,z € V form a basis if and only if x + y,y + 2,2 + «
form a basis.

6. Linear Maps

A map L : V — W between vector spaces over the same field F is said to be
linear if it preserves scalar multiplication and addition in the following way

L(az) = oalL(x),
L(z+y) = L(z)+L({y),

where o € F and z,y € V. It is possible to collect these two properties into one
condition as follows

L (0411‘1 + (JéQl‘Q) =1L (.1‘1) + asL (.TQ) s

where a1,as € F and x1,z5 € V. More generally we have that L preserves linear
combinations in the following way

aq
L [iEl xm]

L(zia1+ -+ o)

Q m

L(z1)ar+-+ L(zm) am

o

[ L(z1) -+ L(zm) |

To prove this simple fact we use induction on m. When m = 1, this is simply the
fact that L preserves scalar multiplication

L(az) =aL(x).
Assuming the induction hypothesis, that the statement holds for m — 1, we see that

L(zia1+ -+ 2Zmam) = L{(zi01+ 4+ Tm-10m—1) + T Q)
= L(zion+- -+ Tm_10m-1)+ L(Tmam)
= (L(z1)ar+ -+ L(@xma1)m-1)+L(zm)an
= L(z1)ar+-+ L(zm) anm.

The important feature of linear maps is that they preserve the operations that
are allowed on the spaces we work with. Some extra terminology is often used
for linear maps. If the values are the field itself, i.e., W = [, then we also call
L:V — F a linear function or linear functional. If V=W thenwecall L :V — V
a linear operator.

Before giving examples we introduce some further notation. The set of all linear
maps {L:V — W} is often denoted hom (V,W). In case we need to specify the
scalars we add the field as a subscript homg (V, W) . The abbreviation hom stands
for homomorphism. Homomorphisms are in general maps that preserve whatever
algebraic structure that is available. Note that

homp (V, W) C Map (V, W)
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and is a subspace of the latter. Thus homp (V, W) is a vector space over F.

It is easy to see that the composition of linear maps always yields a linear map.
Thus, if L1 : V| — V5 and Ly : Vo — V3 are linear maps, then the composition
Lyo Ly : Vi — Vi defined by Ly o Ly (z) = Lo (L1 (2)) is again a linear map.
We often ignore the composition sign o and simply write LoL;. An important
special situation is that one can “multiply” linear operators Li,Lo : V — V via
composition. This multiplication is in general not commutative or abelian as it
rarely happens that L Lo and LoL; represent the same map. We shall see many
examples of this throughout the text.

ExampLE 11. Define a map L : F — F by scalar multiplication on F via
L (z) = Az for some \ € F. The distributive law says that the map is additive and
the associative law together with the commutative law say that it preserves scalar
multiplication. This example can now easily be generalized to scalar multiplication
on a vector space V, where we can also define L () = Ax.

Two special cases are of particular interest. First the identity transformation
ly : V. — V defined by 1y (z) = x. This is evidently scalar multiplication by 1.
Second we have the zero transformation 0 = Oy : V' — V that maps everything to
0 € V and is simply multiplication by 0. The latter map can also be generalized
to a zero map 0 : V. — W between different vector spaces. With this in mind we
can always write multiplication by A as the map Aly thus keeping track of what
it does, where it does it, and finally keeping track of the fact that we think of the
procedure as a map.

Expanding on this theme a bit we can, starting with a linear operator L : V —
V, use powers of L as well as linear combinations to create new operators on V. For
instance, L? — 3 - L + 2 1y is defined by

(L?=3-L+2-1y) (z) = L (L (z)) — 3L (z) + 2.
We shall often do this in quite general situations. The most general construction
comes about by selecting a polynomial p € F[t] and considering p(L). If p =
apt? + - + a1t + ag, then
p(L) = arl® 4+ -+ a1 L+ aply.
If we think of t° = 1 as the degree 0 term in the polynomial then by substituing L we
apparently define L° = 1y. So still the identity, but the identity in the appropriate
set where L lives. Evaluation on z € V is given by
p(L) (z) = i LF (2) + -+ + a1 L (z) + ooz
Apparently p simply defines a linear combination of the linear operators L*, ..., L,

1y and p (L) (z) is a linear combination of the vectors L* (), ..., L (z), z.

ExXAMPLE 12. Fiz x € V. Note that the axioms of scalar multiplication also
imply that L : F — V defined by L (o) = x«v is linear.

EXAMPLE 13. Matriz multiplication is the next level of abstraction. Here we
let V.=T" and W =TF" and L is represented by an n X m matric

611 ﬁlm
I
Bnl Bnm
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The map is defined using matriz multiplication as follows

L(x) = Bz

611 e BlnL 51

B B ) L 6w
[ B1iéi+ -+ Bimém

L ﬁnlfl R ﬁnm£m

Thus the i** coordinate of L () is given by
Zﬁijfj =Bkt + Bimm-
j=1

A similar and very important way of representing this map comes by noting that it
creates linear combinations. Write B as a row matriz of its column vectors

511 Blrn ﬁli
B= :[bl bm],wherebiz :
and then observe
L(z) = Bz
31
[ by -+ by, ] :
Em

= b At b

Note that, if m = n and the matrix we use is a diagonal matrix with As down
the diagonal and zeros elsewhere, then we obtain the scalar multiplication map
Alp». The matrix looks like this

A0 0
0 A 0
00 -« A

A very important observation in connection with linear maps defined by matrix
multiplication is that composition of linear maps L : F! — F™ and K : F™ — F” is
given by the matrix product. The maps are defined by matrix multiplication

and
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The composition can now be computed as follows using that K is linear

(KoL)(@) = K(L())
= K (Bx)
&
= K [51 bz] :
&
&
= [K(®) - Kb) ]| :
&
&
= ([C - O ])|
&
3
= (C[b - u])|
&
= (CB)ux.
Evidently this all hinges on the fact that the matrix product C B can be defined by
CB = C[b - b]
= [Ob1 Cbl]7

a definition that is completely natural if we think of C' as a linear map. It should
also be noted that we did not use associativity of matrix multiplication in the form
C (Bz) = (CB) z. In fact associativity is a consequence of our calculation.
We can also check things a bit more directly using summation notation. Ob-
serve that the i*® entry in the composition
a1 Y11 Im B - Bu &
K|L g = : : : : : :

Qay Tn1 " Tnm ﬁml e Bm,l gl

2

satisfies

m l m 1
Z’Yij (Zﬂﬁ@) = Zz%jﬁjsfs
j=1

s=1 j=1s=1

I m
= Z Z YijBis€s

s=1 j=1
l

= Z Z’Yijﬂjs &s
s=1 \j=1

were (E;"Zl ’yijﬁjs) represents the (i, s) entry in the matrix product [v,;] [8;,]-

EXAMPLE 14. Note that while scalar multiplication on even the simplest vector
space F is the simplest linear map we can have, there are still several levels of
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complexity here depending on what field we use. Let us consider the map L : C — C
that is multiplication by i, i.e., L(x) = ix. If we write x = « + i8 we see that
L (z) = —p + ia. Geometrically what we are doing is rotating x 90°. If we think of
C as the plane R? the map is instead given by the matric

0 -1
1
which is not at all scalar multiplication if we only think in terms of real scalars.
Thus a supposedly simple operation with complexr numbers is somewhat less simple
when we forget compler numbers. What we need to keep in mind is that scalar
multiplication with real numbers is simply a form of dilation where vectors are
made longer or shorter depending on the scalar. Scalar multiplication with complex
numbers is from an abstract algebraic viewpoint equally simple to write down, but

geometrically such an operation can involve a rotation from the perspective of a
world where only real scalars exist.

EXAMPLE 15. The i** coordinate map F™* — F defined by

&1
dz; () = dux; é:i
€

&

= [0---1---0] | &

€

= 51'-

is a linear map. Here the 1 X n matriz [0---1---0] is zero everywhere except in
the i*™ entry where it is 1. The notation dx; is not a mistake, but an incursion
from multivariable calculus. While some mystifying words involving infinitesimals
often are invoked in connection with such symbols, they have in more advanced and
modern treatments of the subject simply been redefined as done here. No mystery
at all definitionwise, but it is perhaps no clearer why it has anything to do with
integration and differentiation.

A special piece of notation comes in handy in here. The Kronecker § symbol is
defined as
s [0 it
TN 1 ifi=g
Thus the matrix [0---1---0] can also be written as
[0 R 0} = [5“ R 51,”]
= [0 - bin |-
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The matrix representing the identity map 1p» can then we written as
o1 -+ O1n
6n1 U 6nn
EXAMPLE 16. Let us consider the vector space of functions C* (R, R) that have

derivatives of all orders. There are several interesting linear operators C*° (R,R) —
C> (R,R)

pinw = T,
s® = [ e

T(f)(E) = t-f(t).

In a more shorthand fashion we have the differentiation operator D (f) = f', the
integration operator S (f) = [ f, and the multiplication operator T' (f) = tf. Note
that the integration operator is not well-defined unless we use the definite integral
and even in that case it depends on the value tg. These three operators are also
defined as operators R[t] — R[t]. In this case we usually let tg = 0 for S. These
operators have some interesting relationships. We point out a very intriguing one

DT —TD =1.
To see this simply use Leibniz’ rule for differentiating a product to obtain

D(T(f)) = DI(f)
= [f+tDf
f+T(D(f)).
With some slight changes the identity DT —TD = 1 is the Heisenberg Commu-

tation Law. This law is important in the verification of Heisenberg’s Uncertainty
Principle.

The trace is a linear map on square matrices that simply adds the diagonal
entries.

tr @ Mat,x, (F) = F,
tr(4) = a;pt+asm+- 4 .

The trace satisfies the following important commutation relationship.

LeMMA 2. (Invariance of Trace) If A € Maty,xn (F) and B € Mat,xm (F),
then AB € Maty,xm (F), BA € Mat,, «, (F) and

tr (AB) = tr (BA).
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ProOF. We write out the matrices

11 A1in
A = .
| @t
[ B - Bim
B o= | i
L Brr 0 Bam
Thus
[ ap o aan By o Bum
AB = : :
| Cm By 0 B
[ B+ FambBy 0 anBi, o+ B,
i am1511+...+amnﬁn1 am1ﬁ1m+...+amm3nm
i Bii - Bim Qi1 o CQip
BA =
i Bnl Bnm Al Omn
[ Broar+ -+ Bipmt 0 Br@un o+ By Qmn
| Boioar + o+ Bum@mr 0 Boiain o+ B Qmn

This tells us that AB € Mat,, xm (F) and BA € Mat,,«,, (F) . To show the identity
note that the (i,7) entry in AB is > 7, cij3;;, while the (j,7) entry in BA is
>oimy Bjiij. Thus

tr(AB) = Zzaijﬂjm
i=1 j=1

tI‘(BA) = Zzﬁjiaij'
j=1i=1

By using «;;8;;, = 8,25 and
m n n m
i=1j=1 j=1i=1
we see that the two traces are equal. [l

This allows us to show that Heisenberg Commutation Law cannot be true for
matrices.

COROLLARY 1. There are no matrices A, B € Mat, x,, (F) such that

AB—-BA=1.
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PRrROOF. By the above Lemma and linearity we have that tr (AB — BA) = 0.
On the other hand tr (1p») = n, since the identity matrix has n diagonal entries
each of which is 1. O

Observe that we just used the fact that n # 0 in [, or in other words that F
has characteristic zero. If we allowed ourselves to use the field Fy = {0,1} where
1+ 1 =0, then we have that 1 = —1. Thus we can use the matrices

to get the Heisenberg commutation law satisfied:

[0 1770 1 0 1 0 1
AB - B4 = | 0 O_[l 0}_{1 OHO 0]
_[1r 0] Joo
~ 0 0] 0 1
1 o0
- olo -1
1 0]
o 1)

We have two further linear maps. Consider V' = Func (S,F) and select sg € S,
then the evaluation map evs, : Func (S,F) — F defined by evs, (f) = f(so) is
linear. More generally we have the restriction map for T C S defined as a linear
maps Func (S, F) — Func (T, F), by mapping f to f|7. The notation f|r means that
we only consider f as mapping from T into F. In other words we have forgotten
that f maps all of S into F and only remembered what it did on T.

Linear maps play a big role in multivariable calculus and are used in a number
of ways to clarify and understand certain constructions. The fact that linear algebra
is the basis for multivariable calculus should not be surprising as linear algebra is
merely a generalization of vector algebra.

Let F : © — R” be a differentiable function defined on some open domain
2 C R™. The differential of F' at zy € § is a linear map DF,, : R™ — R" that can
be defined via the limiting process

DF, (h) — lim F(T,o —|—th) - F(l’o)
0 t—0 t

Note that xg+th describes a line parametrized by ¢ passing through x and points in
the direction of h. This definition tells us that DF,, preserves scalar multiplication
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as
F - F

— olim F (z¢ + tah) — F (z0)
t—0 ta

— o lim F (zg + tah) — F (x0)
ta—0 ta

— alim F (zg + sh) — F (xo)
s—0 S

= aDF,, (h).

Additivity is another matter however. Thus one often reverts to the trick of saying
that F is differentiable at zo provided we can find a linear map L : R™ — R"
satisfying
F - F - L
L F (@0 +h) — F (o) = L(b)

=0
|h|—0 |h‘

One then proves that such a linear map must be unique and then renames it L =
DF,,. In case F is continuously differentiable, DF},, is also given by the n x m
matrix of partial derivatives

hy
DF,, (h) = DF,, :
hin
r (9F1 - 3F1 h
oxq OLm 1
LS o Sl L
- OF . OF
ox1 hy + + O, hn
OF, . OF,
L Oz hl + + 0T hm

One of the main ideas in differential calculus (of several variables) is that linear
maps are simpler to work with and that they give good local approximations to
differentiable maps. This can be made more precise by observing that we have the
first order approximation

F(I0+h) = F(IQ)‘FDFxO (h)+0(h),
o)
|h|—0 ||

One of the goals of differential calculus is to exploit knowledge of the linear map
DF,, and then use this first order approximation to get a better understanding of
the map F' itself.
In case f: Q — R is a function one often sees the differential of f defined as
the expression
af d af

df = —— v g,
f 61‘1 e +6$’m ‘
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Having now interpreted dz; as a linear function we then observe that df itself is a
linear function whose matrix description is given by

df (h) = g—a{ld:ﬁl (h)+---+ %dwm (h)
0 0
hy
hm
More generally, if we write
F
F= : ,
F,
then
dFy
DF,, = :
dF,
with the understanding that
dFy (h)
DFy, (h) = :
dF, (h)

Note how this conforms nicely with the above matrix representation of the differ-
ential.

6.1. Exercises.

(1) Let V, W be vector spaces over Q. Show that any additive map L : V — W,
ie.,
L (.’L‘1 + .’L‘Q) =L (xl) + L({,EQ) s
is linear.
(2) Show that D : F[t] — F [¢] defined by

D(ag 4 art+ -+ apt™) = ay + 200t 4+ - + no,t" !

is a linear map.

(3) If L: V — V is a linear operator, then K : F[¢] — hom (V, V) defined by
K (p) = p (L) is a linear map.

(4) T :V — W is a linear operator, and V is a vector space, then right
multiplication

Ry : hom (W, f/) — hom (v, f/)
defined by Ry (K) = K o T and left multiplication
Ly : hom (f/, V) — hom (f/, W)

defined by Ly (K) =T o K are linear operators.
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(5) If A € Maty,xy, (F) is upper triangular, i.e., a;; = 0 for ¢ > j or

Q11 Q12 0 Olp
0 g -+ agy

A= ,
0 0 ot Qpp

and p(t) € F[t], then p(A) is also upper triangular and the diagonal
entries are p (o), i.e.,

p(Oéu) * *
p(4) = ? p@m):t T
0 0 o plaw)
(6) Let ¢1,...,t, € R and define
L : C*[RR —R"

L(f) = (Fta),- f(tn))-

Show that L is linear.
(7) Let tp € R and define

L : C*([RR)—R"
L(f) = (f(t),(Df)(to),.., (D" ' F) (t0)) -

Show that L is linear.
(8) Let A € Maty, x, (R) be symmetric, i.e., the (i, ) entry is the same as the
(j,) entry. Show that A = 0 if and only if tr (42) = 0.
(9) For each n > 2 find A € Mat,,x,, (F) such that A # 0, but tr (Ak) =0 for
all k=1,2, ...
(10) Find A € Matayo (R) such that tr (A%) < 0.

7. Linear Maps as Matrices

We saw above that quite a lot of linear maps can be defined using matrices. In
this section we shall reverse this construction and show that all abstractly defined
linear maps between finite dimensional vector spaces come from some basic matrix
constructions.

To warm up we start with the simplest situation.

LEMMA 3. Assume V' is one dimensional over F, then any L : V — V is of the
form L = Aly.

PROOF. Assume z is a basis. Then L (x;) = Ax; for some A\ € F. Now any
x=axy so L(z) =L (axy) =al (x1) = alry = Az as desired. O

This gives us a very simple canonical form for linear maps in this elementary
situation. The rest of the section tries to explain how one can generalize this to
vector spaces with finite bases.

Possibly the most important abstractly defined linear map comes from consid-
ering linear combinations. We fix a vector space V over F and select x1, ..., x,, € V.
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Then we have a linear map

a1 aq
Ll ] = Lo ]
A O

= X109+ F T Oy

The fact that it is linear follows from knowing that L : F — V defined by L () = ax
is linear together with the fact that sums of linear maps are linear. We shall denote
this map by its row matrix

L:[$1 xm]’

where the entries are vectors. Using the standard basis ey, ..., e,, for F™™ we observe
that the entries x; (think of them as column vectors) satisfy

L(e;) = [ T1 o T }ei:xi.

Thus the vectors that form the columns for the matrix for L are the images of the
basis vectors for F™. With this in mind we can show

LEMMA 4. Any linear map L : F™ — V is of the from
L = [ T1 - T }
where x; = L (e;) .
PRrOOF. Define L (e;) = z; and use linearity of L to see that

a1 a1
L : = L [ e1 -+ €em ]
Qm Qm
= L(erar + -+ emapy)
= Len)ar+--+ L(em)am

= [L(el) L(em)}
= [o ]|

In case we specialize to the situation where V' = F™ the vectors 1, ..., x,, really
are n X 1 column matrices. If we write them accordingly

Bui
Z; = )

ﬁni
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then
aq
[ml mm] : = 101+ + T Qm
Ay
[ B Bim
= ap+ -+ Qm
L B Brm
[ Biin Brmm
= : R
L Briaa Brm Cm

[ B+ + Biom

L 5111&1 +eee /Bnmam

_ﬂll o B a1

L Bnl e Bnm QOm
Hence any linear map F”™ — F” is given by matrix multiplication, and the columns
of the matrix are the images of the basis vectors of F™.

We can also use this to study maps V' — W as long as we have bases e, ..., ey,
for V and fy,..., f, for W. Each z € V has a unique expansion

a1
z= el em |
(7%
Soif L : V — W is linear, then
Qi
L@ = L{[e - em]]| :
Qo
.
= [ L(ey) L(enm) }
L Om
ay |
= [ o ]| ]
Om |
where z; = L (e;) . In effect we have proven that
Lole -+ en|=[L(er) -+ Lem) |
if we interpret
[el e e ] : ™ =V,

[L(er) -+ Lew)] @ F">W



28 1. BASIC THEORY

as linear maps.
Expanding L (e;) = z; with respect to the basis for W gives us

B
zi=[fH - fol :
Bri
and
Bii 0 Bim
RS T SRS | B
Buni =+ Bum

This gives us the matriz representation for a linear map V' — W with respect to
the specified bases.

aq
L) = [x1 - zn |
Ay
B - Bim a1
= [ fi o fa } : . : :
Bor o Bum QU
We will often use the terminology
B o Pim
=] s
Bri = Bum
for the matrix representing L. The way to remember the formula for [L] is to use
Lo [ er - em ] = [ L(e1) -+ L(em) ]
= [fl anL].

In the special case where L : V' — V is a linear operator one usually only selects
one basis ey, ..., €,. In this case we get the relationship

Lole - ey ] = [L(er) -+ Lien) |
— [ e1 - ep } [L]
for the matrix representation.
EXAMPLE 17. Let
P,={apg+ait+ -+ ant" : ap,aq,...,a, €F}

be the space of polynomials of degree < n and D : V — V the differentiation
operator

D (oo + art+ -+ ant™) =ay+ - +na,t" L
If we use the basis 1,t,...,.t"™ for V then we see that

D (tF) = k"1
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and thus the (n 4+ 1) X (n + 1) matriz representation is computed via

[ D) D) D(t?) - D(t")]

= [0 1 2t - m" ']
010 0
0 0 2 0
= [1 ¢ ¢ - t"]]0 0 0 0
000 - 0

EXAMPLE 18. Next consider the maps T, S : P, — P41 defined by

T(ao+ait+ -+ a,t") = aot + art? + -+ apt® 1,
n aq 2 Ap n+1
S t+--- t = t+ —t e ———¢ .
(g + it + -+ a,t") aopt + 5 + —l—n I

This time the image space and domain are not the same but the choices for basis
are at least similar. We get the (n+ 2) x (n+ 1) matriz representations

[T TW TE) - T ]
= [t 2 3 ... t”“]
[0 0 0 0]
100 0
010 0
_ 2 13 . n+1
= [1t & ¢ R
; 0
L0 00 1
[S() S@) S - S@") ]
= [t 42 e ]
[0 0 0 0]
100 0
0 1 0 0
— 2 3 .. n+1
= [1 ¢t ¢ ¢ AR IV 1
AR 0
o0 0 o L]

Doing a matrix representation of a linear map that is already given as a matrix
can get a little confusing, but the procedure is obviously the same.

EXAMPLE 19. Let

~
I

O =

N —
=
)
!
=]
)

and consider the basis
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Then
L(l’l) = T,
2

So

EXAMPLE 20. Let
and consider the basis

Then

So

and consider
LA : Matgxz (F) — Matgxg (F)
Ly(X) = AX.
We use the basis E;; for Mat,xn (F) where the ij entry in E;; is 1 and all other
entries are zero. Next order the basis F11, Ea1, F12, Eaa. This means that we think

of Matayo (F) ~ F* were the columns are stacked on top of each other with the first
column being the top most. With this choice of basis we note that

[ La(Ew) La(E2) La(E12) La(Ex) |
[ ABy, AEy ABE;, AEs |

_ a 0 c 0 0 a 0 ¢

a b 0 d 0 0 b 0 d
a c 0 O
b d 0 0

= [ En Exn FEip Ej | 00 a c
0 0 b d

Thus La has the block diagonal form

0 4]
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This problem easily generalizes to the case of n X n matrices, where L4 will have a
block diagonal form that looks like

A0 0
0 A 0
0 O A

EXAMPLE 22. Let L : F™ — F” be a linear map which maps basis vectors to
basis vectors. Thus L (e;) = €q(j), where

o:{l,..,n}—{1,..,n}.

If o is one-to-one and onto then it is called a permutation. Apparently it permutes
the elements of {1,...,n}. The corresponding linear map is denoted L. The matriz
representation of L, can be computed from the simple relationship L, (e;) = €4(;).
Thus the j'" column has zeros everywhere except for a 1 in the o (j) entry. This
means that [Ly] = [8; ;)] . The matriz [L,] is also known as a permutation matrix.

EXAMPLE 23. Let L : V. — V be a linear map whose matrix representation
with respect to the basis x1, T2 is given by

]

We wish to compute the matriz representation of K = 2L? 4+ 3L — 1y. We know
that

[L(@) L) ]=[m MH %]

or equivalently

Thus

K(flfl) = 2L (L (1‘1)) + 3L (ZEl) — 1y (ZEl)
2L (5121) + 31 — 21

2561 + 31}1 — I

= 4,
K (xo) = 2L(L(x2))+3L(z2)— 1y (z2)
2L (2x1 + m2) + 3 (221 + 2) — @2
2 (221 + (221 + x2)) + 3 (221 + x2) — 22
= 14z + 4zq,

and

[ K(21) K(z2) | =] a xQ][é 144]
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Exercises.

(a) Show that 3, #3 +12 3 + ¢ +¢, 13 + 1> +t + 1 form a basis for Ps.
(b) Compute the image of (1,2,3,4) under the coordinate map

(3 B+ B+24+t B+2+t+1]:F' > Py

(c) Find the vector in F* whose image is 4t + 3t% + 2t + 1.
Find the matrix representation for D : P3 — P53 with respect to the basis
A e i 7 A N S AR
Find the matrix representation for

D?>+2D+1:P; — Ps

with respect to the standard basis 1,¢,t2, 3.

If L:V — V is a linear operator on a finite dimensional vector space and
p(t) € F[t], then the matrix representations for L and p (L) with respect
to some fixed basis are related by [p (L)] = p([L]).

Consider the two linear maps L, K : P, — C**! defined by

L(f) = (f(to),s f (tn))
K(f) (f (t), (D) (to) ;- (D" f) (t0)) -

(a) Find a basis po, ..., p, for P, such that K (p;) = e;, where ey, ..., e,
is the canonical basis for C™t1.
(b) Provided t, ..., t, are distinct find a basis qo, ..., ¢, for P, such that

L (qz) = €;.

Let
a C
a=[5 4]
and consider the linear map R4 : Mataoxs (F) — Matoxo (F) defined by

R4 (X) = XA. Compute the matrix representation of this linear maps
with respect to the basis

By = éga
Ey = (1)8a
Ei, = 8(1),
o 38

Compute a matrix representation for L : Mataya (F) — Maty o (F) de-

finedby L(X)=[1 -1]X.

Let A € Maty, xm (F) and E;; the matrix that has 1 in the ¢j entry and is

zero elsewhere.

(a) If E;; € Matgyy, (F), then E;; A € Matyym, (F) is the matrix whose
™" row is the j*™ row of A and all other entries are zero.

(b) If E;; € Mat, i (F), then AE;; € Mat,,x (F) is the matrix whose
4t column is the i*" column of A and all other entries are zero.
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(9) Let e1, ez be the standard basis for C? and consider the two real bases
e1,e9,1€e1,1e3 and ey, ieq, eq,ie2. If A = o+ i is a complex number, then
compute the real matrix representations for Alcz with respect to both
bases.

(10) If L : V — V has a lower triangular representation with respect to the
basis x1, ..., T, then it has an upper triangular representation with respect
to T, ..., x1.

(11) Let V and W be vector spaces with bases ey, ..., e, and fi, ..., fn respec-
tively. Define E;; € hom (V, W) as the linear map that sends e; to f; and
all other eys go to zero, i.e., E;j (ex) = 01 fi-

(a) Show that the matrix representation for E;; is 1 in the ¢j entry and
0 otherwise.

(b) Show that E;; form a basis for hom (V, W) .

(c) f L € hom(V,W), then L =3, . a;; Ey;. Show that [L] = [av;] with
respect to these bases.

8. Dimension and Isomorphism

We are now almost ready to prove that the number of elements in a basis for
a fixed vector space is always the same.

Two vector spaces V and W over F are said to be isomorphic if we can find
linear maps L : V — W and K : W — V such that LK = 1y and KL = 1y. One
can also describe the equations LK = 1y and KL = 1y in an interesting little
diagram of maps

v 5w
T 1y T 1w
v & ow

where the vertical arrows are the identity maps.

We also say that a linear map L : V — W is an isomorphism if we can find
K :W — V such that LK =1y and KL = 1v.

Note that if V4 and V5 are isomorphic and V5 and V3 are isomorphic, then also
V1 and V3 must be isomorphic by composition of the given isomorphisms.

Recall that a map f : S — T between sets is one-to-one or injective if f (x1) =
f (z2) implies that z; = x2. A better name for this concept is two-to-two as pointed
out by R. Arens, since injective maps evidently take two distinct points to two
distinct points. We say that f : S — T is onto or surjective if every y € T is of
the form y = f (x) for some x € S. In others words f (S) = T. A map that is both
one-to-one and onto is said to be bijective. Such a map always has an inverse f—!
defined via f~! (y) = x if f (x) = y. Note that for each y € T such an x exists since
f is onto and that this z is unique since f is one-to-one. The relationship between
fand f~tis fof~'(y) =yand f~lof(z) =x. Observe that f~!: T — S is also
a bijection and has inverse (ffl)f1 = f.

LEMMA 5. V and W are isomorphic if and only if there is a bijective linear
map L:V — W.
The “if and only if” part asserts that the two statements

e V and W are isomorphic.
e There is a bijective linear map L: V — W.
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are equivalent. In other words, if one statement is true, then so is the other.
To establish the Lemma it is therefore necessary to prove two things, namely, that
the first statement implies the second and that the second implies the first.

PRrOOF. If V and W are isomorphic, then we can find linear maps L : V — W
and K : W — V so that LK = 1y and KL = 1y. Then for any y € W

y=1lw(y) = L(K (y)).
Thus y = L (z) if # = K (y). This means L is onto. If L (z1) = L (x2) then
Tr, = 1\/ (1‘1) =KL (Il) =KL (.Z‘Q) = 1\/ (1‘2) = Z3.
Showing that L is one-to-one.
Conversely assume L : V — W is linear and a bijection. Then we have an
inverse map L~! that satisfies Lo L™! = 1y and L™' o L = 1y. In order for

this inverse to be allowable as K we need to check that it is linear. Thus select
aj,ap € Fand yp,y2 € W. Let o, = L™ (y;) so that L (z;) = ;. Then we have

L™ (ayr +agy2) = LM (aL(21) + oL (22))
= L' (L(ayz + axs))

1y (@121 + agza)

a1T1 + Qax2

= o L7 (1) + al ! (y2)

as desired. 0
Recall that a finite basis for V" over F consists of a collection of vectors z1, ..., x,, €
V so that each x has a unique expansion x = i1 + -+ + Ty, a1, ..., a, € F.
This means that the linear map
[:cl S ] F* -V

is a bijection and hence by the above Lemma an isomorphism. We saw in the last
section that any linear map F™ — V must be of this form. In particular, any
isomorphism F" — V gives rise to a basis for V. Since F" is our prototype for
an n-dimensional vector space over F it is natural to say that a vector space has
dimension n if it is isomorphic to F™. As we have just seen, this is equivalent to
saying that V has a basis consisting of n vectors. The only problem is that we don’t
know if two spaces F™ and F"™ can be isomorphic when m # n. This is taken care
of next.

THEOREM 1. (Uniqueness of Dimension) If F™ and F™ are isomorphic over F,
then n = m.

PROOF. Suppose we have L : F™ — F"™ and K : F* — F™ such that LK = 1p»
and KL = lpm. In “Linear maps as Matrices” we showed that the linear maps L

and K are represented by matrices, i.e., L € Mat,x,, (F) and K € Mat,,x, (F).
Thus we have
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O

This proof has the defect of only working when the field has characteristic
0. The result still holds in the more general situation where the characteristic is
nonzero. Other more standard proofs that work in these more general situations
can be found in “Linear Independence” and “Row Reduction”.

We can now unequivocally denote and define the dimension of a vector space
V over F as dimg V = n if V is isomorphic to F™. In case V is not isomorphic to
any F™ we say that V is infinite dimensional and write dimp V = oc.

Note that some vector spaces allow for several choices of scalars and the choice
of scalars can have a rather drastic effect on what the dimension is. For example
dim¢ C = 1, while dimg C = 2. If we consider R as a vector space over Q something
even worse happens: dimgR = oco. This is because R is not countably infinite, while
all of the vector spaces Q" are countably infinite. More precisely, it is possible to
find a bijective map f : N —Q", but, as first observed by G. Cantor, there is no
bijective map f : N — R. Thus the reason why dimg R = oo is not solely a question
of linear algebra but a more fundamental one of having bijective maps between sets.

COROLLARY 2. IfV and W are finite dimensional vector spaces over F, then
hompy (V, W) is also finite dimensional and

dimp homy (V, W) = (dimg W) - (dimp V')

PRrROOF. By choosing bases for V' and W we showed in “Linear Maps as Ma-
trices” that there is a natural map

homg (V, W) — Mat (dimg W) x (dimg v) () o F(dims W)-(dime V),

This map is both one-to-one and onto as the matrix representation uniquely de-
termines the linear map and every matrix yields a linear map. Finally one easily
checks that the map is linear. O

In the special case where V' = W and we have a basis for the n-dimensional
space V the linear isomorphism

homp (V, V) «— Mat,,xn, (F)
also preserves composition and products. Thus for L, K : V — V we have
[LK] = [L] [K].

The extra product structure on the two vector spaces homp (V, V') and Mat,, xr, (F)
make these spaces into so called algebras. Algebras are simply vector spaces that
in addition have a product structure. This product structure must satisfy the
associative law, the distributive law, and also commute with scalar multiplication.
Unlike a field it is not required that all nonzero elements have inverses. The above
isomorphism is what we call an algebra isomorphism.

8.1. Exercises.

(1) Let L, K : V — V satisfy L o K = 0. Is it true that K o L = 07
(2) Let L : V — W be a linear map. Show that L is an isomorphism if and
only if it maps a basis for V' to a basis for W.
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(3) If V is finite dimensional show that V and homp (V,F) have the same
dimension and hence are isomorphic. Conclude that for each x € V — {0}
there exists L € homp (V,F) such that L (z) # 0. For infinite dimensional
spaces such as R over Q it is much less clear that this is true.

(4) Consider the map

K : V — homy (homy (V,F) ,F)
defined by the fact that
K (z) € homg (homg (V,F),F)
is the linear functional on homg (V,F) such that
K (z)(L) = L(x), for L € homg (V,F).

Show that this map is one-to-one when V' is finite dimensional.
(5) Let V # {0} be finite dimensional and assume that

Li,...;Lp:V =V

are linear operators. Show that if Ly 0---0o L, = 0, then L; is not one-to-
one for some i =1,...,n.

(6) Let tg,...,t, € R be distinct and consider P,, C C[t]. Define L : P, —
C"* by L(p) = (p(to),...,p(tn)) . Show that L is an isomorphism. (This
problem will be easier to solve later in the text.)

(7) Let to € F and consider P, C F[t]. Show that L : P,, — F"*1 defined by

L(p)=(p(to),(Dp) (to) .-, (D"p) (t0))

is an isomorphism. Hint: Think of a Taylor expansion at .
(8) Let V be finite dimensional. Show that, if Ly, Ly : F* — V are isomor-
phisms, then for any L : V — V we have

tr(Ll_loLoLl):tr(L;loLoLg).

This means we can define tr (L). Hint: Try not to use explicit matrix
representations.

(9) If V and W are finite dimensional and Ly : V — W and Ly : W — V are
linear, then show that

tr (Ll o Lg) = tr (LQ o Ll)

(10) Construct an isomorphism V' — homp (F, V).

(11) Let V be a complex vector space. Is the identity map V' — V* an isomor-
phism? (See exercises to “Vector Spaces” for a definition of V*).

(12) Assume that V and W are finite dimensional. Define

homyp (V,W) — homy (homy (W,V),F),
L — [A—tr(Aol)].

Thus the linear map L : V' — W is mapped to a linear map homy (W, V) —
F, that simply takes A € homy (W, V) to tr (Ao L). Show that this map
is an isomorphism.

(13) Show that dimg Mat,,x,, (C) = 2n?, while dimg Mata, x2, (R) = 4n?. Con-
clude that there must be matrices in Mato, o, (R) that do not come
from complex matrices in Mat,x, (C). Find an example of a matrix in
Matoxo (R) that does not come from Matyq (C).
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(14) For A = [a;] € Maty,xm, (F) define the transpose A* = [3;;] € Matpxn, (F)
by B;; = aj;. Thus A! is gotten from A by reflecting in the diagonal en-
tries.

(a) Show that A — A’ is a linear map which is also an isomorphism
whose inverse is given by B — B.

(b) If A € Mat, xp, (F) and B € Mat,, ,, (F) show that (AB)" = B! A",

(c) Show that if A € Mat,,x, (F) is invertible, i.e., there exists A=1 €
Mat,, xr (F) such that

AA"Y = ATA = 1pn,
then A! is also invertible and (Af)™ " = (A_l)t.

9. Matrix Representations Revisited

While the number of elements in a basis is always the same, there is unfortu-
nately not a clear choice of a basis for many abstract vector spaces. This necessitates
a discussion on the relationship between expansions of vectors in different bases.

Using the idea of isomorphism in connection with a choice of basis we can
streamline the procedure for expanding vectors and constructing the matrix repre-
sentation of a linear map.

Fix a linear map L : V — W and bases ey, ...,e,, for V and f1,..., f, for W.
One can then encode all of the necessary information in a diagram of maps

L

Vv = W
T T
Fm ﬂ) Fn

In this diagram the top horizontal arrow represents L and the bottom horizontal
arrow represents the matrix for L interpreted as a linear map [L] : F™ — F”. The
two vertical arrows are the basis isomorphisms defined by the choices of bases for
V and W, ie.,

[e1 o em ]| @ F" =V,
[fl fn] P — WL
Thus we have the formulae relating L and [L]
L= [f - falolllofen = em ],
L] = [A - fo] 'oLoler - em].
Note that a basis isomorphism
[:51 xm]:IFmHFm
is a matrix
[ 21 - Zm | € Matyxm (F)

provided we write the vectors z1, ..., x,, as column vectors. As such, the map can
be inverted using the standard matrix inverse. That said, it is not an easy problem
to invert matrices or linear maps in general.

It is important to be aware of the fact that different bases will yield different
matrix representations. To see what happens abstractly let us assume that we have
two bases x1, ..., x, and y1, ...,y for a vector space V. If we think of x4, ...,z, as a
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basis for the domain and ¥y, ...,y, as a basis for the image, then the identity map
1y : V' — V has a matrix representation that is computed via

B o B
[331 xn] = [yl yn] : 5
Bor - B
= [yl yn]B-

The matrix B, being the matrix representation for an isomorphism, is itself invert-
ible and we see that by multiplying by B~' on the right we obtain

[y o a]=[a1 - w]BL

This is the matrix representation for 1‘_/1 = 1y when we switch the bases around.
Differently stated we have

B = [y - y] ' [@ - @],
B = [a& - m ]  [m o um ]

We now check what happens to a vector x € V

aq
T = [x1 mn}
an
Bi1 0 Bin ay
R R | B

IBnl e Bnn Qn
Thus, if we know the coordinates for x with respect to z1, ..., z,, then we immedi-
ately obtain the coordinates for x with respect to yi, ..., y, by changing
a1
an
to
B - Bin a1
Bnl T 6nn Qn

We can evidently also go backwards using the inverse B~! rather than B.
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EXAMPLE 24. In F? let e1,es be the standard basis and y1 = [ (1) } , Yo =

[ ! } . Then Bfl 18 easily found using

1
[(1) 1] = [yl yz]
= [el 62]31_1
- [3
= Byt
By itself requires solving
[61 62} = [y1 yQ]BhOT
o] = loalm
Thus
B = [mn yzrl
_ [1 1}1
01
_ [1 1}
0 1
1

EXAMPLE 25. In F? let z; = [1},332: [1] and y1 = [(1)],3/22

[ 1 } . Then By is found by

By = [y1 92]_1[371 332]

and )
1 _| 5 0
m=[1 1]
Recall that we know
{ g } = ae + Bey
o — o+
= B) 51}1 + B) 5.’62

= (a—=PB)y1+ Bye.
Thus it should be true that

ERREE

—_
| — |
o
vo|4rof |
= @
—_
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which indeed is the case.

Now suppose that we have a linear operator L : V — V. It will have matrix
representations with respect to both bases. First let us do this in a diagram of
maps

F» i> F»
! !
v Lov
T T
F» ﬂ F»
Here the downward arrows come form the isomorphism
[:cl xn]:F"—>V
and the upward arrows are
[y o oy | PPV
Thus
-1
L = [@  an JA[@ o an ]
-1
L= [w - wld[w - ]

We wish to discover what the relationship between A; and As is. To figure this out
we simply note that

[wl xn]Al[xl xn]fl = L
= [n Yn | A2 [ 0 yn |7
Hence
A = [@ - xn]—l[yl oy A - yn}—l[ml e my ]
= B'A,B.

To memorize this formula keep in mind that B transforms from the z1, ..., z,, basis
to the 41, ..., y, basis while B~! reverses this process. The matrix product B~'A4,B
then indicates that starting from the right we have gone from z1, ..., x, to y1, ..., Yn
then used As on the yq,...,y, basis and then transformed back from the yi,...,yn
basis to the z1,...,z, basis in order to find what A; does with respect to the
1, ..., Ty basis.

EXAMPLE 26. We have the representations for
11
with respect to the three bases we just studied earlier in “Linear Maps as Matrices”

[Lier) Les)]=[er ez}[é ;]
(L) L) ] =[a =]} 5]

[ L(y) Ly2) ]=[m yz}{(l) (2)]
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Using the changes of basis calculated above we can check the following relationships

32) - a8 3]
= Lo Lo a]lo 1]
2] - a8 3]

ERERIE N

One can more generally consider L : V — W and see what happens if we
change bases in both V' and W. The analysis is similar as long as we keep in mind
that there are four bases in play. The key diagram evidently looks like

SN

o AL g
! i
v Low
T T

Fm ﬂ) F»
One of the goals in the study of linear operators or just square matrices is to
find a suitable basis that makes the matrix representation as simple as possible.
This is a rather complicated theory which the rest of the book will try to uncover.

9.1. Exercises.
(1) Let V ={acos (t) + Bsin(t) : o, f € C}.

(a) Show that cos (t),sin (t) and exp (it) , exp (—it) both form a basis for
V.

(b) Find the change of basis matrix.

(¢) Find the matrix representation of D : V' — V with respect to both
bases and check that the change of basis matrix gives the correct
relationship between these two matrices.

(2) Let

— 0 -1 ,2_)2
a=[0 3]w

and consider the basis

- 4] [1]

(a) Compute the matrix representation of A with respect to 1, xa.
(b) Compute the matrix representation of A with respect to %ml, %562.
(¢) Compute the matrix representation of A with respect to z1, 21 + 5.
(3) Let eq, es be the standard basis for C? and consider the two real bases eq,
ea, ie1, ieg and ey, ieq, €, ieg. If A = a4+ is a complex number compute
the real matrix representations for Alg2 with respect to both bases. Show
that the two matrices are related via the change of basis formula.
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(4) If zq, ..., z, is a basis for V| then what is the change of basis matrix from
T1,.en, Ty O Ty, ..., 17 How does the matrix representation of an operator
on V change with this change of basis?

(5) Let L : V — V be a linear operator, p(t) € F[t] a polynomial and
K :V — W an isomorphism. Show that

p(KoLoK_l)zKop(L)oK_l.

(6) Let A be a permutation matrix. Will the matrix representation for A still
be a permutation matrix in a different basis?

(7) What happens to the matrix representation of a linear map if the change
of basis matrix is a permutation matrix?

10. Subspaces

A nonempty subset M C V of a vector space V is said to be a subspace if it is
closed under addition and scalar multiplication:

r,yeM — x+yeM,
acFandzeM — axeM

Note that since M # () we can find x € M, this means that 0 = 0.z € M. It is
clear that subspaces become vector spaces in their own right and this without any
further checking of the axioms.

The two properties for a subspace can be combined into one property as follows

ay, a0 € Fand z1,20 € M = aqx1 + asxe € M

Any vector space always has two trivial subspaces, namely, V and {0} . Some
more interesting examples come below.

EXAMPLE 27. Let M; be the it" coordinate axis in F™, i.e., the set consisting
of the vectors where all but the i*" coordinate are zero. Thus

Mi = {(0, veey 0,0éi,o, ,0) Loy € F} .
EXAMPLE 28. Polynomials in T [t] of degree < n form a subspace denoted P,.

EXAMPLE 29. Continuous functions C° ([a,b],R) on an interval [a,b] C R is
evidently a subspace of Func ([a,b],R). Likewise the space of functions that have
derivatives of all orders is a subspace

C* ([a,b],R) C C°([a,b],R).
If we regard polynomials as functions on [a,b] then we have that
R[¢] € C* ([a,b],R).
ExaMmpPLE 30. Solutions to simple types of equations often form subspaces:
{3@1 —2a5+ a3 =0: (a1,a2,a3) € Fg} .
However something like
{3a1 —2a0+az3=1:(a,a9,a3) € ]F3}

does not yield a subspace as it doesn’t contain the origin.
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EXAMPLE 31. There are other interesting examples of subspaces of C> (R, C).
If w > 0 is some fized number then we consider

CX(R,C)={feC®R,C): f(t)=f(t+w) forallt € R}.
These are the periodic functions with period w. Note that
f(@) = exp(i2nt/w)
= cos(2nt/w) + isin (27t /w)
is an example of a periodic function.

Subspaces allow for a generalized type of calculus. That is, we can “add”
and “multiply” them to form other subspaces. However, it isn’t possible to find
inverses for either operation. If M, N C V are subspaces then we can form two new
subspaces, the sum and the intersection:

M+N = {z+y:xz€eMandye N},
MNN = {z:x€Mandze N}.

It is certainly true that both of these sets contain the origin. The intersection is
most easily seen to be a subspace so let us check the sum. If « € F and « € M,
y € N, then we have ax € M, ay € N so

ar+ay=a(x+y)eM+N.

In this way we see that M + N is closed under scalar multiplication. To check that
it is closed under addition is equally simple.

We can think of M + N as addition of subspaces and M N N as a kind of
multiplication. The element that acts as zero for addition is the trivial subspace
{0} as M+{0} = M, while MNV = M implies that V is the identity for intersection.
Beyond this, it is probably not that useful to think of these subspace operations as
arithmetic operations, e.g, the distributive law does not hold.

If S C V is a subset of a vector space, then the span of S is defined as

span (S) = ﬂ M,
sScMcv
where M C V is always a subspace of V. Thus the span is the intersection of all
subspaces that contain S. This is a subspace of V' and must in fact be the smallest
subspace containing S. We immediately get the following elementary properties.

PROPOSITION 2. Let V' be a vector space and S,T C V subsets.
(1) If S C T, then span (S) C span (T).
(2) If M CV is a subspace, then span (M) = M.
(3) span (span (S)) = span (S).
(4) span (S) =span (T) if and only if S C span (T') and T C span (S).

PROOF. The first property is obvious from the definition of span.

To prove the second property we first note that we always have that S C
span (S) . In particular M C span (M) . On the other hand as M is a subspace that
contains M it must also follow that span (M) C M.

The third property follows from the second as span (S) is a subspace.

To prove the final property we first observe that if span (S) C span (T'), then
S C span(T'). Thus it is clear that if span(S) = span(T'), then S C span(T)
and T' C span (S). Conversely we have from the first and third properties that
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if S C span (T), then span (S) C span (span (7)) = span (7). This shows that if
S Cspan (T') and T C span (5), then span (S) = span (T') . O

The following lemma gives an alternate and very convenient description of the
span.

LEMMA 6. (Characterization of span (M) ) Let S C V be a nonempty subset
of M. Then span (S) consists of all linear combinations of vectors in S.

PrOOF. Let C' be the set of all linear combinations of vectors in S. Since
span (S) is a subspace it must be true that C C span (S). Conversely if z,y € C,
then we note that also ax + fy is a linear combination of vectors from S. Thus
ax + By € C and hence C is a subspace. This means that span (S) C C. ]

We say that M and N have trivial intersection provided MNN = {0}, i.e., their
intersection is the trivial subspace. We say that M and N are transversal provided
M + N = V. Both concepts are important in different ways. Transversality also
plays a very important role in the more advanced subject of differentiable topology.
Differentiable topology is the study of maps and spaces through a careful analysis
of differentiable functions.

If we combine the two concepts of transversality and trivial intersection we
arrive at another important idea. Two subspaces are said to be complementary if
they are transversal and have trivial intersection.

LEMMA 7. Two subspaces M, N C V are complementary if and only if each
vector z € V can be written as z = x +y, where x € M andy € N in one and only
one way.

Before embarking on the proof let us explain the use of “one and only one”.
The idea is first that z can be written like that in (at least) one way, the second
part is that this is the only way in which to do it. In other words having found x
and y so that z = x + y there can’t be any other ways in which to decompose z
into a sum of elements from M and N.

PROOF. First assume that M and N are complementary. Since V = M + N
we know that z = x + y for some x € M and y € N. If we have
T1t+Y1=2=T2t Y2
where x1,z9 € M and y1,y2 € N, then by moving each of x5 and y; to the other
side we get
M>xy—x3=1y2—1y1 € N.
This means that
1 — T2 =Y2— Y1 GMQN:{O}
and hence that
1 — T2 =Y2— Y1 =0.
Thus 1 = x5 and y; = y2 and we have established that z has the desired unique
decomposition.
Conversely assume that any z = = + y, for unique x € M and y € N. First
we see that this means V' = M + N. To see that M N N = {0} we simply select
ze€ MNN. Then z=24+0=0+ z where z € M,0€ N and 0 € M,z € N. Since

such decompositions are assumed to be unique we must have that z = 0 and hence
MnN={0}. g
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When we have two complementary subsets M, N C V' we also say that V is a
direct sum of M and N and we write this symbolically as V' = M & N. The special
sum symbol indicates that indeed V' = M 4 N and also that the two subspaces
have trivial intersection. Using what we have learned so far about subspaces we get
a result that is often quite useful.

COROLLARY 3. Let M, N CV be subspaces. If M NN = {0}, then
M+N=M&N
and
dim (M + N) = dim (M) 4 dim (N)

We also have direct sum decompositions for more than two subspaces. If
My, ...,M C V are subspaces we say that V is a direct sum of Mj,..., M} and
write

V=M®&: &M
provided any vector z € V can be decomposed as
Zo= X1t Tk,
r1 € Ml,...,.’bk € My,

in one and only one way.
Here are some examples of direct sums.

ExXAMPLE 32. The prototypical example of a direct sum comes from the plane.
Where V = R? and

M = {(z,0) : z € R}
is the 15 coordinate azis and
N ={(0,y):y €R}

the 2™ coordinate axis.

EXAMPLE 33. Direct sum decompositions are by mo means unique, as can be
seen using V = R? and

M ={(z,0): z e R}
and
N={(y,y):y e R}

the diagonal. We can easily visualize and prove that the intersection is trivial. As
for transversality just observe that

(@,y) = (x—y,0) + (1,9).-
ExXAMPLE 34. We also have the direct sum decomposition
F*"=M ®- - & M,,

where
M; = {(0, ..., 0, 05,0, 70) oy € F} .
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ExaMPLE 35. Here is a more abstract example that imitates the first. Partition
the set

{1, 2, 7’I’L} = {il, ...,ik} @] {jl, ...,jn,k}
into two complementary sets. Let

vV = F",
M = {(al""’a”)an:ajl:"':aj",kZO},
N = {(a1,.nan)iq; = =a; =0}.
Thus
M = M, & &M,
N = M, &---aM,, ,,

and F* = M @ N. Note that M is isomorphic to F¥ and N to F"~*, but with
different indices for the axes. Thus we have the more or less obvious decomposition:
F™ = F* xF*—*. Note, however, that when we use F¥ rather than M we do not think
of F¥ as a subspace of F" as vectors in F¥ are k-tuples of the form (o, , ..., ) -
Thus there is a subtle difference between writing F™ as a product or direct sum.

EXAMPLE 36. Another very interesting decomposition is that of separating func-
tions into odd and even parts. Recall that a function f: R — R is said to be odd,
respectively even, if f(—t) = —f(t), respectively f(—t) = f(t). Note that con-
stant functions are even, while functions whose graphs are lines through the origin
are odd. We denote the subsets of odd and even functions by Func®d? (R,R) and
Func® (R, R). It is easily seen that these subsets are subspaces. Also Func®® (R, R)N
Func® (R,R) = {0} since only the zero function can be both odd and even. Finally
any f € Func (R,R) can be decomposed as follows

f (t) = fev (t) + fodd (t) )

t)+ f (=t
t)— f(—t
fualyy = 1010
A specific example of such a decomposition is
e = cosh (t)+ sinh (¢),
t -t
cosh (t) = i,
2
) et —et
sinh (t) = 5

If we consider complex valued functions Func (R, C) we still have the same concepts
of even and odd and also the desired direct sum decomposition. Here, another
similar and very interesting decomposition is the Fuler formula

e = cos(t) +isin(t)
it —it
cos(t) = %,
it —it
sin(t) = ——°
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Some interesting questions come to mind with the definitions encountered here.
What is the relationship between dimp M and dimp V' for a subspace M C V7 Do
all subspaces have a complement? Are there some relationships between subspaces
and linear maps?

At this point we can show that subspaces of finite dimensional vector spaces
do have complements. This result will be used to prove several other important
theorems in the chapter.

THEOREM 2. (Existence of Complements) Let M C V be a subspace and assume
that V- = span{x1,...,x,}. If M # V, then it is possible to choose x; ..., z;, such
that

k

V=M ®span{x;,, ...,z }
PRrOOF. Successively choose z;,, ..., z;, such that
Ty % Ma
xi, ¢ M +span{z;},

ziy, ¢ M +span{zi,...zi_,}.

This process can be continued until

V =M +span{z;,, ..., T;, }
and since

span{zy,...,x,} =V
we know that this will happen for some k < n. It now only remains to be seen that
{0} = M Nspan{xz;,, ..., xi, } -

To check this suppose that

x € M Nspan{z;,, ..., %, }

and write
T =0y iy + ooy, € M.
If o, =--- =y, =0, there is nothing to worry about. Otherwise we can find the
largest [ so that «;, # 0. Then
LI S+t Li T, , +x, €M
;, i Q;,

which implies the contradictory statement that
x;, € M + span {9:1-1, "'3$il71} .
|

This theorem shows that dim (M) < dim (V') as long as we know that both M
and V are finite dimensional. To see this, first select a basis yi, ...,y for M and
then z;,,...,x;, as a basis for a complement to M using a basis z1,...,z, for V.
Putting these two bases together will then yield a basis yi, ..., y1, iy, ..., 4, for
V. Thus | + k = dim (V), which shows that | = dim (M) < dim (V). Thus the
important point lies in showing that M is finite dimensional. We will establish this
in the next section.
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10.1. Exercises.

(1)

Show that

S={L:R*—>R*:L(1,2,3)=0, (2,3)=L(z) for some z € R?}

(11)

is not a subspace of hom (R3, ]R2) . How many linear maps are there in S7
Find a one dimensional complex subspace M C C? such that R2N M =
{0}
Let L:V — W be a linear map and N C W a subspace. Show that
L' (N)={zeV:L(z)€ N}

is a subspace of V.
Is it true that subspaces satisfy the distributive law

Mﬂ(Nl—FNQ) =MNN;+MnNNy?
Show that if V' is finite dimensional, then hom (V, V) is a direct sum of
the two subspaces M =span{ly} and N = {L:tr L =0}.
Show that Mat,,«, (R) is the direct sum of the following three subspaces
(you also have to show that they are subspaces)

I = span{lgn},
Sy = {A:trA:()andAt:A},
A = {A:A'=—4A}.

Let My,...,M; & V be proper subspaces of a finite dimensional vector
space and N C V a subspace. Show that if N C M; U---U My, then
N C M; for some i. Conclude that if IV is not contained in any of the
M;s, then we can find € N such that z ¢ My, ...,z ¢ M.
Assume that V. = N & M and that x,...,z; form a basis for M while
Tkt1, ..., Ty, form a basis for N. Show that z1,...,z, is a basis for V.
An affine subspace A C V of a vector space is a subspace such that affine
linear combinations of vectors in A liein A, ie., if a1 +--- 4+ a, = 1 and
T1,..,Tp € A, then a1z + - - + a,z, € A.
(a) Show that A is an affine subspace if and only if there is a point z¢g € V'
and a subspace M C V such that
A=xo+M={zo+z:2€ M}.
(b) Show that A is an affine subspace if and only if there is a subspace
M C V with the properties: 1) if x,y € A, then x —y € M and 2) if
x € Aand z € M, then x + z € A.
(c) Show that the subspaces constructed in parts a. and b. are equal.
(d) Show that the set of monic polynomials of degree n in P,, i.e., the
coefficient in front of t" is 1, is an affine subspace with M = P,,_1.
Show that the two spaces below are subspaces of CS2 (R, R) that are not
equal to each other

Vi = {bysin(t) + basin(2t) + bgsin (3t) : by, be,bs € R},

Vo = {bisin(t) 4 bysin® (t) + bssin® (¢) : by, bo, bg € R}.
Let T C C52 (R, C) be the space of complex trigonometric polynomials,
i.e., the space of functions of the form

ao+alcost+-~~+akcoskt+blsint+~-+bksinkt,
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where aq, ..., ax, b1, ...,bx € C.
(a) Show that T is also equal to the space of functions of the form

ap + agcost + -+ ay cos (kt) + By sint + - - - + 3, sin (kt)

where «q, ..., ak, 81, ..., B € C.
(b) Show that T is also equal to the space of function of the form

c_exp (—ikt) + -+ + c_q exp (—it) + co + c1 exp (it) + - - - + ¢ exp (ikt) ,

where c_g, ...,cx € C.
(12) If M ¢ V and N C W are subspaces, then M x N C V x W is also a
subspace.
(13) If A € Maty, xn, (F) has tr (A) = 0, show that

A=ABy —BiA +---+ A,,By, — BnAm
for suitable A;, B; € Mat,, x,, (F). Hint: Show that
M =span{XY —Y X : X,Y € Mat, x, (F)}

has dimension n? — 1 by exhibiting a suitable basis.
(14) Let L : V — W be a linear map and consider the graph

Gr={(z,L(z)):xeV}CV xW

(a) Show that G, is a subspace.

(b) Show that the map V' — G, that sends z to (z, L (z)) is an isomor-
phism.

(c) Show that L is one-to-one if and only if the projection Py : VxW —
W is one-to-one when restricted to Gr..

(d) Show that L is onto if and only if the projection Py : V x W — W
is onto when restricted to Gp.

(e) Show that a subspace N C V x W is the graph of a linear map
K : V. — W if and only if the projection Py : V x W — V is an
isomorphism when restricted to N.

(f) Show that a subspace N C V x W is the graph of a linear map
K:VoWifandonly if Vx W =Na ({0} x W).

11. Linear Maps and Subspaces

Linear maps generate a lot of interesting subspaces and can also be used to
understand certain important aspects of subspaces. Conversely the subspaces as-
sociated to a linear map give us crucial information as to whether the map is
one-to-one or onto.

Let L : V — W be a linear map between vector spaces. The kernel or nullspace
of L is

ker (L) =N(L)={z €V :L(z) =0} =L"1(0).
The image or range of L is
im(L)=R(L)=L(V)={yeW :y=L(x) for some x € V}.
Both of these spaces are subspaces.

LEMMA 8. ker (L) is a subspace of V and im (L) is a subspace of W.
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PROOF. Assume that aq, s € F and that 1,29 € ker (L), then
L(ajz1 + asze) = a1 L (x1) + aoL (z2) = 0.
More generally, if we only assume 1,22 € V, then we have
a1 L (z1) + asL (z2) = L (11 + agzs) € im (L).

This proves the claim. (I

The same proof shows that L (M) = {L (z) : © € M} is a subspace of W when
M is a subspace of V.

LEMMA 9. L is one-to-one if and only if ker (L) = {0} .

PrOOF. We know that L (0-0) = 0-L (0) = 0, so if L is one-to-one we have that
L (x) =0 = L(0) implies that = 0. Hence ker (L) = {0} . Conversely assume that
ker (L) = {0} . If L (x1) = L (x2), then linearity of L tells us that L (z1 — z3) = 0.
Then ker (L) = {0} implies 1 — z2 = 0, which shows that =1 = z. O

If we have a direct sum decomposition V = M @& N, then we can construct what
is called the projection of V onto M along N. The map F : V — V is defined as
follows. For z € V we write z = x + y for unique = € M, y € N and define

E(z) =u.
Thus im (E) = M and ker (F) = N. Note that
Iy —E)(z)=z—z=y.

This means that 1y — F is the projection of V onto N along M. So the decomposition
V = M @ N, gives us similar decomposition of 1y using these two projections:
ly =FE+ (1ly — E).

Using all of the examples of direct sum decompositions we get several examples
of projections. Note that each projection E onto M leads in a natural way to a
linear map P : V — M. This map has the same definition P (z) = P (z +y) = «,
but it is not E as it is not defined as an operator V' — V. It is perhaps pedantic
to insist on having different names but note that as it stands we are not allowed to
compose P with itself as it doesn’t map into V.

We are now ready to establish several extremely important results relating
linear maps, subspaces and dimensions.

Recall that complements to a fixed subspace are usually not unique, however,
they do have the same dimension as the next result shows.

LeEMMA 10. (Uniqueness of Complements) If V.= M; & N = My @ N, then M,
and My are isomorphic.

ProOF. Let P : V — My be the projection whose kernel is N. We contend
that the map P|y;, : M7 — Ms is an isomorphism. The kernel can be computed as

ker (Ply,) = {x€ M;:P(z)=0}
{reVi:P(x)=0}NM,
= NNM

— {0}
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To check that the map is onto select x5 € Ms. Next write zo = x1 + y1, where
x1 € M; and y; € N. Then

€2

|
el BiavAlav
A/g/—\/—\
_|_
o)
5

This establishes the claim. O

THEOREM 3. (The Subspace Theorem) Assume that V' is finite dimensional
and that M C 'V is a subspace. Then M is finite dimensional and

dim[F M S dim[p V.
Moreover if V.= M & N, then
dimyp V = dimp M + dimp N.

PROOF. If M =V we are finished. Otherwise select a basis z1, ..., x,, for V.
Then after using the basis to extract a complement to M in V we have that

V. = M®span{z;,....Ti },

V = span{zj,,...,z; } ®span{z;, ...,z },
where k 4+ =m and

{1,..,n} ={j1, -y i} U {in, oy in} -
The previous result then shows that M and span{z;,, ...,z , } are isomorphic. Thus
dimg M =1 < m.
In addition we see that if V.= M @ N, then the previous result also shows that
dimp N = k.

This proves the theorem. (Il

THEOREM 4. (The Dimension Formula) Let V' be finite dimensional and L :
V — W a linear map, then im (L) is finite dimensional and

dimp V = dimg ker (L) + dimp im (L) .

PRrROOF. We know that dimgker (L) < dimp V' and that it has a complement
N C V of dimension k = dimp V' — dimp ker (L) . Since N Nker (L) = {0} the linear
map L must be one-to-one when restricted to N. Thus L|y : N — im (L) is an
isomorphism. This proves the theorem. [l

The number nullity (L) = dimg ker (L) is called the nullity of L and rank (L) =
dimyp im (L) is known as the rank of L.

COROLLARY 4. If M is a subspace of V and dimp M = dimp V = n < oo, then
M=V.

PrOOF. If M # V there must be a complement of dimension > 0. This gives
us a contradiction with The Subspace Theorem. (]
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COROLLARY 5. Assume that L : V — W and dimpV = dimpW = n < oo.
Then L is an isomorphism if either nullity (L) = 0 or rank (L) = n.

PRrROOF. The dimension theorem shows that if either nullity(L) = 0 or rank (L) =
n, then also rank (L) = n or nullity(L) = 0. Thus showing that L is an isomor-
phism. O

Knowing that the vector spaces are abstractly isomorphic can therefore help us
in checking when a given linear map might be an isomorphism.

Many of these results are not true in infinite dimensional spaces. The differen-
tiation operator D : C* (R,R) — C* (R, R) is onto and has a kernel consisting of
all constant functions. The multiplication operator T': C*° (R,R) — C*° (R, R) on
the other hand is one-to-one but is not onto as T'(f) (0) = 0 for all f € C*>* (R,R).

COROLLARY 6. If L : V — W is a linear map between finite dimensional spaces,
then we can find bases eq, ...,en, for V and fi,..., fn for W so that

L(er) = fi,
Lex) = fa,
L(ex+1) = 0,
L(en) = 6,

where k = rank (L) .

PRrOOF. Simply decompose V' = ker (L) @ M. Then choose a basis ey, ..., e for
M and a basis egy1, ..., €, for ker (L) . Combining these two bases gives us a basis
for V. Then define f; = L(ey),..., fr = L(ex). Since L|ps : M — im (L) is an
isomorphism this implies that fi, ..., fx form a basis for im (L). We then get the
desired basis for W by letting fx+1, ..., fn be a basis for a complement to im (L) in
wW. O

While this certainly gives the nicest possible matrix representation for L it isn’t
very useful. The complete freedom one has in the choice of both bases somehow also
means that aside from the rank no other information is encoded in the matrix. The
real goal will be to find the best matrix for a linear operator L : V' — V with respect
to one basis. In the general situation L : V. — W we will have something more to
say in case V and W are inner product spaces and the bases are orthonormal.

Finally it is worth mentioning that projections as a class of linear operators on
V' can be characterized in a surprisingly simple manner.

THEOREM 5. (Characterization of Projections) Projections all satisfy the func-
tional relationship E? = E. Conversely any E : V — V that satisfies E*> = E is a
projection.

PrROOF. First assume that E is the prjection onto M along N coming from
V=M®&N.Ifz=x+yec M®N, then

E*(z) = E(E(2))

= E(z)
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Conversely assume that E? = E, then E (x) = z provided x € im (E). Thus we
have

im(E)Nker(E) = {0}, and

im (F) +ker (E) = im(F)® ker (F)
From The Dimension Theorem we also have that

dim (im (F)) + dim (ker (E)) = dim (V).

This shows that im (E) +ker (E) is a subspace of dimension dim (V') and hence
all of V. Finally if we write z = z+y, € im (F) and y € ker (E), then E (x +y) =
E (z) = z, so E is the projection onto im (E) along ker (E). O

In this way we have shown that there is a natural identification between direct
sum decompositions and projections, i.e., maps satisfying E? = F.

11.1. Exercises.
(1) Let L, K : V — V satisfy Lo K = 1y.
(a) If V is finite dimensional, then K o L = 1y.
(b) If V is infinite dimensional give an example where K o L # 1y.

(2) Let M C V be a k-dimensional subspace of an n-dimensional vector space.
Show that any isomorphism L : M — F* can be extended to an isomor-
phism L : V — F", such that E\M = L. Here we have identified F* with
the subspace in " where the last n — k coordinates are zero.

(3) Let L:V — W be a linear map.

(a) If L has rank k show that it can be factored through F¥, i.e., we can
find K7 : V — F* and K5 : F* — W such that L = Ky K.

(b) Show that any matrix A € Mat,x, (F) of rank k can be factored
A = BC, where B € Mat, «i (F) and C € Matyx,, (F).

(¢) Conclude that any rank 1 matrix A € Mat,,xm, (F) looks like

aq

A= o ([ B B ]

« n

(4) If Ly : Vi = Vi and Ly : Vo — V3 are linear show.

(a) im (Lg o L1) C im (L) . In particular, if Ly o L is onto then so is La.

(b) ker (L1) C ker (Lg o L1) . In particular, if Ly o L; is one-to-one then
sois L.

(c) Give an example where L o Ly is an isomorphism but L; and Lo are
not.

(d) What happens in c. if we assume that the vector spaces all have the
same dimension?

(e) Show that

rank (L1) + rank (Lg) — dim (V3) < rank(Lgo Ly)
< min{rank (L;),rank (Ls)}.
(f) Show that
max {dim (ker L1),dim (ker Lo)} < dim (ker Ly o L;)
< dim (ker Ly) + dim (ker L)
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(5) Let L: V — V be a linear operator on a finite dimensional vector space.
(a) Show that L = Ay if and only if L (z) € span{z} for all z € V.
(b) Show that L = Aly if and only if Lo K = K o L for all K €
hom (V, V).
(c) Show that L = Aly if and only if Lo K = K o L for all isomorphisms
K: V-V
(6) Show that two 2-dimensional subspaces of a 3-dimensional vector space
must have a nontrivial intersection.
(7) (Dimension formula for subspaces) Let My, My C V be subspaces of a
finite dimensional vector space. Show that

Conclude that if M; and M5 are transverse then M; N My has the “ex-
pected” dimension (dim (M) + dim (Mz)) — dim V. Hint: Use the dimen-
sion formula on the linear map L : My x My — V defined by L (z1,z2) =
x1 — x2. Alternatively select a suitable basis for M7 4+ Ms by starting with
a basis for My N Ms.

(8) Let M C V be a subspace. Show that the subset of homp (V, W) con-
sisting of maps that vanish on M is a subspace of dimension dimyp W -
(dim[p V- diIH]F M) .

(9) Let My, My C V be subspaces of a finite dimensional vector space.

(a) If M1 N My = {0} and dim (M;) + dim (M) > dimV, then V =
M © M.
(b) If My + My = V and dim (M;) + dim (M3) < dimV, then V =
My & Ms.
(10) Let A € Mat,, «; (F) and consider L 4 : Mat;x., (F) — Mat,,xm (F) defined
by L (X) = AX. Find the kernel and image of this map.
(11) Let

L L L L _ L
028V, BV =3...7 5y, =30

be a sequence of linear maps such that im (L;) C ker (L;i1) for i =
0,1,...,n — 1. Note that Ly and L,, are both the trivial linear maps with
image {0} . Show that
D> (-1)'dimV; = Y (—1)° (dim (ker (L;)) — dim (im (L;_1))).
i=1 i=1
Hint: First try the case where n = 2.
(12) Show that the matrix
[0 1
10 0

as a linear map satisfies ker (L) = im (L) .
(13) Show that
[0 0
a 1 ]

defines a projection for all @ € F. Compute the kernel and image.
(14) For any integer n > 1 give examples of linear maps L : C* — C™ such
that
(a) C™ =ker (L) @ im (L) is a nontrivial direct sum decomposition.
(b) {0} #ker (L) Cim(L).
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(15) For P, C R[t] and 2(n+ 1) points ag < by < a1 < by < -+ < a, < by,
consider the map L : P, — R"*! defined by

L_ [y (1) dt

bo—ao Jag

L(p) =

b
bnian fan p (t) dt

Show that L is a linear isomorphism.

12. Linear Independence

In this section we shall finally study the concepts of linear dependence and
independence as well as how they tie in with kernels and images of linear maps.

Assume that L : F™ — V is the linear map defined by [ Tl o T }
We say that x1, ..., 2, are linearly independent if ker (L) = {0} . In other words
T1,..., Ty are linearly independent if

100+ + Ty, =0

implies that
o)==y =0.
The image of the map L can be identified with span{z1,...,z,,} and is described
as
{r100 + -+ e s a1, .., €F}L

Note that 1, ..., 2., is a basis precisely when ker (L) = {0} and span {z1, ..., z;,} =
V. The notions of kernel and image therefore enter our investigations of dimension
in a very natural way. Finally we say that x1, ..., ., are linearly dependent if they
are not linearly independent, i.e., we can find aq,...,a,, € F not all zero so that
Tia1+- -+ Tmay, = 0. In the next section we shall see how Gauss elimination helps
us decide when a selection of vectors in F" is linearly dependent or independent.

We give here a characterization of linear dependence that is quite useful in both
concrete and abstract situations.

LeMMA 11. (Characterization of Linear Dependence) Let x4, ....,x, € V. Then
T1,..., Ty 98 linearly dependent if and only if either x1 = 0, or we can find a smallest
k > 2 such that zy is a linear combination of x1, ..., Tk_1.

PRrOOF. First observe that if ;1 = 0, then 1z, = 0 is a nontrivial linear com-
bination. Next if
Tp =011+ -+ Qp—1Tk—1,

then we also have a nontrivial linear combination
o1z + -+ o121+ (1) z = 0.

Conversely, assume that x1, ..., z,, are linearly dependent. Select a nontrivial linear
combination such that

arry + -+ apx, =0.

Then we can pick k so that o # 0 and ag41 = -+ = o, = 0. If k£ = 1, then we
must have 1 = 0 and we are finished. Otherwise
aq A1
T =——"—T1— "~ Thk—1

A Ak
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Thus the set of ks with the property that zj is a linear combination of x1, ..., zg_1
is a nonempty set that contains some integer > 2. Now simply select the smallest
integer in this set to get the desired choice for k. O

This immediately leads us to the following criterion for linear independence.

COROLLARY 7. (Characterization of Linear Independence) Let x1, ....,z, € V.
Then x1, ..., x, 1s linearly independent if and only if x1 # 0 and for each k > 2 we
have

x) ¢ span {1, ..., Tp_1}.

EXAMPLE 37. Let A € Mat,x, (F) be an upper triangular matriz with k
nonzero entries on the diagonal. We claim that the rank of A is > k. Select the k

column vectors x1, ...,z that correspond to the nonzero diagonal entries from left
to right. Thus 1 # 0 and

x; ¢ span{zy,...,x;—1}

since x; has a nonzero entry that lies below all of the nonzero entries for x1,...,x;_1.
Using the dimension formula we see that dim (ker (A)) <n — k.
1t is possible for A to have rank > k. Consider, e.g.,

1 00
A=10 0 1
0 0 0

This matriz has rank 2, but only one nonzero entry on the diagonal.

Recall from “Subspaces” that we can choose complements to a subspace by
selecting appropriate vectors from a set that spans the vector space.

COROLLARY 8. If V =span{zy,...,z,}, then we can select
Ly ooy iy € {1y 00y T}
forming a basis for V.
PrROOF. We use M = {0} and select z;,, ..., z;, such that

23
Liy 7£ 07
Liy §é Span {xil} )

T, ¢ span{xil,...,xikfl},

V = span{x;, ..,z }.
The previous corollary then shows that x;,, ..., z;, are linearly independent. ([l

A more traditional method for establishing that all bases for a vector space
have the same number of elements is based on the following classical result, often
called simply the Replacement Theorem.

THEOREM 6. (Steinitz Replacement) Let y1, ..., ym € V be linearly independent
and V = span{z1,....,xn}. Then m < n and V has a basis of the form y1, ..., Ym,
Ziyy -, Ti, Where l <n —m.
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PRrROOF. First observe that we know we can find z;,, ..., z;, such that span {z;, , ..
is a complement to M = span{y1,...,ym}. Thus y1, ..., Ym, Zi, ..., T;, must form
a basis for V.

The fact that m < dim (V) follows from the Subspace Theorem and that n >
dim (V') from the above result. This also shows that I <n — m.

It is, however, possible to give a more direct argument that does not use the
Subspace Theorem. Instead we use a simple algorithm and the proof of the above
corollary.

Observe that y;, x1, ..., x,, are linearly dependent as y; is a linear combination
of 1, ..., ©,,. As y; # 0 this shows that some x; is a linear combination of the
previous vectors. Thus also

1

SPAn {Y1, L1y ooy Tie1, Tig1s oy T} = V.

Now repeat the argument with ys in place of y; and y1, z1, ..., Ti—1, Tit1, ..., Tn
in place of x1, ..., ;. Thus

Y2, Y1, L1y ooy Tj—15 Lig1y -y Ty

is linearly dependent and since y2,y; are linearly independent some x; is a linear
combination of the previous vectors. Continuing in this fashion we get a set of n
vectors

Ymy -5 Y1, £Cj1, ...l’jn_m
that spans V. Finally we can use the above corollary to eliminate vectors to obtain

a basis. Since y,, ..., y1 are linearly independent we can do this by just trowing
away vectors from x;,, ..., Zj,_,.. O

This theorem leads us to a new proof of the fact that any two bases must contain
the same number of elements. It also shows that a linearly independent collection
of vectors contains fewer vectors than a basis, while a spanning set contains more
elements than a basis.

Finally we can prove a remarkable threom for matrices, that we shall revisit
many more times in this text.. The column rank of a matrix is the dimension of
the column space, i.e., the space spanned by the column vectors. In other words,
it is the maximal number of linearly independent column vectors. This is also the
dimension of the image of the matrix viewed as a linear map. Similarly the row
rank is the dimension of the row space, i.e., the space spanned by the row vectors.
This is the dimension of the image of the transposed matrix.

THEOREM 7. (The Rank Theorem) Any n X m matriz has the property that
the row rank is equal to the column rank.

PRrROOF. Let A € Maty,x.m (F) and 21, ..., 2, € F” be a basis for the column
space of A. Next write the columns of A as linear combinations of this basis
B Bim
A = [ T1 o Ty
Bri Brm
= [ T1 o Ty ]B

By taking transposes we see that

At:Bt[ Ty o Xy ]t.

.,$Z‘l}
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But this shows that the columns of A%, i.e., the rows of A, are linear combinations
of the r vectors that form the columns of B!

B Br1
51m 67"171
Thus the row space is spanned by r vectors. This shows that there can’t be more

than r linearly independent rows.
A similar argument shows that the reverse inequality also holds. (|

There is a very interesting example associated to the rank theorem..

ExXAMPLE 38. Let ty,...,t, € F be distinct. We claim that the vectors

1 1
tl tn
yeeny

are a basis for F™. To show this we have to show that the rank of the corresponding
matric

1 1 ... 1
t1 to tn
1 -1 _
AT
is n. The simplest way to do this is by considering the row rank. If the rows are
linearly dependent, then we can find oy, ....,an—1 € F so that
1 ty =t
1 ts ot
@ . + ay . + a1 . =0.
1 tn tn=t

Thus the polynomial
p(t) =ao+ont+- -+ an 1"

has ty, ...,t, as roots. In other words we have a polynomial of degree < n — 1 with
n roots. This is not possible unless ay = -+ = ap_1 = 0 (see also “Polynomials”
in chapter 2).

The criteria for linear dependence lead to an important result about the powers
of a linear operator. Before going into that we observe that there is a connection
between polynomials and linear combinations of powers of a linear operator. Let
L :V — V be a linear operator on an n-dimensional vector space. If

p(t) =apth + -+ agt + g eF[t,
then
p(L) =apl" +- + oL+ agly
is a linear combination of
Lk .., L 1y.

Conversely any linear combination of L*, ..., L, 1y must look like this.
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Since hom (V, V) has dimension n? it follows that 1y, L, L2, ..., L™  are linearly
dependent. This means that we can find a smallest positive integer k& < n? such
that 1y, L, L?, ...., L* are linearly dependent. Thus 1y, L, L?, ...., L! are linearly
independent for [ < k and

L¥ €span{ly,L,L* ..,LF '},
In the next chapter we shall show that & < n. The fact that
Lk e span{lV,L,Lz, ....,kal}

means that we have a polynomial

pp () =t* + a1 t* T 4+ ant + g
such that
pr, (L) =0.
This is the so called minimal polynomial for L. Apparently there is no polynomial
of smaller degree that has L as a root.
Recall that we characterized projections as linear operators that satisfy L? = L
(see “Linear Maps and Subspaces”). Thus nontrivial projections are precisely the

operators whose minimal polynomial is ju; (t) = t> — t. Note that teow trivial
projections 1y and Oy have minimal polynomials y,,, =t — 1 and pg,, = ¢.

EXAMPLE 39. Let

Al
4 = 1 0 A
A 0 0
B = 0 X 1
| 0 0 A
[0 -1 0
Cc = 1 0 0
0 0 =1
We note that A is not proportional to 1y, while
2
2 Al
2 =15,
A 2a
Tl N

Al 2| 1 0
2o 526 1]

g (£) =2 =20+ A2 = (t — \)2.

The calculation for B is similar and evidently yields the same minimal polynomial
pg () =12 —2Xt + A\ = (£ — \)°.

Finally for C we note that

Thus
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Thus
pe (1) =t + 1.

In the theory of differential equations it is also important to understand when
functions are linearly independent. We start with vector valued functions x; (¢), ...,
xg (t) : I — F™, where I is any set, but usually an interval. These k functions are
linearly independent provided they are linearly independent at just one point ¢y € I.
In other words if the k vectors z1 (o), ..., 2 (to) € F™ are linearly independent
then the functions are also linearly independent. The converse statement is not
true in general. To see why this is we give a specific example.

ExamMpPLE 40. It is an itmportant fact from analysis that there are functions
¢ (t) € C= (R,R) such that
0 t<0

these can easily be pictured, but it takes some work to construct them. Given this
function we consider z1,x2 : R — R? defined by

aw = [0

m () = {mo—t) ]

When t < 0 we have that x1 = 0 so the two functions are linearly dependent on
(—00,0]. When t > 0, we have that x2 (t) = 0 so the functions are also linearly
dependent on [0,00). Now assume that we can find A1, A2 € R such that

A1 (8) + Aozo (8) =0 for all t € R.
If t > 1, this implies that
0 = Mz (t) + Aaxo (t)

IHRH

A

Thus A1 = 0. Similarly we have fort < —1
0 = Mz (t) + Aaxo (t)

HRH
- W[l

So Ao = 0. This shows that the two functions x1 and xo are linearly independent as
functions on R even though they are linearly dependent for each t € R.

Next we want to study what happens in the spacial case where n = 1, i.e.,
we have functions zy (t),...,zx (t) : I — F. In this case the above strategy for
determining linear independence at a point completely fails as the values lie in a
one dimensional vector space. We can, however, construct auxiliary vector valued
functions by taking derivatives. In order to be able to take derivatives we have to
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assume either that I = F and z; € T [t] are polynomials with the formal derivatives
defined as in exercise 2 in “Linear Maps” or that I C R is an interval, F = C, and
x; € C*(1,C). In either case we can then construct new vector valued functions

21y ooy 2 - I — FF by listing x; and its first k — 1 derivatives in column form
a— | P=®

(DF1a;) (t)

First we claim that x1,...,zp are linearly dependent if and only if zq,..., 2z, are
linearly dependent. This quite simple and depends on the fact that D™ is linear.
We only need to observe that

T1 Tk
Dxq Dzxy,
o121+ oz = o . + oy .
l)k’—ll,1 Dk_lxk
[ o QT
a1 Dxq ap Dz,
= + PN +

a1 D 1gy apDF gy

O W s e T % 3
arDxi + -+ apDxy,

| a1 D ley + -+ Dy

a1y + -+ Ty
D (0411‘1 + -+ Oékl‘k)

i DF =Y (aymy + -+ agry,)

Thus o121 + -+ + agzr = 0 if and only if ayzy + -+ - + agxr = 0. This shows the
claim. Let us now see how this works in action.

EXAMPLE 41. Let x; (t) = exp (A\;t) , where A\; € C are distinct. Then

exp (Ait) 1
)\i exp ()\lt) )\i
2 (t) = . = . exp (Ait) .
AL exp (A\it) At
Thus exp (A1t) , ...,exp (Axt) are linearly independent as we saw above that the vec-
tors
1 1
A1 Ak
Ab-1 )\k;l
k

are linearly independent.
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EXAMPLE 42. Let xy (t) = cos(kt), k = 0,1,2,...,n. In this case direct check
will involve a matrixz that has both cosines and sines in alternating rows. Instead
we can use Euler’s formula that
Loake 1 ik
%€ 5¢ -

We know from the previous exercise that the 2n + 1 functions exp (ikt), k =
0,%£1,...,4+n are linearly independent. Thus the original n + 1 cosine functions
are also linearly independent.

Note that if we added the n sine functions yi (t) = sin (kt), k = 1, ...,n we have
2n + 1 cosine and sine functions that also become linearly independent.

xy (t) = cos (kt) =

12.1. Exercises.

(1) (Characterization of Linear Independence) Show that x1,...,x, are lin-
early independent in V if and only if

span {1, ..., L4y ooy Tp } # span{xy, ..., Ty}

foralli=1,...n .
(2) (Characterization of Linear Independence) Show that xi,...,z, are lin-
early independent in V' if and only if

span{x1,...,x,} =span{z1} @ --- ®span{z,}.

(3) Assume that we have nonzero vectors z1, ...,z € V and a direct sum of
subspaces
My+--+My=M @ - & M.

Show that if x; € M;, then x1, ..., x; are linearly independent.

(4) Show that t3 + 2 + 1,#3 + t2 + ¢, + t + 2 are linearly independent in
P;. Which of the standard basis vectors 1,t,t2,¢> can be added to this
collection to create a basis for P37

(5) If po(t),...,pn (t) € Ft] all have degree < n and all vanish at o, then
they are linearly dependent.

(6) Assume that we have two fields F C L, such as R C C.

(a) If 21, ..., 2, form a basis for F, then they also form a basis for L™.

(b) If 21, ...,z are linearly independent in F™ then they are also linearly
independent in L™,

(¢) If x1,...,x are linearly dependent in F™, then they are also linearly
dependent in L™.

(d) If 21, ...,z € F™, then

dimy spang {1, ..., ¢ } = dimy, spany {21, ..., Tk} .
(e) If M C F™ is a subspace, then
M = span;, (M) NEF™.
(f) Let A € Matyxm (F). Then A : F™ — F™ is one-to-one (resp. onto)
if and only if A : L™ — IL™ is one-to-one (resp. onto).
(7) Show that dimp V' < n if and only if every collection of n + 1 vectors is
linearly dependent.

(8) Assume that xy, ...,z span V and that L : V — V is a linear map that
is not one-to-one. Show that L (z1), ..., L (z)) are linearly dependent.
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(9) If x1, ...,z are linearly dependent, then L (1), ..., L (z)) are linearly de-

pendent.
(10) If L(x1),...,L (k) are linearly independent, then 1, ...,z are linearly
independent.
(11) Let A € Maty, xsm, (F) and assume that y1,...,ym €V
where 1, ..., z, form a basis for V.
(a) Show that y1,...,yn span V if and only if A has rank n. Conclude
that m > n.

(b) Show that yi, ..., ym are linearly independent if and only if ker (4) =
{0} . Conclude that m < n.

(¢) Show that yi, ..., ym form a basis for V if and only if A is invertible.
Conclude that m = n.

13. Row Reduction

In this section we give a brief and rigorous outline of the standard procedures
involved in solving systems of linear equations. The goal in the context of what
we have already learned is to find a way of computing the image and kernel of a
linear map that is represented by a matrix. Along the way we shall reprove that
the dimension is well-defined as well as the dimension formula for linear maps.

The usual way of writing n equations with m variables is

anxi+ -+ amTm = b

ap1T1 + -+ CpmTm = bn

where the variables are x1, ..., Z,,,. The goal is to understand for which choices of
constants a;; and b; such systems can be solved and then list all the solutions. To
conform to our already specified notation we change the system so that it looks like

anéy +-+amé, = 5
an1£1 + -+ anmgm = ﬁn
In matrix form this becomes
Q11 0 Oam 51 61
(07751 et AOnpm fn Bn

and can be abbreviated to
Az =b.

As such we can easily use the more abstract language of linear algebra to address
some general points.

ProPOSITION 3. Let L:V — W be a linear map.
(1) L(x)=10b can be solved if and only if b € im (L) .
(2) If L (x0) =b and © € ker (L), then L (z + x¢) = b.
(3) If L(x0) =b and L (z1) = b, then xg — 1 € ker (L) .
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Therefore, we can find all solutions to L (z) = b provided we can find the kernel
ker (L) and just one solution xg. Note that the kernel consists of the solutions to
what we call the homogeneous system: L (x) = 0.

With this behind us we are now ready to address the issue of how to make the
necessary calculations that allow us to find a solution to

Q11 o Oam 51 51

(6751 T Qpm, fn ﬁn

The usual method is through elementary row operations. To keep things more
conceptual think of the actual linear equations

041151 + 4+ Oélmgm = 51

anlé-] + 4+ CVnmfm = Bn

and observe that we can perform the following three operations without changing
the solutions to the equations:

(1) Interchanging equations (or rows).
(2) Adding a multiple of an equation (or row) to a different equation (or row).
(3) Multiplying an equation (or row) by a nonzero number.

Using these operations one can put the system in row echelon form. This is
most easily done by considering the augmented matriz, where the variables have
disappeared

@11 0 O1m 51

An1 Tt Onm Bn

and then performing the above operations, now on rows, until it takes the special
form where

(1) The first nonzero entry in each row is normalized to be 1. This is also
called the leading 1 for the row.

(2) The leading 1s appear in echelon form, i.e., as we move down along the
rows the leading 1s will appear farther to the right.

The method by which we put a matrix into row echelon form is called Gauss
elimination. Having put the system into this simple form one can then solve it by
starting from the last row or equation.

When doing the process on A itself we denote the resulting row echelon matrix
by Ayef. There are many ways of doing row reductions so as to come up with a row
echelon form for A and it is quite likely that one ends up with different echelon
forms. To see why consider

O~ =
—_ = O
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This matrix is clearly in row echelon form. However we can subtract the second
row from the first row to obtain a new matrix which is still in row echelon form:

1 0 -1
01 1
0 01

It is now possible to use the last row to arrive at

100
010
0 0 1

The important information about A,er is the placement of the leading 1 in each
row and this placement will always be the same for any row echelon form. To
get a unique row echelon form we need to reduce the matrix using Gauss-Jordan
elimination. This process is what we just performed on the above matrix A. The
idea is to first arrive at some row echelon form Ao and then starting with the
second row eliminate all entries above the leading 1, this is then repeated with row
three, etc. In this way we end up with a matrix that is still in row echelon form,
but also has the property that all entries below and above the leading 1 in each
row are zero. We say that such a matrix is in reduced row echelon form. If we start
with a matrix A, then the resulting reduced row echelon form is denoted A;pef. For
example, if we have

0141 0 3 -1
A — 0001 -2 5 —4
10000 0 0 1 |
0000 O O O
then we can reduce further to get a new reduced row echelon form
0140 2 -20
A .- 0001 -2 5 0
T 0000 0 0 1

0000 0O 0 O

The row echelon form and reduced row echelon form of a matrix can more
abstractly be characterized as follows. Suppose that we have an n X m matrix
A= [ T1 o T } , where 1, ..., ,, € F™ correspond to the columns of A. Let
€1,...,e, € F™ be the canonical basis. The matrix is in row echelon form if we can
find 1 < j; < -+ < jx <m, where k < n, such that

Tj, = e+ Y e
i<s

for s =1,..., k. For all other indices j we have

z; = 0,if j <7,
xzj € span{ei,...,es}, if jo < j < jey1,
z; € span{er,...,ex}, if ji <j.

Moreover, the matrix is in reduced row echelon form if in addition we assume that

Tj, = €s.

s
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Below we shall prove that the reduced row echelon form of a matrix is unique,
but before doing so it is convenient to reinterpret the row operations as matrix
multiplication.

Let A € Mat,, xm (F) be the matrix we wish to row reduce. The row operations
we have described can be accomplished by multiplying A by certain invertible n x n
matrices on the left. These matrices are called elementary matrices. The define
these matrices we use the standard basis matrices Ey; where the kl entry is 1 while
all other entries are 0. The matrix product Ej;A is a matrix whose k" row is the
™" row of A and all other rows vanish.

(1) Interchanging rows k and I: This can be accomplished by the matrix
multiplication Iy; A, where

i = Bu+Ewx+ Y Ei
ikl
= Ep+ Ey+ lgn — Ex — Ey

or in other words the ij entries a;; in Iy satisfy ap = oy = 1, oy = 1
if i # k,l, and a;; = 0 otherwise. Note that Iy = Ijx and Iylj = 1pn.
Thus Iy, is invertible.

(2) Multiplying row [ by o € F and adding it to row k # [. This can be
accomplished via Ry () A, where

Ry (o) = 1pn + aEy

or in other words the ij entries a;; in Ry (o) look like oy = 1, oy = a,
and «;; = 0 otherwise. This time we note that Ry (o) Ry (—a) = 1pn.

(3) Multiplying row k by a € F— {0} . This can be accomplished by M, («) A,
where

M, (Oz) abL, + Z E;
ik

= 1pn + (a — 1) Eix

or in other words the ij entries ay; of My () are gy = o, a; = 1 if
i # k, and a;; = 0 otherwise. Clearly M}, (o) Mj, (a_l) = 1pn.
Performing row reductions on A is now the same as doing a matrix multipli-
cation PA, where P € Mat, «, (F) is a product of the elementary matrices. Note
that such P are invertible and that P~ is also a product of elementary matrices.
The elementary 2 x 2 matrices look like.

Ly = (1)(1) ;
Ra = |32,
Ro1 () = -Cly (1)-7
wiw = [50]
M (a) = (1) g_
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If we multiply these matrices onto A from the left we obtain the desired operations:
0 1 Q11 Q2 Q21 Q22
I A = =
12 [ 1 0 } [ Q21 (22 Qi1 012

Rqo (a)A: |: 1 :| |: 11 a2 :| — |: ai; + aag; a2 + aaog :|

0 Qa1 Q92

10 aip o Qi2 Qi 012
R A= =
21 (@) [ a 1 ] [ Q1 Qo2 } [ aay; + a1 aag + ag ]
A (0% 0 a11 a12 _ [6765R1 a9
0 1 Qo1 Qg2 Q21 Qoo

wonr=[3 2] 22 ][

Qo1 (22 a1 (oo

We can now move on to the important result mentioned above.

THEOREM 8. (Uniqueness of Reduced Row Echelon Form) The reduced row
echelon form of an n X m matrix is unique.

PROOF. Let A € Mat,, x, (F) and assume that we have two reduced row eche-
lon forms

PA = [ Ty o XTm ] ,
QA = [y - ym |,
where P, @ € Mat,,«, (F) are invertible. In particular, we have that

R[a1  am]=[m - tm]

where R € Mat,,x,, (F) is invertible. We shall show that z; = y;, ¢ = 1,...,m by
induction on n.

First observe that if A = 0, then there is nothing to prove. If A # 0, then both
of the reduced row echelon forms have to be nontrivial. Then we have that

Ty = €1,
xr; = 0fori<iy
and
Y, = €1,
y; = 0fori<jp.

The relationship Rx; = y; shows that y; = 0 if x; = 0. Thus j; > ¢;. Similarly
the relationship y; = R~ 'a; shows that 2; = 0 if y; = 0. Hence also j; < i;. Thus
i1 = j1 and x;, = e; = y;,;. This implies that Re; = e; and R~ le; = e;. In other

words
1 0
3

where R' € Mat(,_1)x(n—1) (F) is invertible. In the special case where n = 1, we are
finished as we have shown that R = [1] in that case. This anchors our induction.
We can now assume that the induction hypothesis is that all (n — 1) x m matrices
have unique reduced row echelon forms.
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If we define x}, y; € F*"~1 as the last n — 1 entries in z; and y;, i.e.,

P [ 51/1' } 7
T
o U1;
v =[]

then we see that [ #f --- af, | and [} --- ), | are still in reduced row

echelon form. Moreover, the relationship

[yl e ym]:R[xl e -Tm}
now implies that
Vi1 Uim _ o
Y, y;n} = [n Ym |
= R [ T1 - T }
— 1 0 511 e glm
0 R e a,
_ §i o Eim
Rz, -+ Rz,
Thus
The induction hypothesis now implies that a} = y;. This combined with
[ Yy 0 Ym ] = |: o :|
it Um
_ §n o Eim
R'zy -+ Rz,
— [ T P T }
shows that z; = y; for allt =1,...,m. (I

We are now ready to explain how the reduced row echelon form can be used to
identify the kernel and image of a matrix. Along the way we shall reprove some of
our earlier results. Suppose that A € Mat,, x, (F) and

PA = At
= [$1 o I ]»

where we can find 1 < j; < --- < ji < m, such that
es fori=1,....k

z; = 0,if j <y,

z; € spanfer,...,es}, if js < j < jst1,

xz; € span{eq,...,ex}, if ji < j.
Finally let 41 < --- < 4,k be the indices complementary to j1, .., jk, i.e.,

{1,ccom} = {J1, ey e U {1y ooy bk } -

We are first going to study the kernel of A. Since P is invertible we see that Az =0

if and only if A, erz = 0. Thus we need only study the equation A,..;z = 0. If we
let © = (&4,...,&,,), then the nature of the equations A,c;x = 0 will tell us that
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(15, &,,) are uniquely determined by §; ,...,§; . To see why this is we note
that if we have Ay.er = [a;], then the reduced row echelon form tells us that

& &+t &, = 0,

é-]k + Oékilfil + -+ akim—kfim_k = 0,
Thus &, ,...,§;, have explicit formulas in terms of §
bit more information: If we take (av, ..., am—k) € F™ ™% and construct the unique
solution x = (&4, ...,§,,) such that §; = a1, ..., §; = amy_p then we have actually
constructed a map

& - We actually get a

217

F™*  —  ker (Awef)
(a17--~7am—k) - (fla-"agm)'
We have just seen that this map is onto. The construction also gives us explicit
formulas for §;, ,...,§;, that are linear in §; =, ..., §; . = am—g. Thus the map
is linear. Finally if (¢4, ...,&,,) = 0, then we clearly also have (aq, ..., dm—r) = 0, so

the map is one-to-one. All in all it is a linear isomorphism.
This leads us to the following result.

THEOREM 9. (Uniqueness of Dimension) Let A € Maty,xm (F), if n < m, then
ker (A) # {0}. Consequently F* and F™ are not isomorphic.

Proor. Using the above notation we have £ < n < m. Thus m — k > 0.
From what we just saw this implies ker (A) = ker (A;ef) # {0}. In particular
it is not possible for A to be invertible. This shows that F™ and F™ cannot be
isomorphic. (Il

Having now shown that the dimension of a vector space is well-defined we can
then establish the dimension formula. Part of the proof of this theorem is to identify
a basis for the image of a matrix. Note that this proof does not depend on the result
that subspaces of finite dimensional vector spaces are finite dimensional. In fact for
the subspaces under consideration, namely, the kernel and image, it is part of the
proof to show that they are finite dimensional.

THEOREM 10. (The Dimension Formula) Let A € Mat,,xm, (F), then
m = dim (ker (4)) 4+ dim (im (A)) .
PROOF. We use the above notation. We just saw that dim (ker (4)) = m — k,

so it remains to check why dim (im (A)) = k?
If

AZ[ZA o Um ]7
then we have y; = P~ 'x;, where
Arref:[$1 .Tm}
We know that each
xj € span{ei,...,ex} = span{x; ...,z .},
thus we have that
y; € span{yj,, ..., Yj, I -
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Moreover, as P is invertible we see that y;,,...,y; must be linearly independent
as e, ..., e are linearly independent. This proves that y;,,...,y;, form a basis for
im (A). O

COROLLARY 9. (Subspace Theorem) Let M C F™ be a subspace. Then M is
finite dimensional and dim (M) < n.

PROOF. Recall from “Subspaces” that every subspace M C F" has a com-
plement. This means that we can construct a projection as in “Linear Maps and
Subspaces” that has M as kernel. This means that M is the kernel for some
A € Mat,, «y, (F). Thus the previous theorem implies the claim. ([l

It might help to see an example of how the above constructions work.

EXAMPLE 43. Suppose that we have a 4 X 7 matriz

01 41 0 3 -1
A 00 01 -2 5 —4
00 0 0 O 0 1
00 0 0 O 0 1
Then
01 40 2 =20
Ao = 00 01 -2 5 0
e 00 0 0 O 0 1
00 0 0 O 0 O

Thus j1 = 2, jo = 4, and js = 7. The complementary indices are i, = 1, i3 = 3,
i3 = 5, and 14 = 6. Hence

1 1 -1
im (A) = span 8 , (1) , _14
0 0 1
and i i
31
—483 — 285 + 28,
&3
ker (A) = 285 — 5&q :61,85,85:86 €T
&5
&6
. 0 -

Our method for finding a basis for the image of a matrix leads us to a different
proof of the rank theorem. The column rank of a matrix is simply the dimension
of the image, in other words, the maximal number of linearly independent column
vectors. Similarly the row rank is the maximal number of linearly independent
rows. In other words, the row rank is the dimension of the image of the transposed
matrix.

THEOREM 11. (The Rank Theorem) Any n X m matriz has the property that
the row rank is equal to the column rank.
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PrOOF. We just saw that the column rank for A and A, are the same and
equal to k with the above notation. Because of the row operations we use, it is clear
that the rows of A,.f are linear combinations of the rows of A. As the process can
be reversed the rows of A are also linear combinations of the rows A,..s. Hence A
and A,.f also have the same row rank. Now A, has k linearly independent rows
and must therefore have row rank k. O

Using the rank theorem together with the dimension formula leads to an inter-
esting corollary.

COROLLARY 10. Let A € Mat, x,, (F). Then
dim (ker (A)) = dim (ker (At)) ,
where A € Mat, x,, (F) is the transpose of A.

We are now going to clarify what type of matrices P occur when we do the
row reduction to obtain PA = A,.. If we have an n X n matrix A with trivial
kernel, then it must follow that A, = 1pn. Therefore, if we perform Gauss-Jordan
elimination on the augmented matrix

Allpn,
then we end up with an answer that looks like
B.

The matrix B evidently satisfies AB = lgn. To be sure that this is the inverse we
must also check that BA = 1y». However, we know that A has an inverse A~1. If
we multiply the equation AB = 1g» by A~! on the left we obtain B = A~'. This
settles the uncertainty.

The space of all invertible n x n matrices is called the general linear group and
is denoted by:

Gl,, (F) = {A € Mat,,x, (F) : 3 A7" € Mat,,, (F) with AA™' = A7"A =1p. }.

This space is a so called group. This means that we have a set G and a product
operation G x G — G denoted by (g, h) — gh. This product operation must satisfy
(1) Associativity: (g192) g3 = g1 (g293) -
(2) Existence of a unit e € G such that eg = ge = g.
(3) Existence of inverses: For each g € G there is g~ € G such that gg~! =
g lg=ce
If we use matrix multiplication in Gl (F) and 1g» as the unit, then it is clear
that G, (F) is a group. Note that we don’t assume that the product operation in
a group is commutative, and indeed it isn’t commutative in Gl,, (F) unless n = 1.
If a possibly infinite subset S C G of a group has the property that any element
in G can be written as a product of elements in S, then we say that S generates G.
We can now prove

Lpn

THEOREM 12. The general linear group Gl,, (F) is generated by the elementary
matrices Iy, Ry (a), and My («).

PROOF. We already observed that Iy, Rg («), and My («) are invertible and
hence form a subset in Gi,, (F). Let A € Gl,, (F), then we know that also A=! €
Gl,, (F). Now observe that we can find P € G, (F) as a product of elementary ma-
trices such that PA~! = 1gn. This was the content of the Gauss-Jordan elimination
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process for finding the inverse of a matrix. This means that P = A and hence A is
a product of elementary matrices. ([l

As a corollary we have:

COROLLARY 11. Let A € Mat,x,, (F), then it is possible to find P € Gl,, (F)
such that PA is upper triangular:

Bin Bz -+ DB

0
PA= : :622 - :62"

0 0 - B

Moreover
ker (A) = ker (PA)
and ker (A) # {0} if and only if the product of the diagonal elements in PA is zero:

511»322"'5nn =0.

We are now ready to see how the process of calculating A,..f using row opera-
tions can be interpreted as a change of basis in the image space.

Two matrices A, B € Mat,,x, (F) are said to be row equivalent if we can find
P e Gl, (F) such that A = PB. Thus row equivalent matrices are the matrices
that can be obtained from each other via row operations. We can also think of row
equivalent matrices as being different matrix representations of the same linear map
with respect to different bases in F”. To see this consider a linear map L : F™ — F"
that has matrix representation A with respect to the standard bases. If we perform
a change of basis in F" from the standard basis fi,..., f, to a basis yi, ..., y, such
that

[ w)=[h - 5P

i.e., the columns of P are regarded as a new basis for F”, then B = P~' A is simply
the matrix representation for L : F”* — F™ when we have changed the basis in F”
according to P. This information can be encoded in the diagram

A

e A

| 1pm | 1gn
T - 1)

T 1pm TP
o B2, o

When we consider abstract matrices rather than systems of equations we could
equally well have performed column operations. This is accomplished by multiply-
ing the elementary matrices on the right rather than the left. We can see explicitly
what happens in the 2 x 2 case:

o117 (12 | 0 1 Q12 011
Al5 = =
12 [ a1 Qg | { 10 } { Qi Qg1 }

ARp2 (o) = [ a2 } } _ [ a1 aoqy + o2 ]
-

Qo1 (g2 Q21 Qi) + g2

O = O

a1 + ooy Qi
Qo1 (g2

Qo1 + ros (a2
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| a1 a2 a 0| | acqr a2

AM, (o) = [ Q21 Q22 ] [ 0 1 ] B [ Qoo Q22 }
AM; (o) = a1 Qg2 L 0| _| o aap
2 Q21 Q22 0 « Q21 Qg

The only important and slightly confusing thing to be aware of is that, while Ry; («)
as a row operation multiplies row [ by a and then adds it to row k, it now multiplies
column k by a and adds it to column [ as a column operation. This is because AFE}y;
is the matric whose "' column is the k" column of A and whose other columns
vanish.

Two matrices A, B € Mat,,x,, (F) are said to be column equivalent if A = BQ
for some @ € Gl,, (F). According to the above interpretation this corresponds to a
change of basis in the domain space F™.

More generally we say that A, B € Mat,, xm (F) are equivalent if A = PBQ,
where P € G, (F) and Q € Gl,,, (F). The diagram for the change of basis then
looks like

F™ AL,
| Ipm 1 1pn
Fm™ L, pn
TQ7! TP
g B g

In this way we see that two matrices are equivalent if and only if they are matrix
representations for the same linear map. Recall from the previous section that any
linear map between finite dimensional spaces always has a matrix representation of

the form

1 0 0

0 1 :
0 0

L0 0 0 0

where there are k£ ones in the diagonal if the linear map has rank k. This implies

COROLLARY 12. (Characterization of Equivalent Matrices) A, B € Maty, x, (F)
are equivalent if and only if they have the same rank. Moreover any matriz of rank
k is equivalent to a matriz that has k ones on the diagonal and zeros elsewhere.

13.1. Exercises.

(1) Find bases for kernel and image for the following matrices.

1 3 5 1
(a) 6 0
7 2

(b)

— O R O N
AW N RO
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1 0 1
(¢ O 1 0
10 1
[ oy O e 0
Q21 Qg2
(d) . . ] . In this case it will be necessary to discuss
L ¥n1 Qn2 -+ Qnpp

whether or not a;; =0 for each i =1, ..., n.
(2) Find A~! for each of the following matrices.

0001
0010
@101 00
1.0 0 0|
[0 0 0 17
1000
® 101 00
00 1 0|
[0 1 0 17
100 0
© 10 01 0
0001

(3) Let A € Mat,,x, (F). Show that we can find P € Gl,, (F) that is a product
of matrices of the types I;; and R;; (o) such that PA is upper triangular.
(4) Let A = Mat,x, (F). We say that A has an LU decomposition if A = LU,
where L is lower triangular with 1s on the diagonal and U is upper trian-
gular. Show that A has an LU decomposition if all the leading principal
minors are invertible. The leading principal k£ x k& minor is the k£ x k
submatrix gotten from A by eliminating the last n — k rows and columns.
Hint: Do Gauss elimination using only R;; («).
(5) Assume that A = PB,where P € Gl, (F)
(a) Show that ker (A) = ker (B).
(b) Show that if the column vectors yi,,...,y;, of B form a basis for
im (B), then the corresponding column vectors z;, , ..., z;, for A form
a basis for im (A4).
(6) Let A € Maty,xm (F).
(a) Show that the m x m elementary matrices I;;, R;; (o) , M; (o) when
multiplied on the right correspond to column operations.
(b) Show that we can find @ € Gl,, (F) such that AQ is lower triangular.
(¢) Use this to conclude that im (A) = im (AQ) and describe a basis for
im (A).
(d) Use @ to find a basis for ker (A) given a basis for ker (AQ) and
describe how you select a basis for ker (AQ) .
(7) Let A € Mat,, xn, (F) be upper triangular.
(a) Show that dim (ker (4)) < number of zero entries on the diagonal.
(b) Give an example where dim (ker (A)) < number of zero entries on the
diagonal.
(8) In this exercise you are asked to show some relationships between the
elementary matrices.
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(EL) Show that Mi (OL) = Iz‘ij (O() Iji-
(b) Show that R;; (o) = M; (™) Ry; (1) M; (av) .
(C) Show that Iij = Rl’j (—1) Rj‘ (1) Rij (—1) Mj (—1) B
(d) Show that Ry () = IxiljjRij (o) IjiIix,, where in case i =k or j =k
we interpret Iy, = Ij; = lpn.
(9) A matrix A € G, (F) is a permutation matriz if Ae; = ey(;) for some
bijective map (permutation)

o:{l,..,n} —{1,...,n}.

(a) Show that
A= B,
i=1

(b) Show that A is a permutation matrix if and only if A has exactly
one entry in each row and column which is 1 and all other entries are
Z€ero.

(¢) Show that A is a permutation matrix if and only if it is a product of
the elementary matrices I;;.

(10) Assume that we have two fields F C L, such as R C C, and consider
A € Maty,xm (F). Let A, € Mat,xsm (L) be the matrix A thought of as
an element of Mat,, ., (L) . Show that dimp (ker (A)) = dimy, (ker (AL))
and dimp (im (A4)) = dimy, (im (Ar)). Hint: Show that A and Ay, have the
same reduced row echelon form.

(11) Given a;; € F for ¢ < j and 4,5 = 1, ...,n we wish to solve

Si_ g
T

(a) Show that this system either has no solutions or infinitely many so-
lutions. Hint: try n = 2,3 first.

(b) Give conditions on «;; that guarantee an infinite number of solutions.

(¢) Rearrange this system into a linear system and explain the above
results.

14. Dual Spaces*

For a vector space V over F we define the dual vector space V' = hom (V,TF) as
the set of linear functions on V. One often sees the notation V* for V'. However,
we have reserved V* for the conjugate vector space to a complex vector space.
When V is finite dimensional we know that V' and V' have the same dimension. In
this section we shall see how the dual vector space can be used as a substitute for
an inner product on V in case V doesn’t come with a natural inner product (see
chapter 3 for the theory on inner product spaces).

We have a natural dual pairing V x V' — F defined by (x, f) = f (z) forz € V
and f € V'. We are going to think of (x, f) as a sort of inner product between x
and f. Using this notation will enable us to make the theory virtually the same
as for inner product spaces. Observe that this pairing is linear in both variables.
Linearity in the first variable is a consequence of using linear functions in the second
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variable. Linearity in the second variable is completely trivial:

(az+ By, f) = [flaz+By)
= af (@) +8f(y)
= a f)+8yf),
(@, af +Bg) = (af+Bg)(x)
= af(z)+ Py (z)
= a(z,f)+6(z9).
We start with our construction of a dual basis, these are similar to orthonormal
bases. Let V have a basis 1, ..., 2, and define linear functions f; by f; (z;) = ;5.
Thus (z;, f;) = fj () = 045.

EXAMPLE 44. Recall that we defined dz’ : R® — R as the linear function such
that dz' (ej) = 0;, where eq,...,e, is the canonical basis for R"™.Thus dx’ is the
dual basis to the canonical basis.

PROPOSITION 4. The vectors fi, ..., fn for V' form a basis called the dual basis
of 1, ..., Tn. Moreover for x € V and f € V' we have the expansions
v = (2, fi)zr+ -+ (2, fn) T,
f = (xlaf)f1++(mn7f)fn

PRrOOF. Consider a linear combination a f1 + - - - + o fr,. Then
(xianfi+ - tanfn) = o (@, fi) +- o+ an (@i, fo)
= Q4.
Thus a; = 0if ey f1 + -+ + anfrn = 0. Since V and V’ have the same dimension
this shows that fi,....f, form a basis for V’. Moreover, if we have an expansion
f=a1f1+ -+ anfn, then it follows that «; = (x;, f) = f (x;) .
Finally assume that = 8,21 + --- + 8,,2,. Then
(z,fi) = (Bizr+- + By, fi)
61 (l‘lafi) + e +ﬂn (xn,fz)
= Bia
which is what we wanted to prove. (I
Next we define annihilators, these are counter parts to orthogonal complements.
Let M C V be a subspace and define the annihilator to M in V as the subspace
MP C V' given by
M° = {feV':(z,f)=0foralze M}
= {feV':f(z)=0forallz e M}
= {feV':f(M)={0}}
= {fEV/Zf|M=O}.
Using dual bases we can get a slightly better grip on these annihilators.

ProPOSITION 5. If M C V is a subspace of a finite dimensional space and
T1,..., Ty 1S G basis for V such that

M =span{zy,....,Tm},
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then
M° = span {fm—‘rh ceey fn}
where f1, ..., frn is the dual basis. In particular we have
dim (M) + dim (M°) = dim (V) = dim (V).

ProoF. If M =span{xy,...,zm}, then fi41,..., fn € M° by definition of the
annihilator as each of fy,11, ..., f, vanish on the vectors z1, ..., x,,. Conversely take
f€M?and expand it f =0 fi + -+ apfn. If 1 <7 <m, then

0= (2 f) = .
So f = amiy1fims1 + - + an frn as desired. O
We now wish to establish the reflezive property. This will allow us to go from
V' back to V itself rather than to (V') = V. Thus we have to find a natural
identification V' — V. There is, indeed a natural linear map that takes each z € V/

to a linear function on V' defined by ev, (f) = (x, f) = f(z). To see that it is
linear observe that

(ax + By, f) = flaz+ By)
= af(z)+Bf (y)
= a(xf)+B8(f).

Evidently we have defined ev, in such a way that

(x,f) = (freva).

Next note that if V' is finite dimensional, then the kernel of x — ev, is {0} . To
prove this we select a dual basis fi, ..., f, for V/ and observe that since ev, (f;) =
(z, f;) records the coordinates of x it is not possible for x to be in the kernel unless
it is zero. Finally we use that dim (V) = dim (V') = dim (V") to conclude that this
map is an isomorphism. Thus any element of V" is of the form ev, for a unique
zeV.

The first interesting observation we make is that if fy, ..., f, is dual to x1, ..., x,,
then evy,,...,evy, is dual to fi,..., f, as

eva, (f;) = (xi, fj) = 045

If we agree to identify V' with V i.e., we think of = as identified with ev,, then we
can define the annihilator of a subspace N C V'’ as

N° = {zeV:(z,f)=0forall fe N}

= {xeV:f(z)=0forall fe N}.

We then claim that for M C V and N C V' we have M° = M and N° = N.
Both identities follow directly from the above proposition about the construction
of a basis for the annihilator.

Next we observe an interesting relationship between annihilators and the dual
spaces of subspaces.

PROPOSITION 6. Assume that the finite dimensional space V.= M @& N, then
also V! = M° ® N° and the restriction maps V' — M’ and V' — N’ give isomor-
phisms

M° =~ N/,
N° =~ M.
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PROOF. Select a basis z1,...,z, for V such that
M = span{zi,..,Tm},
N = span{Tmt1,..yTn}.

Then let f1,..., f, be the dual basis and simply observe that

M° = span{fmi1,-s fn},
N? = span{fi,..., fm}.
This proves that V' = M° & N°. Next we note that
dim (M°) = dim (V) — dim (M)
= dim (N)
= dim(N').

So at least M° and N’ have the same dimension. What is more, if we restrict
fm+1, .y fn to N, then we still have that (z;, f;) = d;; for j = m+1,...,n. As
N = span{zp41,...,Tn}, this means that f,,11|n,..., fu|y form a basis for N’.
The proof that N° ~ M’ is similar. O

The main problem with using dual spaces rather than inner products is that
while we usually have a good picture of what V' is we rarely get a good description
of the dual space. Thus the constructions mentioned here should be thought of as
being theoretical and strictly auxiliary to the developments of the theory of linear
operators on a fixed vector space V.

Below we consider a few examples of constructions of dual spaces.

EXAMPLE 45. Let V = Maty,xm (F), then we can identify V' = Maty, xn, (F).
For each A € Mat,xn, (F), the corresponding linear function is

fa(X)=tr(AX) =tr(XA).

EXAMPLE 46. If V is a finite dimensional inner product space then f, (x) =
(z|ly) defines a linear function and we know that all linear functions are of that
form. Thus we can identify V' with V. Note however that in the complex case
y — fy is not complex linear. It is in fact conjugate linear, i.e., fr, = Xfy. Thus
V' is identified with V* where V.= V* as real vector spaces but in V* we have the
modified scalar multiplication \xx = Ax. This conforms with the idea that the inner
product defines a bilinear paring on V- x V* via (z,y) — (x,y) that is linear in both
variables!

EXAMPLE 47. If we think of V as R with Q as scalar multiplication, then it is
not at all clear that we have any linear functions f : R — Q. In fact the Aziom of
Choice has to be invoked in order to show that they ezist.

EXAMPLE 48. Finally we have an exceedingly intereting infinite dimensional
examples wehere the dual gets quite a bit bigger. Let V = F [t] be the vector space
of polynomials. We have a natural basis 1,t,t%,.... Thus a linear map f :F[t] — F
is determined by it values on this basis a, = f(t"). Coversely given an infinite
sequence ap,aq, o, ... € F we have a linear map such that f (t") = ay,. So while
V' consists of finite seqeunces of elements from F, the dual consists of infinite seqe-
unces of elemnts from F. We can evidently identify V' = F[[t]] we power series by
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recording the values on the basis as coefficients

o0 o0
Zant” = Z f(n)t".
n=0 n=0

This means that V' inherits a product structure through taking products of power
series. There is a large literature on this whole set-up under the title Umbral
Calculus. For more on this see [Roman].

The dual space construction leads to a dual map L' : W’ — V' for a linear map
L :V — W. This dual map is a generalization of the transpose of a matrix. The
definition is very simple

L'(g9)=goL.
Thus if g € W’ we get a linear function go L : V' — F since L : V. — W. The dual to
L is often denoted L' = L! as with matrices. This will be justified in the exercises
to this section. Note that if we use the pairing (z, f) between V and V' then the
dual map satisfies
(L(x).9) = (x,L'(g))

for all x € V and g € W’. Thus the the dual map really is defined in a manner
analogous to the adjoint.

The following properties follow almost immediately from the definition.

ProPOSITION 7. Let L, L:V-sWandK:W — U, then
N/ -
(1) (aL n BL) — ol + AL
(2) (KoL) =L' oK'

(3) L" = (L) = L if we identify V' =V and W" = W.
(4) If M CV and N C W are subspaces with L (M) C N, then L' (N°) C M°.

PrOOF. 1. Just note that

(or + ﬁi)' (9)

go(aL—l—ﬂz)
= agoL+fgolL
= al'(9)+ 8L (9)

as ¢ is linear.
2. This comes from

(KoL) (h) = ho(KolL)
= (hoK)oL
= K'(h)oL
= L'(K'(h)).

3. Note that L" : V" — W". If we take ev, € V" and use (z, f) = (f,ev,)
then

(9.1" (ev) = (L'(g),evs)
= (@I'(9)
= (L(2),9).

L
This shows that L” (ev,) is identified with L (x) as desired.
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4. If g € V', then we have that (x,L' (g9)) = (L(z),g). So if x € M, then
we have L (z) € N and hence g (L (z)) = 0 for g € N°. This means that L' (g) €
Me. (]

Just like for adjoint maps we have a type of Fredholm alternative for dual maps.

THEOREM 13. (The Generalized Fredholm Alternative) Let L : V. — W be a
linear map between finite dimensional vector spaces. Then

ker (L) = im(L)°,
ker (L') = im (L),
ker (L)’ = im (L"),
ker (L)) = im(L).
PROOF. We only need to prove the first statement as L” = L and M°° = M.
ker (L) = {xzeV:Lx=0},
im(L) = {zeV:(z,L'(g))=0forallgecW}.

Using that (z, L' (g9)) = (L (z),g) we note first that if x € ker (L), then it must
also belong to im (L')?. Conversely if 0 = (z, L’ (9)) = (L (z),g) for all g € W it
must follow that L (x) = 0 and hence = € ker (L). O

As a corollary we get.

COROLLARY 13. (The Rank Theorem) Let L : V. — W be a linear map between
finite dimensional vector spaces. Then

rank (L) = rank (L').
14.1. Exercises.

(1) Let x1, .., 2z, be a basis for V and fi, ..., f a dual basis for V'. Show that
the inverses to the isomorphisms

[1:1 xn] =V,
[ i fu] + F*V
are given by
[ fi(2)
[21 - 2] (@) = L
L fn(2)
[ f(z1)
TR 8 I C N
L f(zn)

(2) Let L : V — W with basis 1, ..., &, for V, y1,...,y, for W and dual basis
g1, s Gn for W', Show that we have

L = [351 xm][L][Zh yn}
91

—1

= (o o ow )]
gn
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where [L] is the matrix representation for L with respect to the given
bases.
(3) Given the basis 1,, 2 for P, identify P, with C* and (P,)" with Mat; 3 (C).
(a) Using these identifications find a dual basis to 1,1 +¢,1+ ¢+ ¢2 in
(P2)".
(b) Using these identifications find the matrix representation for f €
(Py)" defined by

fp)=p(to).
(c) Using these identifications find the matrix representation for f €
(P,)" defined by

b
f(») =/ p(t)dt.

(d) Are all elements of (P;)" represented by the types described in either
b or ¢?
(4) Let f,g € V' and assume that g # 0. Show that f = Ag for some A € F if
and only if ker (f) D ker (g).
(5) Let M C V be a subspace. Show that we have linear maps

Mo i} V/ 1} M/,
where ¢ is one-to-one, 7 is onto, and im (¢) = ker (7). Conclude that V' is
isomorphic to M° x M’.
(6) Let V and W be finite dimensional vector spaces. Exhibit an isomorphism
between V' x W’ and (V x W)’ that does not depend on choosing bases

for V and W.
(7) Let M, N C V be subspaces of a finite dimensional vector space. Show
that
M°+ N° = (MNN)?,
(M + N)’ = M°NN°.

(8) Let L:V — W and assume that we have bases x1, ..., 2y, for V, y1, ..., yn
for W and corresponding dual bases f1, ..., fi, for V' and g1, ..., g, for W’.
Show that if [L] is the matrix representation for L with respect to the
given bases, then [L]" = [L/] with respect to the dual bases.

(9) Assume that L : V — W is a linear map and that L (M) C N for
subspaces M C V and N C W. Is there a relationship between (L|ps)" :
N'— M'" and L'|yo : N° — M°?

(10) (The Rank Theorem) This exercise is an abstract version of what hap-
pened in the proof of the rank theorem in “Linear Independence”. Let
L:V — W and 21, ..., 2% a basis for im (L).

(a) Show that

L(z) = (z, fi)z1 + -+ (x, fr) 2k

for suitable f1, ..., fr € V.
(b) Show that

L/(f):(xlvf)fl—’_—i_(xk?f)fk
for f e W'.
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(¢) Conclude that rank (L") < rank (L).
(d) Show that rank (L') = rank (L) .
(11) Let M C V be a finite dimensional subspace of V' and z1, ...,z a basis
for M. Let

L(z)=(z, fi)zs + -+ (2, fr) Tk

for fi,..., fr eV’

(a) If (zj, fi) = 6;j, then L is a projection onto M, ie., L? = L and
im (L) = M.

(b) If E is a projection onto M, then

E:($,f1)$1+"'+(1'7fk)$ka

with (a?j, f,) = 6”
(12) Let M, N C V be subspaces of a finite dimensional vector space and
consider L : M x N — V defined by L (z,y) =z — y.

(a) Show that L' (f) (z,y) = f () = f (y) .
(b) Show that ker (L’) can be identified with both M°NN? and (M + N)°.

15. Quotient Spaces*

In “Dual Spaces” we saw that if M C V is a subspace of a general vector space,
then the annihilator subspace M° C V' can play the role of a canonical complement
of M. One thing missing from this set-up, however, is the projection whose kernel
is M. In this section we shall construct a different type of vector space that can
substitute as a complement to M. It is called the quotient space of V over M and
is denoted V/M. In this case there is an onto linear map P : V. — V/M whose
kernel is M. The quotient space construction is somewhat abstract, but it is also
quite general and can be developed with a minimum of information as we shall see.
It is in fact quite fundamental and can be used to prove several of the important
results mentioned “Linear Maps and Subspaces”.

Similar to addition for subspaces in “Subspaces” we can in fact define addition
for any subsets of a vector space. If S,T" C V are subsets then we define

S+T={z+y:xze€SandyeT}.

It is immediately clear that this addition on subsets is associative and commutative.
In case one of the sets contains only one element we simplify the notation by writing

S+{zg}=S+axo={r+z0:2€ S5}

and we call S + zg a translate of S. Geometrically all of the sets S + zy appear to
be parallel pictures of S that are translated in V' as we change xy. We also say that
S and T are parallel and denoted it S || T if T'= S + x for some zy € V.
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It is also possible to scale subsets
aS={ax:z e S}.

This scalar multiplication satisfies some of the usual properties of scalar multipli-
cation

(@B)S = a(p9),
15 = S,
a(S+T) = aS+aT.

However, the other distributive law can fail

(a+ﬂ)5;a5+65
since it may not be true that
29 £ 5+5.

Certainly 25 C S + S, but elements x + y do not have to belong to 25 if z,y € S
are distinct. Take, e.g., S = {z, —x}, where x # 0. Then 25 = {2z, -2z}, while
S+ S5 ={22,0,-2z}.

Our picture of the quotient space V/M, when M C V is a subspace, is the set
of all translates M + zq for zg € V

VIM ={M+xz¢:20 €V}
Several of these translates are in fact equal as
1+ M=x20+M

precisely when x1 —xo € M. To see why this is, note that if z € M, then z4+M = M
since M is a subspace. Thus x1 — zo € M implies that
T+ M = $2+($1—$2)+M
= a9+ M.
Conversely if 1 + M = x5 + M, then 21 = x5 + x for some x € M implying that
T — a0 € M.

We see that in the trivial case where M = {0} the translates of {0} can be
identified with V itself. Thus V/{0} = V. In the other trivial case where M =V
all the translates are simply V itself. So V/V contains only the element V.

We now need to see how addition and scalar multiplication works on V/M. The

important property that simplifies calculations and will turn V/M into a vector
space is the fact that M is a subspace. Thus for all scalars o, 3 € F we have

aM + M = M.
This implies that addition and scalar multiplication is considerably simplified.

aM+z)+(M+y) = aM+ M+ azx+ By
M + ax + By.

With this in mind we can show that V/M is a vector space. The zero element is
M since M + (M + xo) = M + xo. The negative of M + x¢ is the translate M — xy.
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Finally the important distributive law that wasn’t true in general also holds because

(a+ ) (M+x) = M+ (a+p5)zo
= M+ azxo+ Bxg
= (M + axg) + (M + Bxo)
= a(M+xzo)+ B (M+ o).
The ‘projection’ P : V — V/M is now defined by
P(z)=M+z.
Clearly P is onto and P (x) = 0 if and only if € M. The fact that P is linear
follows from the way we add elements in V/M
Plaz+By) = M+aw+By
a(M+x)+ B (M +y)
= aP(z)+ 5P (y).
This projection can be generalized to the setting where M C N C V. Here we get
V/M — V/N by mapping © + M to x + N.

KL:V >Wand M CV, L(M)C N C W, then we get an induced map
L:V/M — W/N by sending z+ M to L (x)+ N. We need to check that this indeed
gives a well-defined map. Assuming that 1 + M = x5 + M, we have to show that
L(z1) + N = L(x2) + N. The first condition is equivalent to x; — xo € M, thus

L(xl)—L(mg) = L(l’l —1’2)
€ L(M)CN,
implying that L (z1) + N = L (z2) + N.

We are now going to investigate how the quotient space can be used to under-
stand some of the developments from “Linear Maps and Subspaces”. For any linear
map we have that L (ker (L)) = {0}. Thus L induces a linear map

V/ (ker (L)) — W/ {0} ~ W.
Since the image of ker (L) + z is {0} + L (z) ~ z, we see that the induced map has
trivial kernel. This implies that we have an isomorphism
V/ (ker (L)) — im (L) .
We can put all of this into a commutative diagram

v Loow

P - 7
V/ (ker (L)) — im(L)

Note that, as yet, we have not used any of the facts we know about finite
dimensional spaces. The two facts we shall assume are that the dimension of a vector
space is well-defined and that any subspace in a finite dimensional vector space
has a finite dimensional complement (see “Subspaces”). We start by considering
subspaces.

THEOREM 14. (The Subspace Theorem) Let V' be a finite dimensional vector
space. If M C 'V is a subspace, then both M and V/M are finite dimensional and

dimV =dim M + dim (V/M).
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PRrROOF. We start by selecting a subspace N C V that is complementary to
M. If we restrict the projection P : V. — V/M to P|y : N — V/M, then it has
no kernel as M NN = {0} . On the other hand since any z € V' can be written as
z=x+y where x € M and y € N, we see that

M+2z = M+z+y
= P(y).
Thus P|y : N — V/M is an isomorphism. This shows that V/M is finite dimen-
sional if we picked NV to be finite dimensional. In the same way we see that the
projection @ : V' — V/N restricts to an isomorphism Q| : M — V/N. By se-
lecting a finite dimensional complement for N C V we also get that V/N is finite

dimensional. This shows that M is finite dimensional.
We can now use that V = M @& N to show that

dimV = dimM +dim N
= dim M + dim (V/M).

The dimension formula now follows from our observations above.

COROLLARY 14. (The Dimension Formula) Let V' be a finite dimensional vector
space. If L.V — W is a linear map, then

dim V' = dim (ker (L)) 4+ dim (im (L)) .
PrROOF. We just saw that
dim V' = dim (ker (L)) 4+ dim (V/ (ker (L))) .
In addition we have an isomorphism
V/ (ker (L)) — im (L) .
This proves the claim. (I

15.1. Exercises.

(1) An affine subspace A C V is a subset such that if z1,...,xx € A, a1, ..., €
F, and oy + -+ + a = 1, then a1 + -+ - + oy, € A. Show that V/M
consists of all of the affine subspaces parallel to M.

(2) Find an example of a nonzero linear operator L : V' — V and a subspace
M C V such that L|p = 0 and the induced map L : V/M — V/M is also
Z€ero.

(3) This exercise requires knowledge of the characteristic polynomial. Let
L :V — V be a linear operator with an invariant subspace M C V. Show
that x (t) is the product of the characteristic polynomials of L|y; and
the induced map L : V/M — V/M.

(4) Let M C V be a subspace and assume that we have z1,...,z, € V such
that zq, ...,z form a basis for M and zp1 + M, ...,z, + M form a basis
for V/M. Show that z1, ..., 2, is a basis for V.

(5) Let L : V — W be a linear map and assume that L (M) C N. How does
the induced map L : V/M — W/N compare to the dual maps constructed
in exercise 2 in “Dual Maps”.
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(6) Let M C V be a subspace. Show that there is a natural isomorphism
M° — (V/M)", i.e., an isomorphism that doesn’t depend on a choice of
basis for the spaces.



CHAPTER 2

Linear Operators

In this chapter we are going to present all of the results that relate to linear
operators on abstract finite dimensional vector spaces. Aside from a section on
polynomials we start with a section on linear differential equations in order to
motivate both some material from chapter 1 and also give a reason for why it is
desirable to study matrix representations. Eigenvectors and eigenvalues are first
introduced in the context of differential equations where they are used to solve
such equations. It is, however, possible to start with the section “Eigenvalues” and
ignore the discussion on differential equations. The material developed in chapter
1 on Gauss elimination is used to calculate eigenvalues and vectors and to give a
weak definition of the characteristic polynomial. We also introduce the minimal
polynomial and use it to characterize diagonalizable maps. We then move on to
cyclic subspaces leading us to fairly simple proofs of the Cayley-Hamilton Theorem
and the cyclic subspace decomposition. This in turn gives us a nice proof of the
Frobenius canonical from. We finish with a discussion of the Jordan Canonical
form.

Various properties of polynomials are used quite a bit in this chapter. Most
of these properties are probably already known to the student and in any case are
ceratinly well-known from arithmetic of integers, nevertheless we have chosen to
collect some them in an optional section at the beginning of this chapter.

It is possible to simply cover the sections “Eigenvalues” and “Diagonalizability”
and then move on to the chapters on inner product spaces. In fact it is possible
to skip this chapter entirely as it isn’t really used in the theory of inner product
spaces.

1. Polynomials*

The space of polynomials with coefficients in the field F is denoted F [t]. This
space consists of expressions of the form

o+ agt + -+ agt”

where g, ..., a; € F and k is a nonnegative integer. One can think of these expres-
sions as functions on F, but in this section we shall only use the formal algebraic
structure that comes from writing polynomials in the above fashion. Recall that in-
tegers are written in a similar way if we use the standard positional base 10 system
(or any other base for that matter)

ag -+ a9 = akl()k + ak,llok_l +---+a110 + ag.

Indeed there are many basic number theoretic similarities between integers and
polynomials as we shall see below.

87
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Addition is defined by adding term by term

(a0 + art +aot® + -+ ) + (B + Byt + Bot® + -+ )
= (a0 +Bo) + (a1 + B1) t + (az + Bo) 2 + -+

Multiplication is a bit more complicated but still completely naturally defined by
multiplying all the different terms and then collecting according to the powers of ¢

(a0 + art +ast® + ) - (By + Byt + Bot> + )
= - By + (B +a1fo)t + (aofsy + a1y + asfy) t* + -+

Note that in “addition” the indices match the power of ¢, while in “multiplication”
each term has the property that the sum of the indices matches the power of ¢.

The degree of a polynomial ag + agt + -+ - 4+ a,t"™ is the largest k such that
ay, # 0. In particular

a0+ it + -4 opth + o apt™ = ag + ant + - - + apt”,

where k is the degree of the polynomial. We also write deg (p) = k. The degree
satisfies the following elementary properties

deg(p+q) < max{deg(p),deg(q)},
deg(pg) = deg(p)deg(q)-

Note that if deg (p) = 0 then p () = ap is simply a scalar.

We are now ready to discuss the “number theoretic” properties of polynomials.
It is often convenient to work with monic polynomials. These are the polynomials
of the form

a0+a1t+~~'—|—1-tk.

Note that any polynomial can be made into a monic polynomial by diving by the
scalar that appears in front of the term of highest degree. Working with monic
polynomials is similar to working with positive integers rather than all integers.

If p,q € F[t], then we say that p divides ¢ if ¢ = pd for some d € F [t]. Note
that if p divides ¢, then it must follow that deg (p) < deg(q). The converse is of
course not true, but polynomial long division gives us a very useful partial answer
to what might happen.

THEOREM 15. (The Euclidean Algorithm) If p,q € F [t] and deg (p) < deg(q),
then ¢ = pd + r, where deg (r) < deg (p) .

PROOF. The proof is along the same lines as how we do long division with
remainder. The idea of the Euclidean algorithm is that whenever deg (p) < deg (q)
it is possible to find d; and r; such that

q = pdi+ry,
deg(r1) < deg(q).

To establish this assume

q = oant"+ant" "+ +ag,
= 6mtm +Bm71t7ni1 4 +ﬂ0
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where a,,, 8,, # 0. Then define d; = %t”*m and

m
o= q—pd
= (Oéntn + an,1t7l_1 4+ aO)
_ (Bmt'm + Bm—lt’m_l 44 60) &t'rb—m

/8777.
= (ant" +a, " 4 ao)
_ <Oéntn + Bm—lﬁtnil I ﬂoantnm>
ﬁm Bm
n Qn n—1
= Ot _|_<an_1_ﬂm_1 )t + ..
Bm

Thus deg (r1) < n =deg(q).
If deg (r1) < deg (p) we are finished, otherwise we use the same construction to
get
= pdy+ra,
deg(r2) < deg(r1).

We then continue this process and construct
Tk = Pdgg1+Thi,
deg (rg+1) < deg(rg).

Eventually we must arrive at a situation where deg (r;) > deg (p) but deg (ry4+1) <

deg (p) .
Collecting each step in this process we see that

g = pdi+71
= pdi + pds + 12
= p(di+da)+re

= p(di+do+ -+ dps1) + it

This proves the theorem. ([l

The Euclidean algorithm is the central construction that makes all of the fol-
lowing results work.

PROPOSITION 8. Let p € F[t] and A € F. (t — \) divides p if and only if X is a
root of p, i.e., p(\) = 0.

Proor. If (t — A) divides p, then p = (t — A) ¢. Hence p(A\) =0-¢(A) =0.
Conversely use the Euclidean algorithm to write

p = (t=Agq+r,
deg(r) < deg(t—X\) =1
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This means that r = § € F. Now evaluate this at A
0 = pM
= A=XNqgN)+r
= r
B.
Thus r=0and p=(t — A)gq. O

This gives us an important corollary.
COROLLARY 15. Let p € F[t]. If deg(p) = k, then p has no more than k roots.

ProOF. We prove this by induction. When k£ = 0 or 1 there is nothing to
prove. If p has a root A € F, then p = (¢t — ) ¢, where deg (q) < deg(p). Thus ¢
has no more than deg (¢q) roots. In addition we have that u # X is a root of p if
and only if it is a root of ¢. Thus p cannot have more than 1 + deg(q) < deg (p)
roots. (]

In the next proposition we show that two polynomials always have a greatest
common divisor.

PROPOSITION 9. Let p,q € F[t], then there is a unique monic polynomial
d = ged {p, q} with the property that if di divides both p and q then dy divides d.
Moreover, there are r,s € F[t] such that d = pr + gs.

PRrROOF. Let d be a monic polynomial of smallest degree such that d = ps;+¢sas.
It is clear that any polynomial d; that divides p and ¢ must also divide d. So we must
show that d divides p and q. We show more generally that d divides all polynomials
of the form d' = ps} + ¢sb. For such a polynomial we have d = du + r where
deg (r) < deg (d) . This implies

r = d—du

/ p—

= p(s) —us1)+q(sh —uss).
It must follow that » = 0 as we could otherwise find a monic polynomial of the
form psy + qs§ of degree < deg (d). Thus d divides d’. In particular d must divide
p=p-1+qg-0andg=p-0+¢-1.

To check uniqueness assume d; is a monic polynomial with the property that
any polynomial that divides p and ¢ also divides d;. This means that d divides
dy and also that dy divides d. Since both polynomials are monic this shows that
d=dj. d

We can more generally show that for any finite collection py, ..., p, of polyno-
mials there is a greatest common divisor

d=ged{p1,....,pn}-
As in the above proposition the polynomial d is a monic polynomial of smallest
degree such that
d=p1s1+-+ppsn.

Moreover it has the property that any polynomial that divides pq, ..., p,, also divides
d. The polynomials p1,...,p, € F[t] are said to be relatively prime or have no
common factors if the only monic polynomial that divides py,...,p, is 1. In other
words ged {p1,...,pn} = L.
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We can also show that two polynomials have a least common multiple.

PROPOSITION 10. Let p,q € Ft], then there is a unique monic polynomial
m = lem {p, ¢} with the property that if p and q divide my then m divides m.

PROOF. Let m be the monic polynomial of smallest degree that is divisible by
both p and ¢q. Note that such polynomials exists as pq is divisible by both p and
q. Next suppose that p and ¢ divide m;. Since deg (my) > deg(m) we have that
my = sm + r with deg (r) < deg(m). Since p and ¢ divide m; and m, they must
also divide m; — sm = r. As m has the smallest degree with this property it must
follow that » = 0. Hence m divides m;. O

A monic polynomial p € F [t] of degree > 1 is said to be prime or irreducible
if the only monic polynomials from T [¢t] that divide p are 1 and p. The simplest
irreducible polynomials are the linear ones ¢t — a. If the field F = C, then all
irreducible polynomials are linear. While if the field F = R, then the only other
irreducible polynomials are the quadratic ones t>+at+ 3 with negative discriminant
D = o® — 48 < 0. These two facts are not easy to prove and depend on the
“Fundamental Theorem of Algebra” which we discuss below.

In analogy with the prime factorization of integers we also have a prime fac-
torization of polynomials. Before establishing this decomposition we need to prove
a very useful property for irreducible polynomials.

LEMMA 12. Let p € F[t] be irreducible. If p divides ¢ - g2, then p divides either
q1 0T q2.

PrOOF. Let d; = ged (p, q1) - Since dy divides p it follows that d; = 1 or dy = p.
In the latter case dy = p divides ¢; so we are finished. If d; = 1, then we can write
1 =pr + ¢1s. In particular

42 = G2pr + q2q15.
Here we have that p divides g2¢1 and p. Thus it also divides

Q2 = q2pT + q2q15.
O

THEOREM 16. (Unique Factorization of Polynomials) Let p € F [t] be a monic
polynomial, then p = py1---pg is a product of irreducible polynomials. Moreover,
except for rearranging these polynomials this factorization is unique.

PROOF. We can prove this result by induction on deg (p) . If p is only divisible
by 1 and p, then p is irreducible and we are finished. Otherwise p = ¢ - g2, where
¢1 and g2 are monic polynomials with deg (q1),deg (¢2) < deg (p) . By assumption
each of these two factors can be decomposed into irreducible polynomials, hence we
also get such a decomposition for p.

For uniqueness assume that p = p1---pr = q1---q are two decompositions
of p into irreducible factors. Using induction again we see that it suffices to show
that p; = ¢; for some i. The previous lemma now shows that p; must divide ¢; or
q2 - - - q;. In the former case it follows that p; = ¢ as ¢, is irreducible. In the latter
case we get again that p; must divide g2 or g3 ---¢. Continuing in this fashion it
must follow that p; = ¢; for some i. O
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If all the irreducible factors of a monic polynomial p € F [¢] are linear, then we
say that that p splits. Thus p splits if and only if

p(t)=(—ay)---(—ax)

for ay,...,a) € F.

Finally we show that all complex polynomials have a root. It is curious that
while this theorem is algebraic in nature the proof is analytic. There are many com-
pletely different proofs of this theorem including ones that are far more algebraic.
The one presented here, however, seems to be the most elementary.

THEOREM 17. (The Fundamental Theorem of Algebra) Any complex polyno-
mial of degree > 1 has a root.

PROOF. Let p(z) € C[z] have degree n > 1. Our first claim is that we can find
zp € C such that |p(2)| > |p(z0)| for all z € C. To see why |p(z)| has to have a
minimum we first observe that

p(z) _ anzn‘i’an—lznil +---4+a1z+ag
zn o AL
1 1
= an‘i’an—l;‘i""‘i’alzni_lﬁ*aozfn

—  ay as z — o0.
Since a,, # 0, we can therefore choose R > 0 so that

Ip(2)] > % |2|" for |z| > R.

By possibly increasing R further we can also assume that

an| n
ol i > o (o).

On the compact set B (0,R) = {z € C: |z| < R} we can now find z such that
Ip(2)] > |p(20)| for all z € B(0,R). By our assumptions this also holds when
|z| > R since in that case

lan] | n
> Il
Ip(2)] > 5 |2]
|an| n
> LA,
> |R|
> [p(0)]
> |p(20)]

Thus we have found our global minimum for |p (2)].
We now define a new polynomial of degree n > 1

a(z) = PEL2)

p(20)
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This polynomial satisfies

Thus

q(2) =1+bpzb + - 4 bp2"
where b, # 0. We can now investigate what happens to ¢ (z) for small z. We first
note that

q(z) = 1+ bkzk + bk+1zk+1 B

where
(bk+1z St bnz"_k) —0asz—0.

If we write z = re? and choose # so that
be™ = — [by]
then
lg(2)] = |1 + bkzk + (bk+1z N bnzn—k) Zk|
= |1 =[]+ (brgrz e+ bz F) rRet?|

< 1—|bk|’rk+’(bk+1z...+bnzn—k)rkéik@’
- 1*|bk|rk+|bk+1z...+bnzn—k|rk
< 1_@7&

as long as 7 is chosen so small that 1 — |by|7* > 0 and |bk+1z-~- + bnz”_k’ < “)2—"".
This, however, implies that |q (rei9)| < 1 for small . We have therefore arrived at
a contradiction. O

2. Linear Differential Equations™*

In this section we shall study linear differential equations. Everything we have
learned about linear independence, bases, special matrix representations etc. will
be extremely useful when trying to solve such equations. In fact we shall in several
section of this text see that virtually every development in linear algebra can be
used to understand the structure of solutions to linear differential equations. It
is possible to skip this section if one doesn’t want to be bothered by differential
equations while learning linear algebra.

We start with systems of differential equations:

1 = a1+ FamTm + b

Ty = Ap1T1+ -+ QpmT + bn
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where a;;,b; € C* ([a,b],C) (or just C* ([a,b],R)) and the functions z; : [a,b] —
C are to be determined. We can write the system in matrix form and also rearrange
it a bit to make it look like we are solving L () = b. To do this we use
1 by aip -+ Aim
Tr = E s b = ' , A =
Tom b, Gnl  *°°  Onm
and define
L i % ([ab],C") — 0= ([a,4],C")
L(z) = &— Ax.
The equation L (z) = 0 is called the homogeneous system. We note that the follow-
ing three properties can be used as a general outline for what to do.
(1) L(z) =" can be solved if and only if b € im (L).
(2) If L(zp) =band x € ker (L), then L (x + z¢) = b.
(3) If L(xop) =band L(x1)=>, then zy — z1 € ker (L).
The specific implementation of actually solving the equations, however, is quite
different from what we did with systems of (algebraic) equations.
First of all we only consider the case where n = m. This implies that for given
to € [a,b] and zp € C™ the initial value problem
L(z) = b,
X (to) = o
has a unique solution = € C* ([a,b],C™). We shall not prove this result in this
generality, but we shall eventually see why this is true when the matrix A has
entries that are constants rather than functions. As we learn more about linear

algebra we shall revisit this problem and slowly try to gain a better understanding
of it. For now let us just note an important consequence.

THEOREM 18. The complete collection of solutions to

1 = anxi -+ + a1, +b

L'En = ap1%1+ -+ AppTn + bn

can be found by finding one solution xo and then adding it to the solutions of the
homogeneous equation L (z) =0, i.e.,

r = z-+ o,
L(z) 0,

moreover dim (ker (L)) = n.

Some particularly interesting and important linear equations are the n*" order
equations
D"z +ap_1D" 'z +---4+a1 Dz +apx = b,
where DFz is the k' order derivative of z. If we assume that a,_1,...,a0,b €
C* ([a,b],C) and define
L+ C¢%([a,b],C) — C™([a,0],C)
L(z) = (D"+ap1D" '+ +a1D+ag) (z),
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then we have a nice linear problem just as in the previous cases of linear systems
of differential or algebraic equations. The problem of solving L () = b can also be
reinterpreted as a linear system of differential equations by defining

1 =x,x9 = Dz, ...,x, = D" 'z

and then considering the system

T = T2
{,.CQ = I3
Tpn = —Qp_1Tp — - — A1T2 — QoT1 + by

This won’t help us in solving the desired equation, but it does tells us that the
initial value problem

L(z) = b,
z(ty) = co,Dx(to) =c1,...,D" a(to) = cp1,
has a unique solution and hence the above theorem can be paraphrased.
THEOREM 19. The complete collection of solutions to
D'z 4 ap1D" '+ -+ a1 Dx+apx=>b

can be found by finding one solution xo and then adding it to the solutions of the
homogeneous equation L (z) =0, i.e.,

r = z-+ o,
L (z) 0,

moreover dim (ker (L)) = n.

It is not hard to give a complete account of how to solve the homogeneous
problem L (z) = 0 when ayg,...,a,—1 € C are constants. Let us start with n = 1.
Then we are trying to solve

Dx + agr = + agz = 0.
Clearly = = exp (—aopt) is a solution and the complete set of solutions is
x = cexp (—apt) ,c € C.
The initial value problem
T+apx = 0,
z(to) = co
has the solution

x = cpexp (—ap (t —tp)) .
The trick to solving the higher order case is to note that we can rewrite L as
L = D"+a, D" '+---4+a1D+ag
= p(D).
This makes L look like a polynomial where D is the variable. The corresponding
polynomial
p(t)=t"+a, 1t" '+ Fait+ag
is called the characteristic polynomial. The idea behind solving these equations
comes from
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PRrROPOSITION 11. (The Reduction Principle) If q (t) = t"™ +by,_1t™ 1 +---+bg
is a polynomial that divides p (t) = t" +a,_1t" "' +---+ a1t +ag, then any solution
to q (D) (z) =0 is also a solution to p (D) (z) = 0.

PrOOF. This simply hinges of observing that p(t) = r(¢) ¢ (¢), then p(D) =
r (D) q (D). So by evalutaing the latter on x we get p (D) (z) =r (D) (¢ (D) (z)) =
0. ([l

The simplest factors are, of course, the linear factors ¢t — A and we know that
the solutions to

(D=XN(x)=Dzx—Xz=0

are given by z (t) = Cexp (At) . This means that we should be looking for roots to
p(t) . These roots are called eigenvalues or characteristic values. The Fundamental
Theorem of Algebra asserts that any polynomial p € C[¢] can be factored over the
complex numbers

p(t) = t"+ap1t" P4+ Fait+ag
= (=AD"= A)

Here the roots A1, ..., A\, are assumed to be distinct, each occurs with multiplicity
ki,....km, and k1 + - + k,, = n.
The original equation

L=D"+4a, D" ' +---+a;D+ag
then factors
L = D'+a, D" '+---+a;D+ag
= (D=A)" (D=2

and we reduce the original problem to solving the equations

(D= )" (@) = 0,

(D= X\p)m (z) = o

Note that if we had not insisted on using the more abstract and less natural
complex numbers we would not have been able to make the reduction so easily. If
we are in a case where the differential equation is real and there is a good physical
reason for keeping solutions real as well, then we can still solve it as if it were
complex and then take real and imaginary parts of the complex solutions to get
real ones. It would seem that the n complex solutions would then lead to 2n real
ones. This is not really the case. First observe that each real eigenvalue A only gives
rise to a one parameter family of real solutions cexp (A (t —tp)). As for complex
eigenvalues we know that real polynomials have the property that complex roots
come in conjugate pairs. Then we note that exp (A (t — to)) and exp (A (t — t)) up
to sign have the same real and imaginary parts and so these pairs of eigenvalues
only lead to a two parameter family of real solutions which if A = A\; + ¢\ looks
like

cexp (A1 (¢ —to)) cos (A2 (T — to)) + dexp (A1 (£ — to)) sin (A2 (¢ — to))
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Let us return to the complex case again. f m=nand ky =--- =k,;, = 1, we
simply get n first order equations and we see that the complete set of solutions to
L (z) =0 is given by

x = ajexp (At) + -+ + apexp (A\nt) .

It should be noted that we need to show that exp (A1t),...,exp (A\,t) are linearly
independent in order to show that we have found all solutions. This was discussed
in “Linear Independence" in chapter 1 and will also be established below in “Diag-
onalizability”.

With a view towards solving the initial value problem we rewrite the solution
as

x=diexp(M\ (t—tp)) + -+ dnexp (A, (t—to)).

To solve the initial value problem requires differentiating this expression several
times and then solving

z(to) = di+---+dn,
Dz (to) = Adi+--+ \dy,
D" lx(ty) = ANTldi4---4+ A",
for dq, ..., d,. In matrix form this becomes
| R 1 d z (to)
Mo ! i (to)
APttt n (=1 (t9)

In “Linear Independence” we saw that this matrix has rank n if A, ..., \, are
distinct. Thus we can solve for the ds in this case.

When roots have multiplicity things get a little more complicated. We first
need to solve the equation

(D -\ (2) =0.

One can check that the k functions exp (M), texp (M), ..., t* Lexp (At) are so-
lutions to this equation. Omne can also prove that they are linearly independent
using that 1, ¢, ..., t*~1 are linearly independent. This will lead us to a complete
set of solutions to L (z) = 0 even when we have multiple roots. The problem of
solving the initial value is somewhat more involved due to the problem of taking
derivatives of ! exp (A\t) . This can be simplified a little by considering the solutions
exp (A (t—tg)), (t—to)exp(A(t —to)), ..., (t — to)* exp (A(t—to)).

For the sake of illustration let us consider the simplest case of trying to solve
(D — X\)? (z) = 0. The complete set of solutions can be parametrized as

x=dyexp(A(t—tg))+da(t —tog)exp (A(t —1tp))
Then
Dz =Xdiexp(A(t—to)) + (L + A (¢t —to)) daexp (A (¢ — o))
Thus we have to solve
Xz (to) = d1
Dx (to) = )\dl + d2.
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This leads us to the system

=] gl ]

If A = 0 we are finished. Otherwise we can multiply the first equation by A and
subtract it from the second to obtain

ot la] =] pet Bt |

Thus the solution to the initial value problem is
z = (to) exp (A (t — to)) + (Dz (to) — Az (to)) (t — to) exp (A (L — to)) -

A similar method of finding a characteristic polynomial and its roots can also
be employed in solving linear systems of equations as well as homogeneous systems
of linear differential with constant coefficients. The problem lies in deciding what
the characteristic polynomial should be and what its roots mean for the system.
This will be studied in subsequent sections and chapters. In the last three sections
of this chapter we shall also see that systems of first order differential equations
can solved using our knowledge of higher order equations.

For now let us see how one can approach systems of linear differential equations
from the point of view of first trying to define the eigenvalues. We are considering
the homogeneous problem

L(zx)=2— Az =0,
where A is an n X n matrix with real or complex numbers as entries. If the system
is decoupled, i.e., ©; depends only on x; then we have n first order equations that
can be solved as above. In this case the entries that are not on the diagonal of A
are zero. A particularly simple case occurs when A = Al¢» for some A. In this case
the general solution is given by

x = xzpexp (A(t—to)).

We now observe that for fixed z( this is still a solution to the general equation
& = Ax provided only that Axy = Axg. Thus we are lead to seek pairs of scalars A
and vectors xg such that Axzy = Axg. If we can find such pairs where zy # 0, then
we call A an eigenvalue for A and xg and eigenvector for . Therefore, if we can
find a basis vy, ..., v, for R™ or C™ of eigenvectors with Avy = A\jvy, ..., Av, = A\,
then we have that the complete solution must be

z=uvrexp (M (t—to))c1+ - +vpexp (A, (E—to)) cn.
The initial value problem L (x) =0, x (tg) = z is then handled by solving
C1
vlcl—|—-~-—|—vncn:[v1 vn] = Zp.
Cn
Since vy, ..., v, was assumed to be a basis we know that this system can be solved.
Gauss elimination can then be used to find ¢y, ..., ¢,.
What we accomplished by this change of basis was to decouple the system in
a different coordinate system. One of the goals in the study of linear operators is
to find a basis that makes the matrix representation of the operator as simple as

possible. As we have just seen this can then be used to great effect in solving what
might appear to be a rather complicated problem. Even so it might not be possible



2. LINEAR DIFFERENTIAL EQUATIONS* 99

to find the desired basis of eigenvectors. This happens if we consider the second
order equation (D — \)* = 0 and convert it to a system

fbl - 0 1 X1
iy || =A% 2X || @ |7
Here the general solution to (D — A)? = 0 is of the form

x = x1 = c1 exp (At) + cot exp (M)

S0
xo = &1 = crhexp (M) + co (Mt + 1) exp (At) .

This means that

[ " } - { \ ]exp(AtHCQ [ e ]exp(/\t).

Since we cannot write this in the form

{ 2 ] = 101 exp (A1t) + covs exp (Aat)

there cannot be any reason to expect that a basis of eigenvectors can be found even
for the simple matrix
0 1
A= [ 0l ] |

Below we shall see that any square matrix and indeed any linear operator on a
finite dimensional vector space has a characteristic polynomial whose roots are the
eigenvalues of the map. Having done that we shall spend considerable time on trying
to determine exactly what properties of the linear map further guarantees that it
admits a basis of eigenvectors. In “Cyclic Subspaces”, “The Frobenius Canonical
Form” and “The Jordan Canonical Form” below we shall show that any system of
equations can be transformed into a new system that looks like several uncoupled
higher order equations.

There is another rather intriguing way of solving linear differential equations by
reducing them to recurrences. We will emphasize higher order equations, it works
equally well with systems. The goal is to transform the differential equation:

D"z +a, D" o+ -+ aDx + apx = p (D) (x) =0

into something that can be solved using combinatorial methods.
Assume that z is given by its MacLaurin expansion

= k
2 (t) t

Z (Dkx) (0) 7

k=0

o0 tk
> €k
k=0

The derivative is then given by
e tk‘fl
Dx = —_—
v ; F e —1)!

= Ck+1 I
= k!
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and more generally
1 - ¢
D'y = Z C]H_ZH.
k=0

Thus the derivative of x is simply a shift in the index for the sequence (ci). The
differential equation gets to look like

D"z 4 ap_ 1 D" 'z + -4+ a1 Dz + apx

oo k
- Z (Ck+n + Gn-1Ck4n—1 + -+ ai1cpy1 + aock) R
k=0 :

From this we can conclude that z is a solution if and only if the sequence ¢ solves
the linear n'" order recurrence

Chin + 0p_1Ckin—1+++aicpy1 +apcy =0,

or
Chin = = (An-1Ck4n—1 + -+ + @1cpt1 + aocy) .

For such a sequence it is clear that we need to know the initial values cg, ..., ¢,_1
in order to find the whole sequence. This corresponds to the initial value problem
for the corresponding differential equation as ¢ = (Dkx) (0).

The correspondence between systems & = Ax and recurrences of vectors ¢, +1 =
Ac,, comes about by assuming that the solution to the differential equation looks
like

> tn

.T(t) = cha7
n=0
c, € C"

2.1. Exercises.
(1) Find the solution to the differential equations with the general initial
values: x (tg) = xo, & (to) = &0, and & (ty) = Zo.
(a) T —3& 43¢ —x=0.
(b) @ — 5% + 8% —4x = 0.
(c) T +6&+11& 4 62 =0.
(2) Find the complete solution to the initial value problems.

x| |0 2 x z(to) | _ | o
W [G]=[0 ][V ] e S [0 )
T o 0 1 x i (t(]) - i)
0 5] =3 5[5 ] e 565 ]= [0 )
(3) Find the real solution to the differential equations with the general initial
values: x (tg) = xo, & (to) = %o, and & (tp) = Zo in the third order cases.
(a) &+ 2 =0.
(b) T +4=0.
(c) & — 64+ 25z =0.
(d) & — b + 194 + 25 = 0.
(4) Consider the vector space C* ([a,b],C™) of infinitely differentiable curves
in C" and let z1, ..., 2z, € C* ([a,b],C™).
(a) If we can find ¢ € [a, b] so that the vectors z1 (¢o) , ..., zn (to) € C™ are
linearly independent, then the functions z1,...,z, € C* ([a,b],C")
are also linearly independent.
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(b) Find a linearly independent pair z,20 € C* ([a,b],C?) so that
21 (t), 22 (t) € C? are linearly dependent for all ¢ € [a,b] .
(¢) Assume now that each z1, ..., z,, solves the linear differential equation
& = Az. Show that if 27 (¢), ..., zn (to) € C™ are linearly dependent
for some tg, then z1,...,2, € C* ([a,b],C") are linearly dependent
as well.
(5) Let p(t) = (t — A1) --- (t — A\p) , where we allow multiplicities among the
roots.
(a) Show that (D — \) (z) = f (¢) has

T = exp ()\t)/o exp (—As) f(s)ds

as a solution.

(b) Show that a solution z to p (D) (z) = f can be found by successively
solving

(D—XM)(z1) = f,
(D=X2)(22) = =,

(D= (zn) = zZp-1.
(6) Show that the initial value problem

& = Az,
x (to)

Zo

can be solved “explicitly” if A is upper (or lower) triangular. This holds
even in the case where the entries of A and b are functions of ¢.

(7) Assume that z (¢) is a solution to & = Az, where A € Mat,, x, (C).
(a) Show that the phase shifts z,, (t) = x (¢ + w) are also solutions.

(b) If the vectors  (w1), ..., (wy) form a basis for C™, then all solutions
to £ = Ax are linear combinations of the phase shifted solutions
Ty s vevs Lao,, -

(8) Assume that z is a solution to p (D) (z) = 0, where p(D) = D"+ --- +
alD + ap.
(a) Show that the phase shifts z,, (t) = x (¢ + w) are also solutions.
(b) If the vectors

T (w1) z (wn)
Dz (w1) Dz (wy)
D" g (wr) D" g (wy)

form a basis for C", then all solutions to p(D)(x) = 0 are linear
combinations of the phase shifted solutions x,,, ..., %,

(9) Let p(t) = (t—A1)---(t —Ap). Show that the higher order equation

L(y) =p (D) (y) =0 can be made into a system of equations & — Az = 0,
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where
A1 0
A 0 X
1
0 An
by choosing
Y
(D—=XM)y

(D=2)++ (D= ho)y
(10) Show that p (£) exp (At) solves (D — A\)*z = 0if p(¢) € C[t] and deg (p) <

k — 1. Conclude that ker ( (D — )\)k) contains a k-dimensional subspace.

(11) Let V = span{exp (A1t),...,exp (A\,t)}, where Aq, ..., A, € C are distinct.
(a) Show that exp (A1t),...,exp (A\,t) form a basis for V. Hint: One way
of doing this is to construct a linear isomorphism

L : V-Cc
L(f) = (f(tl)v“"f<tn))

by selecting suitable points t1, ..., t, € R depending on Ay, ..., A, € C
such that L (exp (A\;t)), i = 1,...,n form a basis.
(b) Show that if z € V, then Dx € V.
(¢) Compute the matrix representation for the linear operator D : V —
V with respect to exp (A1t), ..., exp (Ant) .
(d) More generally, show that p (D) : V — V, where p (D) = a;,D* +
e +Q1D+aolv.
(e) Show that p(D) =0 if and only if Ay, ..., A, are all roots of p(t).
(12) Let p € C[t] and consider ker (p (D)) = {z : p(D) (z) = 0}, i.e., it is the
space of solutions to p (D) = 0.
(a) Assuming unique solutions to initial values problems show that

dimg ker (p (D)) = degp = n.

(b) Show that D : ker (p (D)) — ker (p (D)).

(c) Show that ¢ (D) : ker (p (D)) — ker (p (D)) for any polynomial ¢ (t) €
Clt].

(d) Show that ker (p (D)) has a basis for the form z, Dz, ..., D"~ 1z. Hint:
Let x be the solution to p (D) (x) = 0 with the initial values z (0) =

Dz (0)=---=D""22(0) =0, and D" 'z (0) = 1.
(13) Let p € R[t] and consider
kerg (p(D)) = {z:R—>R:p(D)(x)=0},
kerc (p(D)) = {#:R—C:p(D)(z) =0}

i.e., the real valued, respectively, complex valued solutions.
(a) Show that = € kerg (p (D)) if and only if x = Re(z) where z €

kere (p (D))
(b) Show that dimc ker (p (D)) = degp = dimg ker (p (D)) .
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3. Eigenvalues

We are now ready to give the abstract definitions for eigenvalues and eigenvec-
tors. Consider a linear operator L : V' — V on a vector space over F. If we have
a scalar A € F and a vector z € V — {0} so that L (x) = Az, then we say that A
is an eigenvalue of L and x is an eigenvector for \. If we add zero to the space of
eigenvectors for A, then it can be identified with the subspace

ker(L—Ay)={zeV:L(x)—Ax=0}CV.
This is also called the eigenspace for A. In many texts this space is often denoted
E)\ = ker (L — )\1v) .

At this point we can give a procedure for computing the eigenvalues/vectors
using Gauss elimination. The more standard method using determinants can be
found in virtually every other book on linear algebra. We start by considering a
matrix A € Mat, ., (F). If we wish to find an eigenvalue A for A, then we need to

determine when there is a nontrivial solution to (A — Alg») () = 0. In other words,
the augmented system

0[11—)\ A1n 0

Qn1 o — A0

should have a nontrivial solution. This is something we know how to deal with
using Gauss elimination. The only complication is that if A is simply an abstract
number, then it can be a bit tricky to decide when we are allowed to divide by
expression that involve .

Before discussing this further let us consider some examples.

EXAMPLE 49. Let

0 1 0 0
-1 0 0 O
A= 0 0 0 1
0 0 10
Row reduction tells us:
:i\ _1/\ 8 8 8 interchange rows 1 and 2,
A— A =
X 0 A 10 interchange rows 8 and 4
L 0 0 1 =X 0 g ,
-1 =X 0 0 0 o .
A 1 0 0 0 Use row 1 to eliminate —\ in row 2
0 0 1 —Xx 0 o ’
| 0 0 A 1 0 Use row 3 to eliminate X in row 4
(-1 =X 0 0 0
0 1+X 0 0 0
0 0 1 X 0
0 0 0 1-X 0

We see that this system has nontrivial solutions precisely when 14+A* = 0 or 1—-\? =
0. Thus the eigenvalues are A = i and A = £1. Note that the two conditions can
be multiplied into one characteristic equation of degree 4: (1 + )\2) (1 — )\2) = 0.
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Having found the eigenvalues we then need to insert them into the system and find
the etgenvectors. Since the system has already been reduced this is quite simple.
First let A\ = £¢ so that we have

1 &4 0 0 O
0O 0 0 0 O
0 0 1 F¢ O
0O 0 0 2 o0
Thus we get
1 )
; — s \AN=1 d 1 — s \N=—1
0 =14 an 0 = —q
0 0
Then we let A = £1 and consider
1 1 0 0 O
0 2 0 0 O
0 0 1 F1 0
0 0 0 0 O
to get
0 0
0 0
1] 1 and 1| -1
1 1
EXAMPLE 50. Let
Q11 o Qip
A =
0 -

be upper triangular, i.e., all entries below the diagonal are zero: a;; = 0 if i > j.
Then we are looking at

app— A e ain
: - : 0
0 ap—A 0

Note again that we don’t perform any divisions so as to make the diagonal entries
1. This is because if they are zero we evidently have a nontrivial solution and that is
what we are looking for. Therefore, the eigenvalues are A = a1, ..., Qpy. Note that
the eigenvalues are precisely the roots of the polynomial that we get by multiplying
the diagonal entries. This polynomial is going to be the characteristic polynomial

of A.
In order to help us finding roots we have a few useful facts.
PROPOSITION 12. Let A € Mat,xn (C) and
Xa®) =t"Fan 1" b dattag=(t— M) (E— ).

(1) tI‘A:)\1++>\n = —Aap_-1.
(2) )\1 )\n = (71)77. ag.
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(3) If x4 (t) € R[t] and X € C is a root, then X\ is also a root. In particular
the number of real roots is even, respectively odd, if n is even, respectively
odd.

(4) If x4 (t) € R[t], n is even, and ag < 0, then there are at least two real
roots, one negative and one positive.

(5) If x4 (t) € R[t] and n is odd then there is at least one real root, whose
sign is the opposite of ag.

(6) If x4 (t) € Z[t], then all rational roots are in fact integers that divide ay.

PROOF. The proofs of 3 and 6 are basic algebraic properties for polynomials.
Property 6 was already covered in the previous section. The proofs of 4 and 5
follow from the intermediate value theorem. Simply note that x 4 (0) = ag and that
X4 (t) — 00 as t — oo while (—1)" x4 (t) — o0 as t — —o0.

The facts that

)\1++)\n = —Qap-1,
)\1)\n (71)71 ap

follow directly from the equation
ﬁn+an71tn—1+...+a1t+a0: (t_)\l)"'<t_)\n)-

Finally the relation tr A = A\ +-- -+ A, will be established when we can prove that
complex matrices are similar to upper triangular matrice. In other words we will
show that one can find B € GI,, (C) such that B! AB is upper triangular. We then
observe that A and B~ AB have the same eigenvalues as Az = Az if and only if
B~'AB (Bflx) =A (B*I:z:) . However as the eigenvalues for the upper triangular
matrix B~'AB are precisely the diagonal entries we see that

M+-+A, = tr(B'AB)
tr (ABB™)
= tr(4).

Another proof of tr A = —a,_; that works for all fields is presented below in
the exercises to “The Frobenius Canonical Form”.
For 6 let p/q be a rational root in reduced form, then

n
<p> +...+a1<p)+a0:0,
q q

0 = p"+-+apgd" ' +aoq”
= p"+q(an_1p" "+ +apg" 4 aog" ")
_ p(pn—l_i_._._i_alqn—l)+a0qn.

and

Thus ¢ divides p™ and p divides agq™. Since p and ¢ have no divisors in common
the result follows. O

EXAMPLE 51. Let
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and perform row operations on

1:1)\ _2>\ ;L 8 Change sign in row 2
3 1 5-) 0 Interchange rows 1 and 2
1 A -2 0]
15)\ _21 5f)\ 8 Use row 1 to cancel 1 — X\ in row 2
[ 1 A -2 0]
2
8 2__1)\_—;/)\\ (131__2:\\ 8 Interchange rows 2 and 3
[ 1 A -2 0] Change sign in row 2,
0 —1-3x 11—-X 0 use row 2 to cancel 2 — X+ \? in row 3
| 0 2—X+ M 6-2) 0 | this requires that we have 1+ 3X # 0/
M1 A -2 0
0 143X\ —11+ A 0
L O 0 6 — 2\ — 2;_)@;;‘2 (=114 X) 0 | Common denominator for row 3
M1 A -2 0
0 143X —11+4+ A 0
—28-3A—6A"+)%
L0 0 =m=meeinl g

Note that we are not allowed to have 1+ 3\ = 0 in this formula. If 1 + 3\ = 0,
then we note that 2 — X+ A # 0 and 11 — X # 0 so that the third display

1 A -2 0
0 2—=A+X2 6-2\ 0
0 —1-3\ 11—-X 0

guarantees that there are no nontrivial solutions in that case. This means that our
analysis is valid and that multiplying the diagonal entries will get us the charac-
teristic polynomial —28 — 3\ — 6X% + X3, We note first that 7 is a root of this
polynomial. We can then find the other two roots by dividing

—28 =3\ —6X2 + \°
8 3/\_5 * =M+ A+4

and using the quadratic formula: —% + %i\/ 15, —% — %i\/ 15.

The characteristic polynomial of a matrix A € Mat,x, (F) is a polynomial
X4 (A) € F[A] of degree n such that all eigenvalues of A are roots of x 4. In addition
we scale the polynomial so that the leading term is A", i.e., the polynomial is monic.
To get a better understanding of the process that leads us to the characteristic
polynomial we study the 2 x 2 and 3 x 3 cases as well as a few specialized n x n
situations.

Starting with A € Matay o (F) we investigate

a1 — A Q12

A—Ap = oy s — A
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If ao; = 0, the matrix is in uppertriangular form and the characteristic polynomial
is

Xa = (a11—=A) (a2 —A)
= A — (11 + ) A+ g ams.

If a1 # 0, then we switch the first and second row and then eliminate the bottom
entry in the first column:

o — A o2 }

Q21 Q2 — A
Q21 Qi — A
| G11 — A Q12
Q21 o2 — A

0 19 — . (0411 — )\) (0522 — )\)

Q21

Multiplying the diagonal entries gives
ag1aqz — (11 — A) (@22 — A)
= A’ (o1 + ) A — ajraz + agiags.
In both cases the characteristic polynomial is given by
Xa = AN = (a1 +a2)A+ (a0 — azon2)
= A —tr(A) A +det(A).

We now make an attempt at the case where A € Matsys (F). Thus we consider

a1 — A Q12 o3
A— )\1]1:3 = Q21 Q29 — A 23
a3y a3 a3z — A

When as; = a3; = 0 there is nothing to do in the first column and we are left with
the bottom right 2 x 2 matrix to consider. This is done as above.

If ag; = 0 and a3; # 0, then we switch the first and third rows and eliminate
the last entry in the first row. This will look like

o — A 12 @13
0 29 — )\ 23
| s a3y o33 — A |
a3y a3 a3z — A
0 29 — )\ 23
| 11— A a1z a1z |
a3y a3 a3z — A
0 ap—A Q23
0 aX+p5 p(N)

where p has degree 2. If aA+f is proportional to cago — A, then we can eliminate it to
get an upper triangular matrix. Otherwise we can still eliminate aX by multiplying
the second row by « and adding it to the third row. This leads us to a matrix of
the form
Qs Qs Qg3 — A
0 99 — A Q23
0 e P ()
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where 3’ is a scalar and p’ a polynomial of degree 2. If 3 = 0 we are finished.
Otherwise we switch the second and third rows and elimate.

If ag; # 0, then we switch the first two rows and cancel below the diagonal in
the first column. This gives us something like

a;r— A anp a3
Q21 O — A Q23
| as azz gz — A |
Qo Qoo — A s
o1 — A 12 13
| as aszz gz — A |
Qo1 Qa2 — A 3
!
0 p(N) o3
!
0 4N qW)

where p has degree 2 and q, ¢’ have degree 1. If ¢’ = 0, we are finished. Otherwise,
we switch the last two rows. If ¢’ divides p we can eliminate p to get an upper
triangular matrix. If ¢’ does not divide p, then we can still eliminate the degree
2 term in p to reduce it to a polynomial of degree 1. This lands us in a situation
similar to what we ended up with when a3; = 0. So we can finish using the same
procedure.

Note that we avoided making any illegal moves in the above procedure. It is
possible to formalize this proceedure for n x n matrices, but it still doesn’t lead us
to a complete understanding of the characteristic polynomial. The idea is simply
to treat \ as a variable and the entries as polynomials. To eleiminate entries we
then use polynomial devision to reduce the degrees of entries until they can be
eliminated. Since we wish to treat A as a variable we shall rename it ¢ when
doing the Gauss elinimation and only use A for the eigenvalues and roots of the
characteristic polynomial.

The characteristic polynomial of a matrix A € Mat, x,, (F) is the polynomial
X4 (t) € F[t] we get by applying Gauss elimination to A — ¢1p» until it is in upper
triangular form, then multiplying the diagonal entries and if necessary making the
highest degree term t". Below in “The Frobenius Canonical Form” we shall give an
alternate and completely rigorous definition of the characteristic polynomial. This
will show that it really is well defined and has degree n, it will also be obvious
that we above procedure really leads us to the rigorously defined characteristic
polynomial.

Let us try to carry out this slightly more careful procedure on an example.

EXAMPLE 52. Let

w

b
Il
N O =
— NN
S
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Then the calculations go as follows

[1—¢t 2 3
A—tlps = 0 2—t 4
2 1 —1-—t |
2 1 —1—t]
0 2—t 4
2 3]
1 —1—t
2t 4
1- (1-t)(1+1)
21t 34—

|
~+

1 —1-t
4

t
3 (1—¢)(1+1¢)
stz 3+
1

—1—t
4
1-t)(1+¢
$41 54 Ui
1 1t
5 5+ (lft)2(1+t)
2= ¢ 4
—1-A
5+ A=2(1+N))

2
— 1-X)(1+X
41— 225 (54 UMD

Multiplying the diagonal entries gives us

5(422? <5+(1—t)2(1+t))>

= B4+ +11t—2

O O NN DO N OON OON OO N =
[\
|
~

O ot =

and the characteristic polynomial is
xa(t) =1 =21 — 11t +2

When the matrix A can be written in block triangular form it becomes some-
what easier to calculate the characteristic polynomial.

LEMMA 13. Assume that A € Mat, «p, (F) has the form

| An A
a-| Az

where A1y € Matyyr (F), Aza € Mat(y—p)x(n—k) (F), and A1z € Matyy —p) (F),
then
Xa (1) =Xa,, () Xay, () -
ProOOF. To compute x 4 (t) we do row operations on

[ tlpr — A1y A1z }

tHpn — A = 0 Hlgni — Ay
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This can be done by first doing row operations on the first k rows leading to a
situation that looks like

q1 (t) *
*
0 qk (t)
0 t].]ank - A22
Having accomplished this we then do row operations on the last n — k rows. to get
P1 (t) * T
- *
0 i (t)
1 (t) *
0 .
L 0 Tr—k (t)
As these two sets of operations do not depend on each other we see that
xalt) = a@®)-aq@)ri(t) Tk ()

= Xa, () Xxa,, (t).
O
Finally we need to figure out how this matrix procedure generates eigenvalues

for general linear maps L : V' — V. In case V is finite dimensional we can simply
pick a basis and then study the matrix representation [L]. The diagram

v Loy
T T
L) R

then quickly convinces us that eigenvectors in F™ for [L] are mapped to eigenvectors
in V for L without changing the eigenvalue, i.e.,

[L]§ = X¢
implies

Lz = \x
and vice versa if £ € F" is the coordinate vector for z € V. Thus we define the
characteristic polynomial of L as x, (t) = xz) (t) . While we don’t have a problem
with finding eigenvalues for L by finding them for [L] it is less clear that x, (¢) is
well-defined with this definition. To see that it is well-defined we would have to
show that x(; (t) = Xp-1[)p (t) where B the the matrix transforming one basis
into the other. For now we are going to take this on faith. The proof will be given
when we introduce a cleaner definition of x; (¢) in “The Frobenius canonical form”.
Note, however, that computing x|, (t) does give us a rigorous method for finding
the eigenvalues as L. In particular, all of the matrix representations for L must have
the same eigenvalues. Thus there is nothing wrong with searching for eigenvalues
using a fixed matrix representation.

In the case where F = Q or R we can still think of [L] as a complex matrix. As

such we might get complex eigenvalues that do not lie in the field F. These roots
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of x; cannot be eigenvalues for L as we are not allowed to multiply elements in V'
by complex numbers.

We now need to prove that our method for computing the characteristic poly-
nomial of a matrix gives us the expected answer for the differential equation defined
using the operator

L=D"+a, D" '+ - +a1D +ay.

The corresponding system is

L(z) = - Az
0 1 0
. 0 0
= - T
1
—ag —aq e —Qp—1
= 0
So we consider the matrix
0 1 0
A 0 0
1
—@p —ap -+ —Gp-1
and with it
—t 1 0
1

—ap —ai - —t—dap_
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We immediately run into a problem as we don’t know if some or all of ag, ..., a,_1
are zero. Thus we proceed without interchanging rows.
- 1 . 0
0 —t
1
L —a0 —a1 —t—an_q
[ —t 1 0
0 —t
1
L 0 —a1 =% —ap_1 —t
-t 1 0
0 -t 1
1
L 0 0 —ax—%-—-% Ap_1 —t
[ —t 1 0
0 -t 1
: : . 1
0 0 0 « —t—a,q— 22— — 0, g0

We see that ¢ = 0 is the only value that might give us trouble. In case ¢ = 0 we note
that there cannot be a nontrivial kernel unless ¢y = 0. Thus A = 0 is an eigenvalue
if and only if ag = 0. Fortunately this gets build into our characteristic polynomial.
After multiplying the diagonal entries together we have

p(t) — (_1)” (t)’rl—l (t + An_1 + an—2 ay ao )

+ot +
= (=D)"(t"+ap-1t" "+ anot" *+ - +at+ ag)

t tnf2 tnfl

where A = 0 is a root precisely when ag = 0 as hoped for. Finally we see that
p(t) = 0 is up to sign our old characteristic equation for p (D) = 0.

3.1. Exercises.

(1) Find the characteristic polynomial and if possible the eigenvalues and
eigenvectors for each of the following matrices.

1 0 1
(a) |0 1 0
|1 0 1|
[0 1 27
M) |1 0 3
| 2 3 0 |
o 1 2
()| =1 0 3
| -2 -3 0
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(2) Find the characteristic polynomial and if possible eigenvalues and eigen-
vectors for each of the following matrices.

@ | 0]

7

0 =
o [ 4]
[1 @ 0]
(¢) |2 1 0
0 2 1
(3) Find the eigenvalues for the following matrices with a minimum of calcu-
lations (try not to compute the characteristic polynomial).
[1 0 1]
(a) [0 0 O
| 1 0 1]
[1 0 1]
(by | 0 1 0
|1 0 1 ]
[0 0 1]
(¢ 0 1 0
1 00

(4) Find the characteristic polynomial, eigenvalues and eigenvectors for each

of the following linear operators L : P; — Pj.
(a) L=D.

(by L=tD=ToD.

(¢) L=D*+2D+1.

(d) L =t*D3 + D.

(5) Let p € C[t] be a monic polynomial. Show that the characteristic poly-
nomial for D : ker (p (D)) — ker (p (D)) is p (¢) .

(6) Assume that A € Mat,x, (F) is upper or lower triangular and let p €
F [t] . Show that p is an eigenvalue for p (A) if and only if = p (A) where
A is an eigenvalue for A.

(7) Let L : V — V be a linear operator on a complex vector space. Assume
that we have a polynomial p € C[t] such that p (L) = 0. Show that all
eigenvalues of L are roots of p.

(8) Let L : V — V be a linear operator and K : W — V an isomorphism.
Show that L and K~' o L o K have the same eigenvalues.

(9) Let K : V — W and L : W — V be two linear maps.

(a) Show that K oL and Lo K have the same nonzero eigenvalues. Hint:
If © € V is an eigenvector for Lo K, then K (v) € W is an eigenvector
for Ko L.

(b) Give an example where 0 is an eigenvalue for Lo K but not for Ko L.
Hint: Try to have different dimensions for V' and W.

(¢) If dim V' = dim W, then a. also holds for the zero eigenvalue. Hint:
Use that

dim (ker (K o L))
dim (ker (L o K))

max {dim (ker (L)) ,dim (ker (K))},
max {dim (ker (L)), dim (ker (K))}

v v
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(16)

(17)

(18)
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and conclude that if the right hand side is zero then all the linear
maps are isomorphisms.

Let A € Mat,, xn (F).

(a) Show that A and A’ have the same eigenvalues and that for each
eigenvalue A we have

dim (ker (A — Agn)) = dim (ker (A" — Agn)) .

(b) Show by example that A and A? need not have the same eigenvectors.
Let A € Mat,xy, (F). Consider the following two linear operators on
Mat,xn (F) : La (X) = AX and Ra (X) = X A.

(a) Show that A is an eigenvalue for A if and only if A is an eigenvalue

for Ly.

(b) Show that x, () = (x.a ()"

(c) Show that ) is an eigenvalue for A! if and only if X is an eigenvalue

for Ry4.

(d) Relate x 4: (t) and xp, (£).

Let A € Maty, xn, (F) and B € Mat,,xm (F) and consider

L : Mat,xm (F) — Mat,xm (F),
L(X) = AX - XB.

(a) Show that if A and B have a common eigenvalue then, L has non-
trivial kernel. Hint: Use that B and B! have the same eigenvalues.
(b) Show more generally that if A is an eigenvalue of A and p and eigen-
value for B, then A\ — p is an eigenvalue for L.
Find the characteristic polynomial, eigenvalues and eigenvectors for

A:[g _aﬁ},a,ﬁeR

as amap A : C? — C2.

Show directly, using the methods developed in this section, that the char-
acteristic polynomial for a 3 x 3 matrix has degree 3.

Let

A{a Z],a,b,c,dGR

Show that the roots are either both real or are conjugates of each other.

Show that the eigenvalues of [ ¢ Z ] , where a,d € R and b € C, are

b
real. _
Show that the eigenvalues of [ zg ;d ] , where a,d € R and b € C, are
purely imaginary. -
a —b

Show that the eigenvalues of , where a,b € C and |a|*+b|* =1,

b a
are complex numbers of unit length.
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(19) Let
0 1 0
A= 0 0
1
—@p —ap -+ —Gp-1

(a) Show that all eigenspaces are 1 dimensional.
(b) Show that ker (A) # {0} if and only if ag = 0.
(20) Let
p(t) = (E=A)--(t=An)
= "+, 1 t" N art 4 g,

where A1, ..., A\, € F. Show that there is a change of basis such that

0 1 .- 0 A1 0
0 0o . : _p| 0 N =
. . . o

gy —ap e —ayy 0 A\

Hint: Try n = 2,3, assume that B is lower triangular with 1s on the
diagonal, and look at the exercises to “Linear Differential Equations”.
(21) Show that
(a) The multiplication operator T : C* (R,R) — C* (R,R) does not
have any eigenvalues. Recall that T (f) (t) =¢- f (1).
(b) Show that the differential operator D : C [t] — C [t] only has 0 as an

eigenvalue.

(¢) Show that D : C* (R,R) — C*° (R, R) has all real numbers as eigen-
values.

(d) Show that D : C* (R,C) — C* (R, C) has all complex numbers as
eigenvalues.

4. The Minimal Polynomial

The minimal polynomial of a linear operator is, unlike the characteristic polyno-
mial, fairly easy to define rigorously. It is, however, not quite as easy to calculate.
The amazing properties contained in the minimal polynomial on the other hand
seem to make it sufficiently desirable that it would be a shame to ignore it.

Recall that projections are characterized by a very simple polynomial relation-
ship L? — L = 0. The purpose of this section is to find a polynomial p (¢) for a
linear operator L : V' — V such that p(L) = 0. This polynomial will, like the
characteristic polynomial, also tell us the eigenvalues of L. In subsequent sections
we shall then study the properties of L from what we know about such p. Before
passing on to the abstract constructions let us consider two examples.

EXAMPLE 53. An involution is a linear operator L : V. — V such that L? = 1y.
This means that p(L) = 0 if p(t) = t> — 1. Our first observation is that this
relationship implies that L is invertible and that L= = L. Next we note that any
eigenvalue must satisfy \> = 1 and hence be a root of p. We can actually glean
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even more information out of this polynomial relationship. We claim that L is
diagonalizable, in fact

V=ker(L—1y)@ker (L+1y).

First we observe that these spaces have trivial intersection as they are eigenspaces
for different eigenvalues. If x € ker (L — 1) Nker (L + 1y), then

—z=L(z)==x
so x = 0. To show that
V =ker (L —1v) + ker (L + 1y)

we observe that any x € V' can be written as

=g @ L@)+ g @+ L),
Next we see that
L(z+L(z)) = L(z)+L*(x)
= L(z)xz
(£ L()).

Thus x+ L (x) € ker (L — 1y) and x— L (z) € ker (L + 1v/) . This proves the desired
claim.

EXAMPLE 54. Consider a linear operator L : V — V such that (L — 1y)* = 0.
This relationship implies that 1 is the only possible eigenvalue. Therefore, if L is
diagonalizable, then L = 1y and hence also satisfies the simpler relationship L —
1y = 0. Thus L is not diagonalizable unless it is the identity map. By multiplying
out the polynomial relationship we obtain

L? - 2L+ 1y =0.
This implies that
(2-1y —L)L=1y.
Hence L is invertible with L' =21y — L.
These two examples, together with our knowledge of projections, tell us that
one can get a tremendous amount of information from knowing that an operator

satisfies a polynomial relationship. To commence our more abstract developments
we start with a very simple observation.

ProproOSITION 13. Let L : V — V be a linear operator and
p)=t" +an_1tF T+t art+ag €F[Y
a polynomial such that
p(L) =L +a, 1 LF '+ 4 a L+ aply = 0.

(1) All eigenvalues for L are roots of p (t) .
(2) If p(0) = g # 0, then L is invertible and
1

L= ;— (LF '+ an g LF2 4 agly) .
0
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To begin with it would be nice to find a polynomial p (¢t) € F[t] such that
both of the above properties become bi-implications. In other words A € F is an
eigenvalues for L if and only p (A) = 0, and L is invertible if and only if p (0) # 0. It
turns out that the characteristic polynomial does have this property, but there is a
polynomial that has even more information as well as being much easier to define.

One defect of the characteristic polynomial can be seen by considering the two

matrices
1 0 1 1
0O 11’10 1

They clearly have the same characteristic polynomial p (t) = (¢t — 1)2, but only the
first matrix is diagonalizable.

We define the minimal polynomial uy (t) for L in the following way. Consider
ly, L, L?, ..., L*,.. € hom (V, V). Since V and hence hom (V, V) are finite dimen-
sional we can find a smallest k& > 1 such that L* is a linear combination of 1y, L,
L2, .., LF 1

Lk = *(aolv+a1L+a2L2+...+ak_lLk71)’ or
0 = Lk—i—ak—lLk_l+"'+a1L—|—a01V_

The minimal polynomial of L is defined as
pp (8) =tF + a1t 71+ ot + ap.

The first interesting thing to note is that the minimal polynomial for L = 1y is
given by pu;,, (t) =t — 1. Hence it is not the characteristic polynomial. The name
“minimal” is justified by the next proposition.

PROPOSITION 14. Let L : V — V be a linear operator on a finite dimensional
space.

(1) Ifp(t) € F[t] satisfies p(L) =0, then deg (p) > de

(2) If p(t) € Ft] satisfies p(L) = 0 and deg (p)
a-py (t) for some a € F.

g (k) -
deg (uy), then p(t) =

PROOF. 1. Assume that p # 0 and p (L) = 0, then

p(L) = O‘Tan4’047rL—1I/77171 4+ a4+ aply
= 0

If o, # 0, then L™ is a linear combination of lower order terms and hence m >
deg (pz) -

2. In case m = deg (i) = k we have that 1y, L, ..., L*~! are linearly indepen-
dent. Thus there is only one way in which to make L* into a linear combination of
1y, L, ..., L¥=1. This implies the claim. (I

Before discussing further properties of the minimal polynomial let us try to
compute it for some simple matrices.
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EXAMPLE 55. Let

Al
4 = 0 A
X 0 0
B = 0 X 1
| 0 0 A
[0 -1 0
Cc = 1 0 0
| 0 0 4
We note that A is not proportional to 1y, while
2
2 Al
AT = {0 A
S
- 0 A

Al 2| 1 0
A ET I R

g (t) =12 —2Xt 4+ A2 = (t — \)?

The calculation for B is similar and evidently yields the same minimal polynomial
pp () =12 = 2X + A2 = (t — \)°.

Finally for C we note that

Thus

-1 0 0
c’=|1 0 -1 0
0 0 -1
Thus
pe (t) =t + 1.

The next proposition shows that the minimal polynomial contains much of the
information that we usually glean from the characteristic polynomial. In subsequent
sections we shall delve much deeper into the properties of the minimal polynomial
and what it tells us about possible matrix representations of L.

PrROPOSITION 15. Let L : V. — V be a linear operator on an n-dimensional
space. Then
(1) If p(L) =0 for some p € F[t], then my, divides p, i.e., p(t) = pp, (t) q(¢)
for some q (t) € F[t].
(2) Let A € F, then X is an eigenvalue for L if and only if u; (A) = 0.
(3) L is invertible if and only if uy, (0) # 0.

PrOOF. 1. Assume that p(L) = 0. We know that deg (p) > deg (1) so if we
perform polynomial division (The Euclidean Algorithm), then p (¢t) = ¢ (¢) pp, (¢) +
r(t), where deg (r) < deg(p,). Sustituting L for ¢t gives p (L) = q (L) py, (L) +
r (L) . Since both p (L) = 0 and uy, (L) = 0 we also have r (L) = 0. This will give us
a contradiction with the definition of the minimal polynomial unless » = 0. Thus
p, divides p.
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2. We already know that eigenvalues are roots. Conversely, if 1, (A) = 0, then
we can write py (t) = (¢ — A) p(t). Thus
0=pg (L) =(L—=Aly)p(L)

Since deg (p) < deg (uy,) we know that p (L) # 0, but then the relationship (L — Aly)p (L) =
0 shows that L — Aly is not invertible.

3. If iy, (0) # 0, then we already know that L is invertible. Conversely suppose
that py (0) = 0. Then 0 is an eigenvalue by 2. and hence L cannot be invertible. O

EXAMPLE 56. The derivative map D : P, — P, has up = t"t1. Certainly
D™ wanishes on P, as all the polynomials in P, have degree < n. This means
that pup (t) = t* for some k < n+ 1. On the other hand D" (t*) = n! # 0 forcing
k=n+1.

EXAMPLE 57. Let V = span {exp (A1t),...,exp (Ant)}, with A1, ..., A, being dis-
tinct, and consider again the deriwative map D : V' — V. Then we have D (exp (A;t)) =
Aiexp (\it) . In “Linear Independence” and “Row Reduction”in Chapter 1 it was
shown that exp (A1), ..., exp (Ant) form a basis for V. Now observe that

(D = Mly)-- (D = Anly) (exp (An) ) = 0.
By rearranging terms it follows that
(D—=M1ly)---(D=A1ly)=0onV.
On the other hand
(D=Mly) (D= A—1ly) (exp (An) t) # 0.

This measn that pp, divides (t — A1) -+ (t — Ap) but can’t be (t — A1) -+ (t — A1) -
Since the order of the \s is irrelevant this shows that pp (t) = (t — A1) -+ (t — An) .

Finally let us compute the minimal polynomials in two interesting and some-
what tricky situations.

ProroOSITION 16. The minimal polynimial for

0 1 0
A 0 0
1
—Qp —Oa1 . —0Opq

s given by
pa () =t"+ o " gt + .

PROOF. It turns out to be easier to calculate the minimal polynomial for the
transpose

0 0 0 —ao

1 0 0 —Q
B = At = 0 1 0 —Q2

o 0 --- 1 —Qp—1

and it is not hard to see that a matrix and its transpose have the same minimal
polynomials.
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We claim that pg (t) = p(t) = x4 (t) . To see this, first note that e, = B (ex—1),
for k = 2,...,n showing that e;, = B*~!(e;), for k = 2,...,n. Thus the vectors e,
B(e1), ..., B" ! (e;) are linearly independent. This shows that 1p., B, ..., B"~!
must also be linearly independent. Next we can also show that p (B) = 0. This is
because

p(B)(ex) = p(B)oB* " (e1)
= B"'op(B)(er)

and p (B) (e1) = 0 since
p(B) (1) = (B +an 1 (B)' ™+ +aiB+agle ) e
= (B)"(e1) + an1(B)" " (e1) + -+ a1B(e1) + aglpn (e1)

Ben +ap_1€n, + -+ are2 + qpeq

= —ape; —Qies —— Qp_16y
Fanp—16n + -+ are2 + peq
= 0.

Next we show

PROPOSITION 17. The minimal polynomial for

A1 0
- 0 A
0 An

is given by
pe () =(E=A1) - (t=An).

PRrROOF. In fact in the exercises to “Eigenvalues” it was shown that C is similar
to A if we define the as by

p(t)=t"+a, 1" Fattag=(t— A1) (E— A

The claim can also be established directly by first showing that p (C) = 0. This
means that o divides p. We then just need to show that g; (C) # 0, where

q; (t) = tp—(t))\i'

The key observation for these facts follow from knowing how to multiply certain
upper triangular matrices:

0 1 0 01

10 00 0
0 Yo 1 0 0 1 00
0 0 0 0 65 .| |0 0 7303 :
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0 0 0
0 0 0
1 =10 0 O

'745454

Therefore, when we do the multiplication
(C' = M1pn) (C = Aglpn) -+ (C = Ny 1pn)

by starting at the right, we get that the first & columns are zero in
(C = Ai1pn) (C = Aalpn) -+ (C — Aglpn)

but that the (k+ 1)™ column has 1 as the first entry. Clearly this shows that
p(C) = 0 as well as ¢, (C) # 0. Since we didn’t specify the last A, this will also
show that ¢; (C) #0 for all i =1,...,n. O

4.1. Exercises.

(1) Find the minimal and characteristic polynomials for

1 01
A=10 1 0
1 01

(2) Assume that L : V — V has an invariant subspace M C V. Show that
B, divides gy
(3) Show that uy (t) = g, (t), where L’ is the dual of L. Alternatively show
that a matrix and its transpose have the same minimal polynomials.
(4) Let L : V — V be a linear operator such that L? +1 = 0.
(a) If V is real vector space show that 1y and L are linearly independent
and that p; (t) =2 + 1.
(b) If V and L are complex show that 1y and L need not be linearly
independent.
(c) Find the possibilities for the minimal polynomial of L3 +2L? + L + 3.
(5) Let L: V — V be a linear operator and p € F [t] a polynomial. Show

deg Hp(r) (t) < degpy ().

(6) Assume that L : V — V has minimal polynomial y; (t) = > + 1. Find a
polynomial p (¢) such that L= = p(L).
(7) Assume that L : V — V has minimal polynomial p; (t) = 3 + 2t + 1.
Find a polynomial q () of degree < 2 such that L* = ¢ (L).
(8) Assume that L : V' — V has minimal polynomial p;, (¢) = t. Find a matrix
representation for L.
(9) Ifl > deg (i1;,) = k, then show that L! is a linear combination of 1y, L, ..., LE=1.
If L is invertible show the same for all [ < 0.
(10) Show that the minimal polynomial for D : ker (p (D)) — ker (p (D)) is
Kp = D-
(11) Let A € Mat,x, (F) and consider the two linear operators La, R4 :
Maty, xp, (F) — Maty, xp (F) defined by La (X) = AX and R (X) = X A.
Find the minimal polynomial of L4, R given p4 (t).
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(12) Consider two matrices A and B, show that the minimal polynomial for
the block diagonal matrix

A 0
0 B
is lem {p1 4, up}. Generalize this to block diagonal matrices
Ay
Ay

5. Diagonalizability

In this section we shall investigate how and when one can find a basis that puts
a linear operator L : V — V into the simplest possible form. This problem will
reappear in Chapter 4 for symmetric and self-adjoint operators, but what we do
here is more general. From the section on differential equations we have seen that
decoupling the system by finding a basis of eigenvectors for a matrix considerably
simplifies the problem of solving the equation. It is from that set-up that we shall
take our cue to the simplest form of a linear operator.

A linear operator L : V — V on a finite dimensional vector space is said to be
diagonalizable if we can find a basis for V' that consists of eigenvectors for L, i.e., a
basis ey, ..., €, for V such that L (e;) = \je; for all ¢ = 1,...,n. This is the same as
saying that
N oo O
[Lier)  Liew) ]=le o en]| : o
0 - M\

In other words, the matrix representation for L is a diagonal matrix.

One advantage of having a basis that diagonalizes a linear operator L is that it
becomes much simpler to calculate the powers L¥ since L* (e;) = )\fei. More gen-
erally if p (t) € F[t], then we have p (L) (e;) = p(A;) e;. Thus p (L) is diagonalized
with respect to the same basis and with eigenvalues p (\;) .

We are now ready for a few examples and then the promised application of
diagonalizability.

ExXAMPLE 58. The derivative map D : P, — P, is not diagonalizable. We
already know that is has a matrix representation that is upper triangular and with
zeros on the diagonal. Thus the characteristic polynomial is t"t!. So the only
etgenvalue is 0. Therefore, had D been diagonalizable it would have had to be the
zero transformation Op, . Since this is not true we conclude that D : P, — P, is
not diagonalizable.

EXAMPLE 59. Let V = span{exp (Ait),...,exp (Apt)} and consider again the
deriwative map D : V. — V. Then we have D (exp (A\;t)) = A\;exp (\;t). So if we
extract a basis for V. among the functions exp (Ait), ..., exp (Ayt), then we have
found a basis of eigenvectors for D.

These two examples show that diagonalizability is not just a property of the
operator. It really matters what space the operator is restricted to live on. We can
exemplify this with matrices as well.
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0 -1
A= { b } |
As a map A : R2 — R2?, this operator cannot be diagonalizable as it rotates vectors.
However, as a map A : C> — C? it has two eigenvalues i with eigenvectors

-]

As these eigenvectors form a basis for C2 we conclude that A : C2 — C? is diago-
nalizable.

ExaAMPLE 60. Consider

We have already seen how decoupling systems of differential equations is related
to being able to diagonalize a matrix. Below we give a different type of example of
how diagonalizability can be used to investigate a mathematical problem.

Consider the Fibonacci sequence 1, 1,2, 3,5, 8, ... where each element is the sum
of the previous two elements. Therefore, if ¢,, is the n*? term in the sequence, then
Gryo = Ppi1 + ¢, with initial values ¢y = 1,¢; = 1. If we record the elements in

pairs
P, = [ On } e R?,

¢n+l
then the relationship takes the form

] = Ll
¢n+2 11 ¢n+1 ’
(I)n+1 == A(I)n

The goal is to find a general formula for ¢,, and to discover what happens as n — oo.
The matrix relationship tells us that

q)n = An(I)O;

Lo - T

Thus we must find a formula for
0o 11"
1 1 )

This is where diagonalization comes in handy. The matrix A has characteristic
polynomial
1 5 1—-+/5
tP—t—1= (t— +2\[> (t— 2\[)

1
The corresponding eigenvectors for 1i2\/5 are [ 1475 } . So
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The ratio of successive Fibonacci numbers satisfies

e ) () ()

! 1

(o % 1+2\/5) + (%) (1_2\/5) ¥
2

n+1
where (;ﬁ) — 0 as n — oo. Thus

lim m = L+ V5

n—oo ¢7l 2 ’
which is the Golden Ratio. This ratio is often denoted by ¢. The Fibonacci se-
quence is often observed in growth phenomena in nature and is also of fundamental
importance in combinatorics.

It is not easy to come up with a criterion that guarantees that a matrix is
diagonalizable and which is also easy to use. We shall see that symmetric matrices
with real entries are diagonalizable in Chapter 4. It turns out that the minimal
polynomial holds the key to diagonalizability of an operator.

In general what one has to do for an operator L : V — V is compute the
eigenvalues, then list them without multiplicities Aq, ..., A\g, then calculate all the
eigenspaces ker (L — A\;1y), and finally, check if one can find a basis of eigenvec-
tors. To help us with this process there are some useful abstract results about the
relationship between the eigenspaces.

LeEmMA 14. (Eigenspaces form Direct Sums) If A1, ..., \p are distinct eigenval-
ues for a linear operator L : V — V, then

ker (L — )\11\/) + .- -+ ker (L — )\klv) = ker (L — )\11V) @ --- D ker (L — >\k1V) .
In particular we have
kE < dim (V).

PROOF. The proof uses induction on k. When k = 1 there is nothing to prove.
Assume that the result is true for any collection of k£ distinct eigenvalues for L and
suppose that we have k + 1 distinct eigenvalues Ay, ..., Ag4+1 for L. Since we already
know that

ker (L — Aly) + -+ ker (L — A\ ly) =ker (L—M1ly)® - @ ker (L — Agly)
it will be enough to prove that
(ker (L — M1y) 4 -+ ker (L — Aply)) Nker (L — Ag411ly) = {0}.

In other words we claim that that if L () = Ag412z and @ = z1 + - -+ + x where
x; € ker (L — A\;1y), then = 0. We can prove this in two ways.
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First note that if k£ = 1, then x = x; implies that x is the eigenvector for two
different eigenvalues. This is clearly not possible unless x = 0. Thus we can assume
that k£ > 1. In that case

A1z = L(x)
L(xi+-+x)
= Mx1+ -+ ATk

Subtracting yields
0=\ —Meg)zr + -+ Ak — Meg1) 2
Since we assumed that
ker (L — A\ly)+- -+ ker (L — Aly) =ker (L —A\ly)® - - @ker (L — A\ply)

it follows that (A1 — Agt1) @1 = 0, ooy (M — A1) Tk = 0. As (A — A1) # O,
ey (A — Ag41) # 0 we conclude that z; = 0, ..., zx = 0, implying that z =
1+ +x=0.

The second way of doing the induction is slightly trickier, but also more elegant.
This proof will in addition give us an interesting criterion for when an operator
is diagonalizable. Since Ay, ..., A\p11 are different the polynomials ¢t — A1, ..., t —
Ak+1 have 1 as their greatest common divisor. Thus also (¢t — A1) --- (¢t — Ag) and
(t — Ag+1) have 1 as their greatest common divisor. This means that we can find
polynomials p (t),q (¢t) € F[t] such that

L=p() (=) (=) +q () (¢ = Aegr).
If we put the operator L into this formula in place of t we get:
ly =p(L) (L= Xly) - (L= Alv) + q(L) (L = Apgalv).
Applying this to = gives us
z=p(L)(L=Mly)- (L= Xlv) (z) + ¢(L) (L = Aealy) (2).

If
x € (ker (L —M1ly)+---+ker (L — Agly)) Nker (L — App1ly)
then
(L—Allv)(L—/\klv) (J?) = 0,
(L= Aes1lyv) () =
so also z = 0. O

This gives us three criteria for diagonalizability.

THEOREM 20. (First Characterization of Diagonalizability) Let L : V — V
be a linear operator on an n-dimensional vector space over F. If A\1,...., A\, € F are
distinct eigenvalues for L such that

n = dim (ker (L — A\ 1y)) 4+ -+ + dim (ker (L — A\ 1y)),

Then L is diagonalizable. In particular, if L has n distinct eigenvalues in F, then
L is diagonalizable.
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PROOF. Our assumption together with the above lemma shows that

n = dim(ker (L — X \1ly))+ -+ dim (ker (L — Agly))
= dim(ker (L — Mly)+--- +ker (L — Agly)).
Thus
ker(L — Allv) D--- @ker(L — )\k]-V) =V
and we can find a basis of eigenvectors, by selecting a basis for each of the eigenspaces.

For the last statement we only need to observe that dim (ker (L — Aly)) > 1
for any eigenvalue A € F. a

The next characterization offers a particularly nice condition for diagonalizabil-
ity which will give us the minimal polynomial characterization of diagonalizability.

THEOREM 21. (Second Characterization of Diagonalizability) Let L : V — V
be a linear operator on an n-dimensional vector space over F. L is diagonalizable if
and only if we can find p € F[t] such that p (L) =0 and

p(t) =@ =) (t =),
where A1, ..., A\ € F are distinct.
PROOF. Assuming that L is diagonalizable we have
V=ker(L—XM\ly)® - -Dker (L —A\1ly).
So if we use
p(t)=(t—=A)---(t =)
we see that p (L) = 0 as p (L) vanishes on each of the eigenspaces.
Conversely assume that p (L) = 0 and

p(t)=@E=A)(t =),

where Aq,...,A\p € F are distinct. If some of these As are not eigenvalues for L we
can eliminate them. We then still have that L is a root of the new polynomial
as L — Aly is an isomorphism unless A is an eigenvalue. The proof now goes by
induction on the number of roots in p. If there is one root the result is obvious. If
k > 2 we can write

1 = r@®)@E—A) - (t— 1) +s() (E— )

r () (
= r(t)q)+s(t){E— k).
We then claim that
V =ker(q(L)) ® ker (L — A\ 1y)
and that
L (ker (¢ (L))) C ker (g (L))

This will finish the induction step as L\ker(q(L)) then becomes a linear operator
which is a root of q.

To establish the decomposition observe that

v = q(L)(r(L) @)+ (L= ly)(s(L) (z))
= y+z.
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Here y € ker (L — A1y ) since

(L=Xlv)(y) = (L—=Xelv)(q(L)(r (L) (2))
= p(L)(r(L)(2))
=0

and z € ker (¢ (L)) since

q (L) (L = Axly) (s (L) (2))) = p (L) (s (L) (z)) = 0.
Thus
V =ker(q (L)) + ker (L — M\ly).
If
x € ker (¢(L)) Nker (L — A\gly),

then we have

z=r(L)(q(L) () + s (L) (L = Alv) () = 0.

This gives the direct sum decomposition.
Finally if « € ker (¢ (L)), then we see that

q(L)(L(z)) = (¢(L)eoL)(x)
= (Logq(L))(x)
= L(q(L)(2))
0.
Thus showing that L (x) € ker (¢ (L)) . O

COROLLARY 16. (The Minimal Polynomial Characterization of Diagonalizabil-
ity) Let L : V. — V be a linear operator on an n-dimensional vector space over F.
L is diagonalizable if and only if the minimal polynomial factors

pp (8) =t =A1) - (t = i),
and has no multiple roots, i.e., \1,...,\x € F are distinct.

Finally we can estimate how large dim (ker (L — Aly)) can be if we have fac-
tored the characteristic polynomial.

LEMMA 15. Let L : 'V — V be a linear operator on an n-dimensional vector
space over F. If X € F is an eigenvalue and x; (t) = (t — X\)" q (t), where q (\) # 0,
then

dim (ker (L — Aly)) < m.

We call dim (ker (L — Aly)) the geometric multiplicity of A and m the algebraic
multiplicity of A.

PRrROOF. Select a complement N to ker (L — Aly) in V. Then choose a basis
where x1, ...,z € ker (L — Aly) and zg41,...,2, € N. Since L (x;) = Az; for i =
1,...,k we see that the matrix representation has a block form that looks like

a-[ 2]
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This implies that
xp ) = xu @)
— . O xe ®)
k
= (t=X)"xc (@)

and hence that A has algebraic multiplicity m > k. ([

Clearly the appearance of multiple roots in the characteristic polynomial is
something that might prevent linear operators from becoming diagonalizable. The
following criterion is often useful for deciding whether or not a polynomial has
multiple roots.

PROPOSITION 18. A polynomial p (t) € F[t] has A € F as a multiple root if and
only if X is a root of both p and Dp.

ProOOF. If A is a multiple root, then p (t) = (t — \)" ¢ (t), where m > 2. Thus
Dp(t)=m(t—N)"""q(t) + (t = N)" Dq(t)

also has A as a root.
Conversely if A is a root of Dp and p, then we can write p (t) = (t — \) ¢ (¢) and

0 = Dp(})
= ¢+ A=A Dg(})
= q(N).
Thus also ¢ (¢) has A as a root and hence A is a multiple root of p (¢). O

EXAMPLE 61. If p(t) = t> + at + 3, then Dp(t) = 2t + a. Thus we have a
double root only if the root t = —5 of Dp is a root of p. If we evaluate

(0% (0% (0%
(-5) =TT
2
(0%
= - +5
_ a? — 48
B 4

we see that this occurs precisely when the discriminant vanishes. This conforms
nicely with the quadratic formula for the roots.

EXAMPLE 62. If p(t) = t3412t2 — 14, then the roots are pretty nasty. We can,
however, check for multiple roots by finding the roots of

Dp (t) = 3t* + 24t = 3t (t + 8)
and cheking whether they are roots of p
p(0) = —14#0,
p(8) 83 +12-8%— 14
82 (8 +12) — 14 > 0.
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As an application of the above characterizations of diagonalizability we can
now complete some of our discussions about solving n*" order differential equations
where there are no multiple roots in the characteristic polynomial.

First we wish to give a new proof that exp (A1t), ..., exp (A,t) are linearly inde-
pendent if Ay, ..., A, are distinct. For that we consider V' = span {exp (A1t),...,exp (Ant)}
and D : V — V. The result is now obvious as each of the functions exp (A;t) is an
eigenvector with eigenvalue \; for D : V. — V. As A1,..., A, are distinct we can
conclude that the corresponding eigenfunctions are linearly independent. Thus
exp (A1t), ..., exp (Apt) form a basis for V' which diagonalizes D.

In order to solve the initial value problem for higher order differential equations
it was necessary to show that the Vandermonde matrix

1 1
A1 An
)\717,—1 )\2—1

is invertible, when Aq,..., A\, € F are distinct. This was done is “Linear Indepen-
dence” and will now be established using eigenvectors. Given the origins of this
problem (in this book) it is not unnatural to consider a matrix

0 1 0
A 0 0 ,
1
—Q —0 e —Qp—1
where
p(t) = t"+apat" M4 fart+ag

= (t=XA) (=)

The characteristic polynomial for A is then p(t) and hence Ay, ..., \, € F are the
eigenvalues. When these eigenvalues are distinct we therefore know that the cor-
responding eigenvectors are linearly independent. To find these eigenvectors note



5. DIAGONALIZABILITY 131

that

1 0 1 0 1
py . : Ak
A . _ 0 0 : '
: 1 .
n—1 n—1
A L Q0 —Q1 0 —Qp_1 Ak
- e
A
| —ag— o dp— =AY
A
M|
= .|, since p(Ag) =0
L Ak
1
Ak
= X )
APt

This implies that the columns in the Vandermonde matrix are the eigenvectors for a
diagonalizable operator. Hence it must be invertible. Note that A is diagonalizable
if and only if Ay, ..., \,, are distinct as all eigenspaces for A are 1 dimensional (we
shall also prove and use this in the next section “Cyclic Subspaces”).

An interesting special case occurs when p(t) = t™ — 1 and we assume that
F = C. Then the roots are the n*" roots of unity and the operator that has these
numbers as eigenvalues looks like
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The powers of this matrix have the following interesting patterns:

[0 0 1 0 0]
0 0
c? = 1 0 7
0 0 1
1 0 0 0
i 10 0
o L
on-1 1 0 .o
S 0
L 0 1 0 |
- 0 :
cr = 0 1 . . :1]F".
R (|
L0 -+ 0 1|

A linear combination of these powers looks like:

-1
Cao ..... Ap_1 Olol[ﬁ‘n + alc + -+ anflcn
&%) aq (€5)] (€% I Qp—1
Qn—-1 Qg aq Qg - Qp—2
Qp—1 (%)
a3 . Qp—1
Qo 6%} . . (e7s} (e%1
L @1 Q2 as o Qp—1 Qo |

Since we have a basis that diagonalizes C' and hence also all of its powers, we
have also found a basis that diagonalizes Cl,,.. a,_,. This would probably not have
been so easy to see if we had just been handed the matrix Cq, ... o, _,-

5.1. Exercises.

(1) Decide whether or not the following matrices are diagonalizable.

1 01
(a) [0 1 0
|1 0 1|
[0 1 27
M)y |1 0 3
| 2 3 0 |
o0 1 2
() | -1 0 3
-2 -3 0

(2) Decide whether or not the following matrices are diagonalizable.
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0 ¢
@70
0 1
o [ % 5]
[1 i 0]
(¢c) |2 1 0
0 21
(3) Decide whether or not the following matrices are diagonalizable.
[1 0 1]
(a) [0 0 O
|1 0 1 |
[1 0 17
(by | 0 1 0
10 1]
[0 0 1]
(¢ O 1 0
1 00

(4) Find the characteristic polynomial, eigenvalues and eigenvectors for each
of the following linear operators L : P3 — P3. Then decide whether they
are diagonalizable by checking whether there is a basis for eigenvectors.

(a) L=D.

(by L=tD=ToD.
(¢) L=D?+2D +1.
(d) L =t2D3+ D.

(5) Consider the linear operator on Mat,, ,, (F) defined by L (X) = X*. Show
that L is diagonalizable. Compute the eigenvalues and eigenspaces.

(6) For which s,t is the matrix diagonalizable

il

(7) For which «, 5, is the matrix diagonalizable

01 0
0 0 1|7
a B v

(8) Assume L:V — V is diagonalizable. Show that V' =ker (L) @ im (L).
(9) Assume that L : V — V is a diagonalizable real linear map. Show that
tr (L2) > 0.
(10) Assume that A € Mat,, x, (F) is diagonalizable.
(a) Show that A* is diagonalizable.
(b) Show that L4 (X) = AX defines a diagonalizable operator on Mat,, x,, (F) .
(¢) Show that R4 (X) = X A defines a diagonalizable operator on Mat,, x,, (F) .
(11) If E: V — V is a projection on a finite dimensional space, then tr (E) =
dim (im (E)) .
(12) Let A € Mat,x, (F) and B € Mat,,x.m (F) and consider

L : Matyxm (F) = Mat,xm (F),
L(X) = AX - XB.
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Show that if B is diagonalizable, then all eigenvalues of L are of the form
A — i, where X is an eigenvalue of A and p an eigenvalue of B.
(13) (Restrictions of Diagonalizable Operators) Let L : V' — V be a diagonal-
izable operator and M C V a subspace such that L (M) C M.
(a) If  +y € M, where L(z) = Az, L(y) = py, and X\ # pu, then
T,y € M.
(b) Ifx1 + -+ xp € M and L (z;) = \jz;, where Ay, ..., A, are distinct,
then 1, ...,z € M. Hint: Use induction on k.
(c) Show that L: M — M is diagonalizable.
(d) Now use the Second Characterization of Diagonalizability to show
directly that L : M — M is diagonalizable.
(14) Let L : V — V be a linear operator on a finite dimensional vector space.
Show that A is a multiple root for i (¢) if and only if

{0} € ker (L — Aly) € ker ((L - )\1V)2) .

(15) Assume that L, K : V — V are both diagonalizable and that KL = LK.
Show that we can find a basis for V' that diagonalizes both L and K. Hint:
you can use the previous exercise with M as an eigenspace for one of the
operators.

(16) Let L : V — V be an operator on a vector space and Ap, ..., A\ distinct
eigenvalues. If x = x1 + - -+ 4+ x, where z; € ker (L — A\;1y), then

(L - Allv) s (L - )\le) (ZZ?) =0.

(17) Let L : V — V be an operator on a vector space and A # u. Use the
equation

1

1
M_/\(Lf)\lv)ff_ (L—ply) =1y

A
to show that two eigenspaces for L have trivial intersection.
(18) Consider an involution L:V — V, ie., L? = 1y.
(a) Show that x £ L (x) is an eigenvector for L with eigenvalue +1.
(b) Show that V =ker (L+ 1y) @ ker (L — 1y).
(¢) Conclude that L is diagonalizable.
(19) Assume L : V — V satisfies L? + aL + 81y = 0 and that the roots A1, Aa
of A + X + S8 are distinct and lie in F.
(a) Determine 7,6 so that

x=7(L(z)—Az)+ (L (x)— Aax).

(b) Show that L () — Az is an eigenvector for L with eigenvalue Ay and
L (x) — Aoz is an eigenvector for L with eigenvalue A;.

(¢) Conclude that V = ker (L — A1ly) @ ker (L — A2ly).

(d) Conclude that L is diagonalizable.

(20) Let L : V — V be a linear operator with minimal polynomial my, (t) =
p(t)q(t), where ged {p,q} = 1. Show that V = ker (p(L)) @ ker (q (L))
and that ML riniry = P and ML oy = - Hint: Look at the second
proof of why eigenspaces form direct sums.
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6. Cyclic Subspaces

Let L : V — V be a linear operator on a finite dimensional vector space. A
subspace M C V is said to be L invariant or simply invariant if L (M) C M. Thus
the restriction of L to M defines a new linear operator L|a; : M — M. We see that
eigenvectors generate one dimensional invariant subspaces and more generally that
eigenspaces ker (L — Aly ) are L-invariant.

The goal of this section is to find a relatively simple matrix representation for
operators L that aren’t necessarily diagonalizable. The way in which this is going
to be achieved is by finding a decomposition V = M; & --- & M, into L-invariant
subspaces M; with the property that L|y;, has matrix representation that can be
found by only knowing the characteristic or minimal polynomial for L]y, .

The invariant subspaces we are going to use are in fact a very natural gen-
eralization of eigenvectors. First we observe that z € V is an eigenvector if
L(z) € span{z} or in other words L (x) is a linear combination of z. In case
L (z) is not a multiple of & we consider the cyclic subspace generated by all of the
vectors x, L (z), ..., L* (z), ...

C, =span{z,L(z),L*(2),...,L" (2),...}.
Assuming x # 0, we can find a smallest k£ > 1 such that
L*(z) € span {z, L (z),L? (z),...LF " (2)}.
With this definition and construction behind us we can now prove.

LEMMA 16. Let L : V — V be a linear operator on an n-dimensional vector
space. Then C, is L-invariant and we can find k < dim (V') so that z, L(x),
L2 (z), ..., Lk~ (x) form a basis for C,. The matriz representation for L|c, with
respect to this basis is

00 -+ 0
1 0 - 0 a1
0 1 0 Qo
0 0 -+ 1 o

where
Lk (-’L') = apr + a1 L (_’13) + o+ Oék;flLk_l (l‘) -

PROOF. The vectors z, L (x), L? (), ..., L¥~1 (z) must be linearly independent
if we pick k as the smallest k such that

LF(2) = apz + on L () + -+ + ap_ L' (2) .
To see that they span C, we need to show that
L™ (z) € span {w, L (2), L (x) , .., [F" ()}

for all m > k. We are going to use induction on m to prove this. If m =0, ...k — 1,
there is nothing to prove. Assuming that

L™ () = Box + ByL(x) + -+ B LF 1 (2)

we get
L™ (x) = BoL () + By L2 (x) + - + B4 L* ().



136 2. LINEAR OPERATORS

Since we already have that

L¥(z) € span {z, L (z),L? (z),...LF " (2)}
it follows that

L™ (z) € span{z, L (z),L* (z), ..., Lkt (2)}.

This completes the induction step. This also explains why C, is L invariant.
Namely, if z € C,, then we have

2=y +nL@) 4+ + e L (2),
and
L(z) =L (z) + 7, L* (@) + -+, LF (2).

As L* (z) € C, we see that L (z) € C, as well.
To find the matrix representation we note that

[ L(z) L(L(z)) -+~ L(L*?(z)) L(L*'(2)) ]
~ (L@ P@ o ) @]
0 0 0
1 0 0 (651)
= [az L(x) - L'2%(@) LF'(z)] 0 1 0 a
0 0 ]. A1
This proves the lemma. U

The matrix representation for L|c, is apparently the transpose of the type
of matrix coming from higher order differential equations that we studied in the
previous sections. Therefore, we can expect our knowledge of those matrices to
carry over without much effort. To be a little more precise we define the companion
matriz of a monic polynomial p (¢) € I [¢] as the matrix

0 0 0 —aQg
1 0 0 — Q]
Cp — o1 --- 0 —Q9 ,
O 0 1 —Op—1
p(t) = t"+a, 1 t" Mot + .

It is worth mentioning that the companion matrix for p = ¢t + « is simply the 1 x 1
matrix [—a] .

ProrosITION 19. The characteristic and minimal polynomials of C, are both
p(t) and all eigenspaces are one dimensional. In particular, C, is diagonalizable if
and only all the roots of p(t) are distinct and lie in F.

PRrROOF. Even though we can prove these properties from our knowledge of the
transpose of C), it is still worthwhile to give a complete proof. Also recall that we
computed the minimal polynomial in “The Minimal Polynomial” section above.
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To compute the characteristic polynomial we consider:

t o --- 0 oo

—1 t e O (o7}
tl]Fn _Cp — 0 -1 --- 0 (6)

0 0 —1 t-l—Oln_l

By switching rows 1 and 2 we see that this is row equivalent to

t o --- 0 Qg
0 -1 0 ()]
0 0 -1 t+0¢n_1

eliminating ¢ then gives us

—1 t e O o1
0 2. 0 ao+ at
0 -1 - 0 (6%)]
0 0 - =1 t+a,

Now switch rows 2 and 3 to get

~1 ¢t - 0 o
o -1 --- 0 s
0 tz 0 Oéo+0£1t
0 0 N —1 t.‘.an_l
and eliminate ¢2
—1 t e O (o7
o -1 --- 0 Qs
0 0 0 O[0+Oélt+042t2
0 0 -1 t+ an_1

Repeating this argument shows that t1p» — C), is row equivalent to

—1 t N 0 (o7

o -1 -- 0 o)

0 0 :

: : -1 Op—1

0 0 - 0 t"+a, "1+ +at+ta

This implies that the characteristic polynomial is p ().
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To see that all eigenspaces are one dimensional we note that, if A is a root of
p (t), then we have just shown that Alg» — C,, is row equivalent to the matrix

—1 A . 0 o
o -1 -+ 0 a9
0 0 :
. : -1 a1
0 o --- 0 0

Since all but the last diagonal entry is nonzero we see that the kernel must be one
dimensional. (]

Cyclic subspaces lead us to a very elegant proof of the Cayley-Hamilton theo-
rem.

THEOREM 22. (The Cayley-Hamilton Theorem) Let L : V. — V be a linear
operator on a finite dimensional vector space. Then L is a root of its own charac-
teristic polynomial

xr (L) =0.
In particular, the minimal polynomial divides the characteristic polynomial.
PRrROOF. Select any « # 0 in V and a complement M to the cyclic subspace
C, generated by x. This gives us a nontrivial decomposition V' = C, & M, where

L maps C, to it self and M into V. If we select a basis for V' that starts with the
cyclic basis for C, then L will have a matrix representaion that looks like

m=1% 2l

where C), is the companion matrix representaion for L restricted to C,. This shows
that
X (t) = Xc, () xp (t)
= p()xp ().

We know that p (Cp) = 0 from the previous result. This shows that p(L|c,) = 0
and in particular that p (L) () = 0. Thus

xp (L) (@) = xp(L)ep(L)(x)
= 0.
Since x was arbitrary this shows that x (L) = 0. O

We now have quite a good understanding of the basic building blocks in the
decomposition we are seeking.

THEOREM 23. (The Cyclic Subspace Decomposition) Let L : V. — V be a
linear operator on a finite dimensional vector space. Then V has a cyclic subspace
decomposition

V=Cp® - ®Chy,
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where each C, is a cyclic subspace. In particular, L has a block diagonal matriz
representation where each block is a companion matrix

Cp, O 0
0 sz
[L] =
0 Cp,

and xp, (t) = p1 (t) - p (t) . Moreover the geometric multiplicity satisfies
dim (ker (L — A\ly)) = number of p;s such that p; (A) = 0.

In particular, we see that L is diagonalizable if and only if all of the companion
matrices C), have distinct eigenvalues.

PROOF. The proof uses induction on the dimension of the vector space. Thus
the goal is to show that either V' = C, for some z € V or that V = C, & M for
some L invariant subspace M. We assume that dim (V) = n.

Let m < n be the largest dimension of a cyclic subspace, i.e., dimC, < m
for all x € V and there is an x; € V such that dimC,, = m. In other words
L™ (z) € span{z, L (z),...,L"™ ! (z)} for all z € V and we can find z; € V such
that 21, L (21), ..., L™ ! (x1) are linearly independent.

In case m = n, it follows that C,, = V and we are finished. Otherwise we must
show that there is an L invariant complement to C,, = span {ml, L(z1),...,Lm 1! (ml)}
in V. To construct this complement we consider the linear map K : V — F™ defined
by

£ (L1 (@)

where f: V — F is a linear functional chosen so that
/ ($1) = 0
f(L(z1)) 0,

FLm2 (@) = 0
(L™ (z) = 1L

Note that it is possible to choose such an f as z1, L (71), ..., L™ (z1) are linearly
independent and hence part of a basis for V.

We now claim that K|c, :Cs, — F™ is an isomorphism. To see this we find
the matrix representation for the restriction of K to Cy,. Using the basis z1, L (1),
ey L™ (21) for C,, and the canonical basis ey, ..., €, for F we see that:

| K(x1) K(L(z1)) -+ K(L™'(21)) ]
0 0 1

= [ea e - em]|y ¥
1 =x*
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where * indicates that we don’t know or care what the entry is. Since the matrix
representation is clearly invertible we have that K|c, :Cy — F™ is an isomor-
phism.

Next we need to show that ker (K) is L invariant. Let = € ker (K), i.e.,

[ (z) 0
f(L(z)) 0
K (z) = : =
f (LTrL—l (.’L’)) 0
Then
f(L(z)) 0
F (L (@) 0
K (L () = s -
f(Lm"(2)) 0
L™ (x)) S (x))
Now use the assumption that L™ () is a linear combination of x, L (), ..., L™ (z)

for all z to conclude that also f (L™ (z)) = 0. Thus L (z) € ker (K) as desired.

Finally we show that V' = C,,, ©ker (K). We have seen that K|c, :Cy — F™
is an isomorphism. This implies that C,, Nker (K) = {0}. From the dimension
formula we then get that

dim (V) = dim (ker (K)) + dim (im (K))
= dim (ker (K

= dim (ker

= dim (ker (K

Thus V = Cy, +ker (K) = Cy, ® ker (K).

To find the geometric multiplicity of A, we need only observe that each of
the blocks C),, has a one dimensional eigenspace corresponding to A if A is an
eigenvalue for C,,. We know in turn that X is an eigenvalue for C), precisely when

i

Di (/\) =0. O

It is important to understand that there can be several cyclic subspace decom-
positions. This fact, of course, makes our calculation of the geometric multiplicity
of eigenvalues especially intriguing. A rather interesting example comes from com-
panion matrices themselves. Clearly they have the desired decomposition, however,
if they are diagonalizable then the space also has a different decomposition into
cyclic subspaces given by the one dimensional eigenspaces. The issue of obtaining
a unique decomposition is discussed in the next section and turns out to fall right
out of our proof.

To see that this theorem really has something to say we should give examples of
linear maps that force the space to have a nontrivial cyclic subspace decomposition.
Since a companion matrix always has one dimensional eigenspaces this is of course
not hard at all. A very natural choice is the linear operator L4 (X) = AX on
Mat, xn (C). In “Linear Maps as Matrices” in chapter 1 we showed that it had a
block diagonal form with As on the diagonal. This shows that any eigenvalue for A
has geometric multiplicity at least n. We can also see this more directly. Assume
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that Az = Az, where € C" and consider X = [ auz -+ ana |. Then
La(X) = Al oz -+ oz |
= [mdz - a,Az |
_ )\[Oql’ Oénl']
= \X.
Thus
M:{[alx anfv]:al,...,ozne(:}

forms an n dimensional space of eigenvectors for L 4.

Another interesting example of a cyclic subspace decomposition comes from
permutation matrices. We first recall that a permutation matrix A € Mat, x,, (F)
is a matrix such that Ae; = e,(;), see also “Linear Maps as Matrices” in chapter 1.
We claim that we can find a cyclic subspace decomposition by simply rearranging
the canonical basis ey, ..., e, for F". The proof works by induction on n. Whenn =1
there is nothing to prove. For n > 1, we consider C., = span {el, Aey, A%eq, } .
Since all of the powers A™e; all belong to the finite set {e,...,e,}, we can find
integers k > [ > 0 such that AFe; = Ale;. Since A is invertible this implies that
AF=le; = e;. Now select the smallest integer m > 0 such that A™e; = e;. Then we
have

C., = span {el,Ael, Ay, ..., Amflel} .

Moreover, all of the vectors e, Aei, A%eq, ..., A" Le; must be distinct as we could
otherwise find [ < k < m such that A*~'e; = e;. This contradicts minimality of m.
Since all of e1, Ae;, A2%eq, ..., A" ey are also vectors from the basis ey, ..., e, they

must form a basis for C,. In this basis A is represented by the companion matrix
to p(t) = t™ — 1 and hence takes the form

o0 --- 01

10 --- 00

01 -+ 00

o0 --- 10
The permutation that corresponds to A : C., — C¢, is also called a cyclic per-
mutation. Evidently it maps the elements 1, o (1), ..., 0™ (1) to themselves
in a cyclic manner. One often refers to such permutations by listing the ele-
ments as (17 o(1),..,om 1t (1)) . This is not quite a unique representation as, e.g.,
(e™71(1),1,0(1),...,0™ 2 (1)) clearly describes the same permutation.

We used m of the basis vectors eq,...,e, to span C,,. Rename and reindex
the complementary basis vectors fi,..., fn_m. To get our induction to work we
need to show that Af; = fr; for each i = 1,....,n — m. We know that Af; €
{e1,..,en}. If Af; € {el,Ael,AQel,...,Amflel}, then either f; = ey or f; =
AFe;. The former is impossible since f; ¢ {el,Ael,AQel, ...,Amflel}. The latter
is impossible as A leaves {61, Aey, A%y, ..., Am’lel} invariant. Thus it follows that
Afi € {f1, s fn—m} as desired. In this way we see that it is possible to rearrange
the basis eq,..,e, so as to get a cyclic subspace decomposition. Furthermore, on
each cyclic subspace A is represented by a companion matrix corresponding to
p(t) = t* — 1 for some k < n. Recall that if F = C, then each of these companion
matrices are diagonalizable, in particular, A is itself diagonalizable.
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Note that the cyclic subspace decomposition for a permutation matrix also
decomposes the permutation o into cyclic permutations that are disjoint. This is a
basic construction in the theory of permutations.

The cyclic subspace decomposition qualifies as a central result in linear algebra
for many reasons. While somewhat difficult and tricky to prove it doesn’t depend
on quite a lot of our developments in this chapter. It could in fact be established
without knowledge of eigenvalues, charateristic polynomials and minimal polynomi-
als ect. Second, it gives a matrix representation which is in block diagonal form and
where we have a very good understanding of each of the blocks. Therefore, all of
our developements in this chapter could be considered consequences of this decom-
position. Finally, several important and difficult results such as the Frobenius and
Jordan canonical forms become relatively easy to prove using this decomposition.

6.1. Exercises.

(1) Find all invariant subspaces for the following two matrices and show that
they are not diagonalizable.

0 1
@ 0o

a 1
ORF

(2) We say that a linear map L : V — V is reduced by a direct sum decom-

position V.= M & N if both M and N are invariant under L. We also say
that L : V — V is decomposable if we can find a nontrivial decomposition
that reduces L: V — V. 01

(a) Show that for L = 0 0 with M = ker (L) = im (L) it is not

possible to find N such that V = M & N reduces L.
(b) Show more generally that one cannot find a nontrivial decomposition
that reduces L.
(3) Let L:V — V be a linear transformation and M C V' a subspace. Show
(a) If FE is a projection onto M and ELE = LE then M is invariant
under L.
(b) If M is invariant under L then ELE = LE for all projections onto
M.
(¢) fV =M@®N and E is the projection onto M along N, then M & N
reduces L if and only if EL = LE.
(4) Assume V=M @& N.
(a) Show that any linear map L : V — V has a 2 x 2 matrix type

decomposition
A B
C D

where A: M - M,B: M —- N,C:N —M,D: N — N.
(b) Show that the projection onto M along N looks like

1M0}

E—lM@ON_[ 0 Oy

(¢) Show that if L (M) C M, then C = 0.
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(d) Show that if L (M) C M and L(N) C N then B=0and C =0. In
this case L is reduced by M & N, and we write
L = A®D
= Ly @ L|n.
(5) Show that the space of n x n companion matrices form an affine subspace
isomorphic to the space of monic polynomials of degree n. Affine subspaces

are defined in the exercises to “Subspaces” in chapter 1.
(6) Given

A1 0
A 0 A
.1
0 An

find x € F™ such that C, = F". Hint: try n = 2, 3 first.
(7) Given a linear operator L : V' — V on a finite dimensional vector space
and x € V show that
Co={p(L) () :p(t) €Ft]}.
(8) Let p(t) = t" + an_1t""' + .-+ ap € F[t]. Show that C), and C} are
similar. Hint: Let

a as Ap—1 1
as 1 0
B= Ap—1 0 0
An—1 1
1 0 0 0
and show
CpB = BC;.

(9) Use the previous exercise to show that A € Mat,,x,, (F) and its transpose
are similar.
(10) I V = C, for some z € V, then deg () = dim (V).
(11) For each n > 2 construct a matrix A € Mat,, x,, (F) such that V # C, for
every x € V.
(12) For each n > 2 construct a matrix A € Mat,, x,, (F) such that V = C, for
some x € V.
(13) Let L : V — V be a diagonalizable linear operator. Show that V' = C,, if
and only if there are no multiple eigenvalues.
(14) Assume that V # C,,, where C,, is the first cyclic subspace as con-
structed in the proof of the cyclic subspace decomposition. Show that it
is possible to select another y; € V such that dimCy, = dimC,, = m,
but Cy, # Cy,. This gives a different indication of why the cyclic subspace
decomposition isn’t unique.
(15) Assume that V =C, forsome z € V and L: V — V.
(a) Show that K o L = Lo K if and only if K = p (L) for some p € F[t].
(b) Show that all invariant subspaces for L are of the form ker (p (L)) for
some polynomial p € F [¢].
(¢) Show that all invariant subspaces for L are of the form C, for some
zeV.
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(16) Define F[L] = {p(L) : p(t) € F[t]} C hom (V,V) as the space of polyno-
mials in L.

(a) Show that I [L] is a subspace, that is also closed under composition
of operators.

(b) Show that dim (F[L]) = deg (1) and F[L] = span {1y, L, ..., LF"1}
where k = deg (uy) -

(¢) Show that the map ® : F[t] — hom (V,V) defined by @ (p(¢t)) =
p(L) is linear and a ring homomorphism (preserves multiplication
and sends 1 € F[t] to 1y € hom (V,V)) with image F [L].

(d) Show that ker (®) = {p (¢t) uy, (¢t) : p(t) € F[t]}.

(e) Show that for any p(t) € F[t] we have ¢ (L) = r (L) for some r (t) €
F [t] with degr (t) < deg uy, ().

(f) Given an eigenvector x € V for L show that x is an eigenvector for all
K € F[L] and that the map F [L] — F that sends K to the eigenvalue
corresponding to x is a ring homomorphism.

(g) Conversely show that any ring homomorphism ¢ : F[L] — F is of the
type described in f.

7. The Frobenius Canonical Form

As we already indicated, the above proof of the cyclic subspace decomposition
actually proves quite a bit more than the result claims as it can actually lead us to
a unique matrix representation for the operator. The Frobenius canonical form will
be used in the next section to establish more refinesh canonical forms for complex
operators.

THEOREM 24. (The Frobenius Canonical Form) Let L : V. — V be a linear
operator on a finite dimensional vector space. Then V' has a cyclic subspace decom-
position such that the block diagonal form of L

Cp, O 0
0 Cp2
L] = ,
0 Cpk

has the property that p; divides p;_1 for each i = 2,...,k. Moreover, the monic
polynomials p1, ..., px are unique.

PROOF. We first establish that the polynomials constructed in the above ver-
sion of the cyclic subspace decomposition have the desired divisibility properties.

Recall that m < n is the largest dimension of a cyclic subspace, i.e., dim C,, < m
for all z € V and there is an z; € V such that dimC,, = m. In other words
L™ (z) € span{z, L (z),...,L™ ! ()} for all z € V and we can find z; € V such
that z1, L (1), ..., L™ ! (x1) are linearly independent. With this choice of x; we
also found an L-invariant complementary subspace M and we define

pL(t) = t"— Qp_1t™ 1 — .. =, where
rm ({El) = Otm_le71 ($1) + -+ oory.

With these choices we claim that py (L) (2) = 0 for all z € V. In other words,
we are showing that p; (t) = py, (¢) . Note that we already know this for z = z1, and
it is easy to also verify it for z = L (21), ..., L™ ! (x1) by using that p (L) o L* =
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L¥op(L). Thus we only need to check the claim for 2 € M. By construction of m
we know that

L™ (21 +2) =Y L™ (w1 +2) 4+ 470 (71 + 2).
Now we rearrage the terms as follows
L"(z)+L"(2) = L™(z1+2)
= Y L™ (@) + -+ 0
FY 1 LT (2) + o g2
Since
L™ (@1) Y L7 (1) 4 g2 € Gy
and
L™ (2) Yyt L™ (2) o+ vz €M

we must have that

vmflefl (1) + - +7pz1 = L™ (21) = a1 L™1 (1) + - + apzs.

Since w1, L (1), ..., L™ ! (x1) are linearly independent this shows that v, = «; for
i =0,...,m — 1. But then we have that
0 = pi(L)(z1+2)
= pi1(L)(z1) +p1(L)(2)
= n(L)(2),

which is what we wanted to prove.

Now x5 € M and ps (t) are choosen in the same fashion as x; and p;. We first
note that [ = degps < degp; = m, this means that we can write p1 = ¢1p2 + 7,
where degr < degpy. Thus

0 = pi(L)(22)
= @ (L)opy (L) (w2) + 7 (L) (22)
= r(L)(z2).

Since degr < I = degpa, the equation r (L) (z2) = 0 takes the form

0 = 7(L)(x2)
= Bowat -+ B L (x2).

However, py was choosen to that zo, L (1), ..., L' (z3) are linearly independent,
S0

fo=-=B_1=0
and hence also 7 = 0. This shows that p, divides p;.

We now show that p; and ps are unique, this, despite the fact that x; and x5
need not be unique. To see that p; is unique we simply check that it is the minimal
polynomial of L. We have already seen that p; (L) (z) = 0 for all z € V. Thus
p1 (L) = 0 showing that degp; < degp;. On the other hand we also know that
x1, L(z1), ..., L™ ! (x1) are linearly independent, in particular 1y, L, ..., L™™1
must also be linearly independent. This shows that degu; > m = degp;. Hence
17, = p1 as they are both monic.
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To see that py is unique is a bit more tricky since the choice for C,, is not
unique. We select two decompositions

Co @M =V =C,, & M.

This yields two block diagonal matrix decompositions for L

{ O(])D1 [LBW] }

{ T ]

where the upper left hand block is the same for both representations as p; is unique.
Moreover, these two matrices are similar. Therefore we only need to show that
Py, = Hay, if the two block diagonal matrices

0 Ag &

are similar

An 0 1| A O
]
If p is any polynomial, then

[p(i)hl) P(gzz) }

- ])e
S R

In particular, the two matrices

p(dn) p(gm)} and[“f)‘“) p(ﬁaﬂ

always have the same rank. Since the upper left hand corners are identical this
shows that p (Asz) and p (A%,) have the same rank. As a special case we see that
p(Azz) = 0 if and only if p (A5,) = 0. This shows that Asy and A%, have the same
minimal polynomials and hence that ps is uniquely defined. O

In some texts this is also known as the rational canonical form. The reason
is that it will have rational entries if we start with an n x n matrix with rational
entries. To see why this is, simply observe that the similarity invaraints have
to be rational polynomials starting with p;, the minimal polynomial. There can,
however, be several rational canonical forms. Another comes from further factoring
the characteristic or minimal polynomials and will have more blocks. The advantage
of the Frobenius canonical from is that it does not depend on the scalar field. That
is, if A € Mat,,xp, (F) C Mat,, «, (L) then the form doesn’t depend on whether we
compute it using F or L.

The unique polynomials p1, ..., pg are called the similarity invariants, elemen-
tary divisors, or invariant factors for L. Clearly two matrices are similar if they
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have the same similarity invariants as they have the same Frobenious canonical
form. Conversely similar matrices are both similar to just one Frobenius canoni-
cal form and hence have the same similarity invariants. It is possible to calculate
the similarity invariants using only the elementary row and column operations.
The specific algorithm leads to the Smith Normal Form (see [Hoffman-Kunze]
and [Serre].) The treatment here doesn’t give us a good way of calculating the
similarity invariants.

The following corollary shows that several of the matrices realted to companion
matrices are in fact similar. Various exrcises have been devoted to establishing this
fact, but using the Frobenius canonical form we get a very elegant characterization
of when a linear map is similar to a companion matrix.

COROLLARY 17. If two linear operators on an n-dimensional vector space have
the same minimal polynomials of degree n, then they have the same Frobenius canon-
ical form and are similar.

Given that the similarity invariants are uniquely defined we can now define the
characteristic polynomial as

X () =p1(t) - px(t).

This gives us a way of defining the characteristic polynomial, but it doesn’t tells us
how to compute it. For that the row reduction technique or determinants are the
way to go. To be even more asinine we can now define the determinant as

det L = (—=1)" x, (0).
The problem is that one of the key properties of determinants
det (K o L) = det (K) det (L)

does not follow easily from this definition. We do, however, get that similar matrices
and linear operators have the same determinant

det (KoLoK™') =det(L).

As a general sort of example let us see what the Frobenius canonical form for

_[Cu O
a= %

is, when ¢; and ¢o are relatively prime. Note that if

o=p(= | PG 8],

then both ¢; and g2 divide p. Conversely if ¢; and g2 both divide p it also follows
that p (A) = 0. Since the least common multiple of ¢; and ¢ is ¢1 - g2 we see that
ba =q1q2 = X4 Thus p1 = q¢1 - g2 and py = 1. This shows that the Frobenius
canonical form is simply Cy,.4,. The general case where there might be a nontrivial
greatest common divisor is relegated to the exercises.

We now give a few examples showing that the characteristic and minimal poly-
nomials alone are not sufficient information to determine all the similarity invariants
when the dimension is > 4 (see exercises for dimensions 2 and 3). We consider all
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canonical forms in dimension 4, where the characteristic polynomial is t*. There
are four nontrivial cases given by:

0 0 0 O 0 0 0 O 0 0 0O 00 00
1 0 0 0 10 0 0 10 0 0 10 0 0
0601 00}|’]01TO0O0(’fOO0O0O0O]”]0 000
0 01O 0 0 0 O 0 0 0O 00 10

For the first we know that u = p; = t*. For the second we have two blocks with
1t =p1 = t3 so py = t. For the third we have 1 = p; = t? while py = p3 = t. Finally
the fourth has jt = p; = py = t2. The last two matrices clearly don’t have the same
canonical form, but they do have the same characteristic and minimal polynomials.

Lastly let us compute the Frobenius Canonical form for a projection £ : V. — V.
As we shall see this is clearly a situation where we should just stick to diagonal-
ization as the Frobenius canonical form is far less informative. Apparently we just
need to find all possible Frobenius canonical forms that are also projections. The
simplest are of course just Oy and 1y . In all other cases the minimal polynomial is
t2 — t. The companion matrix for that polynomial is

1]

so we expect to have one or several of those blocks, but note that we can’t have more
than L%J of such blocks. The rest of the diagonal entries must now correspond
to companion matrices for either ¢t or ¢ — 1. But we can’t use both as these two
polynomials don’t divide each other. This gives us two types of Frobenius canonical
forms

0 0
11
00
11
0
L O_
or
"0 0 -
11
00
11
1
L 1_

To find the correct canonical form for E we just select the Frobenius canonical form
that gives us the correct rank. If rank £ < LWJ it’ll be of the first type and
otherwise of the second.
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. Exercises.

What are the similarity invariants for a companion matrix C,?
Let A € Mat,xn (R), and n > 2.

(a) Show that when n is odd, then it is not possible to have p; () = t2+1.
(b) Show by example that one can have p; (t) = t? + 1 for all even n.
(c) Show by example that one can have p; (t) = t3 + ¢ for all odd n.
If L:V — V is an operator on a 2-dimensional space, then either p; =
wr, =xp (and pa = 1) or L = Aly.
If L :V — V is an operator on a 3-dimensional space, then either p; =
pr =xg (and pp =1),p1 = (t — ) (t = B) and p2 = (t — B) , or L = Aly.
Note that in the second case you know that p; has degree 2, the key is to
show that it factors as described.
Let L : V — V be a linear operator a finite dimensional space. Show that
V = C, for some x € V if and only if p; = x.
Consider two companion matrices C, and Cy, show that the similarity
invariants for the block diagonal matrix

c, 0
0 C,

are p; = lem {p, ¢} and ps = ged {p, ¢} .
Is it possible to find the similarity invariants for

C, 0 0
o ¢, 0 |7
0o 0 C.

Note that you can easily find p; = lem {p, ¢, 7}, so the issue is whether it
is possible to decide what ps should be?

Show that A, B € Mat,x, (F) are similar if and only if rank (p (4)) =
rank (p (B)) for all p € F [t]. (Recall that two matrices have the same rank
if and only if they are equivalent and that equivalent matrices certainly
need not be similar. This is what makes the exercise interesting.)

The previous exercise can be made into a checkable condition: Show that
A, B € Mat,, x,, (F) are similar if and only if x4 = x5 and rank (p (A)) =
rank (p (B)) for all p that divide x 4. (Using that as x4 has a unique
prime factorization this means that we only have to check a finite number
of conditions.)

Show that any linear map with the property that x; (t) = (t — A1) - (t — Ay) €

F [t] for A1, ..., A, € F has an upper triangular matrix representation. Hint:
This was established for some matrices in an exercise from “Eigenvalues”.
Let L : V — V be a linear operator on a finite dimensional vector space.
Use the Frobenius canonical from to show that tr (L) = —a,_1, where
Xy (t) =t +a,_1t" "1 +--- +ag. This is the result mentioned in “Eigen-
values”.

Assume that L : V — V satisfies (L — Agly)" = 0, for some k > 1, but
(L — Xoly)* ™" 0. Show that ker (L — Agly) is neither {0} nor V. Show
that ker (L — A\gly ) does not have a complement in V' that is L invariant.
(The Cayley-Hamilton Theorem) Show the Hamilton-Cayley Theorem us-
ing the Frobenius canonical form.
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8. The Jordan Canonical Form

In this section we freely use the Frobenius Canonical form to present a proof
the Jordan canonical form. We start with a somewhat more general view point,
that in the end is probably the most important feature of this special canonical
form. It reuires the use of the last exercise in “Diagonalizability”.

THEOREM 25. (The Jordan-Chevalley decomposition) Let L : V. — V be a
linear operator on an n-dimensional complex vector space. Then L = S+ N, where
S is diagonalizable, N™ =0, and SN = NS.

PrOOF. First we use the Fundamental theorem of algebra to decompose the
minimal polynomial
Mo (£) = (E = M)™ o (E = M)™

The last exercise in “Diagonalizability” then gives us a corresponding L invariant
decomposition of the vector space

V = ker (L - Allv)ml b---D ker (L - )\klv)mk

This means that we have reduced the problem to a situation where L has only one
eigenvalue. Given the Frobenius canonical form the problem is then further reduced
to proinge the statement for companion matrices, where the minimal polynomial
has only one root.. Let C, be a companion matrix with

p(t)=(t—-N".
Then construct the matrix
A = D+N
A 0 .- 0] 01 --- 0
= | . , +
1
L 0 A 0 0
A 1 0
_ 0 A
: o1
_0 A—

We know from “The Minimal Polynomial” that p4 =y, = p(t) . Since the degree
of the minimal polynomial is maximal we see that the Frobenius canonical from for
A is C), showing that C), is similar to A. Then it only remains to observe that D is
diagonal, N = 0, and DN = N D to establish the Jordan-Chevalley decomposition
for C),. O

It is in fact possible to show that the Jordan-Chevalley decomposition is unique.
This hinges on showing that S and N are polynomials in L, i.e., S = p(L) and
N = ¢q(L), where p and ¢ are polynomials that depend on L. We won’t show this
here, but knowing this makes it quite simple to establish uniqueness (see exercises).

As a corollary we obtain



8. THE JORDAN CANONICAL FORM 151

LEMMA 17. Let C, be a companion matriz with p(t) = (t —\)". Then C, is
similar to a Jordan block

A 10 0 0
0 A1 0 0
00 A

[L] =
00 0 1 0
W
00 0 -« 0 A |

Moreover the eigenspace for A is 1-dimensional and is generated by the first basis
vector.

Note that in a Jordan block all of the diagonal entries are the same. This was
not necessarily the case for the matrices in the Jordan-Chevalley decomposition.

We can now give a simple proof of the Jordan canonical form. Weierstrass
evidently also proved this theorem at about the same time and so also deserves to
get credit.

THEOREM 26. (The Jordan-Weierstrass Canonical form) Let L : V — V be
a complex linear operator on a finite dimensional vector space. Then we can find
L-invariant subspaces My, ...., My such that

V=M©&& - &M,

and each L|p;, has a matriz representation of the form

N 1 0 -+ 0
0 N 1 -+ 0
0 0 X\ :
: : : o1
0 0 0 - N

where \; is an eigenvalue for L.

PrOOF. First we use the Jordan-Chevalley decomposition L = S + N to de-
compose the vector space into eigenspaces for S

V:ker(S—)\llv)EB---@ker(S—)\klv).

FEach of these eigenspaces is invariant for N since S and N commute. Specifically
if S (z) = Az, then

S(N (2)) = N (8 (2)) = N (Ae) = AN (),

showing that N (z) is also an eigenvector for the eigenvalue .

This reduces the problem to showing that operators of the form Aly + N,
where N™ = 0 have the desired decomposition. Since the homothety Alyy, is always
diagonal in any basis, we are further reduced to showing the theorem holds for
operators N such that N™ = 0. The similarity invariants for such an operator all
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have to look like t* so the blocks in the Frobenius canonical form must look like

0o 0 --- 0
1 0
: . -0
0 1 0
If e, ..., e is the basis yielding this matrix representation then
N[el ek] — [62 e ey 0]
0 0 0
1 0
— [ el N ek ]
: . 0
0 1 0
Reversing the basis to ey, ..., e; then gives us the desired block
N[ek el] = [0 e - 62]
0 1 0
0 0
— [ ek e 61 ]
1
0 0

O

In this decomposition it is possible for several of the subspaces M; to corre-
spond to the same eigenvalue. Given that the eigenspace for each Jordan block is
one dimensional we see that each eigenvalue corresponds to as many blocks as the
geometric multiplicity of the eigenvalue. It is only when L is similar to a companion
matrix that the blocks must correspond to distinct eigenvalues. The job of calcu-
lating the Jordan canonical form is in general quite hard. Here we confine ourselves
to the 2 and 3 dimensional situations.

COROLLARY 18. Let L : V — V be a complex linear operator where dim (V') =
2. FEither L is diagonalizable and there is a basis where

A0
[L] - |: O )\2 :| )
or L is not diagonalizable and there is a basis where
Al
(L] = { 0 A } :

Note that in case L is diagonalizable we either have that L = A1y or that the
eigenvalues are distinct. In the nondiagonalizable case there is only one eigenvalue.

COROLLARY 19. Let L : V — V be a complex linear operator where dim (V') =
3. Either L is diagonalizable and there is a basis where

A 0 0
[L] = 0 )‘2 0 )
0 0 As
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or L is not diagonalizable and there is a basis where one of the following two situ-
ations occur

A 0 O
Zl=] 0 X 1|,
0 0 X
or
A1 0
Z]=]0 x 1
0 0 A

It is possible to check which of these situations occur by knowing the minimal
and characteristic polynomials. We note that the last case happens precisely when
there is only one eigenvalue with geometric multiplicity 1. The second case happens
if either L has two eigenvalues each with geometric multiplicity 1 or if L has one
eigenvalue with geometric multiplicity 2.

8.1. Exercises.

(1) Find the Jordan canonical forms for the matrices

e 2 ) d 2

(2) Find the basis that yields the Jordan canonical form for

A -1
N
(3) Find the Jordan canonical form for the matrix
A1
0 X |’

Hint: the answer depends on the relationship between A; and As.
(4) Find the Jordan canonical forms for the matrix

0 1
—AMA2 A+ A |

(5) Find the Jordan canonical forms for the matrix

A2 2 1
PRI T
AL o3 a2

(6) Find the Jordan canonical forms for the matrix

A 10
0 A 1
0 0 s
(7) Find the Jordan canonical forms for the matrix
0 1 0
0 0 1

Ad2ds — (Aide + A2ds + Aids) A+ A+ As
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(8)

9)

(10)

(11)

(12)

(13)

2. LINEAR OPERATORS

Find the Jordan canonical forms for the matrices

0 1 0 0 1 0 0o 1 0
o 0 14(,]0 0 1{(,{0 0 1
2 -5 4 1 -3 3 6 —11 6

An operator L : V — V is said to be nilpotent if L¥ = 0 for some k.

) Show that x (¢) = t".

) Show that L can be put in triangular form.

) Show that L is diagonalizable if and only if L = 0.

) Find a real matrix all of whose real eigenvalues are 0, but which is
not nilpotent.

Let L : V — V be a linear operator on an n-dimensional complex vector

space. Show that for p € C[t] the operator p (L) is nilpotent if and only

if the eigenvalues of L are roots of p. What goes wrong in the real case

when p (t) =t + 1 and dim V is odd?

If

(a
(b
@

ker ((L - Alv)’“) £ ker ((L - A1V)’H) :
then the algebraic multiplicity of A is > k. Given an example where the
algebraic multiplicity > k and

ker ((L - Alv)’““) = ker ((L - )\lv)k) # ker ((L - Alv)’H) .
Show that if L : V' — V is a linear operator such that
Xp () = (E=A)" (=)™,
pr () = (E=A)"™ et = A)™,
then m; corresponds to the largest Jordan block that has A; on the diag-
onal. Next show that m; is the first integer such that

ker (L — A;1y)™) = ker ((L _ )\ilv)"”-’_l) .

Show that if L : V' — V is a linear operator on an n-dimensional complex
vector space with distinct eigenvalues Ay, ..., A\, then p (L) = 0, where

D (t) _ (t N )\1)n7k+1 . (t . )\k)nfkle )
Hint: Try k& = 2.
Assume that L = S+ N = S’ 4+ N’ are two Jordan-Chevalley decom-
positions, i.e., SN = NS, 'N’ = N'S’, §,5’ are diagonalizable, and
N™ = (N")" = 0. Show that S = S" and N = N’ if we know that
S =p(L) and N = g (L) for polynomials p and q.



CHAPTER 3

Inner Product Spaces

So far we have only discussed vector spaces without adding any further structure
to the space. In this chapter we shall study so called inner product spaces. These
are vector spaces were in addition we know the length of each vector and the angle
between two vectors. Since this is what we are used to from the plane and space it
would seem like a reasonable extra layer of information.

We shall cover some of the basic constructions such as Gram-Schmidt orthog-
onalization, orthogonal projections, and orthogonal complements. In addition we
prove the Cauchy-Schwarz and Bessel inequalities. In the last sections we cover
the adjoint of linear maps and how it helps us understand the connections between
inmage and kernel ultimately yielding a very interesting characterization of orthog-
onal projections. Finally we also explain matrix exponentials and how they can be
used to solve systems of linear differential equations.

In this and the following chapter vector spaces always have either real or com-
plex scalars.

1. Examples of Inner Products

1.1. Real Inner Products. We start by considering the (real) plane R? =
{(a1,a2) : a1,as € R}. The length of a vector is calculated via the Pythagorean

theorem:
[(ar, a2)|| = 4/ af + 3.

The angle between two vectors x = (a1, a2) and y = (84, 8,) is a little trickier to
compute. First we normalize the vectors

1

T X
[EI
1

Y
Iyl

so that they lie on the unit circle. We then trace the arc on the unit circle between
the vectors in order to find the angle 6. If = (1,0) the definitions of cosine and
sine tell us that this angle can be computed via

cosf) = ﬁ,
[yl
sinf = &
1yl

This suggests that, if we define
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cosf; = £7Sin91:2a
] ]
cosfl; = ﬁ,sin%:&,
[yl llyll

then

cosf = cos(f2—01)
= cosf; cosly + sin B sin Oy
a1y + azf,
]| - [lyl
So if the inner or dot product of = and y is defined by

(wly) = 1By + By,

then we obtain the relationship

(zly) = [l Iyl cos 6.

The length of vectors can also be calculated via
2
(zfx) = [lz]”-

The (z]y) notation is used so as not to confuse the expression with pairs of vectors
(x,y). One also often sees (z,y) or (x|y) used for inner products.

The key properties that we shall use to generalize the idea of an inner product
are:

(1) (z]|z) = ||lz]|* > 0 unless = = 0.

(2) (z[y) = (ylz).

(3) = — (z|y) is linear.
One can immediately generalize this algebraically defined inner product to R3
and even R™ by

(€3] 51
(zly) = : :
o Bn
= zty
By
— [ o ]|
B

= Byt +anB,.
The three above mentioned properties still remain true, but we seem to have lost
the connection with the angle. This is settled by observing that Cauchy’s inequality
holds:
2
(zly)” < (al2) (yly), or
(B + - FanB,)? < (a@+-+a2) (B2 +---+52).

In other words
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This implies that the angle can be redefined up to sign through the equation

(zly)
]yl
In addition, as we shall see, the three properties can be used as axioms to prove
everything we wish.
Two vectors are said to be orthogonal or perpendicular if their inner product
vanishes. With this definition the proof of the Pythagorean Theorem becomes
completely algebraic:

cosf =

2 2 2
Izl + llyll™ = llz + 9~
if x and y are orthogonal. To see why this is true note that the properties of the
inner product imply:
2
le+yl” = (@+ylz+y)
= (zfx) + (yly) + (z[y) + (ylx)
(z]z) + (yly) + 2 (z]y)
2 2
= ="+ llyll” + 2 (=[y) -
Thus the relation ||z]|> + [|y||* = || + y||> holds precisely when (z|y) = 0.
The inner product also comes in handy in expressing several other geometric

constructions.
The projection of a vector x onto the line in the direction of y is given by

proj, () = <x ”?;>”yy||

(zly)y
(yly)
All planes that have normal n, i.e., are perpendicular to n, are defined by an

equation
(zln) =c¢
for some ¢. The c is determined by any point z( that lies in the plane: ¢ = (zg|n).



158 3. INNER PRODUCT SPACES

1.2. Complex Inner Products. Let us now see what happens if we try to
use complex scalars. Our geometric picture seems to disappear, but we shall insist
that the real part of a complex inner product must have the (geometric) properties
we have already discussed. Let us start with the complex plane C. Recall that if
z = aq + s, then the complex conjugate is the reflection of z in the 15 coordinate
axis and is defined by Z = a; — asi. Note that z — Z is not complex linear but
only linear with respect to real scalar multiplication. Conjugation has some further
important properties

Z-w = ZzZ-w,
1 z
z = —
2
[l ]
z2+z
R =
e(2) .
Z—Z
I =
m(2) 2

Given that ||z||*> = 2% it seems natural to define the complex inner product by
(z|lw) = zw. Thus it is not just complex multiplication. If we take the real part we
also note that we retrieve the real inner product defined above
Re(zlw) = Re(zw)
= Re((a1 + a2i) (B, — B1i))
= afy + afs.
Having established this we should be happy and just accept the nasty fact that

complex inner products include conjugations.
The three important properties for complex inner products are

(1) (z|z) = ||lz|* > 0 unless = = 0.

(2) (zly) = (ylz).

(3)  — (z|y) is complex linear.

The inner product on C" is defined by

aq b1
(zy) = : :
o B |
= z'y
[ By
= fo ]|
L B

= aif +- -+ anf,.

If we take the real part of this inner product we get the inner product on R?" ~ C".

We say that two complex vectors are orthogonal if their inner product vanishes.
This is not quite the same as in the real case, as the two vectors 1 and 7 in C are not
complex orthogonal even though they are orthogonal as real vectors. To spell this
out a little further let us consider the Pythagorean Theorem for complex vectors.
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Note that

|z + yI? (z +ylz+y)

= (z]z) + (yly) + (zly) + (y|z)
(z|z) + (yly) + (zly) + (z[y)
[1* + lly||* + 2 Re (z]y)

Thus only the real part of the inner product needs to vanish for this theorem to
hold. This should not come as a surprise as we already knew the result to be true
in this case.

1.3. A Digression on Quaternions*. Another very interesting space that
contains some new algebra as well as geometry is C2 ~ R*. This is the space-time of
special relativity. In this short section we mention some of the important features
of this space.

In analogy with writing C =spang {1,¢} let us define

H = spanc{l,j}
= spang{l,i,1-75,i-5}
= spang{1,i,j,k}.
The three vectors 4, j, k form the usual basis for the three dimensional space R3. The

remaining coordinate in H is the time coordinate. In H we also have a conjugation
that changes the sign in front of the imaginary numbers i, j, k

q = oo+ ai+axj+ ask

= ag— a1t — asj — ask.
To make perfect sense of things we need to figure out how to multiply ¢, j, k. In line
with 72 = —1 we also define j2 = —1 and k%2 = —1. As for the mixed products we

have already defined i¢j = k. More generally we can decide how to compute these
products by using the cross product in R?. Thus

ij = k=—ji,
jk = i=—kj,
ki = j=—ik.

This enables us to multiply g1, g2 € H. The multiplication is not commutative, but
it is associative (unlike the cross product) and nonzero elements have inverses. The
fact that the imaginary numbers 4, j, k anti-commute shows that conjugation must
reverse the order of multiplication (like taking inverses of matrices and quaternions)

pq = qp.
As with real and complex numbers we have that
gq=laf* = ad +a? + a3 +al
This shows that every non-zero quaternion has an inverse given by
1 q
=—.

lal

The space H with usual vector addition and this multiplication is called the space

of quaternions. The name was chosen by Hamilton who invented these numbers
and wrote voluminous material on their uses.

q
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As with complex numbers we have a real part, namely, the part without i, j, k,
that can be calculated by
q+q
Req=——
1=

The usual real inner product on R* can now be defined by

(Plg) = Re(p-q).
If we ignore the conjugation but still take the real part we obtain something else
entirely

(p|Q)1,3 = Repq
= Re(ao+ oni+ azj + ask) (Bg + Bri + Baj + Bsk)
= aofy— a1 — aefy — azfls.
We note that restricted to the time axis this is the usual inner product while if
restrict to the space part it is the negative of the usual inner product. This pseudo-
inner product is what is used in special relativity. The subscript 1,3 refers to the
signs that appear in the formula, 1 plus and 3 minuses.
Note that one can have (q|q)1,3 = 0 without ¢ = 0. The geometry of such an
inner product is thus quite different from the usual ones we introduced above.
The purpose of this very brief encounter with quaternions and space-times is
to show that they appear quite natuarlly in the context of linear algebra. While we
won’t use them here, they are used quite a bit in more advanced mathematics and
physics..

1.4. Exercises.
(1) Using the algebraic properties of inner products show the law of cosines
2 =a?+b* — 2abcosh,

where a and b are adjacent sides in a triangle forming an angle 6 and c is
the opposite side.
(2) Here are some matrix constructions of both complex and quaternion num-
bers.
(a) Show that C is isomorphic (same addition and multiplication) to the
set of real 2 x 2 matrices of the form

a f
-8 a |
(b) Show that H is isomorphic to the set of complex 2 x 2 matrices of

the form
z w
—w z |

(¢) Show that H is isomorphic to the set of real 4 x 4 matrices

A B
_Bt At

that consists of 2 x 2 blocks

[ 2[5 0]
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(d) Show that the quaternionic 2 x 2 matrices of the form

A

form a real vector space isomorphic to R8, but that matrix multipli-
cation doesn’t necessarily give us a matrix of this type.
(3) If g € H consider the map Ad, : H — H defined by Ad, (z) = qzq~*.
(a) Show that x =1 is an eigenvector with eigenvalue 1.
(b) Show that Ad, maps spany {3, j, k} to itself and defines an isometry
on R3.
(¢) If we assume |¢|> = 1, then Ad,, = Adg, if and only if ¢1 = %q¢o.

2. Inner Products

Recall that we only use real or complex vector spaces. Thus the field F of
scalars is always R or C. An inner product on a vector space V over F is an F
valued pairing (z|y) for z,y € V, i.e., amap (z|y) : V x V — F, that satisfies:

(1) (x|z) > 0 and vanishes only when x = 0.

(2) (zly) = (y|z).
(3) For each y € V the map x — (z]y) is linear.

A vector space with an inner product is called an inner product space. In
the real case the inner product is also called a Fuclidean structure, while in the
complex situation the inner product is known as a Hermitian structure. Observe
that a complex inner product (z]y) always defines a real inner product Re (z|y)
that is symmetric and linear with respect to real scalar multiplication. One also
uses the term dot product for the standard inner products in R™ and C". The term
scalar product is also used quite often as a substitute for inner product. In fact this
terminology seems better as it explains that the product of two vectors becomes a
scalar.

We note that the second property really only makes sense when the inner
product is complex valued. If V is a real vector space, then the inner product is
real valued and hence symmetric in  and y. In the complex case property 2 implies
that (z|z) is real, thus showing that the condition in property 1 makes sense. If we
combine the second and third conditions we get the sesqui-linearity properties:

(uz1 +aowaly) = a1 (w1ly) + a2 (22ly),
(@[Bry1 + Baya) = By (zlyr) + B (xlya) .-
In particular we have the scaling property
(az|laz) = aa(x|z)
= o’ (z2).

We define the length or norm of a vector by

2]l = v (2[z).

In case (z|y) is complex we see that (z|y) and Re(z]y) define the same norm.
Note that ||z|| is nonnegative and only vanishes when x = 0. We also have the
scaling proerty |laz|| = |a|||z||. The triangle inequality ||z + y|| < ||z|| + ||yl|
will be established later in this section after some important preparatory work.
Before studying the properties of inner products further let us list some important
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examples. We already have what we shall refer to as the standard inner product
structures on R™ and C™.

EXAMPLE 63. If we have an inner product on V, then we also get an inner
product on all of the subspaces of V.

EXAMPLE 64. If we have inner products on 'V and W, both with respect to F,
then we get an inner product on V- x W defined by

(@1, 91) | (22,92)) = (w1]2) + (11]y2) -
Note that (z,0) and (0,y) always have zero inner product.

EXAMPLE 65. Given that Mat,,x,, (C) = C™™ we have an inner product on
this space. As we shall see it has an interesting alternate construction. Let A, B €
Mat,, x.m (C) the transpose Bt € Mat,,xn (C) of B is simply the matriz were rows
and columns are interchanged, i.e.,

- t

Bii - Bim
B! = : - :
L ﬁnl e ﬁnm
[ B o B
L Blm e 6nm
The adjoint B* is the transpose combined with conjugating each entry
Bu - B
B* = E c. . .
Blm T Bnm
The inner product (A|B) can now be defined as
(A|B) = trAB*
= trB*A.

In case m = 1 we have Maty,, «1 (C) = C™ and we recover the standard inner product
from the number B* A. In the general case we note that it also defines the usual inner
product as

(A|B) = trAB*
= ZaijBij~
0,J
EXAMPLE 66. Let V = C° ([a,b],C) and define
(flg) = / £
Then
1flly = v/ (f5 f)-

If V. =C%([a,b],R), then we have the real inner product

b
(o) = [ f0g@a
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In the above example it is often convenient to normalize the inner product so that
the function f =1 is of unit length. This normalized inner product is defined as

= | rwawae

(flg) =

EXAMPLE 67. Another important infinite dimensional inner product space is
the space % first investigated by Hilbert. It is the collection of all real or complex
sequences (o) such that )", lan|® < 0o. We have not specified the index set n, but
we always think of it as being N, Ny, or Z. If we wish to specify the index set we will
use the notation ¢? (N) etc. Because these index sets are all bijectively equivalent
they all the define the same space but with different indices for the coordinates a,.
Addition and scalar multiplication are defined by

(@) +(8,) = (an+Bn),
Blan) = (Ban).

Since

DoBanl® = (B lanl*,
Slan+ 8,2 < Y (2laal +218,)
= 2) o[ +2) 18,/
it follows that (% is a subspace of the space of all sequences. The inner product
((an) | (8,)) is defined by

(@) [(B4)) =D B,

For that to make sense we need to know that

Z |aan| < 0.

n

This follows from

lanB,| = lanl|B.,]
lon | 16,
o |” + 18,12

IN

and the fact that

Z <|O¢n|2 + |5n|2) < 00.

We declare that two vectors x and y are orthogonal or perpendicular if (z|y) =0
and we denote this by L y. The proof of the Pythagorean Theorem for both R™
and C™ clearly carries over to this more abstract situation. So if (z|y) = 0, then

2 2 2
lz+yll™ = ll=lI” + [lylI” -
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The orthogonal projection of a vector x onto a nonzero vector y is defined by

proj, (z) = (”3’”1;)”3”

(zly)
(wly) ¥

This projection creates a vector in the subspace spanned by y. The fact that it
makes sense to call it the orthogonal projection is explained in the next proposition.

PROPOSITION 20. Given a nonzero y the map r — proj, (z) is linear and a

projection with the further property that x —proj, (z) and proj, (z) are orthogonal.
In particular

|z]|* = ||z — proj, («)||* + [|proj, (=)]|*,
and
|[proj, ()| < [l

PrOOF. The definition of proj, (z) immediately implies that it is linear from
the linearity of the inner product. That it is a projection follows from

proj, (proj, (#)) = proj, (E;@;y)
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To check orthogonality simply compute

(z — proj, (x) | proj, (x)) = (fﬂ -
(

(@ly)®  I(=zly)?
(yly) (yly)

e

The Pythagorean Theorem now implies the relationship
||;1c||2 = H:c — proj (m)H2 + ||pr0j (35)”2
Yy Y
Using Hx — proj, (33)“2 > 0 we then obtain the inequality Hprojy (x)H <|lz||. O
Two important corollaries follow directly from this result..
COROLLARY 20. (The Cauchy-Schwarz Inequality)

[@ly)] < Nzl lyll-

PRrOOF. If y = 0 the inequality is trivial. Otherwise use

lzll > |[proj, (=)]]

COROLLARY 21. (The Triangle Inequality)

e+ yll < ll] + [lyll -

ProoF. We simply compute

lz+yl* = (@+ylz+y)

= |lz* + 2Re (z[y) + [ly|*
I[I* + 2[(2ly)] + [yl
l2)1* + 2 I 1yl + [yl
(llll + ly)?* .

IN A
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(1)

(10)
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Exercises.

Show that a hyperplane H = {z € V : (a|z) = «a} in a real n-dimensional
inner product space V' can be represented as an affine subspace

H={tix1+ - +twzp:t1+ - +t, =1},

where 21, ...,x, € H. Find conditions on z1,..,x, so that they generate
a hyperplane.
Let # = (2,1) and y = (3,1) in R2. If 2 € R? satisfies (z]x) = 1 and
(z]y) = 2, then find the coordinates for z.
In R™ assume that we have z1,...,x2p € V with ||z;]] > 0, (a;]z;) < 0,
i
(a) Show that it is possible to have k = n + 1.
(b) Show that if & < n then x4, ...,z are linearly independent..
In a real inner product space V select y # 0. For fixed a € R show that
H={zeV: proj, (z) = ay} describes a hyperplane with normal y.
Let V be an inner product space and let y, z € V. Show that y = z if and
only if (z]y) = (z|2) for all x € V.
Prove the Cauchy-Schwarz inequality by expanding the right hand side of
the inequality

|2

Let V' be an inner product space and x1, ..., Tn, Y1, -, Yn € V. Show the
following generalized Cauchy-Schwarz inequality

(il(wilyi)lf < <§;|in|2> (22 ||in|2>

Let S"~1 = {x € R" : ||z|| = 1} be the unit sphere. When n = 1 it consists

of two points. When n = 2 it is a circle etc. A finite subset {z1,...,zx} €

S"1 is said to consist of equidistant points if £ (z;,x;) = 6 for all i # j.

(a) Show that this is equivalent to assuming that (z;|x;) = cos@ for all
i .

(b) Show that S° contains a set of two equidistant points, S a set of
three equidistant points, and S? a set of four equidistant points.

(c) Using induction on n show that a set of equidistant points in S™~1
contains no more than n + 1 elements.

In an inner product space show the parallelogram rule

0< Hx_ (x|y2)y
lyl

2 2 2 2
lz = yll” + [l +yll” = 2l=[]" + 2 |y[I" -

Here = and y describe the sides in a parallelogram and z +y and z — y
the diagonals.
In a complex inner product space show that

3

d(aly) =i | + ity
k=0
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3. Orthonormal Bases

Let us fix an inner product space V. A possibly infinite collection ey, ..., e, ...
of vectors in V is said to be orthogonal if (e;|e;) = 0 for i # j. If in addition these
vectors are of unit length, i.e., (e;|e;) = d;;, then we call the collection orthonormal.

The usual bases for R™ and C™ are evidently orthonormal collections. Since
they are also bases we call them orthonormal bases.

LEMMA 18. Let ey, ..., e, be orthonormal. Then ey, .., e, are linearly indepen-
dent and any element x € span{ey, .., e, } has the expansion

x = (xler) el + - (z|en) en.
PRrROOF. Note that if x = a1e; + - + anen, then

(zle;)) = (arer+---+ aneqle;)
ay (erle;) + -+ + ap (enle;)
a1y + -+ @pdpg

= Q4.

In case x = 0, this gives us linear independence and in case = € span {ey, .., e, } we
have computed the i*" coordinate using the inner product. (I

This allows us to construct not only an isomorphism to F™ but an isomorphism
that preserves inner products. We say that two inner product spaces V and W over
F are isometric, if we can find an isometry L : V — W, i.e., an isomorphism such

that (L (z) |L (y)) = (zly) -
LEMMA 19. IfV admits a basis that is orthonormal, then V is isometric to F".

PrRoOOF. Choose an orthonormal basis eq, ..., e, for V and define the usual iso-
morphism L : F* — V by
(71 (&3]
L . = [ el e €n }
70 75

= o1e1 + -+ apéy.

Note that by the above Lemma the inverse map that computes the coordinates of
a vector is explicitly given by

(zle1)
L' (z) = :

(z[en)

If we take two vectors z,y and expand them

T = «arep+ -+ apey,
= Bier+-+ Bren,
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then we can compute
(zly) = (oner+---+anenly)
= ai(ely) +- -+ an(enly)
= ai(yler) + -+ an(ylen)
Q1E 4 OlnFn

a1 51

an B,
= (L' (@)L (y)-

This proves that L~! is an isometry. This implies that L is also an isometry. [

We are now left with the nagging possibility that orthonormal bases might be
very special and possibly not exist.

The procedure for constructing orthonormal collections is known as the Gram-
Schmidt procedure. It is not clear who invented the process, but these two people
definitely promoted and used it to great effect. Gram was in fact an actuary and
as such was mainly interested in applied statistics.

Given a linearly independent set z1,...,x,, in an inner product space V it is
possible to construct an orthonormal collection eq, ..., e,, such that

span{zy,..., T, } = span{er, ..., en}.

The procedure is actually iterative and creates eq, ..., e, in such a way that

span{z1} = span{e;},
span{x1,22} = span{ej,es},
span{zy,...,&m} = span{ei,...em}.

This basically forces us to define e; as

1
€1 = —T1.
[l ]]
Then ey is constructed by considering
29 = Ty —Pproj,, (x2)

= x3 — proj,, (v2)
x2 — (x2]e1) e,

and defining
1
= 2.
[

Having constructed an orthonormal set ey, ..., ex we can then define

€2

21 = Thp1 — (Trpr]er) er — - — (Tog1ler) ek
As
span{zy,...,xrt = span{ey,...,ex},

Try1 ¢ span{zy,..,Tx}
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we have that z;41 # 0. Thus we can define

1
ekt =

Zk+1-
zopll

To see that ey is perpendicular to ey, ..., e we note that

1
(entiles) = 7 (2ut1le:)
|2kl
1 1 k
= 7 @ksle) — —— (Ths1lej) €] €
By lzell \ <=
1 1 &
= (@q1le) — 7 D (@rr1le)) (e5]ei)
l|2k+1l Izl =
1 1 &
= — (Tey1le) — > (wrsales) 6
el ol 2
1 1
= o (Trsale) — (Trt1le:)
2+l Tzl '
= 0.
Since
span{z1} = span{e;},
span {z1,22} = span{ei,ea},
span{zy,...,&,m} = spani{ei,....em}
we have constructed e, ..., e,, in such a way that
[el e em]:[xl e xm]B’

where B is an upper triangular m X m matrix with positive diagonal entries. Con-
versely we have

[z o am |=[e o em R
where R = B~! is also upper triangular with positive diagonal entries. Given that
we have a formula for the expansion of each x; in terms of ey, ..., e we see that

(z1ler) (waler) (zsler) - (zmler)
0 (z2]e2) (wsle2) -+ (wmle2)
R = 0 0 (w3lez) -+ (zmles)
0 0 0 s (1"m|em)
We often abbreviate
A = [ 1 e T ] ,

Q = [e -~ em],

and obtain the QR-factorization A = QR. In case V is R™ or C" A is a general
n X m matrix of rank m, () is also an n x m matrix of rank m with the added feature
that its columns are orthonormal, and R is an upper triangular m x m matrix. Note
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that in this interpretation the QR-factorization is an improved Gauss elimination:
A = PU, with P € Gl,, and U upper triangular.

With that in mind it is not surprising that the QR~factorization gives us a way
of inverting the linear map

[ml R ] F* -V
when z1, ..., x, is a basis. First recall that the isometry
[el S ep ] F* -V
is easily inverted and the inverse can be symbolically represented as

(er])

[ €1 €n ]_1 = 7 )
(enl")
or more precisely
[ (e1]z) ]
[ e €n ]71 (x) = :

(enlx)
[ (zler) |
| (@len) |

This is the great feature of orthonormal bases, namely, that one has an explicit
formula for the coordinates in such a basis. Next on the agenda is the invertibility
of R. Given that it is upper triangular this is a reasonably easy problem in the
theory of solving linear systems. However, having found the orthonormal basis
through Gram-Schmidt we have already found this inverse since

[ X N Ty ] — [ el N €n ] R
implies that
[ el e €en ] — [ T . Tn } R_l

and the goal of the process was to find eq, ..., e, as a linear combination of z1, ..., z,.
Thus we obtain the formula

-1 _ —1
[ xl ... xn ] — R 1 [ 61 ... en ]
@l
= R! :
(enl")
The Gram-Schmidt process, therefore, not only gives us an orthonormal basis but
it also gives us a formula for the coordinates of a vector with respect to the original
basis.

It should also be noted that if we start out with a set x1, ..., z,, that is not lin-

early independent, then this will be revealed in the process of constructing ey, ..., €.
What will happen is that either 1 = 0 or there is a smallest k£ such that xx41 is a
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linear combination of x1, ..., zx. In the latter case we get to construct ey, ..., e; since
Z1,...,xp were linearly independent. As xy1 € span{ey, ..., e} we must have that

Zht1 = Thp1 — (Trgiler) er — - — (Tpgilen) e =0
since the way in which z; is expanded in terms of ey, ..., ex is given by
Trp1 = (Trg1ler) er + -+ (Trpaler) ex.

Thus we fail to construct the unit vector ey 1.
With all this behind us we have proved the important result.

THEOREM 27. (Uniqueness of Inner Product Spaces) An n-dimensional inner
product space over R, respectively C, is isometric to R™, respectively C".

The operator norm, for a linear operator L : V — W between inner product
spaces is defined so that
IZ @) < [IZ]| =]l -
Using the scaling properties of the norm and linearity of L this is the same as saying

(II ||>

Since H Hf—”H =1, we can define the operator norm by

IL]l = sup L ()]

llzll=1

<|IZ||, for = # 0.

This operator norm is finite provided V is finite dimensional.

THEOREM 28. Let L : V. — W be a linear map. If V is a finite dimensional
inner product space, then

IL] = sup |[L ()] < oo.

llzll=1

PRrROOF. Start by selecting an orthonormal basis ey, ..., e, for V. Then observe

that
(S

n

Z(xlei)L(ei)
Zl zle))| |1 L (el
Z 2| 1L (es)]

_ (iu ) )nxn.

1L} < Z 1L (ei)

1L ()]

IN

IN

Thus
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To finish the section let us try to do a few concrete examples.

EXAMPLE 68. Consider the vectors 1 = (1,1,0), x2 = (1,0,1), and 3 =
(0,1,1,) in R3. If we perform Gram-Schmidt then the QR factorization is

1 1 1 11
S I I Al B e e
T B I O G
O%% 00%

EXAMPLE 69. The Legendre polynomials of degrees 0, 1, and 2 on [—1,1] are
by definition the polynomials obtained via Gram-Schmidt from 1,t,t> with respect

to the inner product
1 PR
= [ rwata

We see that ||1]| = v/2 so the first polynomial is
1

po(t) = 2

To find py (t) we first find
z1 = t—(tpo) po

e ([ ta) L
(L)

= .

t 3
p1(t) = I = \/gt-
Ipo) po — (t*|p1) p1

- (&
o) (L)

Then

Finally for ps we ﬁnd

z9 =

= ?-
Thus
p2 (t)

50, 1
= /= (2-Z).
2(7=3)

EXAMPLE 70. A system of real equations Ax = b can be interpreted geometri-
cally as n equations

ﬂl?

(a1]z)

(G/n|.’L') = ﬂna
where ay, is the k™ row in A and j3,, the k™ coordinate for b. The solutions will be
the intersection of the n hyperplanes Hy, = {z : (ar|z) = B, }.
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ExaMPLE 71. We wish to show that the trigonometric functions
1=cos(0-t),cos(t),cos(2t),...,sin(t),sin (2t), ...

are orthogonal in CS2 (R, R) with respect to the inner product

1 ™

(Flg) =5, | T®g®)dt.

First observe that cos (mt) sin (nt) is an odd function. This proves that
(cos (mt) |sin (nt)) = 0.

Thus we are reduced to showing that each of the two sequences
1,cos (t),cos (2t), ..
sin (t),sin (2t) , ...

are orthogonal. Using integration by parts we see

(cos (mt) | cos (nt))
1 T

= 5 . cos (mt) cos (nt) dt
1 sin(mt " 1 [ sin(mt
= o Smr(nim) cos (nt) B ~ o /_7T Smr(nim) (—n)sin (nt) dt

1 ™
= %%/ﬂr sin (mt) sin (nt) dt

= % (sin (mt) | sin (nt))

n 1 —cos(mt) T

1 [ - t
—E—/ Mncos(nt) dt

—T —T

P 3 t
. - sin (nt)

n\2 1

(E> o /7T cos (mt) cos (nt) dt

= (%)2 (cos (mt) | cos (nt)) .

When n # m and m > 0 this clearly proves that (cos (mt)|cos(nt)) = 0 and in
addition that (sin (mt)|sin(nt)) = 0. Finally let us compute the norm of these
functions. Clearly ||1|| = 1. We just proved that ||cos (mt)|| = ||sin (mt)||. This
combined with the fact that

sin? (mt) + cos? (mt) =1
shows that

|lcos (m)|| = ||sin (mt)|| = 1

V2

EXAMPLE 72. Let us try to do Gram-Schmidt on 1, cost, cos®t using the above
inner product. We already know that the first two functions are orthogonal so

e = 1,

es = V2cos(t).
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zp = cos®(t) — (cos® (t)[1) 1 — (cos2 (t)|V2 cos (t)) V2cos ()

= cos®(t) — o (/: cos? (t) dt) - % (/: cos? (t) cos (t) dt> cost
= cos®(t) — % — % (/: cos® (t) dt) cost
= cos? (t) — %

Thus the third function is

cos? (t) — 3
P
B I ORE

= 2v2cos? (t) — V2.

3.1. Exercises.

(1) Use Gram-Schmidt on the vectors

Vb =2 4 e 3
0 8 =« 2 —10
[21 22 23 @4 a5 =0 0 1+v2 3 —4
0 0 0 -2 6
0 0 0 0 1

to obtain an orthonormal basis for F®.

(2) Find an orthonormal basis for R? where the first vector is proportional to
(1,1,1).

(3) Use Gram-Schmidt on the collection z; = (1,0,1,0), zo = (1,1,1,0),
T3 = (0, 1,0,0) .

(4) Use Gram-Schmidt on the collection z; = (1,0,1,0), =2 = (0,1,1,0),
x3 = (0,1,0,1) and complete to an orthonormal basis for R%.

(5) Use Gram-Schmidt on sint, sin? ¢, sin® ¢.

(6) Given an arbitrary collection of vectors zi,...,2Z,;, in an inner product
space V, show that it is possible to find orthogonal vectors z1,...,2, € V
such that

[xl wm]:[zl zn}Areﬁ

where A,.f is an n X m matrix in row echelon form. Explain how this can
be used to solve systems of the form

&
[ Ty - T ] =b.
Em
(7) The goal of this exercise is to construct a dual basis to a basis x1, ..., z,, for
an inner product space V. We call z7, ..., 2}, a dual basis if (z;|2}) = d;;.
(a) Show that if x7, ..., 2} exist then it is a basis for V.
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(b) Show that if x1,...,x, is a basis, then we have an isomorphism L :
V' — F™ defined by

(z|21)
L(z) = :

(¢) Show that each basis has a unique dual basis (you have to show it
exists and that there is only one such basis).

(d) Show that a basis is orthonormal if and only if it is self-dual, i.e., it
is its own dual basis.

(e) Given (1,1,0),(1,0,1),(0,1,1) € R? find the dual basis.

(f) Find the dual basis for 1,¢,t? € P, with respect to the inner product

mm:[gamww
(8) Using the inner product
1
wm:Afmwmﬁ

on R [t] and Gram-Schmidt on 1,¢,¢2 find an orthonormal basis for P».
(9) (Legendre Polynomials) Consider the inner product

b
mm:/fwgww

on R [t] and define

@n(t) = (t—a)"(t-0)",
dn
Pn (t) - dtin (q2n (t)) :
(a) Show that
q2n (a) = (Q2n (b) =0,
A" gon 4",
dtn—f (a) dtn_f (b) = O

(b) Show that p,, has degree n.
(¢) Useinduction on n to show that p,, (t) is perpendicular to 1, ¢, ..., ¢
Hint: Use integration by parts.
(d) Show that pg,p1,....., Pn, ... are orthogonal to each other.
(10) (Lagrange Interpolation) Select n + 1 distinct points tg,...,t, € C and
consider

n—1

(p(®)]g(t) =D p(t:)q (k)
=0

(a) Show that this defines an inner product on P,, but not on C[¢].
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(b) Consider
(t—t)) (t—ty) - (t —tn_1)

() = (to —t1) (to —t2) -+ (to — tn-1)’
(t—to) (t —t2) - (t —tn)
P () (th—to) (b1 —t2) -+~ (b1 — tn_1)’
Pn—1 (t) = (titO) (titl)”.(titn72)

(tn—1 —to) (tn—1 —t1) -+ (tn—1 — tn—2)

Show that p; (t;) = 6,;; and that po, ..., p,, form an orthonormal basis
for P,.

(c¢) Use po,...,pn to solve the problem of finding a polynomial p € P,
such that p (¢;) = b;.

(d) Let A1,...;A, € C (they may not be distinct) and f : C—C a
function. Show that there is a polynomial p(t) € C]Jt] such that

(11) (P. Enflo) Let V be a finite dimensional inner product space and z1, ...,
Ty Y1, - Yo € V.Show Enflo’s inequality

2
n

Doyl | < | D e ) | D lwily)l?

t,j=1 4,j=1 4,j=1

Hint: Use an orthonormal basis and start expanding on the left hand side.
(12) Let L : V — V be an operator on a finite dimensional inner product space.
(a) If X is an eigenvalue for L, then

AL <L

(b) Given examples of 2 x 2 matrices where strict inequality always holds.
(13) Let L : Vi — V5 and K : Vo — V3 be linear maps between finite dimen-
sional inner product spaces. Show that

|| o LI| < [[KTHIL]] -

(14) Let L,K : V — V be operators on a finite dimensional inner product
space. If K is invertible show that

IIL|| = ||K o Lo K~|].

(15) Let L, K : V — W be lienar maps between finite dimensional inner prod-
uct spaces. Show that

1L+ K| < [IL]] + [[K]]
(16) Let A € Maty, xsm, (F). Show that
i < Al

where ||A|| is the operator norm of the linear map A : F™ — F". Give
examples where

1Al # Vi (A4%) = \/(A]A).
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4. Orthogonal Complements and Projections

The goal of this section is to figure out if there is a best possible projection onto
a subspace of a vector space. In general there are quite a lot of projections, but
if we have an inner product on the vector space we can imagine that there should
be a projection where the image of a vector is as close as possible to the original
vector.

Let M C V be a finite dimensional subspace of an inner product space. From
the previous section we know that it is possible to find an orthonormal basis
€1, ..., em for M. Using that basis we define £ : V — V by

E (z) = (xz]er) er + - + (x]em) em.

Note that F(z) € M for all z € V. Moreover, if x € M, then F (x) = x. Thus
E?(2) = E(z) for all z € V. This shows that E is a projection whose image is M.
Next let us identify the kernel. If x € ker (E), then

0 = E(x)
= (zler)er + -+ (z|em) em-

Since ey, ..., €y, s a basis this means that (x|e;) = - -+ = (z|ey,) = 0. This in turn is
equivalent to the condition

(z|z) =0 for all z € M,

since any z € M is a linear combination of ey, ..., e,,. The set of all such vectors is
denoted

Mt ={zeV:(z]z)=0forall z€ M}

and is called the orthogonal complement to M in V. Given that ker (E) = M+ we
have a formula for the kernel that does not depend on E. Thus FE is simply the
projection of V onto M along M+~. The only problem with this characterization
is that we don’t know from the outset that V' = M @ M~. In case M is finite
dimensional, however, the existence of the projection E insures us that this must
be the case as

z=F(x)+ (ly — E) (z)

and (1y — E) (x) € ker (E) = M~*. In case we have an orthogonal direct sum de-
composition: V = M @ M~ we call the projection onto M along M~ the orthogonal
projection onto M and denote it by proj,, : V — V.

The vector proj,, (z) also solves our problem of finding the vector in M that
is closest to x. To see why this is true, choose z € M and consider the triangle
that has the three vectors z, proj,, (z), and z as vertices. The sides are given by
x—projas (x), projas (x)—z, and z—x. Since proj,; (z)—z € M and x—proj,, (z) €
M these two vectors are perpendicular and hence we have

. 2
|z — projy, ()]

. 2 . 2 2
[l = projas (@)[I” + llprojas (2) — 27 =z — =],

where equality holds only when ||proj,, (z) — z||* = 0, i.e., proj,; (z) is the one and
only point closest to x among all points in M.
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Let us collect the above information in a theorem.

THEOREM 29. (Orthogonal Sum Decomposition) Let V' be an inner product
space and M C V a finite dimensional subspace. Then V. = M @ M=+ and for any
orthonormal basis e, ..., e,, for M, the projection onto M along M~ is given by:

projas () = (zler) er + -+ - + (zlem) em.

COROLLARY 22. IfV is finite dimensional and M C 'V is a subspace, then

V = MaeM*,
(MY = M=,
dimV = dimM + dim M*.

Orthogonal projections can also be characterized as follows.

THEOREM 30. (Characterization of Orthogonal Projections) Assume that V' is
a finite dimensional inner product space and E : V. — V a projection on to M C V.
Then the following conditions are equivalent.

(1) E=proj, -
(2) im (E)" = ker (E).
3) 1B (@) < [lz]| for all z € V.

ProOOF. We have already seen that 1 and 2 are equivalent. These conditions
imply 3 as ¢ = E(x) + (1 — E) (x) is an orthogonal decomposition. So

Izl = IE@° + (L - E) ()]
I ()]

v

It remains to be seen that 3 implies that E is orthogonal. To prove this choose
z € ker (E)* and observe that E (z) = z — (1y — E) (z) is an orthogonal decom-
position since (1y — E) (z) € ker (F) for all z € V. Thus

[l IE ()]
lz = (1 - B) ()]
= lzl® + 11 - B) (2)|I”

2
]

Y

This means that (1y — E) (z) = 0 and hence z = E (z) € im (E) . Thus ker (E)" C
im (E) . We also know from the Dimension Formula that

dim (im (F)) = dim (V) — dim (ker (E))
dim (ker (E)J‘> .

L

This shows that ker (E)™ =im (E). O
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EXAMPLE 73. Let V = R" and M = span{(1,...,1)}. Since ||(1,...,1)]* = n,
we see that

(63}
projy (z) = projy
aq
(651 1 1
- n : : :
(5] 1 1
1
_ atton |
= - ,
1
1
= a : s
1

where & is the average or mean of the values o, ..., au,. Since proj,, (x) is the clos-
est element in M to x we get a geometric interpretation of the average of ay, ..., Qp.
If in addition we use that proj,; (z) and x — proj,, (x) are perpendicular we arrive
at a nice formula for the variance:

n

. 2 2

lz = proju (@)* = ) lai—d
i=1

2 . 2
= lzlI” = llprojar ()]

n n
= 2l =3 laf
i=1 i=1

<Z|a¢|2> —nlal*
<i|ai|2> _ (Xim O‘i)Q

=1

As above let M C V be a finite dimensional subspace of an inner product space
and ey, ..., e, an orthonormal basis for M. Using the formula
projys (z) = (zler)er 4+ + (zlem) em
- a1€1+"'+04n6m,
we see that the inequality ||proj,, (x)] < ||z|| translates into the Bessel inequality
2 2 2
e e o P [
This follows by observing that the map [ er -+ €em ] :F™ — M is an isometry
and therefore

2 2
] I

> |proja (x)

= o’ o ol
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Note that when m = 1 this was the inequality used to establish the Cauchy-Schwarz
inequality.

4.1.

Exercises.
Consider Mat,, x,, (C) with the inner product (4|B) = tr (AB*). Describe
the orthogonal complement to the space of all diagonal matrices.
If M =span{zi,...,zm}, then
Mt ={zeV:(z|z1) == (z]|zm) =0}
Assume V = M @& M, show that
T = projyy () + projare ()
Find the element in span {1,cost,sint} that is closest to sin®¢.
Assume V = M @ M+ and that L : V — V is a linear operator. Show
that both M and M~ are L invariant if and only if proj,, oL = Loproj,; .
Let A € Mat,,xn (R).
(a) Show that the row vectors of A are in the orthogonal complement of
ker (A).
(b) Use this to show that the row rank and column rank of A are the
same.

Let M, N C V be subspaces of a finite dimensional inner product space.
Show that

(M+N)- = M*+nN*,

(MNN)" = M*++N*-

Find the orthogonal projection onto span{(2,—1,1),(1,—1,0)} by first
computing the orthogonal projection onto the orthogonal complement.
Find the polynomial p (t) € P, such that

27
/ Ip (t) — cost|* dt
0

is smallest possible.
Show that the decomposition into even and odd functions on C° ([—a, a] , C)
is orthogonal if we use the inner product

(flg) = j f(t)g(t)dt.

Find the orthogonal projection from C[t] onto span{l,t} = P;. Given
any p € C[t] you should express the orthogonal projection in terms of the
coeflicients of p.

Find the orthogonal projection from C [¢] onto span {1, t, t2} =D.
Compute the orthogonal projection onto the following subspaces:

1

(a) span 1
| 1

(b) span

()
O = ==
— = O N
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1 —i 0
0 1 1
0 0 0

(14) (Selberg) Let x,y1,...,yn € V, where V is an inner product space. Show
Selberg’s “generalization” of Bessel’s inequality

n

DIyl < ell® Y Cwilyy)
i=1

4,j=1

5. Adjoint Maps

To introduce the concept of adjoints of linear maps we start with the construc-
tion for matrices, i.e., linear maps A : F™ — F" where F = R or C and F™ F"
are equipped with their standard inner products. We can write A as an n X m
matrix and we define the adjoint A* = A*, i.e., A* is the transposed and conjugate
of A. In case F = R, conjugation is irrelevant so A* = A*. Note that since A* is an
m X m matrix it corresponds to a linear map A* : F* — F™. The adjoint satisfies
the crucial property

(Azly) = (z[A"y).

To see this we simply think of x as an m x 1 matrix, y as an n X 1 matrix and then
observe that

(Azly) = (Ax)'y
— LL'tAtg
- )
= (z[4%).
In the general case of a linear map L : V — W we can try to define the adjoint

through matrix representations. To this end select orthonormal bases for V and W
so that we have a diagram

™ — [F”

where the vertical double-arrows are isometries. Then define L* : W — V as the
linear map whose matrix representation is [L]*. In other words [L*] = [L]" and the
following diagram commutes

Because the vertical arrows are isometries we also have

(Laly) = (z|L7y).

There is a similar construction of L* that uses only a basis for ey, ..., ey, for V.
To define L* (y) we need to know the inner products (L*yle;). The relationship
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(Lz|y) = (z|L*y) indicates that (L*yle;) can be calculated as

(L*yle;) = (e|L*y)
= (Lejly)
= (ylLej).

So let us define
Ly = Z (y|Lej) e;
j=1

This clearly defines a linear map L* : W — V satisfying

(Lejly) = (e;|L7y) .
The more general condition
(Lzly) = (z|L"y)

follows immediately by writing « as a linear combination of ey, ..., e, and using
linearity in = on both sides of the equation.

Next we address the issue of whether the adjoint is uniquely defined, i.e., could
there be two linear maps K; : W — V, i+ = 1,2 such that

(z[Ky1y) = (Lzly) = (z[Kay)?

This would imply

0 = (z[K1y) — (z|K2y)
= (2|Kyy — Kay).
If = Kjy — Koy, then
1K1y — Koyl|* =

and hence Ky = Koy.
The adjoint has the following useful elementary properties.

ProrosSITION 21. Let L, K : V — W and Ly : Vi — Vs, Lo : Vo — V3, then
(1) (L+ K)* =L+ K*.

(2) L™ =

(3) (Alv) —>\1v

(4) (L2L1)" = LiL;.

(5) If L is invertible, then (L’l)* = (!

PRrROOF. The key observation for the proofs of these properties is that any L’ :
W — V with the property that (Lz|y) = (x|L'y) for all z must satisfy L'y = L*y.
To check the first property we calculate

(| (L+K)'y) = (L+K)zly)
Lzly) + (Kzly)
z|L*y) + (2| K™y)

a| (L7 + K7)y).

(
(
(
(
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The second is immediate from
(Lzly) =

The third property follows from
My (2)]y) = (Azfy)

The fourth property
(#| (L2L1)"y) =

And finally 1y, = L~'L implies that

1y

|
=
=
*

as desired. |
EXAMPLE 74. As an example let us find the adjoint to
[er - e | F" >V,

when ey, ..., e, is an orthonormal basis. Recall that we have already found a simple
formula for the inverse

(zle1)
o o w ] @=]
(z]en)
and we proved that [ er - ep } preserves inner products. If we let x € F™ and
y €V, then we can write y = [ e1 -+ ey | (2) for some z € F". With that in

mind we can calculate

([er - ea]@ly) = ([ea - e]@llea - e ](z)

= (ellen e ] ).

Thus we have
* —1
I:el e en] :[61 e en] .
Below we shall generalize this relationship to all isomorphisms that preserve inner
products.
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This relationship simplifies the job of calculating matrix representations with
respect to orthonormal bases. Assume that L : V' — W is a linear map between fi-
nite dimensional inner product spaces and that we have orthonormal bases e, ..., €,
for V and f1,..., f, for W. Then

L = [f - flllla - en],
L] = [61 em]L[fl fn]*

or in diagram form

V — w
[61 6m]*l [f1 fn]T
Em™ ﬂ) Fn
v L w
[el 6m]T [fl fn]*l
Fm™ R Fn

From this we see that the matrix definition of the adjoint is justified since the
properties of the adjoint now tell us that:

I — ([f1 S T em]*>*
= [61 em][L]*[ﬁ fn]*-

A linear map and its adjoint have some remarkable relationships between their
images and kernels. These properties are called the Fredholm alternatives and
named after Fredholm who first used these properties to clarify when certain linear
systems L (z) = b can be solved.

THEOREM 31. (The Fredholm Alternative) Let L : V. — W be a linear map
between finite dimensional inner product spaces. Then

ker (L) = im(L*)",
ker (L*) = im(L)",
ker (L))" = im (L"),
ker (L)Y = im(L).

PROOF. Since L** = L and M++ = M we see that all of the four statements
are equivalent to each other. Thus we need only prove the first. The two subspaces
are characterized by

ker (L) = {xeV:Lx=0},
im (L)Y = {zeV:(z|L*2)=0forall zc W}.
Now fix € V and use that (Lz|z) = (x|L*z) for all z € V. This implies first that

if 2 € ker (L), then also z € im (L*)" . Conversely, if 0 = (z|L*z) = (Lz|z) for all
z € W it must follow that Lz = 0 and hence z € ker (L). O

COROLLARY 23. (The Rank Theorem) Let L : V. — W be a linear map between
finite dimensional inner product spaces. Then

rank (L) = rank (L") .
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PrOOF. Using The Dimension formula for linear maps and that orthogonal
complements have complementary dimension together with the Fredholm alterna-
tive we see

dimV = dim (ker (L)) + dim (im (L))
dim (im (L*))" + dim (im (L))
= dimV — dim (im (L*)) + dim (im (L)) .

This implies the result. O

COROLLARY 24. For a real or complex n X m matriz A the column rank equals
the row rank.

PROOF. First note that rank (B) = rank (B) for all complex matrices B. Sec-
ondly, we know that rank (A) is the same as the column rank. Thus rank (A*) is
the row rank of A. This proves the result. O

COROLLARY 25. Let L : V. — V be a linear operator on a finite dimensional
inner product space. Then X is an eigenvalue for L if and only if \ is an eigenvalue
for L*. Moreover these eigenvalue pairs have the same geometric multiplicity:

dim (ker (L — Aly)) = dim (ker (L* — Aly)) .

ProoF. Note that (L — Aly)" = L* — Ay Thus the result follows if we can
show

dim (ker (K)) = dim (ker (K™))
for K : V — V. This comes from
dim (ker (K))

dimV — dim (im (K))
dim V' — dim (im (K™))
= dim (ker (K™)).

5.1. Exercises.

(1) Let V and W Dbe finite dimensional inner product spaces.
(a) Show that we can define an inner product on homg (V, W) by (L|K) =
tr (LK*) =tr (K*L).
(b) Show that (K|L) = (L*|K*).
(c) If ey, ..., e, is an orthonormal basis for V' show that

(KIL) = (K (e1) |L (1)) + -+ + (K (em) | (em)) -

(2) Assume that V' is a complex inner product space. Recall from the exercises
to “Vector Spaces” in chapter 1 that we have a vector space V* with the
same addition as in V' but scalar multiplication is altered by conjugating
the scalar. Show that the map F' : V* — hom (V,C) defined by F (z) =
(-|z) is complex linear and an isomorphism when V' is finite dimensional.
Use this to give another definition of the adjoint. Here

/= (|z) € hom (V,C)
is the linear map such that f (z) = (z|z).
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(3) On Mat,, x,, (C) use the inner product (A|B) = tr (AB*) . For A € Mat,,x, (C)

consider the two linear operators on Mat,, «,, (C) defined by L4 (X) = AX,
R4 (X) = XA. Show that (La)" = La- and (Ra)" = Ra-.

(4) Let x1,...,xx € V, where V is a finite dimensional inner product space.
(a) Show that

G(xh...,xk):[h xk]*[ﬂh mk]

where G (1, ..., 1) is a k X k matrix whose ij entry is (z;|z;). It is
called the Gram matrix or Grammian.
(b) Show that G = G (z1,...,xx) is positive definite in the sense that
(Gz|z) > 0 for all z € F*.
(5) Find image and kernel for A € Matsy3 (R) where the ij entry is a;; =

(71)i+j )

(6) Find image and kernel for A € Matzys (C) where the kl entry is ag =
(Z-)k-‘rl )

(7) Let A € Mat, «, (R) be symmetric, i.e., A* = A, and assume A has rank
k <n.

(a) If the first k columns are linearly independent then the principal k x k
minor of A is invertible. The principal k£ X k minor of A is the k x k
matrix one obtains by deleting the last n—k columns and rows. Hint:
use a block decomposition

B C
=l b

and write
C B
|: D :| = |: ct :|X'7 X e Math(n—k) (R)

i.e., the last n — k columns are linear combinations of the first k.
(b) If rows 4y, ..., i are linearly independent, then the k x k minor ob-
tained by deleting all columns and rows not indexed by i1, ..., is
invertible. Hint: Note that Ij; Al is symmetric so one can use part
a.
(¢) Give examples showing that a. need not hold for n x n matrices in
general.
(8) Let L:V — V be a linear operator on a finite dimensional inner product
space.
(a) If M C V is an L invariant subspace, then M~ is L* invariant.
(b) If M C V is an L invariant subspace, then

(L|M)>k = projy oL*|ar.

(¢) Give an example where M is not L* invariant.
(9) Let L : V. — W be a linear operator between finite dimensional vector

spaces. Show that
(a) L is one-to-one if and only if L* is onto.
(b) L* is one-to-one if and only if L is onto.

(10) Let M, N C V be subspaces of a finite dimensional inner product space
and consider L : M x N — V defined by L (z,y) =z — y.
(a) Show that L* (z) = (proj; (2), —projy (2)).
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(b) Show that
ker (L*) = M*nN*t,
im(L) = M+N.
(¢) Using the Fredholm alternative show that
(M +N)" =M+nN*
(d) Replace M and N by M+ and N+ and conclude
(MNN)" =M+ N

(11) Assume that L : V — W is a linear map between inner product spaces.
(a) Show that

dim (ker (L)) — dim (im (L))" = dim V — dim W.

(b) If V.= W = (2 (Z) then for each integer n € Z it is possible to find
a linear operator L, with finite dimensional ker (L,) and (im (L))"
so that
Ind (L) = dim (ker (L)) — dim (im (L))" = n.
Hint: Consider linear maps that take (ax) to (ag+:) for some | € Z.
An operator with finite dimensional ker (L) and (im (L))l is called a
Fredholm operator. The integer Ind (L) = dim (ker (L))—dim (im (L))"
is the index of the operator and is an important invariant in func-
tional analysis.
(12) Let L : V — V be an operator on a finite dimensional inner product space.
Show that
tr (L) =tr (L¥).
(13) Let L : V — W be a linear map between inner product spaces. Show that
L :ker (L*L — Aly) — ker (LL* — Aly)

and
L* :ker (LL* — Aly) — ker (L*L — Aly).

(14) Let L : V — V be a linear operator on a finite dimensional inner prod-
uct space. If L(z) = Az, L* (y) = py, and X\ # [, then = and y are
perpendicular.

(15) Let V be a subspace of C°([0,1],R) and consider the linear functionals
fto () = z (t9) and

1
fy (@) = / 2 (1) y (1) dr.

(a) If V is finite dimensional show that f;,|v = fy|v for some y € V.

(b) If V. = P, = polynomials of degree < 2, then find an explicit y € V
as in part a.

(c) IfV =C°([0,1],R), show that it is not possible to find y € C° ([0, 1], R)
such that fi; = f,. The illusory function §;, invented by Dirac to
solve this problem is called Dirac’s d-function. It is defined as

%(t){ 0 ift#tg

o0 ift:to



188 3. INNER PRODUCT SPACES
so as to give the impression that

1
/0 x (t) g, () dt = x (to) .
(16) Find q(t) € P; such that

1
p(5) = (la) = / p () 7 (D)t

for all p € Ps.
(17) Find f (¢) € span{1,sin (¢),cos(¢)} such that

6 = 5 [ s T
1 2

= % A g(t)(lthQ)dt

for all g € span {1,sin (¢),cos (¢)}.
6. Orthogonal Projections Revisited*

In this section we shall give a new formula for an orthogonal projection. Instead
of using Gram-Schmidt to create an orthonormal basis for the subspace it gives a
direct formula using an arbitrary basis for the subspace.

First we need a new characterization of orthogonal projections using adjoints.

LEMMA 20. (Characterization of Orthogonal Projections) A projection E :
V — V is orthogonal if and only if E = E*.

PROOF. The Fredholm alternative tells us that im (E) = ker (E*)" soif E =
E* we have shown that im (E) = ker (E)" , which implies that E is orthogonal.

Conversely we can assume that im (E) = ker (E)" since E is an orthogonal
projection. Using the Fredholm alternative again then tells us that

im(E) = ker(E)" =im(E"),
ker (E*)" = im(E) =ker (E)".
As (B*)® = (EQ)Hk = E* it follows that E* is a projection with the same image and
kernel as E. Hence E = E*. ]

Using this characterization of orthogonal projections it is possible find a formula
for proj,, using a general basis for M C V. Let M C V be finite dimensional with
a basis 1, ..., Zy,. This yields an isomorphism

[ - ap | F"—> M
which can also be thought of as a one-to-one map A : F™ — V whose image is M.
This yields a linear map
A*AF™ — F™,
Since

(A" Ayly)

(Ay|Ay)
= Ay’

the kernel satisfies
ker (A*A) = ker (A) = {0}.
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In particular, A* A is an isomorphism. This means that
E=A(A*A)~" A"
defines linear operator £ : V — V. It is easy to check that £ = E* and since
E? = A(A*A)TA*A(ATA) T A
= A(A*A) A
= E,

it is a projection. Finally we must check that im (E) = M. Since (A*A)™ ' is an
isomorphism and

im (A4%) = (ker (4))" = ({o})*" = F™,
we have
im(F)=im(A) =M

as desired.
To better understand this construction we note that

(z|21)
A" (z) = :
(@|zm)
This follows from
a; (z|z1)
: = ai(afer) + -+ am (o)
Om (|zm)

= ay(z1|x)+ -+ am (Tm|x)

= (1214 + app|T)

aq
= A . T
-
The matrix form of A*A can now be calculated
ATA = A*o[xl xm]
= [ A (z1) - A" (zm) |
(@1]z1) - (@mlz1)
(@ilzm) - (@Tml|Tm)

This is also called the Gram matriz of x4, ..., z,,. This information specifies explic-
itly all of the components of the formula
E=A(A*A)~" A"

The only hard calculation is the inversion of A*A. The calculation of A (A*A) ™" A*
should also be compared to using the Gram-Schmidt procedure for finding the
orthogonal projection onto M.
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6.1. Exercises.

(1) Using the inner product fol p (t) g (t) dt find the orthogonal projection from
C[t] onto span{l,t} = P;. Given any p € CJt] you should express the
orthogonal projection in terms of the coefficients of p.

(2) Using the inner product fol p (t) g (t) dt find the orthogonal projection from
C [t] onto span {1,¢,t*} = P,.

(3) Compute the orthogonal projection onto the following subspaces:

1
(a) span 1
| 1
(1] 1 2
-1 1 0
1 0 1
1 —i 0
] 1 1
(C) span 0 ) 0 ) i
0 0 0

(4) Given an orthonormal basis ey, ..., e; for the subspace M C V, show that
the orthorgonal projection onto M can be computed as

projyy =[er -+ e [[er o en ]
Hint: Show that

[el ek]*[el ek]zlw.

7. Matrix Exponentials*

In this section we shall show that the initial value problem: & = Az, x (tg) = o
where A is a square matrix with complex (or real) scalars as entries can be solved
using matrix exponentials. Recall that more algebraic approaches are also available
by using the Frobenius canonical form, the Jordan canonical form, and later in
chapter 4 in “Triagulability” Schur’s theorem will give us a very effectiveway of
solving such systems.

Recall that in the one dimensional situation the solution is z = z exp (A (t — to)) .
If we could make sense of this for square matrices A as well we would have a possi-
ble way of writing down the solutions. The concept of operator norms introduced
in “Orthonormal Bases” naturally leads to a norm of matrices as well. One key
observation about this norm is that if A = [ay;], then |ay;| < ||A]|, i.e., the entries
are bounded by the norm. Moreover we also have that

IAB] < [A[lBIl,
A+ B < [Al+|B]
as
[AB (@)l < [AIlB ()]
< [AIIBI =l

(A +B) (@) < |[A@)] + B ()] -



7. MATRIX EXPONENTIALS* 191
Now consider the series
o A"
>
n=0

An
nl

i 1Al
|
"0 n.

is convergent it follows that any given entry in

Since "
_ 14l

n!

)

and

is bounded by a convergent series. Thus the matrix series also converges leading us

to define
o0 An‘
exp (A) = Z P
n=0 ’

It is not hard to check that if L € hom (V, V), where V is a finite dimensional
inner product space, then we can similarily define

o0 Ln
exp (L) = Z;) T

Now consider the matrix valued function
exp (At) = z_% py

and with it the vector valued function

x(t) =exp (A (t —to)) xo.
It still remains to be seen that this defines a differentiable function that solves
& = Azx. At least we have the correct initial value as exp (0) = lp» from our

formula. To check differentiability we consider the matrix function ¢ — exp (At)
and study exp (A (t + h)) . In fact we claim that

exp (A (t+ h)) = exp (At) exp (Ah).
To establish this we prove a more general version together with another useful fact.

PROPOSITION 22. Let L, K : V — V be linear operators on a finite dimensional
inner product space.

(1) If KL = LK, then exp (K + L) = exp (K) oexp (L) .
(2) If K is invertible, then exp (Ko Lo K~') = Koexp(L)o K '.

PROOF. 1. This formula hinges on proving the binomial formula for commuting
operators:

n n
L+K)" = LFKF,
DY (7)

(1) = wom
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This formula is obvious for n = 1. Suppose that the formula holds for n. Using the

conventions
n
=0
(hi0) = o

(5) =

together with the formula from Pascal’s triangle
n n n+1
(20 ()= (")
it follows that

(L+K)"" = (L+K)"(L+K)

- (i <Z> LkK”k> (L+ K)

k=0

n n n n
_ LkKn—kL LkKn—kK

k=0

— i (Z) Lk+1K7L—k =+ i (Z) LkKn—k'—i-l

n+1
n n
LkKn+17]€ Lk[(’ﬂﬁ’l*k
k— 1) * ];) k

(u20) () e

n+ 1)L’“K"+1k.

B

3
+ 1

Il
> 3
+ 1l
=] =
N

We can then compute

N n N n
(K + L) 1 (n k yrn—k
Z n! - Z n! \k 'K
n=0 n=0 k=0
N n
1
et (n —k)k!
_ i\{: i lLk 1 n—k
s k! (n—k)!

1\ /1,
> () (i)
k,l=0,k+I<N

The last term is unfortunately not quite the same as the product

£ (00 () - (Z4) (E i)
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However the difference between these two sums can be estimated the following way:

N N 1 1
k l k l
> () () - 2 () ()
k,l=0 k,l=0,k+I<N
N
- ) )
k,01=0,k+I>N k! i

al 1 1
k l
< > (i) (s
k,1=0,k+I>N
al 1 1 al 1
k l l
< > (i) (pimr) e () (i)
k=0,l=N/2 1=0,k=N/2
k l l
- (ZML> S sl [ S Sl <ZZ|K”>
k=0 " I=N/2 k:N/2 =0
|
l
< eoleh | 3 2ixit) +ewtun [ 3 Lz
I=N/2 k=N/2
Since
A
l
Jm > LK = o
I=N/2
Yo
k
hmooz =" = o
k=N/2

it follows that

N n N N
. (K+L) Loy Lo
. 7;) n kZ:O’“L ;;vK =0
Thus
— (K+L)" (1 4\ (1,4
o= g ) (5K
n=0 k=0 1=0
as desired.

2. This is considerably simpler and uses that
(KoLoK')"=KoL"oK "

This is again proven by induction. First observe it is trivial for n = 1 and then
that

(KOLOK_1>R+1 = ([(ol}o[(_l)noK'oLof(_1

= KolL"oK 'oKoLoK™*
KoL"oLoK™!
= KoL"M oKL
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Thus

i(KoLoK‘l)n i oL"oK'1

I
=
0]
oY
uMz
=3
SN—
o)
A

By letting NV — oo we get the desired formula.

To calculate the derivative of exp (At) we observe that

exp(A(t+h)) —exp(At)  exp(Ah)exp (At) — exp (At)
h - h
_ <exp (Ah) — 1IF7L> exp (A1)
h
Using the definition of exp (Ah) it follows that
exp (Ah) —1pn Nt 1A"R"
h B n:lh n!
_ e Anpn—1
N Z n!
n=1
e Anpn—1
- A+Z nl
n=2
Since
o A o~ Al "
Z n! H = Z n!
n=2
A n—1 hn 1
||Ah|
- ||A||Z e
< ||A||Z||Ah||"
n=1
= ANIAR) =
1— ||Ah||
— 0as |h| —0
we get that
- Ah) — 1pn
o SRACER) e (A) (e 1)
|h|—0 h |h|—0 h

= Aexp(At).
Therefore, if we define
x (t) = exp (A(t —tg)) xo,



7. MATRIX EXPONENTIALS* 195

then
& = Aexp(A(t—to))zo
= Auz.
The other problem we should solve at this point is uniqueness of solutions.
To be more precise, if we have that both z and y solve the initial value problem

& = Az, x (tg) = xo, then we wish to prove that x = y. Inner products can be used
quite effectively to prove this as well. We consider the nonnegative function

2
¢ (t) [l (&) =y ()]l
= (xl_yl)z'l'"""(xn_yn)Q'
In the complex situation simply identify C” = R?” and use the 2n real coordinates

to define this norm. Recall that this norm comes from the usual inner product on
Fuclidean space. The derivative satisfies

do
dt

( ) = (le _yl) T _yl) +2('j:7b_er) (xn _yn)

(
= 2((@ -9 [(z-y)
2(A(z—y)|(z—y)
2[|A(z =)l le =y
2[|A] [}z -yl
2[|All o () -

IN N

Thus we have
do
2 O —2lAfe(t) <0
If we multiply this by the positive integrating factor exp (—2||A|| (t — to)) and use
Leibniz’ rule in reverse we obtain

% (0 (t) exp (=2 [|A[| (£ = t0))) < 0

Together with the initial condition ¢ (¢9) = 0 this yields
@ (t)exp (=2 A||l (t —to)) <0, for t > to.

Since the integrating factor is positive and ¢ is nonnegative it must follow that
¢ (t) =0 for ¢ > ty. A similar argument using —exp (—2||4|| (¢t — to)) can be used
to show that ¢ (¢) = 0 for ¢t < ty. Altogether we have established that the initial
value problem & = Az, x (ty) = xo always has a unique solution for matrices A
with real (or complex) scalars as entries.

To explicitly solve these linear differential equations it is often best to under-
stand higher order equations first and then use the cyclic subspace decomposition
from chapter 2 to reduce systems to higher order equations. At the end of chapter
4 we shall give another method for solving systems of equations that does not use
higher order equations.

7.1. Exercises.

(1) Let f(2) = Y oo yanz"™ define a power series and A € Mat,,«,, (F). Show
that one can define f (A4) as long as ||A]| < radius of convergence.
(2) Let L : V — V be an operator on a finite dimensional inner product space.
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(a) If ||L]| < 1, then 1y + L has an inverse. Hint:
Ly +L)7 =) ()" L
n=1

(b) With L as above show

1

LY o< —,

R N

Jov+n -l < g ||LHL|'
(c) If |[L7Y| <e7! and |[L — K|| < e, then K is invertible and

HK—lH HL_1H
T 1LY (E =D
L

(L= IL=HIL = K1)
(3) Let L : V — V be an operator on a finite dimensional inner product space.
(a) If X is an eigenvalue for L, then

A< L]

(b) Give examples of 2 X 2 matrices where strict inequality always holds.
(4) Show that

20 = (oA —t0) [ (A — 1) £5)ds )

to
solves the initial value problem & = Az + f (¢), « (to) = zo.
(5) Let A= B+ C € Mat,xy (R) where B is invertible and ||C|| is very small
compared to ||B]|.
(a) Show that B~! — B~*C'B~! is a good approximation to A~1.
(b) Use this to approximate the inverse to

1 0 1000 1

0 -1 1 1000

2 1000 -1 0
1000 3 2 0



CHAPTER 4

Linear Operators on Inner Product Spaces

In this chapter we are going to study linear operators on inner product spaces.
In the last chapter we introduced adjoints of linear maps between possibly different
inner product spaces. Here we shall see how the adjoint can be used to understand
linear operators on a fixed inner product space. The important opeartors we study
here are the self-adjoint, skew-adjoint, normal, orthogonal and unitary operators.
We shall spend several sections on the existence of eigenvalues, diagonalizability
and canonical forms for these special but important linear operators. Having done
that we go back to the study of general linear maps and operators and establish
the singular value and polar decompositions. We also show Schur’s theorem to the
effect that complex linear operators have upper triangular matrix representations.
It is possible to start this chapter by proving Schur’s theorem and then use it to
prove the Spectral theorems. The chapter finishes with a section on quadratic forms
and how they tie in with the theory of self-adjoint operators. The second derivative
test for critical points is also discussed.

We want to emphasize again that it is possible to cover the material in this
chapter without first having been through chapter 2.

1. Self-adjoint Maps

A linear operator L : V — V is called self-adjoint if L* = L. These were
precisely the maps that were investigated in the previous section in the context of
studying the differential of f (z) = (L (x)|x). Note that a real m x m matrix A
is self-adjoint precisely when it is symmetric, i.e., A = A’. The ‘opposite’ of being
self-adjoint is skew-adjoint: L* = —L.

When the inner product is real we also say the operator is symmetric or skew-
symmetric. In case the inner product is complex these operators are also called
Hermitian or skew-Hermitian.

EXAMPLE 75. (1) { g _Oﬂ } is skew-adjoint if B is real.
(2) [ Z.Oé _;6 ] is self-adjoint if o and B are real.
i —f | . .
(3) 3 o | skew-adjoint if o and (B are real.

(4) In general, a complex 2 x 2 self-adjoint matrixz looks like

o B+ iy
|:ﬁ7/7 K 7%57%56R-
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(5) In general, a complex 2 X 2 skew-adjoint matrix looks like
i i8—y
Zﬂ+’y 8 va757’776€R°
EXAMPLE 76. We saw in chapter 8 “Orthogonal Projections Revisited” that
self-adjoint projections are precisely the orthogonal projections.

EXAMPLE 77. If L : V. — W s a linear map we can create two self-adjoint
maps L*L :V —V and LL* : W — W.

ExAMPLE 78. Consider the space of periodic functions CS3 (R, C) with the inner
product

1 27

zly) = — x (t)y (t)dt.

(@)= 3= [ = @9®
The linear operator
_dz
Cdt
can be seen to be skew-adjoint even though we haven’t defined the adjoint of maps
on infinite dimensional spaces. In general we say that a map is self-adjoint or
skew-adjoint if

D (x)

(L(z)ly) = (z[L(y)), or
(L(2)ly) = —(z[L(y))

for all x,y. Using that definition we note that integration by parts implies our claim:

@l = 5 [ (G 0)roe

2 Jo

1 — 1 [ dy
= —a)y@®" - — t) — (t)dt
3 VOB — 5= [ =050
= —(«[D(y)).
In quantum mechanics one often makes D self-adjoint by instead considering iD.
In analogy with the formulae

exp(z) = exp (z) +Qexp(—m) L oxp (z) —QGXp(—x)

= cosh (x) + sinh (),

we have
L = 1(L+L*)+1(L—L*)
2 2 ’
1 1
L* = —(L+L*Y—=(L-L"*
S(L+1Y) =2 (L-17)

where $ (L + L*) is self-adjoint and § (L — L*) is skew-adjoint. In the complex case
we also have
exp (i) + exp (—ix) 4 &P (iz) — exp (—ix)

exp (iz) = 5 5
exp (iz) + exp (—ix) .exp (iz) — exp (—iz)
- 2 H 2i

= cos(x)+ isin (z),
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which is a nice analogy for
1 . 1 .

where now also % (L — L*) is self-adjoint. The idea behind this formula is that
multiplication by 7 takes skew-adjoint maps to self-adjoints maps and vice versa.

Self- and skew-adjoint maps are clearly quite special by virtue of their defin-
itions. The above decomposition which has quite a lot in common with dividing
functions into odd and even parts or dividing complex numbers into real and imag-
inary parts seems to give some sort of indication that these maps could be central
to the understanding of general linear maps. This is not quite true, but we shall
be able to get a grasp on quite a lot of different maps.

Aside from these suggestive properties, self- and skew-adjoint maps are both
completely reducible or semi-simple. This means that for each invariant subspace
one can always find a complementary invariant subspace. Recall that maps like

L:[g H :R? — R?
can have invariant subspaces without having complementary subspaces that are
invariant.

ProPOSITION 23. (Reducibility of Self- or Skew-adjoint Operators) Let L :
V. — V be a linear operator on a finite dimensional inner product space. If L
is self- or skew-adjoint, then for each invariant subspace M C V the orthogonal
complement is also invariant, i.e., if L (M) C M, then L (ML) c Mt

PROOF. Assume that L (M) C M. Let x € M and z € M*. Since L (z) € M
we have

0 = (2L (2))
= (L7(2) =)
+ (L (2)|x).
As this holds for all z € M it follows that L (z) € M*. O

This property almost tells us that these operators are diagonalizable. Cer-
tainly in the case where we have complex scalars it must follow that such maps
are diagonalizable. In the case of real scalars the problem is that it is not clear
that self- and/or skew-adjoint maps have any invariant subspaces whatsoever. The
map which is rotation by 90° in the plane is clearly skew-symmetric, but it has no
nontrivial invariant subspaces. Thus we can’t make the map any simpler. We shall
see below that this is basically the worst scenario that we will encounter for such
maps.

1.1. Exercises.

(1) Let L : P, — P, be a linear map on the space of real polynomials of
degree < m such that [L] with respect to the standard basis 1,t,...,t" is
self-adjoint. Is L self-adjoint if we use the inner product

b
(plg) =/ p(t)q(t)dt?
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(2) If V is finite dimensional show that the three subsets of hom (V, V') defined

by
M, = span{ly},
M, = {L: L is skew-adjoint},
Ms = {L:trL=0and L is self-adjoint}

are subspaces over R, are mutually orthogonal with respect to the real
inner product Re (L, K) = Re (tr (L*K)), and yield a direct sum decom-
position of hom (V, V).

(3) Let E be an orthogonal projection and L a linear operator. Recall from
exercises to “Cyclic Subspaces” in chapter 2 and “Orthogonal Comple-
ments and Projections” in chapter 3 that L leaves M = im (F) invariant
if and only if ELE = LE and that M @ M* reduces L if and only if
EL = LE. Show that if L is skew- or self-adjoint and ELE = LFE, then
EL=LE.

(4) Let V be a complex inner product space. Show that multiplication by 4
yields a bijection between self-adjoint and skew-adjoint operators on V. Is
this map linear?

(5) Show that D! : 052 (R,C) — C52 (R, C) is self-adjoint and that D?k*1 :
C32 (R,C) — C52 (R, C) is skew-adjoint.

(6) Let x1, ...,z be vectors in an inner product space V. Show that the k x k
matrix G (21, ..., 2x) whose ij entry is (z;|z;) is self-adjoint and that all
its eigenvalues are nonnegative.

(7) Let L : V. — V be a self-adjoint operator on a finite dimensional inner
product space and p € R [t] a real polynomial. Show that p (L) is also self
adjoint.

(8) Assume that L : V — V is self-adjoint and A € R. Show

(a) ker (L) = ker (L¥) for any k > 1. Hint: Start with k = 2.
(b) im (L) = im(Lk) for any k > 1.

(c) ker (L — Aly) = ker ((L - Alv)k) for any k > 1.

(

d) my (¢t) has no multiple roots.

9) Assume that L : V — V is self-adjoint.

(a) Show that the eigenvalues of L are real.

(b) In case V is complex show that L has an eigenvalue.

(¢) In case V is real show that L has an eigenvalue. Hint: Choose an
orthonormal basis and observe that [L] € Mat,, x», (R) C Mat,,«, (C)
is also self-adjoint as a complex matrix. Thus all roots of x(; (t)
must be real by a.

(10) Assume that Ly, Ly : V' — V are both self-adjoint or skew-adjoint.
(a) Show that Lq Lo is skew-adjoint if and only if LyLs + LoLq = 0.
(b) Show that Ly Lo is self-adjoint if and only if Ly Ly = LoL;.

(

c¢) Give an example where Ly Lo is neither self-adjoint nor skew-adjoint.

2. Polarization and Isometries

The idea of polarization is that many bilinear expressions such as (z|y) can be
expressed as a sum of quadratic terms ||z]|* = (z|2) for suitable z.
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Let us start with a real inner product on V. Then

(z +ylz+y) = (z|lz) + 2 (z[y) + (yly)

SO

(zly) = % (@ +ylz +y) — (z]x) = (yly))

1 2 2 2
= 5 (le+ 9l = ll=I* = Iy))
Since complex inner products are only conjugate symmetric we only get

(= +yle +y) = (z]2) + 2Re (z]y) + (yly) ,

which implies

1 2 2 2
Re (aly) = 5 (Il + o> = llal * — 1y1l*)

Nevertheless the real part of the complex inner product determines the entire inner
product as

Re(eliy) = Re(i(zly))
— Im(aly).

In particular we have

1 .2 2 .02
m (aly) = 5 (llz +iyll* = 2l* — iy]*)

We can use these ideas to check when linear operators L : V' — V are zero.
First we note that L = 0 if and only if (L (x)|y) = 0 for all z,y € V. To check
the “if” part just let y = L (z) to see that ||L (z)||* = 0 for all z € V. When L is
self-adjoint this can be improved.

PROPOSITION 24. (Characterization of Self-adjoint Operators) Let L : V — V
be self-adjoint. Then L =0 if and only if (L (z)|x) =0 for all z € V.

PRrOOF. There is nothing to prove when L = 0.
Conversely assume that (L (z) |z) = 0 for all € V. The polarization trick from
above implies

0 = (L(z+y)lr+y)
= (L(z)|z)+ (L(2)|y) + (L(y)|2z) + (L (y)|y)
= (L(2)]y) + (yIL" (2))
= (L(z)|y) + (y|L (z))
= 2Re(L(2)y).

Next insert y = L (z) to see that
0 = Re(L(z)|L(x))
IZ ()]
as desired. (]



202 4. LINEAR OPERATORS ON INNER PRODUCT SPACES

If L is not self-adjoint there is no reason to think that such a result should hold.
For instance when V is a real inner product space and L is skew-adjoint, then we
have

(L(z)|z) = —(z[L(x))
= — (L))
so (L (z)|z) = 0 for all z. It is therefore somewhat surprising that we can use the
complex polarization trick to prove the next result.

PROPOSITION 25. Let L : V. — V be a linear operator on a complex inner
product space. Then L =0 if and only if (L (z)|x) =0 for all x € V.

PRrROOF. There is nothing to prove when L = 0.
Conversely assume that (L (z)|z) = 0 for all € V. We use the complex
polarization trick from above.

0 = (Lz+ylz+y)
= (L(2)|z)+ (L (x)]y) + (L (y)|=) + (L(y)ly)
= (L()]y) + (L(y)l|z)

0 = (L(z+iy)|z+iy)
= (L(2)|z) + (L (2)|iy) + (L (iy) |=) + (L (1) |iy)
= —i(L(z)|y) +i(L(y)]|z)

This yields a system
ERIkiEIR L

Since the columns of [ 1. 1 ] are linearly independent the only solution is the

trivial one. In particular (L (z)|y) = 0. O

Polarization can also be used to give a nice characterization of isometries. These
properties tie in nicely with our observation that
* —1
l:el “ e en] :[el “e en]
when ey, ..., €, is an orthonormal basis.

ProroOSITION 26. Let L : V. — W be a linear map between inner product
spaces, then the following are equivalent.
(W) |L @) = o] for allz € V.
(2) (L (2)|L(y)) = (z]y) for all z,y € V.
(3) L*L =1y
(4) L takes orthonormal sets of vectors to orthonormal sets of vectors.

PrROOF. 1 = 2 : Depending on whether we are in the complex or real case
simply write (L (x) |L (y)) and (z|y) in terms of norms and use 1 to see that both
terms are the same.

2 = 3: Just use that (L*L (z) |y) = (L (z) |L (y)) = (z|y) for all z,y € V.

3 = 4 : We are assuming (z|y) = (L*L () |y) = (L (z)|L (y)), which imme-
diately implies 4.
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4 = 1 : Evidently L takes unit vectors to unit vectors. So 1 holds if ||z|| = 1.
Now use the scaling property of norms to finish the argument. ([l

Recall the definition of the operator norm for linear maps L : V — W

IL]| = max |[L ()]
llzll=1
It was shown in “Orthonormal Bases” in chapter 3 that this norm is finite. It is
important to realize that this operator norm is not the same as the norm we get
from the inner product (L|K) = tr (LK*) defined on hom (V,W). To see this it
suffices to consider 1y. Clearly |1y | = 1, but (1y|1y) = tr (1y1y) = dim (V).

COROLLARY 26. Let L : V — W be a linear map between inner product spaces
such that | L (x)|| = ||z|| for all x € V, then ||L| = 1.

COROLLARY 27. (Characterization of Isometries) Let L : V. — W be an iso-
morphism, then L is an isometry if and only if L* = L~

PrOOF. If L is an isometry then it satisfies all of the above 4 conditions. In
particular, L*L = 1y so if L is invertible it must follow that L~! = L*.

Conversely, if L=! = L*, then L*L = 1y and it follows from the previous result
that L is an isometry. O

Just as for self-adjoint and skew-adjoint operators we have that isometries are
completely reducible or semi-simple.

COROLLARY 28. (Reducibility of Isometries) Let L : V' — V be a linear operator
that is also an isometry. If M C V is L invariant, then so is M.

PROOF. If z € M and y € M+, then we note that

0=(L(z)ly) = («|L" (y))-
Therefore L* (y) = L™ (y) € M* for all y € M*. Now observe that L™, :
M+ — M~ must be an isomorphism as its kernel is trivial. This implies that each
z € Mt is of the form z = L1 (y) for y € M+, Thus L (z) =y € M+ and hence
M+ is L invariant. U

In the special case where V =W = R™ we call the linear isometries orthogonal
matrices. The collection of orthogonal matrices is denoted O,,. Note that these
matrices are a subgroup of Gl, (R™), i.e., if 01,05 € O, then 0105 € O,. In
particular, we see that O,, is itself a group. Similarly when V =W = C"™ we have
the subgroup of unitary matrices U,, C Gl,, (C™) consisting of complex matrices
that are also isometries.

2.1. Exercises.

(1) On Mat, x, (R) use the inner product (A|B) = tr (AB?"). Consider the
linear operator L (X) = X*. Show that L is orthogonal. Is it skew- or
self-adjoint?

(2) On Mat,,xn (C) use the inner product (A4|B) = tr (AB*). For A € Mat,, x, (C)
consider the two linear operators on Mat,, «,, (C) defined by L4 (X) = AX,
R4 (X) = XA. Show that

(a) Ly and R4 are unitary if A is unitary.
(b) La and R4 are self- or skew-adjoint if A is self- or skew-adjoint.
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(3) Show that the operator D defines an isometry on both spang {exp (it) , exp (—it)}
and spang {cos (¢),sin (¢)} if we use the inner product inherited from
Cs2 (R, C).

(4) Let L: V — V be a complex operator on a complex inner product space.
Show that L is self-adjoint if and only if (L (x) |z) is real for all z € V.

(5) Let L : V — V be a real operator on a real inner product space. Show
that L is skew-adjoint if and only if (L (z) |x) = 0 for all z € V.

(6) Let ey, ..., e, be an orthonormal basis for V' and assume that L:V — W
has the property that L(e1),..., L (e,) is an orthonormal basis for W.
Show that L is an isometry.

(7) Let L: V — V be a linear operator on a finite dimensional inner product
space. Show that if L o K = K o L for all isometries K : V — V' then
L= MAly.

(8) Let L : V — V be a linear operator on an inner product space such that
(L (@) |L (y)) = 0 if (aly) = 0.

(a) Show that if ||z|| = ||y|| and (z]y) = 0, then ||L (z)|| = ||L (y)|| . Hint:
Use and show that « +y and « — y are perpendicular.
(b) Show that L = AU, where U is an isometry.
(9) Let V be a finite dimensional real inner product space and F': V — V be
a bijective map that preserves distances, i.e., for all z,y € V
IF (z) = F )l = [z =yl
(a) Show that G (z) = F (z) — F(0) also preserves distances and that
G (0) = 0.
(b) Show that |G (z)|| = ||z|| for all z € V.
(¢) Using polarization to show that (G (z) |G (y)) = (z]y) for all z,y € V.
(See also next the exercise for what can happen in the complex case.)
(d) If ey, ..., en is an orthonormal basis, then show that G (e1), ..., G (en)

is also an orthonormal basis.
(e) Show that

G (z) = (zler) G (ea) +--- + (2len) G (en)

and conclude that G is linear.
(f) Conclude that F (z) = L (z) + F (0) for a linear isometry L.
(10) On Mat, «n (C) use the inner product (A|B) = tr (AB*). Consider the
map L (X) = X"
(a) Show that L is real linear but not complex linear.
(b) Show that

IL(X)=LY)|l=[X-Y]
for all X,Y but that
(L(X)|L(Y)) # (X]Y)

for some choices of X,Y.

3. The Spectral Theorem

We are now ready to present and prove the most important theorem about when
it is possible to find a basis that diagonalizes a special class of operators. There
are several reasons for why this particular result is important. Firstly, it forms
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the foundation for all of our other results for linear maps between inner product
spaces, including isometries, skew-adjoint maps and general linear maps between
inner product spaces. Secondly, it is the one result of its type that has a truly
satisfying generalization to infinite dimensional spaces. In the infinite dimensional
setting it becomes a corner stone for several developments in analysis, functional
analysis, partial differential equations, representation theory and much more. First
we revisit some material from “Diagonalizability” in chapter 2.

Our general goal for linear operators L : V' — V is to find a basis such that the
matrix representation for L is as simple as possible. Since the simplest matrices are
the diagonal matrices one might well ask if it is always possible to find a basis z1,
wy T that diagonalizes L, i.e., L (z1) = \ix1, ..y L () = Az, ? The central
idea behind finding such a basis is quite simple and reappears in several proofs
in this chapter. Given some special information about the vector space V or the
linear operator L on V we show that L* has an eigenvector x # 0 and that the
orthogonal complement to = in V is L invariant. The existence of this invariant
subspace of V' then indicates that the procedure for establishing a particular result
about exhibiting a nice matrix representation for L is a simple induction on the
dimension of the vector space.

A rotation by 90° in R? does not have a basis of eigenvectors. However, if we
interpret it as a complex map on C it is just multiplication by 7 and therefore of
the desired form. We could also view the 2 x 2 matrix as a map on C2. As such we
can also diagonalize it by using x1 = (¢,1) and o = (—4, 1) so that x; is mapped
to iz1 and x2 to —ixs.

A much worse example is the linear map represented by

0 1
A= [ 0l ] |
Here z1 = (1,0) does have the property that Azq = 0, but it is not possible to find
Zo linearly independent from z; so that Axe = Azs. In case A = 0 we would just
have A = 0 which is not true. So A # 0, but then z2 € im (A) = span {z;}. Note
that using complex scalars cannot alleviate this situation due to the very general
nature of the argument.

At this point it should be more or less clear that the first goal is to show that
self-adjoint operators have eigenvalues. Recall that in chapter 2 we constructed
a characteristic polynomial for L with the property that any eigenvalue must be
a root of this polynomial. This is fine if we work with complex scalars, but less
satisfactory if we use real scalars although it is in fact not hard to deal with by
passing to suitable matrix representations (see exercises to “Self-adjoint Maps”).
It is possible to give a very elegant proof that self-adjoint operators have eigenval-

ues using Lagrange multipliers.We shall give a similar proof here that doesn’t use
multivariable derivatives.

THEOREM 32. (Existence of Eigenvalues for Self-adjoint Operators) Let L :
V =V be self-adjoint and V' finite dimensional, then L has a real eigenvalue.

PRrROOF. As in the Lagrange multiplier proof we use the compact set S =
{z € V : (z|x) = 1} and the real valued function x — (Lz|z) on S. Select z; € S
so that

(Lz|x) < (Lx1|z1)
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for all z € S. If we define A\; = (Lz1|x1), then this implies that
(Lz|z) < Ap, forall z € S.

Consequently
(Lz|z) < M (z|z) = M\ ||2||?, for all z € V.
This shows that the function

has a maximum at x = x; and that the value there is A;.

This implies that for any y € V| the function ¢ — f (21 + ty) has a maximum
at t = 0 and and hence the derivative at ¢ = 0 is zero. To be able to use this we
need to compute the derivative of the quotient

(L (21 +ty) |z1 + ty)
||y + tyl]?

with respect to t at t = 0. We start by computing the derivative of the numerator
at t = 0 using the definition of a derivative

o L@+ hy) e+ hy) — (L (21) 1)

h—0 h
e () e £ (L () ) + (L () )
h—0 h

(hy|L (1)) + (L (1) |hy) + (L (hy) |hy)

h

= (WL (z1)) + (L (21) [y) + lim (L (y) [hy)

= 2Re(L(z1)ly).
The derivate of the denominator is computed the same way simply observing that
we can let L = 1y. The derivative of the quotient f (x; + ty) at t = 0 is then
2Re (L (21) [y) ||z1||* — 2Re (21]y) (L (1) |21)

1
|||

= 2Re(L(z1)|y) — 2Re(z1|y) M1
= 2Re(L(z1) — Mizaly).

By using y = L (z1) — A1x; we then see that A\; and z; form an eigenvalue/vector
pair. ([

We can now prove.

THEOREM 33. (The Spectral Theorem) Let L : V — V be a self-adjoint opera-
tor on a finite dimensional inner product space. Then there exists an orthonormal
basis €1, ..., e, of eigenvectors, i.e., L (e1) = A\eq, ..., L (en) = Apen. Moreover, all
etgenvalues A1, ..., A\, are real.

PROOF. We just proved that we can find an eigenvalue/vector pair L (e;) =
Are1. Recall that A\; was real and we can, if necessary, multiply e; by a suitable
scalar to make it a unit vector.
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Next we use self-adjointness of L again to see that L leaves the orthogonal
complement to e; invariant, i.e., L (M) C M, where M = {x € V : (z|e;) = 0} . To
see this let © € M and calculate

(L(z)]er) =

(z|L" (e1))
(z|L (1))

= (z[Aier)

= A1 (zfer)

= 0.
Now we have a new operator L : M — M on a space of dimension dim M =
dim V —1. We note that this operator is also self-adjoint. Thus we can use induction
on dim V' to prove the theorem. Alternatively we can extract an eigenvalue/vector
pair L (e2) = Agea, where eo € M is a unit vector and then pass down to the
orthogonal complement of e; inside M. This procedure will end in dim V" steps and

will also generate an orthonormal basis of eigenvectors as the vectors are chosen
successively to be orthogonal to each other. O

In the notation of “Linear Maps as Matrices” from chapter 1 we have proven.

COROLLARY 29. Let L : V — V be a self-adjoint operator on a finite dimen-
sional inner product space. There exists an orthonormal basis eq, ..., e, of eigenvec-
tors and a real n x n diagonal matriz D such that

L = [61 en}D[el en]*
N - 0
S I | IR | R |
0 - A\

The same eigenvalue can apparently occur several times, just think of 1y.
Recall that the geometric multiplicity of an eigenvalue is dim (ker (L — Aly)) . This
is clearly the same as the number of times it occurs in the above diagonal form of
the operator. Thus the basis vectors that correspond to A in the diagonalization
yield a basis for ker (L — Aly). With this in mind we can rephrase the Spectral
theorem.

THEOREM 34. Let L : V — V be a self-adjoint operator on a finite dimensional
inner product space and A1, ..., \i the distinct eigenvalues for L. Then
v = Projier(z—x1y) T+ PrOJjier(L—Ap1v)
and
L = A1 Projuer(n—x,1y) "+ A Projier(—2,14) -

PROOF. The missing piece that we need to establish is that the eigenspaces are
mutually orthogonal to each other. This actually follows from our constructions in
the proof of the spectral theorem. Nevertheless it is desirable to have a direct proof
of this. Let L (z) = Az and L (y) = py, then

Azly) = (L(2)ly)

(z[L (y))

(]py)

= p(zly) since p is real.
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If A # p, then we get
(A= p) (zly) =0,
which implies (z|y) = 0.
We this in mind we can now see that if x; € ker (L — A\;1y), then
. r; ifi=j
PTOJer(r- 21y (1) = { 0 i ?é;
as x; is perpendicular to ker (L — A;1y) in case ¢ # j. Since we can write z =
1 + -+ - + xk, where z; € ker (L — A\;1y) we have

projker(L—/\ilv) (l‘) =T

This shows that

T = PIOjker(L—x11y) (T) +*** + PrOjier(z-2p1y) (T)

as well as

L(z) = ()\1 projker(L—Allv) +eo A projker(L—)\klv)) (z).
([l

The fact that we can diagonalize self-adjoint operators has an immediate con-
sequence for complex skew-adjoint operators as they become self-adjoint by multi-
plying them by ¢ = y/—1. Thus we have.

COROLLARY 30. (The Spectral Theorem for Complex Skew-adjoint Operators)
Let L 'V — V be a skew-adjoint operator on a complex finite dimensional space.
Then we can find an orthonormal basis such that L (e1) = ipqe1, ..., L (en) = i, en,
where pq, ..., p, € R.

It is worth pondering this statement. Apparently we haven’t said anything
about skew-adjoint real linear operators. The statement, however, does cover both
real and complex matrices as long as we view them as maps on C". It just so hap-
pens that the corresponding diagonal matrix has purely imaginary entries, unless
they are 0, and hence is forced to be complex.

Before doing several examples it is worthwhile trying to find a way of remem-
bering the formula

L:[el e,L]D[el en]*.
If we solve it for D instead it reads

D:[el en]*L[el en].
This is quite natural as

L[el en]:[)\lel )\nen]
and then observing that

[61 en]*[)\161 )\nen]

is the matrix whose ij entry is (\;e;|e;) since therows [ e; -+ ¢, |" correspond
to the colomns in [ er - €n ] . This gives a quick check for whether we have

the change of basis matrices in the right places.
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EXAMPLE 79. Let

Then A is both self-adjoint and unitary. This shows that £1 are the only possible
eigenvalues. We can easily find nontrivial solutions to both equations (A F 1¢2) (x) =
0 by observing that

7=

i

1

e[ V] = [ 5]
v ] = [Tl
oo ][]

form an orthogonal set that we can normalize to an orthonormal basis of eigenvec-
tors

The vectors

This means that

S I I

or more concretely that

| — |
)
o |
i
—_
Il
| — |
SSIL
SIS
_ 1
| — |
O =
=)
—_
—_ 1
| — |
Shsl
SS-
| I

&
I
| — |
— O
o |
—_
—_

| — |
S
o |
<
| I
I
| — |
SIS
SIS
| I
| — |
o
=
| I
| — |
SIE
SHS-
—_

we obtain

Hg‘ |
V) CH

| I
| — |
o |
~=.
. o
_ 1
| —
Sk

1 o0 || L L L
V2 V2 V2
It is often more convenient to find the eigenvalues using the characteristic poly-
nomial, to see why this is let us consider some more complicated examples.
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ExampLE 81. We consider the real symmetric operator
_|a B
A= [ 3 a],a,BER.

This time one can more or less readily see that

o= [1]-[ 4]

are eigenvectors and that the corresponding eigenvalues are (o =+ ). But if one
didn’t guess that then computing the characteristic polynomial is clearly the way to
go.

Even with relatively simple examples such as
1 1
a=[1 3]
things quickly get out of hand. Clearly the method of using Gauss elimination on

the system A — Al¢n and then finding conditions on A that ensure that we have
nontrivial solutions is more useful in finding all eigenvalues/vectors.

EXAMPLE 82. Let us try this with

1 1
e]11]
Thus we consider
11—\ 1 0
1 2—X 0
1 2—-X 0
1= 1 0
[ 1 (2-2X) 0
| 0 -1=-XN2=-N+1 0

Thus there is a nontrivial solution precisely when
—(1=-N2-AN+1=-1+31-)X=0.

The roots of this polynomial are Aj 2 = % + %\/5 The corresponding eigenvectors
are found by inserting the root and then finding a nontrivial solution. Thus we are

trying to solve
1 (2—=Xyg2) O
0 0 0

A172 —2
T1,2 = 1 .

We should normalize this to get a unit vector
1 A2 —2
€12 = 5 1
\/5 —4X 0+ (M12)
1 { -1++5 ]
(34 F 10V/5) !

which means that
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Exercises.

Let L be self- or skew-adjoint on a complex finite dimensional inner prod-
uct space.

(a) Show that L = K2 for some K : V — V.

(b) Show by example that K need not be self-adjoint if L is self-adjoint.
(c) Show by example that K need not be skew-adjoint if L is skew-

adjoint.

Diagonalize the matrix that is zero everywhere except for 1s on the an-
tidiagonal.

0o --- 0 1
1 0
0 :
1 0 --- 0
Diagonalize the real matrix that has as on the diagonal and s everywhere
else.
a B - B
B a B
B B - o«

Let K, L : V — V be self-adjoint operators on a finite dimensional vec-
tor space. If KL = LK, then show that there is an orthonormal basis
diagonalizing both K and L.

Let L : V — V be self-adjoint. If there is a unit vector € V' such that

1L (2) — px|| < e,

then L has an eigenvalue A so that |A — p| <e.

Let L : V — V be self-adjoint. Show that either ||L| or —||L| are

eigenvalues for L.

If an operator L : V — V on a finite dimensional inner product space

satisfies one of the following 4 conditions, then it is said to be positive.

Show that these conditions are equivalent.

(a) L is self-adjoint with positivee eigenvalues.

(b) L is self-adjoint and (L (z) |z) > 0 for all z € V — {0}.

(¢) L = K* o K for an injective operator K : V. — W, where W is also
an inner product space.

(d) L = K o K for an invertible self-adjoint operator K : V — V.

Let P:V — V be a positive operator.

(a) If L : V — V is self-adjoint, then PL is diagonalizable and has real
eigenvalues. (Note that PL is not necessarily selfadjoint).

(b) If @ : V — V is positive, then QP is diagonalizable and has positive
eigenvalues.

Let P, Q be two positive operators. If P2 = 2, then show that P = Q.

Let P be a nonnegative operator, i.e., self-adjoint with nonnegative eigen-

values.

(a) Show that tr P > 0.

(b) Show that P =0 if and only if tr P = 0.

Let L : V — V be a linear operator on an inner product space.
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(a) If L is self-adjoint, show that L? is self-adjoint and has nonnegative
eigenvalues.
(b) If L is skew-adjoint, show that L? is self-adjoint and has nonpositive
eigenvalues.
(12) Consider the Killing form on hom (V, V), where V is a finite dimensional
vector space of dimension > 1, defined by

K(L,K)=trLtr K — tr (LK) .

(a) Show that K(L,K) =K (K,L).

(b) Show that K — K (L, K) is linear.

(¢) Assume in addition that V' is an inner product space. Show that
K(L,L) > 0if L is skew-adjoint and L # 0.

(d) Show that K (L, L) < 0 if L is self-adjoint and L # 0.

(e) Show that K is nondegenerate, i.e., if L # 0, then we can find K # 0,
so that K (L, K) # 0.

4. Normal Operators

The concept of a normal operator is somewhat more general than the previous
special types of operators we have seen. The definition is quite simple and will
be motivated below. We say that an operator L : V — V on an inner product
space is normal if LL* = L*L. With this definition it is clear that all self-adjoint,
skew-adjoint and isometric operators are normal.

First let us show that any operator that is diagonalizable with respect to an
orthonormal basis must be normal. Suppose that L is diagonalized in the orthonor-
mal basis ey, ..., e, and that D is the diagonal matrix representation in this basis,
then

L = [el en]D[el en]*
D I
= [ea en | Cl e en ]
0 An
and
L* = [e -+ e |D'[er - en]*
A 0
—[a o oen]] [ o e ]
0 An
Thus
[\ 0 o 0
L = [er e ]| 0 R
| 0 An 0 An
EME 0
= la en ]| C | le en ]’
[ 0 [Anl”
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since DD* = D*D.

For real operators we have already observed that they must be self-adjoint
in order to be diagonalizable with respect to an orthonormal basis. For complex
operators things are a little different as also skew-symmetric operators are diagonal-
izable with respect to an orthonormal basis. Below we shall generalize the spectral
theorem to normal operators and show that in the complex case these are precisely
the operators that can be diagonalized with respect to an orthonormal basis. The
canonical form for real normal operators is somewhat more complicated and will
be studied in “Real Forms” below.

EXAMPLE 83.

is not normal since

| —

— =

N O
—_
| ——

O =

Do =
—_ 1

| Il

| — N E—

Nevertheless it is diagonalizable with respect to the basis

SHE
thinEn!
41 - 3]0

While we can normalize x2 to be a unit vector there is nothing we can do about x,
and xo not being perpendicular.

as

EXAMPLE 84. Let
N IO e A ) 2
A_{ﬁ 6].@ — C-.

Then

o _ [ar][a Bl_[ld*+h® aB+rs
AA* = _ = _ _ 2 2
Bofly o af+56  |BI"+ 9]
g _ (@ B)[aa]_[laP+I18" ay+ps
A*A = _ = _ < 2 2
y 0 B9 ay+B5  |v°+]d]

So the conditions for A to be normal are

8° = hi*,
ay+ 060 = af+79

The last equation is easier to remember if we note that it means that the columns
of A must have the same inner product as the columns of A*.

Observe that unitary, self- and skew-adjoint operators are normal. Another
very simple normal operator that isn’t necessarily of those three types is A1y for
all A e C.
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PRrROPOSITION 27. (Characterization of Normal Operators) Let L : V — V be
an operator on an inner product space. Then the following conditions are equivalent.
(1) LL* = L*L.
(2) IL @)|| = [[L* ()] for all z € V.
(3) BC =CB, where B=1(L+L*) and C = % (L —L*).

PROOF. 1 = 2: Note that for all z € V we have

1L @) = 1L @)
IL@]° = |2 @I
(L(@)|L () = (" (@) |L* (@)
(@l L°L (@) = (e|LL* (2)
(x| (L*L — LL*) (z)) =0
L*L—-LL*=0

frees

The last implication is a consequence of the fact that L*L — LL* is self-adjoint.
3 <= 1: We note that
1 1

BC = S(L+L")5(L-L")

(L+L*)(L—-L")

L2 (L) + L' L — LL*) ,

—~

CB = ~(L-L*)(L+L"

RN R N e

L2 (L) — L*L+ LL*) .

/

So BC = CB if and only if L*L — LL* = —L*L + LL* which is the same as saying
that LL* = L*L. O

We also need a general result about invariant subspaces.

LEMMA 21. Let L : 'V — V be an operator on a finite dimensional inner product
space. If M C V is an L and L* invariant subspace, then M~ is also L and L*
invariant. In particular.

(Llare)" = L7 |are
PROOF. Let € M and y € M. We have to show that
(z[L(y)) = 0,
(@|L*(y)) = O.
For the first identity use that
(L (y)) = (L™ (z) |[y) = 0
since L* (x) € M. Similarly for the second that
(@|L" (y) = (L(z)|y) =0
since L (z) € M. O

We are now ready to prove the spectral theorem for normal operators.
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THEOREM 35. (The Spectral Theorem for Normal Operators) Let L : V. — V be
a normal operator on a complex inner product space, then there is an orthonormal
basis e1, ..., e, of eigenvectors, i.e., L (e1) = Aie1, ..., L(en) = Anen.

PROOF. As with the spectral theorem the proof depends on showing that we
can find an eigenvalue and that the orthogonal complement to an eigenvalue is
invariant.

Rather than appealing to the fundamental theorem of algebra in order to find
an eigenvalue for L we shall use what we know about self-adjoint operators. This
has the advantage of also yielding a proof that works in the real case (see “Real
Forms” below). First decompose L = B + iC, where B and C are self-adjoint
and then use the spectral theorem to find o € R such that ker (B — aly) # {0}.
Next note that since B - iC = iC - B it follows that BC' = CB. Therefore, if
x € ker (B — aly), then

(B—aly)(C(z)) = BC(x)—aC (z)

CB(z) — C (ax)

C((B—aly)(z))

0.

Thus C : ker (B —aly) — ker (B — aly). Using that C' and hence also its re-

striction to ker (B — aly) are self-adjoint we can find « € ker (B — aly) so that
C (z) = Bx. This means that

L(z) = B(x)+iC (z)
ax +ifx
= (a+if)x.

Hence we have found an eigenvalue « + i3 for L with a corresponding eigenvector
x. We see in addition that

L*(z) = B(z)—iC(x)
= (a—if)x.
Thus span {z} is both L and L* invariant. The previous lemma then shows that
M = (span {z})" is also L and L* invariant. Hence (L|5;)* = L*|5; showing that

L)y : M — M is also normal. We can then use induction as in the spectral theorem
to finish the proof. ([l

As an immediate consequence we get a result for unitary operators.

THEOREM 36. (The Spectral Theorem for Unitary Operators) Let L : V — V
be unitary, then there is an orthonormal basis e1, ..., e, such that L (e1) = eielel,
ey L(en) = €%e,, where 01, ...,0,, € R.

We also have the more abstract form of the spectral theorem.

THEOREM 37. Let L : V — V be a normal operator on a complex finite dimen-
stonal inner product space and A1, ..., \x the distinct eigenvalues for L. Then
Ly = Projeer(z—a1y) +°* + Projker(z—a,1v)
and
L= A projker(n—x1y) + 0+ Ak PrOJker(L-a,1v) -
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Let us see what happens in some examples.

EXAMPLE 85. Let
_| a B
L= [ 8 a],a,BER
then L is normal. When o = 0 it is skew-adjoint, when B = 0 it is self-adjoint and
when o+ 3% = 1 it is an orthogonal transformation. The decomposition L = B+iC

looks like
a p | a0 |0 —ip
o=l o sls

Here

has a as an eigenvalue and

0 —ip
i 0
has £ as eigenvalues. Thus L has eigenvalues (o +i0) .

EXAMPLE 86.
0 1 0
-1 0 0
0 0 1

is normal and has 1 as an eigenvalue. We are then reduced to looking at

0 1
-1 0
which has +i as eigenvalues.

4.1. Exercises.

(1) Consider L4 (X) = AX and R4 (X) = X A as linear operators on Mat,, <, (C).
What conditions do you need on A in order for these maps to be normal?
(2) Assume that L : V — V is normal and that p € F [¢]. Show that p (L) is
also normal.
(3) Assume that L : V — V is normal. Without using the spectral theorem
show
(a) ker (L) =ker (L*).
(b) ker (L — Aly) = ker (L* - 5\1‘/).
(¢) im (L) =im (L*).
(d) (ker (L))" =im (L).
(4) Assume that L : V — V is normal. Without using the spectral theorem
show
(a) ker (L) = ker (L¥) for any k > 1. Hint: Use the self-adjoint operator
K =1L*L.
(b) im (L) = im (L*) for any k > 1.
(c) ker (L — Aly) = ker ((L - /\lv)k> for any k£ > 1.

(d) Show that the minimal polynomial of L has no multiple roots.
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(Characterization of Normal Operators) Let L : V' — V be a linear opera-
tor on a finite dimensional inner product space. Show that L is normal if
and only if (Lo E|L o E) = (L* o E|L* o E) for all orthogonal projections
E :V — V. Hint: Use the formula

n

(L1|L2) = > (L1 (e5) |La (e:))

i=1

for suitable choices of orthonormal bases eq, ..., e, for V.
Let L : V — V be an operator on a finite dimensional inner product space.
Assume that M C V is an L invariant subspace and let £ : V — V be
the orthogonal projection onto M.

(a) Justify all of the steps in the calculation:

(L*oE|L*oE) = (EJ‘OL*OE\EJ‘OL*OE)+(E0L*OE|EOL*0E)

= (EtoL*oE|E*oL*oE)+(EoLoE|EoLoE)
(EtoL*oE|E* oL*oE) + (Lo E|LoE).

Hint: Use the result that E* = E from “Orthogonal Projections
Redux” and that L (M) C M implies FoLo E = Lo E.

(b) If L is normal use the previous exercise to conclude that M is L*
invariant and M~ is L invariant.

(Characterization of Normal Operators) Let L : V' — V be a linear map on

a finite dimensional inner product space. Assume that L has the property

that all L invariant subspaces are also L* invariant.

(a) Show that L is completely reducible.

(b) Show that the matrix representation with respect to an orthonormal
basis is diagonalizable when viewed as complex matrix.

(¢) Show that L is normal.

Assume that L : V — V satisfies L*L = Aly, for some A\ € C. Show that

L is normal.

Show that if a projection is normal then it is an orthogonal projection.

If L:V — Visnormal and p € F[t], then p(L) is also normal and if

F = C then

p(L)=p(A\1) projkcr(Lf)\llv) +o+p (M) projkcr(Lf)\klv) .

Let L, K : V — V be normal. Show by example that neither L + K nor
LK need be normal.

Let A be an upper triangular matrix. Show that A is normal if and only
if it is diagonal. Hint: Compute and compare the diagonal entries in AA*
and A*A.

(Characterization of Normal Operators) Let L : V' — V be an operator on
a finite dimensional complex inner product space. Show that L is normal
if and only if L* = p (L) for some polynomial p.

(Characterization of Normal Operators) Let L : V' — V be an operator on
a finite dimensional complex inner product space. Show that L is normal
if and only if L* = LU for some unitary operator U : V — V.

Let L : V — V be normal on a finite dimensional complex inner product
space. Show that L = K? for some normal operator K.
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(16) Give the canonical form for the linear maps that are both self-adjoint and
unitary.

(17) Give the canonical form for the linear maps that are both skew-adjoint
and unitary.

5. Unitary Equivalence

In the special case where V' = F" the spectral theorem can be rephrased in
terms of change of basis. Recall from “Matrix Representations Redux” in chapter
1 that if we pick a different basis 1, ..., z, for F", then the matrix representations
for a linear map represented by A in the standard basis and B in the new basis are
related by

-1
A:[xl e Ty ]B[ Tl ot Ty ] .
In case z1, ..., x, is an orthonormal basis this reduces to
A=l o 2, ]B[2 - 2],
where [ T1 -+ Tn ] is a unitary or orthogonal operator.

Two n X n matrices A and B are said to be unitarily equivalent if A =UBU*,
where U € U,, i.e., U is an n X n matrix such that U*U = UU* = lp.. In case
U € O,, C U, we also say that the matrices are orthogonally equivalent.

The results from the previous two sections can now be paraphrased in the
following way.

COROLLARY 31. (1) A normal n X n matriz is unitarily equivalent to a
diagonal matriz.
(2) A self-adjoint n x n matriz is unitarily or orthogonally equivalent to a real
diagonal matriz.
(3) A skew-adjoint n x n matriz is unitarily equivalent to a purely imaginary
diagonal matriz.
(4) A unitary n X n matriz is unitarily equivalent to a diagonal matriz whose
diagonal elements are unit scalars.

Using the group properties of unitary matrices one can easily show the next
two results.

ProrosiTION 28. If A and B are unitarily equivalent, then

(1) A is normal if and only if B is normal.

(2) A is self-adjoint if and only if B is self-adjoint.
(3) A is skew-adjoint if and only if B is skew-adjoint.
(4) A is unitary if and only if B is unitary.

In addition to these results we see that the spectral theorem for normal oper-
ators implies:

COROLLARY 32. Two normal operators are unitarily equivalent if and only if
they have the same eigenvalues (counted with multiplicities).

EXAMPLE 87. The Pauli matrices are defined by

Tolle AT

They are all self-adjoint and unitary. Moreover, all have eigenvalues +1 so they
are all unitarily equivalent.
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ExaMmPLE 88. If we multiply the Pauli matrices by i we get three skew-adjoint
and unitary matrices with eigenvalues +1i :

ol LT

that are also all unitarily equivalent. The 8 matrices

Lo Vl=lo Sl o) =[0 4]

form a group that corresponds to the quaternions £1, i, +j, £k.

o 2o 3]

are not unitarily equivalent as the first is not normal while the second is normal.
Note however that both are diagonalizable with the same eigenvalues.

EXAMPLE 89.

5.1. Exercises.

(1) Decide which of the following matrices are unitarily equivalent

D= |

(2) Decide which of the following matrices are unitarily equivalent

i 0 0
A= 1010],
(0 0 1
[1 -1 0
B = |4+ i 1],
(0 1 1
1 0 0
c = |14 1],
0 0 1
- . 1 -1
11+.'Ll _ﬁ_lﬁo
D = W—HW 0 0
L 0 0 1

(3) Assume that A, B € Mat,,x, (C) are unitarily equivalent. Show that if A
has a square root, i.e., A = C? for some C € Mat,, x, (C), then also B
has a square root.

(4) Assume that A, B € Mat,, x, (C) are unitarily equivalent. Show that if A
is positive, i.e., A is self-adjoint and has positive eigenvalues, then B is
also positive.
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(5) Assume that A € Mat,, x,, (C) is normal. Show that A is unitarily equiv-
alent to A* if and only if A is self-adjoint.

6. Real Forms

In this section we are going to explain the canonical forms for normal real linear
operators that are not necessarily diagonalizable.

The idea is to follow the proof of the spectral theorem for complex normal
operators. Thus we use induction on dimension to obtain the desired canonical
forms. To get the induction going we decompose L = B + C, where BC' = CB,
B is self-adjoint and C' is skew-adjoint. The spectral theorem can be applied to
B and we observe that the eigenspaces for B are C-invariant, since BC = CB.
Unless B = aly we can therefore find a nontrivial orthogonal decomposition of
V that reduces L. In case B = aly all subspaces of V' are B-invariant. Thus we
use C to find invariant subspaces for L. To find such subspaces observe that C? is
self-adjoint and select an eigenvector/value pair C? (z) = A\z. Since C' maps x to
C (x) and C (z) to C? (z) = Az the subspace span {x,C (z)} is invariant. If this
subspace is 1-dimensional z is also an eigenvector for C, otherwise the subspace
is 2-dimensional. All in all this shows that V' can be decomposed into 1 and 2-
dimensional subspaces that are invariant under B and C. As these subspaces are
contained in the eigenspaces for B we only need to figure out how C acts on them.
In the 1-dimensional case it is spanned by an eigenvector C. So the only case left
to study is when C : M — M is skew-adjoint and M is 2-dimensional with no
non-trivial invariant subspaces. In this case we just select a unit vector x € M and
note that C (z) # 0 as & would otherwise span a 1-dimensional invariant subspace.
In addition z and C (2) are always perpendicular as

(C(2)]z) = —(C(2)
= —(C()]2).

In particular,  and C (z) / ||C (z)|| form an orthonormal basis for M. In this basis
the matrix representation for C' is

[C(x) C(%H=[“f IgEngIIC(()z)II g]
(2)

as C (HgT)H) is perpendicular to C () and hence a multiple of . Finally we get

that v = — ||C (z)|| since the matrix has to be skew-symmetric.
This analysis shows what the canonical form for a normal real operator is.

THEOREM 38. (The Canonical Form for Real Normal Operators) Let L : V —
V' be a normal operator, then we can find an orthonormal basis e1, ..., €g, T1, Y1, ---,
xy, yi where k+ 2l =n and

Le;) = e,
L(z;) = ajz; + 8,95
L(y;) = —Bjzj+ajy;
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and Ai, aj, B; € R. Thus L has the matriz representation

TN\ -+ 0 0 0O -+ -+ 0 0
0 Ae O 0
0 0 au —-B; O
0 0 By w 0
0 0
0 0
0 a —p5
L 0 0 B, o |
with respect to the basis €1, ..., €g, T1, Y1, ...y L1, YI-

This yields two corollaries for skew-adjoint and orthogonal maps.

COROLLARY 33. (The Canonical Form for Real Skew-adjoint Operators) Let
L:V —V be a skew-adjoint operator, then we can find an orthonormal basis e1, .

ey

€ky T1, Y1,y --+y T, Yy where k4 21 =n and
L(el) = 07
L(z;) = Biyj
L(yj) = _53‘%‘

and B; € R. Thus L has the matriz representation

o --- 0 0 0 - --- 0 0
0 0 0 0
0 0o o -8, 0
0 0 5 0 0
0 0
0 0
0 0 =5
L 0 0 B 0 |
with respect to the basis eq, ..., €k, T1, Y1, .-es T, Y-

COROLLARY 34. (The Canonical Form for Orthogonal Operators) Let O : V —
V' be an orthogonal operator, then we can find an orthonormal basis ey, ..., ey, x1,
Y1, -0y 1, Yy where k+ 21 =n and

O (61‘) = iei,
cos (0;) x; +sin (6;) y;,
O(y;) = —sin(0;)x; + cos(6;)y;

Q
—~
8

N
~—
I
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and Ai, aj, B; € R. Thus L has the matriz representation

4. LINEAR OPERATORS ON INNER PRODUCT SPACES

r4+1 -.- 0 0 0 0 0
0 +1 0 0
0 0 cos(f;) —sin(f;) O
0 0 sin(f;) cos(f1) O
0 0
‘. 0 0
0 cos(;) —sin(6))
L 0 0 sin(6;) cos(6))
with respect to the basis €1, ..., €x, T1, Y1, .-y L1, Yi-

PROOF. We just need to justify the specific form of the eigenvalues. We know
that as a unitary operator all the eigenvalues look like e?®. If they are real they
must therefore be +1. Otherwise we use Euler’s formula €?¥ = cos# + isin# to get
the desired form. O

Note that we can artificially group some of the matrices in the decomposition
of the orthogonal operators by using
|\

thll
—Sinw}

I e s

By paring off as many eigenvectors for +1 as possible we then obtain.

—sin0
cos0

cos(0
sin 0

COS T
sin

COROLLARY 35. Let O : R?® — R?" be an orthogonal operator, then we can
find an orthonormal basis where L has one of the following two types of the matrix
representations

Type I
[ cos(f;) —sin(6;) 0 --- 0 0 T
sin(61) cos(6;) O --- 0 0
0 0
: 0 0
0 0 0 cos(6,) —sin(6,)
| O 0 0 sin(f,) cos(6,)
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Type 11

(-1 0 0 0 0 0 i
0 1 0 0 0 0
0 0 cos(f1) —sin(f;) O
0 0 sin(fy) cos(f1) O

0 0

o i 0 0
0 0 0 cos(0p—1) —sin(f,-1)

L 0 0 e 0 sin(f@p—1) cos(@n_1)

COROLLARY 36. Let O : R?"T1 — R2"*1 pe an orthogonal operator, then we
can find an orthonormal basis where L has one of the following two the matriz
representations

Type I
[ 1 0 0 0 0 0 i
0 cos(f;) —sin(f1) O
0 sin(f1) cos(f1) O
0 0 0
0 0
0 0 cos(f,) —sin(f,)
| 0 e 0 sin(6,) cos(6,)
Type 11
[ —1 0 0 0 0 0 i
0 cos(fy) —sin(6y) O
0 sin(fy) cos(fy) O
0 0 0
: . 0 0
0 0 cos(6,) —sin(6,)
| 0 - 0 sin(f,) cos(6,)

Like with unitary equivalence we also have the concept of orthogonal equiva-
lence. One can with the appropriate modifications prove similar results about when
matrices are orthogonally equivalent. The above results apparently give us the sim-
plest type of matrix that real normal, skew-adjoint, and orthogonal operators are
orthogonally equivalent to.

Note that type I operators have the property that —1 has even multiplicity,
while for type II —1 has odd multiplicity. In particular we note that type I is the
same as saying that the determinant is 1 while type II means that the determinant
is -1. The collection of orthogonal transformations of type I is denoted SO,,. This
set is a subgroup of O,, i.e., if A, B € SO, then AB € SO,,. This is not obvious
given what we know now, but the proof is quite simple using determinants.
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6.1. Exercises.

(1) Explain what the canonical form is for real linear maps that are both
orthogonal and skew-adjoint.

(2) Let L : V — V be orthogonal on a real inner product space and assume
that dim (ker (L + 1y)) is even. Show that L = K? for some orthogonal
K.

(3) Use the canonical forms to show
(a) If U € U,, then U = exp (A) where A is skew-adjoint.
(b) If O € O,, is of type I, then O = exp (A) where A is skew-symmetric.

(4) Let L:V — V be skew-adjoint on a real inner product space. Show that
L = K? for some K. Can you do this with a skew-adjoint K?

(5) Let A € O,,. Show that the following conditions are equivalent:

) A has type L

) The product of the real eigenvalues is 1.

) The product of all real and complex eigenvalues is 1.

) dim (ker (L + 1Rn)) is even.

e) xa(t)=t"+---+ait+ (-1)", ie., the constant term is (—1)" .

(6) Let A € Maty, xn, (R ) satisfy AO = OA for all O € SO,,.

(a) If n =2, then
A_{a _5}

g «
(b) If n > 3, then A = Algn.
(7) Let L : R3 — R? be skew-symmetric.
(a) Show that there is a unique vector w € R3 such that L (z) = w X x.
w is known as the Darboux vector for L.
(b) Show that the assignment L — w gives a linear isomorphism from
skew-symmetric 3 x 3 matrices to R3.
(¢) Show that if Ly (x) = wy x x and Ls (z) = we X x, then the commu-
tator

(a
(b
(c
(d
(

[L1,Lo] = LioLy—LyolLy
satisfies
[L1, Lo] () = (w1 X we) X
Hint: This corresponds to the Jacobi identity:
(exy)xz+(zxz)xy+(yxz)xz=0.
(d) Show that
L (z) = wy (w1|x) — wy (wax)
is skew-symmetric and that
(w1 X wa) X & = ws (wi|x) —w; (walx).
(e) Conclude that all skew-symmetric L : R® — R3 are of the form
L (z) = wy (w1]z) — wy (we|z) .

(8) For uy,us € R™.
(a) Show that

L(z) = (u1 Auz) (z) = (ua]z) uz — (u2|z) wa

defines a skew-symmetric operator.
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(b) Show that:
up Aug = —us Aup
(auip + fvi) Aue = a(ur Aug) + B (v1 Aug)

(¢) Show Bianchi’s identity: For all z,y,z € R™ we have:

(@AY)(2)+ (zA2)(y) + [y A2)(x) =0
(d) When n > 4 show that not all skew-symmetric L : R™ — R"™ are of

the form L (z) = uj Aus. Hint: Let uq, ..., uq be linearly independent
and consider

L = uy ANus + us A ug.

(e) Show that the skew-symmetric operators e; A e;, where i < j, form a
basis for the skew-symmetric operators.

7. Orthogonal Transformations

In this section we are going to try to get a better grasp on orthogonal trans-
formations.

We start by specializing the above canonical forms for orthogonal transforma-
tions to the two situations where things can be visualized, namely, in dimensions 2
and 3.

COROLLARY 37. Any orthogonal operator O : R? — R2 has one of the following
two forms in the standard basis:
Either it is a rotation by 6 and s of the form

e [ S0

or it is a reflection in the line spanned by (cos a,sina) and has the form

e [ Snfie) Sl |

Moreover, O is a rotation if xo (t) = t> — (2cos0)t + 1 and 0 is given by cosf =
%tr O, while O is a reflection if trO = 0 and x, (t) =2 — 1.

PrOOF. We know that there is an orthonormal basis x1,zs that puts O into
one of the two forms

o e e o

We can write
oy = | €% () P —sin (@)
sin () cos (@)
The sign on x5 can have an effect on the matrix representation as we shall see. In
the case of the rotation it means a sign change in the angle, in the reflection case
it doesn’t change the form at all.
To find the form of the matrix in the usual basis we use the change of basis
formula for matrix representations. Before doing this let us note that the law of
exponents:

exp (i (6 + ) = exp (i0) exp (i)
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tells us that the corresponding real 2 x 2 matrices satisfy:
cos () —sin(a) cos(#) —sin(d) | | cos(a+0) —sin(a+0)
sin ()  cos (@) sin(@) cos(f) | | sin(a+6) cos(a+0)
Thus

_ )
0 = —sin () cos (a

—sin (0) } { cos (a sin(a; }
—sin (0) } { cos(—a) —sin(—a) }

sin (—a)  cos(—a)

as expected. If zo is changed to —z2 we have

el B Y | ot et
ol B R et i [ty
_ [ cos (a—0) sin(a—10) cos (—a) —sin(—a)
| sin(a—60) —cos(a—10) ] [ —sin(—a) —cos(—aq) ]
_ [ (fF)s (=) —sin(—0) ]
| sin(—0)  cos(—0)

0 = _Sin(a)}{é 0 }[ cos(og) Sin(a)]

cos () -1

sin (a) H cos (@) sm@;)}

—sin(a) cos(«

O

Note that there is clearly an ambiguity in what it should mean to be a rotation
by 6 as either of the two matrices

[y ]

describe such a rotation. What is more, the same orthogonal transformation can
have different canonical forms depending on what basis we choose as we just saw
in the proof of the above theorem. Unfortunately it isn’t possible to sort this
out without being very careful about the choice of basis, specifically one needs to
additional concept of orientation which in turn uses determinants.

We now go to the three dimensional situation.

COROLLARY 38. Any orthogonal operator O : R3 — R? is either

Type I a rotation in the plane that is perpendicular to the line representing the
+1 eigenspace, or
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Type II it is a rotation in the plane that is perpendicular to the —1 eigenspace
followed by a reflection in that plane, corresponding to multiplying by —1
in the —1 eigenspace.

As in the 2 dimensional situation we can also discover which case we are in by
calculating the characteristic polynomial. For a rotation O in an axis we have

Xo®) = (t—1)(t*—(2cos)t+1)
= t3—(1+2cosf)t? + (1 +2cosf)t—1
t3— (trO)t* + (trO) ¢t — 1,

while the case involving a reflection

Xo(t) = (t+1)(t* = (2cosf)t+1)
= t3—(=1+2cosf)t* — (=1 +2cosf)t+1
3 — (trO)t* — (trO)t + 1.

EXAMPLE 90. Imagine a cube that is centered at the origin and so that the edges
and sides are parallel to coordinate axes and planes. We note that all of the orthog-
onal transformations that either reflect in a coordinate plane or form 90°,180°, 270°
rotations around the coordinate axes are symmetries of the cube. Thus the cube is
mapped to itself via each of these isometries. In fact, the collection of all isometries
that preserve the cube in this fashion is a (finite) group. It is evidently a subgroup
of Os. There are more symmetries than those already mentioned, namely, if we pick
two antipodal vertices then we can rotate the cube into itself by 120° and 240° rota-
tions around the line going through these two points. What is even more surprising
is perhaps that these rotations can be obtained by composing the already mentioned
90° rotations. To see this let

10 0 00 -1
O,=|00 —-1],0,=]01 0
01 0 10 0

be 90° rotations around the x- and y-azxes respectively. Then

10 0 00 —1] 0 0 —1]
0,0, 00 -1[l01 0 -10 0
o1 0 ][10 0] [0 1 0]
(00 -17[10 07 J[O -1 0]
0,0, 01 0 00 -1 0 0 -1
10 0 ]Jl0o1 0] [1 0 o0

so we see that these two rotations do not commute. We now compute the (complex)
etgenvalues via the characteristic polynomials in order to figure out what these new
isometries look like. Since both matrices have zero trace they have characteristic
polynomial

x () =13 —1.
Thus they describe rotations where
tr(O) = 1+2cos(f) =0, or
0 = =27

3
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around the axis that corresponds to the 1 eigenvector. For OO, we have that
(1,-1,-1) is an eigenvector for 1, while for O,O, we have (—1,1,—1). These
two eigenvectors describe the directions for two different diagonals in the cube.
Completing, say, (1,—1,—1) to an orthonormal basis for R?, then tells us that

1 1 1 - 1 -1 -1
e g|[Lo 0 v
Owoy = % % ;\/6 0 cos (i%) —sin (:l:z?ﬂ-) ﬁ ﬁ 0
=L 9 2 0 sln(:I:Q—”) cos(:l:z—”) 1T =1 2
L V3 Ve ] b 3 3 V6 V6 V6
r 1 1 1 7T 1 —1 —1
A N IV B ICRIC C
A | P
L= 0 w0 Y NI
r 1 1 1 7T 1 —1 —1
A N RVl B I
B A | v A
I A B U Ve o Ve

The fact that we pick + rather than — depends on our orthonormal basis as we can
see by changing the basis by a sign in the last column:

Lol
Ry
LS5l

1
0,0, = 0 -
0

M})_‘l\)‘é =
ks
Sl
I

S
S
S

&
S

We are now ready to discuss how the two types of orthogonal transformations
interact with each other when multiplied. Let us start with the 2 dimensional
situation. One can directly verify that

cosf; —sinb, cosfy —sinfy | [ cos(fy +602) —sin (01 + 02)
sinf;  cosf; sinfly  cos Oy ~ | sin(014+62)  cos(O1+62) |’
cosf) —sinf cosa  sina | [ cos(0+a) sin(0+a)
sinf  cosf sina —cosa | | sin(0+a) —cos(0+a) |’
cosa  sina cos —sinf | [ cos(a—0) sin(a—10)
sina —cosa sinf cosf | | sin(a—0) —cos(a—0) |’
cosay  sinag cosag  sinasp | cos(ar —a2) —sin(a —a2)
sina; —cosag sinas —cosay | | sin(a; —az)  cos(a; — asg) ’

Thus we see that if the transformations are of the same type their product has
type I, while if they have different type their product has type II. This is analogous
to multiplying positive and negative numbers. This result actually holds in all
dimensions and has a very simple proof using determinants. Fuler proved this
result in the 3-dimensional case without using determinants. What we are going to
look into here is the observation that any rotation (type I) in Os is a product of
two reflections. More specifically if § = a; — aa, then the above calculation shows
that

cosf —sinf | | cosa; sinayg cosg  sinapg
sinf  cos@ sino; —cosag sinoy — cos g
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To pave the way for a higher dimensional analogue of this we define A € O,, to
be a reflection if it has the canonical form

-1 0 0
0 1

A=0 ) O*.
0 1
This implies that BAB* is also a reflection for all B € O,,. To get a better picture of
what A does we note that the —1 eigenvector gives the reflection in the hyperplane

spanned by the n — 1 dimensional +1 eigenspace. If z is a unit eigenvector for —1,
then we can write A in the following way

A(x) =R, (z) =2 —2(z|2) 2.

To see why this is true first note that if x is an eigenvector for +1, then it is
perpendicular to z and hence

x—2(z|z)z=2x
In case x = z we have
z2—2(z]2)z = z2—-22
= —z
as desired. We can now prove an interesting and important lemma.

LemMA 22. (E. Cartan) Let A € O,. If A has type I, then A is a product of
an even number of reflections, while if A has type II, then it is a product of an odd
number of reflections.

PRrROOF. The canonical form for A can be expressed as follows:
A=0ILR;--- RO,

where O is the orthogonal change of basis matrix, each R; corresponds to a rotation
on a two dimensional subspace M; and

£1 0 0
0 1

I =
0 1

where + is used for type I and — is used for type II. The above two dimensional
construction shows that each rotation is a product of two reflections on M;. If
we extend these two dimensional reflections to be the identity on M-, then they
become reflections on the whole space. Thus we have

A=0Iy(A1By)--- (A B;) O,
where I is either the identity or a reflection and Ay, By, ..., A;, B; are all reflections.
Finally
A = Ol (A1By)---(AiB;) O”
= (0IL0")(0A,0%)(0OB,O*)---(0A4,0")(0B,0").

This proves the claim. (I
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The converse to this lemma is also true, namely, that any even number of
reflection compose to a type I orthogonal transformation, while an odd numbers
yields one of type II. This proof of this fact is very simple if one uses determinents.

7.1. Exercises.

(1) Decide the type and what the rotation and/or line of reflection is for each
the matrices

(2) Decide on the type, +1 eigenvector and possible rotation angles on the
orthogonal complement for the +1 eigenvector for the matrices:
_ P 5

1
I
302 S|
3 3

Wl—wolIN

QO
Wl YIS

(3) Write the matrices from 1 and 2 as products of reflections.
(4) Let O € O3 and assume we have u € R? such that for all x € R3

%(O—Ot)(ac):uxx.

(a) Show that u determines the axis of rotation by showing that: O (u) =
+u.
(b) Show that the rotation is determined by |sin 0] = |u].
(c) Show that for any O € O3 we can find u € R3 such that the above
formula holds.
(5) (Euler) Define the rotations around the three coordinate axes in R?® by

1 0 0
Oy () = 0 cosa —sina |,
0 sina cosa

cosB 0 —sinfg |

| sin3 0 cosf |
[ cosy —siny 0]
O,(y) = siny cosy O

0 0 1|
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(a) Show that any O € SO (3) is of the form O = O, (a) O, (8) O, (7).
The angles a, 3,y are called the Fuler angles for O. Hint:

cos Bcosy —cosfsin-y —sin 8
O (@) Oy (B) O (v) = —sinacos 3

cos asin 8

(b) Show that O, () Oy (B8) O (v) € SO (3) for all , 3, 7.
(c) Show that if O1,02 € SO (3) then also 0102 € SO (3).

(6) Find the matrix representations with respect to the canonical basis for
R3 for all of the orthogonal matrices that describe a rotation by 6 in
span{(1,1,0), (1,2, 1)}

(7) Let z € R™ be a unit vector and

R, (x)=2—2(x|2) 2

the reflection in the hyperplane perpendicular to z.
(a) Show that

Rz = Rfm
(R.)™" = R..

(b) If y,z € R™ are linearly independent unit vectors, then show that
RyR. € O, is a rotation on M = span{y,z} and the identity on
M+,

(c) Show that the angle 6 of rotation is given by the relationship

cosf = —1+42|(yl2)]?
= cos(2¢),

where (y|z) = cos (¢).

(8) Let X, denote the group of permutations. These are the bijective maps
from {1,2,...,n} to itself. The group product is composition and inverses
are the inverse maps. Show that the map defined by sending o € ¥, to
the permutation matrix O, defined by O, (e;) = ey(;) is a group homo-
morphism

Xn— Ona

i.e., show O, € O, and Oyo; = O, 0 O,. (See also the last example in
“Linear Maps as Matrices”).
(9) Let A € Oy.
(a) Show that we can find a 2 dimensional subspace M C R* such that
M and M+ are both invariant under A.
(b) Show that we can choose M so that A|y,. is rotation and Al is a
rotation precisely when A is type I while Ay is a reflection when A

has type II.
(¢) Show that if A has type I then
xa () = t*—2(cos(61) + cos (6))t

+ (2 +4cos (01) cos (A2)) t* — 2 (cos (1) + cos (62)) t + 1
= t'—(tr(A) £+ 2+ tr (Alp) tr (Alpe)) t* — (tr(A)t+1,
where tr (A) = tr (Alar) + tr (4| pe) .
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(d) Show that if A has type II then
xa(t) = t*—(2cos(0)t® + (2cosf)t —1
= t'— (tr (A) P+ (tr (A)t—1
= ' — (tr (Alpy)) £ + (tr (Al )t — 1.

8. Triangulability

There is a result that gives a simple form for general complex linear maps in an
orthonormal basis. The result is a sort of consolation prize for operators without
any special properties relating to the inner product structure. This triagulability
theorem gives a different proof of the Jordan-Chevalley decomposition for “The
Jordan Canonical form” to the effect that a complex linear operator is the sum of
two commuting operators, one which is diagonalizable and one which is nilpotent.
In the subsequent sections on “The Singular Value Decomposition” and “The Polar
Composition” we shall see some other simplified forms for general linear maps
between inner product spaces.

THEOREM 39. (Schur’s Theorem) Let L : V — V be a linear operator on a finite
dimensional complex inner product space. It is possible to find an orthonormal basis
€1, .., ey such that the matriz representation [L] is upper triangular in this basis,
i.e.,

L frng [ 61 “ee en :I [L} [ el .« e e” ]*
a1;p Q12 0 Qlp
0 a2 - az .
= [61 o en] . : . . [el .« e en] .
0 0 cer Qnn

Before discussing how to prove this result let us consider a few examples.

o] Lo o]

are both in the desired form. The former matrix is diagonalizable but not with
respect to an orthonormal basis. So within that framework we can’t improve its
canonical form. The latter matriz is not diagonalizable so there is nothing else to
discuss.

ExXAMPLE 91. Note that

EXAMPLE 92. Any 2 x 2 matriz A can be put into upper triangular form by
finding an eigenvector e; and then selecting es to be orthogonal to ey. This is
because we must have

[Ael Aeg]:[el 62] 3 5 .

PROOF. (of Schur’s theorem) Note that if we have the desired form

11 Q2 o A1n

0 axp - a2y
[L(el) L(en)]:[el en}

0 0 - apn
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then we can construct a flag of invariant subspaces
{0tcVvicVC---CV,_1 CV,

where dimVj, = k and L (Vi) C Vi, defined by Vi, = span{ey, ..., e} . Conversely
given such a flag of subspaces we can find the orthonormal basis by selecting unit
vectors ex € Vi N ij_—l'

In order to exhibit such a flag we use an induction argument along the lines
of what we did when proving the spectral theorems for self-adjoint and normal
operators. In this case the proof of Schur’s theorem is reduced to showing that
any complex linear map has an invariant subspace of dimension dimV — 1. To see
why this is true consider the adjoint L* : V' — V and select an eigenvalue/vector
pair L* (y) = py. Then define V,,_; = y* = {x € V : (z|y) = 0} and note that for
z € V,_1 we have

(L(z)ly) = (=L (y))
= (z|py)
= pu(zly)
= 0.
Thus V,,_1 is L invariant. O
EXAMPLE 93. Let

0 0 1

A=|1 0 0
1 10

To find the basis that puts A into upper triangular form we can always use an
eigenvalue ey for A as the first vector. To use the induction we need one for A* as
well. Note however that if Ax = A\x and A*y = py then
A(zly) (Azly)
= (Azly)
(z|A™y)

= (v|py)
[ (z]y) .

So x and y are perpendicular as long as A # . Having selected e; we should then
select ez as an eigenvector for A* where the eigenvalue is not conjugate to the one
for ey. Next we note that es is invariant and contains e;. Thus we can easily find
ez € e as a vector perpendicular to e;. This then gives the desired basis for A.
Now let us implement this on the original matriz. First note that 0 is not an
eigenvalue for either matriz as ker (A) = {0} = ker (A*). This is a little unlucky of
course. Thus we must find \ such that (A — Alcs)x = 0 has a nontrivial solution.
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This means that we should study the augmented system

A 0 1 0
I =X 0 0
| 1 1 —Xx 0]
1 1 —Xx 0]
I =X 0 0
| -x 0 1 0|
(11 -A 0
0 -A—-1 X 0
[0 XA 1-X 0
11 -A 0
0 X 1-X 0
[0 A+1  —Xx 0
(11 - 0
0 A 1—\? 0
2

L0 0 —A=2E(1-X) 0

In order to find a nontrivial solution to the last equation the characteristic equation
A+1
/\<—/\—;\r(1—/\2)> N a1

must vanish. This is not a pretty equation to solve but we do know that it has a
solution which is real. We run into the same equation when considering A* and we
know that we can find yet another solution that is either complex or a different real
number. Thus we can conclude that we can put this matriz into upper triangular
form. Despite the simple nature of the matriz the upper triangular form is not very
pretty.

The theorem on triangulability evidently does not depend on our earlier the-
orems such as the spectral theorem. In fact all of those results can be re-proved
using the theorem on triangulability. The spectral theorem itself can, for instance,
be proved by simply observing that the matrix representation for a normal operator
must be normal if the basis is orthonormal. But an upper triangular matrix can
only be normal if it is diagonal.

One of the nice uses of Schur’s theorem is to linear differential equations. As-
sume that we have a system L (z) = & — Ax = b, where A € Mat,,«,, (C),b € C".
Then find a basis arranged as a matrix U so that U* AU is upper triangular. If we
let x = Uy, then the system can be rewritten as Uy — AUy = b, which is equivalent
to solving

K(y)=y—-U*AUy = U".
Since U* AU is upper triangular it will look like

U1 Bin 0 Biaaa Bin Y1 71
Un—1 0 U 57171,7171 6n71,n Yn—1 Tn-1
Yn 0 e 0 ﬁnn Yn Tn

Now start by solving the last equation ¢, — 5,,,yn = 7, and then successively
solve backwards using that we know how to solve linear equations of the form
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2 —az = f(t). Finally translate back to x = U*y to find z. Note that this also
solves any particular initial value problem x (tg) = xo as we know how to solve each
of the systems with a fixed initial value at to. Specifically 2—az = f (t), z (to) = 20
has the unique solution

z(t) = zpexp(a(t—1to)) / exp(—a(s—tp)) f(s)ds

to

= zpexp (at)/ exp (—as) f (s) ds.

to
Note that the procedure only uses that A is a matrix whose entries are complex
numbers. The constant b can in fact be allowed to have smooth functions as entries
without changing a single step in the construction.
We could, of course, have used the Jordan canonical form as an upper triangular
representative for A as well. The advantage of Schur’s theorem is that the transition
matrix is unitary and therefore easy to invert.

8.1. Exercises.

(1) Show that for any linear map L : V — V on an n-dimensional vector
space, where the field of scalars F C C, we have tr L = A\{ +-- -+ \,,, where
A1, -y A are the complex roots of x; (¢) counted with multiplicities. Hint:
First go to a matrix representation [L], then consider this as a linear map
on C" and triangularize it.

(2) Let L : V — V, where V is a real finite dimensional inner product space,
and assume that x, (t) splits, i.e., all roots are real. Show that there is
an orthonormal basis in which the matrix representation for L is upper
triangular.

(3) Use Schur’s theorem to prove that if A € Mat,,x, (C) and € > 0, then we
can find A, € Mat,,x, (C) such that ||A — A.|| < ¢ and the n eigenvalues
for A. are distinct. Conclude that any complex linear operator on a finite
dimensional inner product space can be approximated by diagonalizable
operators.

(4) Let L : V — V be a linear operator on a complex inner product space and
let p € C[t]. Show that u is an eigenvalue for p (L) if and only if p = p (\)
where A is an eigenvalue for L.

(5) Show that a linear operator L : V' — V on an n-dimensional inner product
space is normal if and only if

tr (L*L) = [\ >+ + |\,
where Aq,..., A, are the complex roots of the characteristic polynomial
XL ().

(6) Let L : V — V be an invertible linear operator on an n-dimensional
complex inner product space. If A1, ..., A\, are the eigenvalues for L counted
with multiplicities, then

-1

(L7

[Aal-e e An]

for some constant C,, that depends only on n. Hint: If Az = b and A is

upper triangular show that there are constants

1= Cn,n < Cn,n—l <..- < Cn,l

1) <
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(10)
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such that
b A n—k
‘gk‘ S Cn,kwv
|ann e akk|
[ 11 02 Qin
0 o Qo
A = : ,
L 0 0 Unn
[ &
r =
L &n

Then bound L™! (e;) using that L (L7 (e;)) = e;.
Let A € Maty, «n, (C) and A € C be given and assume that there is a unit
vector x such that

gn
CollA = ALy |

Show that there is an eigenvalue \’ for A such that

|Az — Az|| <

A= X|<e.
Hint: Use the above exercise to conclude that if
(A= Aly)(z) = b,
6"’7.
([0l

CllA =M1y |"

and all eigenvalues for A — Aly have absolute value > ¢, then |z| < 1.
Let A € Mat,«, (C) be given and assume that ||A — B|| < ¢ for some
small §.
(a) Show that all eigenvalues for A and B lie in the compact set K =
{z: [z < A] +1}.
(b) Show that if A € K is no closer than ¢ to any eigenvalue for A, then
_ 2||All +2)" "
H(’\l" A 1H - C"( | ||€n )
(¢) Using
Cu (2] A +2)"
show that any eigenvalue for B is within e of some eigenvalue for A.
(d) Show that

n—1
H(MV B B)%H <c, (2 ”A”; 2)
and that any eigenvalue for A is within e of an eigenvalue for B.
Show directly that the solution to 2 — az = f (), 2z (t9) = 2o is unique.
Conclude that the initial value problems for systems of differential equa-
tions with constant coefficients have unique solutions.
Find the general solution to the system & — Ax = b, where
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(a)A:_(l) H

(b)Az_i H
r_1 1

o= 1]

9. The Singular Value Decomposition*

Using the results we have developed so far it is possible to obtain some very nice
decompositions for general linear maps as well. First we treat the so called singular
value decomposition. Note that general linear maps L : V — W do not have
eigenvalues. The singular values of L that we define below are a good substitute
for eigenvalues.

THEOREM 40. (The Singular Value Decomposition) Let L : V. — W be a linear
map between finite dimensional inner product spaces. There is an orthonormal
basis €1, ...,em for V such that (L (e;) |L (e;)) = 0 if i # j. Moreover, we can find
orthonormal bases ey, ...,ey for V and fi,..., fr, for W so that

L(e1) = oifi,, L(ex) = orfr,
L(ek+1) C = L(em) =0

for some k < m. In particular,

L = [f1 fn][L][€1 em}*

= [fl fn] 0 or 0 [61 o Em ]*

ProOOF. Use the spectral theorem on L*L : V — V to find an orthonormal
basis e1, ..., e, for V such that L*L (e;) = A;e;. Then

(L (ei) |L(e;)) = (L"L(ei) lej) = (Aieilej) = Aidij.
Next reorder if necessary so that A, ..., Ay # 0 and define

_ L(e) .
fi= 7\|L(€z)|| vi=1,..k.

Finally select fx41,..., fn so that we get an orthonormal basis for W.
In this way we see that o; = || L (e;)]| . Finally we must check that

L(egs1) == L(em) =0.

This is because ||L (e;)]|* = A; for all i. O
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The values 0 = /A where \ is an eigenvalue for L*L are called the singular
values of L. We often write the decomposition of L as follows

L = UXSU*,
U =1[H - ful,
U = [el .. em],
S .
0 . 0
xo= 0 or O
0 0

and we generally oder the singular values 61 > --- > 0.

The singular value decomposition gives us a nice way of studying systems Lz =
b, when L isn’t necessarily invertible. In this case L has a partial or generalized
inverse called the Moore-Penrose inverse. The construction is quite simple. Take
a linear map L : V' — W, then observe that L.+ © (ker (L))l — im (L) is an
isomorphism. Thus we can define the generalized inverse LT : W — V in such a
way that

ker (L) = (im (L))",
im (L) = (ker (L))",
Limy = (Elgergoys * (ker (D))" —im (L)) .

If we have picked orthonormal bases that yield the singular value decomposition,
then

L' (f1) = o7 fi,e LT (fx) = 03" fior

LY (firpr) = =L (fa) =0.
Using the singular value decomposition L = U YU* we can also define
Lt =UxtU,
where
B 0'1_1 O e ]
0o . 0
ot = 0 o' 0
0 0

This generalized inverse can now be used to try to solve Lz = b for given b € W.
Before explaining how that works we list some of the important properties of the
generalized inverse.

PRrROPOSITION 29. Let L : V — W be a linear map between finite dimensional
inner product spaces and Lt the Moore-Penrose inverse. Then

(1) AL)T = AL if A £ 0.
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@) (Z) = L.

(3) (L)' = (L1)".

(4) LL" is an orthogonal projection with im (LL") = im (L) and ker (LLT) =
ker (L*) = ker (LT).

(5) LTL is an orthogonal projection with im (LTL) = im (L*) = im (L") and
ker (LTL) = ker (L).

(6) LILLT = L.

(7) LL'L = L.

PrOOF. All of these properties can be proven using the abstract definition.
Instead we shall see how the matrix representation coming from the singular value
decomposition can also be used to prove the results. Conditions 1-3 are straight-
forward to prove using that the singular value decomposition of L yields singular
value decompositions of both Lt and L*.

To prove 4 and 5 we use the matrix representation to see that

L' = vusturuso*
1 o -
0 . 0
= U 0 1 0 O
0 0
and similarly
1o -
0 . 0
LLI=U| 't o 1 o U
0 0

This proves that these maps are orthogonal projections as the bases are ortho-
normal. It also yields the desired properties for kernels and images.

Finally 6,7 now follow via a similar calculation using the matrix representations.

|

To solve Lx = b for given b € W we can now use.

COROLLARY 39. Lz = b has a solution if and only if b = LL'b and all solutions
are given by
z=Lb+ (1y — LTL) 2,

where z € V. Moreover the smallest solution is given by

zo = LTb.
In case b # LLb, the best approzimate solutions are given by

v=Lb+ 1y —L'L) 2,z €V

again with

o — LTb
being the smallest.
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PROOF. Since LL' is the orthogonal projection onto im (L) we see that b €
im (L) if and only if b = LLTb. This means that b = L (L'b) so that 2o = LTb is a
solution to the system. Next we note that (1V — LTL) is the orthogonal projection

onto (im (L*))" = ker (L). Thus all solutions are of the desired form. Finally as
LT € im (L*) the Pythagorean Theorem implies that

|Ef0+ (v = L1z) 2| = |70 + || (v — Z7L) 2|

showing that
[t < ||Lfo+ (v - L) 2]

for all z.
The last statement is a consequence of the fact that LL'b is the element in
im (L) that is closest to b since LLT is an orthogonal projection. [

9.1. Exercises.

(1) Show that the singular decomposition of a self-adjoint operator L with
nonnegative eigenvalues looks like UXU™* where the diagonal entries of 3
are the eigenvalues of L.

(2) Find the singular value decompositions of

01 0 0 1
0 1 and 11 0l
| 1 0 .

(3) Find the generalized inverses to

[0 1
10 0

0 0 0]
}and 1 0 0.
0 1 1]

(4) Let L : V. — W be a linear operator between finite dimensional inner
product spaces and o1 > -+ - > o the singular values of L. Show that the
results of the section can be rephrased as follows: There exist orthonormal
bases e1, ..., ey, for V and f1,..., f,, for W such that

L(z) =01 (zle) f1 + -+ + or (@]ex) fr,
L* (y) = o1 (ylf1) ex + -+ + ok (y|fr) e,

LT (y) = oy (ylf) e+ + 0t (ylfi) en-

(5) Let L : V — W be a linear operator on an n-dimensional inner product
space. Show that L is an isometry if and only if ker (L) = {0} and all
singular values are 1.

(6) Let L : V. — W be a linear operator between finite dimensional inner
product spaces. Show that

IL]| = o1,

where o is the largest singular value of L.

(7) Let L : V — W be alinear operator between finite dimensional inner prod-
uct spaces. If there are orthonormal bases ey, ...,e,, for V and fi,..., fn
for W such that L (e;) = 7:fi, ¢ < k and L(e;) = 0, ¢ > k, then the 7;s
are the singular values of L.

(8) Let L : V — W be a nontrivial linear operator between finite dimensional
inner product spaces.



10. THE POLAR DECOMPOSITION* 241

(a) If ey, ..., e, is an orthonormal basis for V' show that
* 2 2
tr (L°L) = ||L (en)[|” + -+ + [|L (em)]”-
o1 > --- > o are the singular values for L show that
b) If he si 1 1 for L sh h
tr (L*L) = 02 + --- + 03.

10. The Polar Decomposition®*

In this section we are going to study general linear operators L : V — V. These
can be decomposed in a manner similar to the polar coordinate decomposition of
complex numbers: z = ' |z].

THEOREM 41. (The Polar Decomposition) Let L : V' — V be a linear operator
on an inner product space, then L = WS, where W is unitary (or orthogonal) and
S is self-adjoint with nonnegative eigenvalues. Moreover, if L is invertible then W
and S are uniquely determined by L.

PrOOF. The proof is similar to the construction of the singular value decom-
position. In fact we can use the singular value decomposition to prove the polar
decomposition:

L = UXU*
= UUrUxU*

= (vt (o=0)

W = UU",
S = UxU*
Clearly W is unitary as it is a composition of two isometries. And S is certainly self-
adjoint with nonnegative eigenvalues as we have diagonalized it with an orthonormal

basis and X has nonnegative diagonal entries.
Finally assume that L is invertible and

L=WS=WT

where W, W are unitary and S, T are self-adjoint with positive eigenvalues. Then
S and T must also be invertible and

Thus we let

ST = ww!
= Ww*.
This implies that S7~! is unitary. Thus
(s77) " = (s’
_ (T*)—l g*
= T715,
and therefore
ly = T7'SST!
Tt

This means that S2 = T2. Since both operators are self-adjoint and have nonnega-
tive eigenvalues this implies that S = T and hence W = W as desired. g
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There is also an L = SW decomposition, where S = USU* and W = UU*.
From this it is clear that S and W need not be the same in the two decomposition
unless U = U in the singular value decomposition. This is equivalent to L being
normal (see also exercises).

Recall from chapter 1 that we have the general linear group Gl,, (F) C Mat,,xp, (F)
of invertible n x n matrices. Further define PS,, (F) C Mat, «, (F) as being the
self-adjoint positive matrices, i.e., the eigenvalues are positive. The polar decom-
position says that we have bijective (nonlinear) maps (i.e., one-to-one and onto
maps)

Gl (C)
Gl, (R)

U, x PS, (C),
O, x PS, (R),

Q

Q

given by A = WS «— (W, S). These maps are in fact homeomorphisms, i.e., both
(W,S) — WS and A =WS — (W,S) are continuous. The first map only involves
matrix multiplication so it is obviously continuous. That A = WS — (W,S) is
continuous takes a little more work. Assume that A, = WS, and that A, — A =
WS € Gl,,. Then we need to show that Wi, — W and Sy — S. The space of unitary
or orthogonal operators is compact. So any subsequence of Wy has a convergent
subsequence. Now assume that Wy, — W, then also Sy, = (W,;‘l) Ay, — WHA.
Thus A =W (W*A) , which implies by the uniqueness of the polar decomposition
that W = W and Sy, — S. This means that convergent subsequences of W}, always
converge to W, this in turn implies that Wi — W. We then conclude that also
S, — S as desired.

Next we note that P.S,, is a convexr cone. This means that if A, B € PSS, then
also sA +tB € PS, for all t,s > 0. It is obvious that sA + tB is self-adjoint. To
see that all eigenvalues are positive we use that (Az|x), (Bz|z) > 0 for all z # 0 to
see that

((sA+tB) (z) |z) = s (Az|z) + t (Bzx|z) > 0.

The importance of this last observation is that we can deform any matrix
A=WS via

Ay =Wt + (1—t)A) € Gl,

into a unitary or orthogonal matrix. This means that many topological properties
of Gl,, can be investigated by studying the compact groups U,, and O,,.

An interesting example of this is that Gl, (C) is path connected, i.e., for any
two matrices A, B € Gl,, (C) there is a continuous path C : [0,a] — GI,, (C) such
that C' (0) = A and C (a) = B. By way of contrast Gl,, (R) has two path connected
components. We can see these two facts for n = 1 as Gl; (C) = {a € C: o # 0}
is connected, while Gl (R) = {a € R: « # 0} consists of the two components cor-
responding the positive and negative numbers. For general n we can prove this
by using the canonical form for unitary and orthogonal matrices. In the unitary
situation we have that any U € U, looks like

U = BDB*
exp (i61) 0
- B B*
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where B € U,,. Then define

exp (itf1) 0
D(t) =
0 exp (it6,,)

Hence D (t) € U, and U (t) = BD (t) B* € U,, defines a path that at ¢t = 0 is I and
at t = 1is U. Thus any unitary transformation can be joined to the identity matrix
inside U,,.

In the orthogonal case we see using the real canonical form that a similar
deformation using

cos (t0;) —sin (t6;)
sin (t0;)  cos (t0;)

will deform any orthogonal transformation to one of the following two matrices

1 0 0 -1 0 0
0 1 0 0 1 0
or O ) o'
0 0 1 0 0 1
Here
-1 0 0
0 1 0
@) O?
0 O 1

is the same as the reflection R, where x is the first column vector in O ( —1
eigenvector). We then have to show that 1g» and R, cannot be joined to each other
inside O,,. This is done by contradiction. Thus assume that A (¢) is a continuous
path with

1 0 0
0 1 0
A(O) = bl
0 0 1
-1 0 0
0 1 0
A(l) = O o',
0 0 1

A(t) € O,, foralltel0,1].
The characteristic polynomial
Xawy (A) ="+ +ag(t)

has coefficients that vary continuously with ¢ (the proof of this uses determinants).
However, ag (0) = (—1)", while ag (1) = (=1)""". Thus the Intermediate Value
Theorem tells us that ag (to) = 0 for some ¢y € (0,1). But this implies that A =0
is a root of A (tp), thus contradicting that A (tg) € O,, C Gl,.
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10.1. Exercises.

(1)

(2)

3)

Find the polar decomposition for

R R

Find the polar decomposition for

0 g 0 1 -1 0
a 0 0 and 0O 0 2
0 0 ~v 1 1 0

If L:V — V is a linear operator on an inner product space. Define the

Cayley transform of L as (L + 1y) (L —1y) " ".

(a) If L is skew-adjoint show that (L + 1) (L — 1) " is an isometry that
does not have —1 as an eigenvalue.

(b) Show that U — (U —1y) (U 4+ 1y) " takes isometries that do not
have —1 as an eigenvalue to skew-adjoint operators and is an inverse
to the Cayley transform.

Let L : V — V be a linear operator on an inner product space. Show that
L = SW, where W is unitary (or orthogonal) and S is self-adjoint with
nonnegative eigenvalues. Moreover, if L is invertible then W and S are
unique. Show by example that the operators in this polar decomposition
do not have to be the same as in the L = WS decomposition.

Let L = WS be the unique polar decomposition of an invertible operator
L:V — V on a finite dimensional inner product space V. Show that L is
normal if and only if WS = SW.

The purpose of this exercise is to check some properties of the exponen-
tial map exp : Mat, xn (F) — GI,, (F). You may want to consult “Matrix
Exponentials” in Chapter 3 for the definition and various elementary prop-
erties.

(a) Show that exp maps normal operators to normal operators.

(b) Show that exp maps self-adjoint operators to positive self-adjoint
operators and that it is a homeomorphism, i.e., it is one-to-one, onto,
continuous and the inverse is also continuous.

(¢) Show that exp maps skew-adjoint operators to isometries, but is not
one-to-one. In the complex case show that it is onto.

Let L:V — V be normal and L = S 4+ A, where S is self-adjoint and A
skew-adjoint. Recall that since L is normal S and A commute.

(a) Show that exp (S)exp (A) = exp (A4) exp (S) is the polar decomposi-
tion of exp (L) .

(b) Show that any invertible normal transformation can be written as
exp (L) for some normal L.

11. Quadratic Forms*

Conic sections are those figures we obtain by intersecting a cone with a plane.
Analytically this is the problem of determining all of the intersections of a cone
given by z = 22 + y? with a plane z = ax + by + c.

We can picture what these intersections look like by shining a flash light on
a wall. The light emanating from the flash light describes a cone which is then
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intersected by the wall. The figures we get are circles, ellipses, parabolae and
hyperbolae, depending on how we hold the flash light.

These questions naturally lead to the more general question of determining the
figures described by the equation

az? +bxy+ ey’ +dr +ey+ f =0.

We shall see below that it is possible to make a linear change of coordinates, that
depends only on the quadratic quantities, such that the equation is transformed
into an equation of the simpler form
a (@) +d (W) +dd +ey +f =0.

It is now easy to see that the solutions to such an equation consist of a circle,
ellipse, parabola, hyperbola, or the degenerate cases of two lines, a point or noth-
ing. Moreover a, b, ¢ together determine the type of the figure as long as it isn’t
degenerate.

Aside from the esthetical virtues of this problem, it also comes up naturally
when solving the two-body problem from physics. A rather remarkable coincidence
between beauty and the real world. Another application is to the problem of de-
ciding when a function in two variables has a maximum, minimum, or neither at a
critical point.

The goal here is to study this problem in the more general case with n variables
and show how the Spectral Theorem can be brought in to help our investigations.
We shall also explain the use in multivariable calculus.

A quadratic form @ in n real variables x = (x1, ..., 2, ) is a function of the form

Q (.’E) = Z Qi TiTj.
1<i<j<n
The term z;z; only appears once in this sum. We can artificially have it appear
twice so that the sum is more symmetric

n
Q(z) = E A TiXy,
ij=1
where aj; = a;; and aj; = aj; = a;;/2. If we define A as the matrix whose entries
are a;j and use the inner product on R™, then the quadratic form can be written

in the more abstract and condensed form

Q () = (Azlz).
The important observation is that A is a symmetric real matrix and hence self-

adjoint. This means that we can find a new orthonormal basis for R™ that diago-
nalizes A. If this basis is given by the matrix B, then

A = BDB™!
o1 0
= B B!
L 0 Jn_
o 0
= B B!
L O U”_
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If we define new coordinates by

Y1 T
] = B! , or
Yn Tp
r = By,
then
Qz) = (Az|z)
= (ABy|By)
— (B'AByly)
= Q' ().
Since B is an orthogonal matrix we have that B~! = B! and hence B'AB =

B~'AB = D. Thus
Q' (y) = o1yi + -+ ony,
in the new coordinates.
The general classification of the types of quadratic forms is given by

(1) If all of 04, ...,0, are positive or negative, then it is said to be elliptic.

(2) If all of oy,...,0, are nonzero and there are both negative and positive
values, then it said to be hyperbolic.

(3) If at least one of o1, ..., 0, is zero, then it is called parabolic.

In the case of two variables this makes perfect sense as z2 4+ y? = r2 is a circle

(special ellipse), 22 — y? = f two branches of a hyperbola, and 2% = f a parabola.
The first two cases occur when o; -0, # 0. In this case the quadratic form is
said to be nondegenerate. In the parabolic case o; -- -0, = 0 and we say that the
quadratic form is degenerate.

Having obtained this simple classification it would be nice to find a way of
characterizing these types directly from the characteristic polynomial of A without
having to find the roots. This is actually not too hard to accomplish.

LeMMA 23. (Descartes’ Rule of Signs) Let
p(t) :t"+an_1tn_1+"'+a1t+a0= (t_/\l)...(t_)\n)’
WRETE QQy ooy Q15 A1y -y Ap € R,

(1) 0 is a root of p (t) if and only if ag = 0.

(2) All roots of p(t) are negative if and only if an—1,...,ap > 0.

(3) If n is odd, then all roots of p(t) are positive if and only if an—1 < 0,
p—9 >0,...,a1 >0, ag <O0.

(4) If n is even, then all roots of p(t) are positive if and only if ap—1 < 0,
Ap_2 >0,...,a1 <0, ag > 0.

PROOF. Descartes rule is actually more general as it relates the number of
positive roots to the number of times the coefficients change sign. The simpler
version, however, suffices for our purposes.

Part 1 is obvious as p (0) = ag.

The relationship

" Fap " atdag=(E— A1) (E— Ap)
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clearly shows that a,_1,...,a9 > 0if A1,..., A, < 0. Conversely if a,,_1,...,a9 > 0,
then it is obvious that p (¢) > 0 for all ¢ > 0.
For the other two properties consider ¢ (t) = p (—t) and use 2. O

This lemma gives us a very quick way of deciding whether a given quadratic
form is parabolic or elliptic. If it is not one of these two types, then we know it has
to be hyperbolic.

We can now begin to apply this to multivariable calculus. First let us consider
a function of the form f (z) = a + @ (z), where @Q is a quadratic form. We note
that f (0) = a and that g—i (0) =0 for i =1,...,n. Thus the origin is a critical point
for f. The type of the quadratic form will now tell us whether 0 is a maximum,
minimum, or neither. Let us assume that @) is nondegenerate. If 0 > o7 > -+ > oy,
then f(z) < a+ o1 ]|z||> < a and 0 is a maximum for f. On the other hand if
01> >0,>0,then f(z) >a+o0o, Hz||2 > a and 0 is a minimum for f. In case
01,...,05 have both signs 0 is neither a minimum or a maximum. Clearly f will
increase in directions where o; > 0 and decrease where o; < 0. In such a situation
we say that f has a saddle point. In the parabolic case we can do a similar analysis,
but as we shall see it won’t do us any good for more general functions.

In general we can study a smooth function f : R™ — R at a critical point g,
i.e., dfy, = 0. The Taylor expansion up to order 2 tells us that

n 2

— (’hzax]

f (o + h) = f (w0) + (z0) hihs +o (J18]I°) .

where o (||h||2) is a function of zy and h with the property that

m
h=0 ||h|?

Using A = {%{9’;3_ (xo)} the second derivative term therefore looks like a quadratic

form in h. We can now prove

THEOREM 42. Let f : R™ — R be a smooth function that has a critical point

at ©y with o1 > -+ > o, the eigenvalues for the symmetric matrix [%aj;j (mo)} .

(1) If o, > 0, then xq is a local minimum for f.

(2) If 01 <0, then xq is a local mazimum for f.

(3) If 01 > 0 and 0, < 0, then f has a saddle point at xg.
(4) Otherwise there is no conclusion about f at xg.

PrOOF. Case 1 and 2 have similar proofs so we emphasize 1 only. Choose a
neighborhood around zy where
2
o (IInIP?)

(s

<op.
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In this neighborhood we have

n 2
Flao+h) = flao)+ Y. 5= (wo) hih; + o |Ih]])
ig=1"""""J

V

o (IIhl®
f (o) +0n Hth + (||h2) ||h||2

f (o) + M IA]|*

On )
IR

> f (o)

as desired.
In case 3 select unit eigenvectors v; and v, corresponding to o1 and o,,. Then

f (CL'O +t1}l) = f (370) + tz(fi + o0 (t2) .

As we have
o (t?
® _,
t—0 2
this formula implies that f(zo+tvi) > f(xo) for small ¢ while f(z¢ +tv,) <
f (zo) for small ¢. This means that f does not have a local maximum or minimum
at xg. O

EXAMPLE 94. Let f (x,y,2) = 2? —y? + 3wy — 22 +4yz. The derivative is given
by (2z + 3y, —2y + 3z + 4z, —2z + 4y) . To see when this is zero we have to solve

2 3 0 T 0
3 -2 4 y | =10
0 4 =2 z 0

One quickly sees that (0,0,0) is the only solution. We now wish to check what type
of critical point this is. Thus we compute the second derivative matriz

2 3 0
3 -2 4
0 4 =2

The characteristic polynomial is t3+2t2—29t+6. The coefficients do not conform to
the patterns that guarantee that the roots are all positive or negative so we conclude
that the origin is a saddle point.

EXAMPLE 95. The function f (z,y) = 2% +y* has a critical point at (0,0). The
second derivative matric is
2 0
[ 0 +12y2 } '

When y = 0, this is of parabolic type so we can’t conclude what type of critical point
it 1s. In reality it is a minimum when + is used and a saddle point when — is used
in the definition for f.
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EXAMPLE 96. Let Q be a quadratic form corresponding to the matriz

6 1 2 3
1 5 0 4
A72020
34 07

The characteristic polynomial is given by t* — 20t> + 113t? — 200t + 96. Here we see
that the coefficients tells us that the roots must be positive.

11.1. Exercises.

(1) A bilinear form on a vector space V is a function B : V x V — F such
that z — B (x,y) and y — B (z,y) are both linear. Show that a quadratic
form @ always looks like @ (z) = B (z, ), where B is a bilinear form.

(2) A bilinear form is said to be symmetric, respectively skew-symmetric, if
B (z,y) = B (y, ), respectively B (z,y) = —B (y, ) for all x,y.

(a) Show that a quadratic form looks like @ () = B (z,z) where B is
symmetric.

(b) Show that B(x,z) = 0 for all x € V if and only if B is skew-
symmetric.

(3) Let B be a bilinear form on R™ or C".

(a) Show that B (z,y) = (Az|y) for some matrix A.

(b) Show that B is symmetric if and only if A is symmetric.

(¢) Show that B is skew-symmetric if and only if A is skew-symmetric.

(d) If x = Cz’ is a change of basis show that if B corresponds to A in
the standard basis, then it corresponds to C* AC in the new basis.

(4) Let Q (x) be a quadratic form on R™. Show that there is an orthogonal
basis where

Q2)= =21 = =2+ B+ 4
where 0 < k£ <[ < n. Hint: Use the orthonormal basis that diagonalized
@ and adjust the lengths of the basis vectors.
(5) Let B (z,y) be a skew-symmetric form on R™.
(a) If B(z,y) = (Azly) where A = [ g _06 ], 8 € R, then show
that there is a basis for R? where B (z’,y’') corresponds to A’ =
0 -1
]
(b) If B (z,y) is a skew-symmetric bilinear form on R™, then there is a
basis where B (2/,y') corresponds to a matrix of the type

0 -1 -« 0 0 0 0
1 0 0 0 0 0 0

S .0 000 0
A—-|l0 0 0 0 -10 0 0
00 0 1 0 0 0 O

00 0 0 0 0 --- 0

0 0 0 0
L0 0 00 0 -~ 0]
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(6) Show that for a quadratic form @ (z) on C" we can always change coor-

dinates to make it look like
Q)= () 4+ (=)

(7) Show that Q (z,y) = axz? + 2bzy + cy? is elliptic when ac — b? > 0,
hyperbolic when ac — b < 0, and parabolic when ac — b% = 0.

(8) If A is a symmetric real matrix, then show that ¢tI + A defines an elliptic
quadratic form when [¢| is sufficiently large.

(9) Decide for each of the following matrices whether or not the corresponding
quadratic form is elliptic, hyperbolic, or parabolic.

-7 -2 -3 0

-2 -6 —4 0

@1 3 4 5 o2

0o 0 2 =3

7T 3 -3 4

3 2 -1 0

(b) -3 -1 5 =2

4 0 -2 10 |

15 2 3 4
2 4 2 0
(d) 3 2 3 =2
4 0 =2 5



CHAPTER 5

Determinants

1. Geometric Approach

Before plunging in to the theory of determinants we are going to make an
attempt at defining them in a more geometric fashion. This works well in low di-
mensions and will serve to motivate our more algebraic constructions in subsequent
sections.

From a geometric point of view the determinant of a linear operator L : V —
V is a scalar det (L) that measures how L changes the volume of solids in V.
To understand how this works we obviously need to figure out how volumes are
computed in V. In this section we will study this problem in dimensions 1 and 2.
In subsequent sections we take a more axiomatic and algebraic approach, but the
ideas come from what we have presented here.

Let V be 1-dimensional and assume that the scalar field is R so as to keep
things as geometric as possible. We already know that L : V' — V must be of the
form L (z) = Az for some A € R. This A clearly describes how L changes the length
of vectors as ||L (2)|| = |A\|||z]| . The important and surprising thing to note is that
while we need an inner product to compute the length of vectors it is not necessary
to know the norm in order to compute how L changes the length of vectors.

Let now V be 2-dimensional. If we have a real inner product, then we can talk
about areas of simple geometric configurations. We shall work with parallelograms
as they are easy to define, one can easily find their area, and linear operators map
parallelograms to parallelograms. Given z,y € V the parallelogram 7 (x,y) with
sides = and y is defined by

m(z,y) ={sz+ty:s,tel0,1]}.

The area of 7 (z,y) can be computed by the usual formula where one multiplies
the base length with the height. If we take x to be the base, then the height is the
projection of y onto to orthogonal complement of x. Thus we get the formula

area (7 (2,y)) = |[l[ly — proj, (vl

= o ||H e

This expression does not appear to be symmetric in x and y, but if we square it we

251
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get

(area (7 (z,9)))> = (z|z)(y — proj, (y) |y — proj, (y))
= (z|z) ((yly) — 2 (y|proj, (y)) + (proj, (y) | proj, (y)))

ot ( (=2 (4] B ) (Wl o )
= (z)z) (yly) — (z]y)?,

which is symmetric in  and y. Now assume that

ar + By
= ~x+ 0y

or

then we see that

(area (7 (2',y)))”
(@')’) (' y) — ()"
= (az + Bylaz + By) (v + dylyz + dy) — (ax + Bylyz + dy)?
(o (z|z) + 208 (zly) + B (yly)) (v* (z]) + 276 (z[y) + 6% (yly))
— (ary (z|z) + (@b + B7) (z]y) + B3 (y|y))*
= (0% + 8% — 20870) ((al) (yly) — (xly)°)
= (a6 — 7)? (area (7 (z,)))*.

This tells us several things. First, if we know how to compute the area of just
one parallelogram, then we can use linear algebra to compute the area of any
other parallelogram by simply expanding the base vectors for the new parallelogram
in terms of the base vectors of the given parallelogram. This has the surprising
consequence that the ratio of the areas of two parallelograms does not depend
upon the inner product! With this in mind we can then define the determinant of
a linear operator L : V — V so that

(area (7 (L (z), L (y))))? _
(area (7 (z, y)))2

To see that this doesn’t depend on z and y we chose z’ and y’ as above and note
that

(det (L)) =

[1@) L) )= L@ L[5 7]
and

(area (m (L ('), L(y))))* _  (ad—By)* (area (x (L (), L (y))))*
(area (7 (a7, y')))* (b — 37)” (avea (r (z,7)))”
(area (v (L (2), L (y))))’ _

(area (r (z,y)))”
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Thus (det (L)) depends neither on the inner product that is used to compute the
area nor on the vectors x and y. Finally we can refine the definition so that

det (L) = = ad — be, where

b d
(1@ L] = [« 0]} 5]

This introduces a sign in the definition which one can also easily check doesn’t
depend on the choice of x and y.

This approach generalizes to higher dimensions, but it also runs into a little
trouble. The keen observer might have noticed that the formula for the area is in
fact a determinant

(area (7 (z,9)))* = (2]2) (yly) — (aly)?
‘(m) (z]y)
(zly)  (yly)

When passing to higher dimensions it will become increasingly harder to justify
how the volume of a parallelepiped depends on the base vectors without using a
determinant. Thus we encounter a bit of a vicious circle when trying to define
determinants in this fashion.

The other problem is that we used only real scalars. One can modify the
approach to also work for complex numbers, but beyond that there isn’t much
hope. The approach we take below is mirrored on the constructions here, but they
work for general scalar fields.

2. Algebraic Approach

As was done in the previous section we are going to separate the idea of volumes
and determinants, the latter being exclusively for linear operators and a quantity
which is independent of others structures on the vector space. Since what we are
going to call volume forms are used to define determinants we start by defining
these. Unlike the more motivational approach we took in the previous section we
are here going to take a more axiomatic approach.

Let V be an n-dimensional vector space over F. A volume form

n times
— e
vol:Vx...xV =T

is simply a multi-linear map, i.e., it is linear in each variable if the others are fixed,
that is also alternating. More precisely if @1, ...,%;_1,Zi+1, ..., € V then

T = VOl (1, ooy T, Ty i1y oeey Ty
is linear, and for ¢ < j we have the alternating property when x; and z; are trans-
posed:
VOl (coy Ty oy Ty o) = — VOL (e Ty ooy Ty o) -
In “Existence of the Volume Form” below we shall show that such volume forms

always exist. In this section we are going to establish some important properties
and also give some methods for computing volumes.

ProPOSITION 30. Let vol : V x --- x V. — F be a volume form on an n-
dimensional vector space over F. Then
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(1) vol (..o, zy oy, ...) = 0.
(2) vol(@1, ey @im1, &5 F Yy i1y ey Ty) = VOL(X 1,y ooy Tj1, Ty Tig 1y ey Ty) Uf Y =
Zk# QT 18 a linear combination of X1, ...,T;—1,Tiq1, .- LTp.
(3) vol(z1,....,xn) =0 if x1,...,zy, are linearly dependent.
(4) Ifvol(zy,...,x,) # 0, then x1,...,z, form a basis for V.
PrOOF. 1. The alternating property tells us that
vol (o, oy, ) = —vol (v, oy, .00)
if we switch z and x. Thus vol (..., z,...,z,...) = 0.
2. Let y = 3~ ; oy, and use linearity to conclude
VOL (@1, oy i1, Ty F Yy Tig 1y ooy Tn) = VOL(Z1, ooy i1, Ty L1y oeey L)
+Zakvol(x1,...,mi,l,xk,xiﬂ,...,xn).
ki
Since zy, is always equal to one of 1, ...,x;—1,T;y1,...T, We see that
Vol (T, ooy Ti—1, Ty Tit1,y ey Tpn) = 0.

This implies the claim.
3. If 1 = 0 we are finished. Otherwise we have that some x; = Zf;ll ;T
then 2. implies that

vol (21, ..., 0+ Zpy ooy ) = vol(21,...,0,...,2,)
= 0.
4. From 3. we have that zi,...,x, are linearly independent. Since V has
dimension n they must also form a basis. ([

Note that in the above proof we had to use that 1 # —1 in the scalar field.
This is certainly true for the fields we work with. When working with more general
fields like F = {0, 1} we need to modify the alternating property. Instead we can
assume that the volume form vol (21, ..., x,,) satisfies: vol (z1, ..., z,) = 0 whenever
x; = xj. This in turn implies the alternating property. To prove this note that if
= x; + x;, then

it" place it place
0 = vol{..., = ...,/ x= ..

ith place it place

= vol <,xl + X4, e, Ty + Ty, )
N 1 ith place j“h place | ith place jth place
= vol| .., & ,.., Zy ,..]+voll.., Z; ,....,7 & ..
.th :th :th :th
i place j'" place i'" place j'" place
+ vol (, Ty e X ,) + vol (, R

ith place j*" place ith place j*" place
= vol|.., 2 ,..,~ T ,..)]+voll.., & ,..,7 2 ,.],

which shows that the form is alternating.

THEOREM 43. (Uniqueness of Volume Forms) Let voly,voly : V x -+ xV — F
be two volume forms on an n-dimensional vector space over F. If voly is nontrivial
then vol; = Avoly for some X\ € F.
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PRroOOF. If we assume that vols is nontrivial, then we can find z4,...,x, € V so
that voly (21, ...,2,) # 0. Then define A so that

voly (1, ..., xpn) = Avols (x1, ..., xy) .
If z1,..., 2, € V, then we can write
(22 o 2] = [@1 2. ]A
Q11 Olp
= @ - wa]
Qni o Qpn
For any volume form vol we then have

n n
vol iy Qig 1y -ees g i, Qi n,
1

1= in=1

n n
Qi1 vol Lijqyeeny E QG ndi,
1

1= in=1

vol (21, ey Zn)

n

= E Qi1 Qo VOL (X ey X))

i1, in =1

The first thing we should note is that vol (x;,, ..., x;,) = 0 if any two of the indices
i1, ..., 1, are equal. When doing the sum

n

E Qi1 Qi VOL (T ey @)

i1yeenyin=1
we can therefore assume that all of the indices 41, ..., 4, are different. This means
that by switching indices around we have
Vol (45 ey T4, ) = VOl (X1, o0y T)

where the sign + depends on the number of switches we have to make in order to
rearrange i, ..., 4, to get back to the standard ordering 1, ..., n. Since this number
of switches does not depend on vol but only on the indices we obtain the desired
result:

n
voly (21, .y 2n) = Z tay1 g, voly (21, .., Zy)

i1yenin=1

n
= E iai11~-~o¢inn)\volg (ml,...,xn)

D1 5eneytn=1

n
= A E ta,1 @, vola (21, .., Tn)

B1,eenyin=1
= Avoly (21,..., 2n) .
O

From the proof of this theorem we also obtain one of the crucial results about
volumes that we mentioned in the previous section.
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COROLLARY 40. If z1,...,x, € V is a basis for V then any volume form vol is
completely determined by its value vol (z1, ..., zy) .

This corollary could be used to create volume forms by simply defining

vol (21, .y 2n) = Z ta,1 g, vol (21, ., Ty,
1 yeensin

where {i1,...,i,} = {1,...,n}. For that to work we would have to show that the
sign =+ is well-defined in the sense that it doesn’t depend on the particular way in
which we reorder iy, ...,%, to get 1,...,n. While this is certainly true we shall not
prove this combinatorial fact here. Instead we observe that if we have a volume
form that is nonzero on 1, ..., ,, then the fact that vol (z;,, ..., z;, ) is a multiple of
vol (x1, ..., ) tells us that this sign is well-defined and so doesn’t depend on the way
in which 1, ...,n was rearranged to get i1, ..., i,. We use the notation sign (i1, ..., )
for the sign we get from

Vol (T4, 4 vy @4, ) = SigN (41, ey b)) VOL (X1, voey T )

Our last property for volume forms is to see what happens when we restrict it
to subspaces. To this end, let vol be a nontrivial volume form on V and M C V a
k-dimensional subspace of V. If we fix vectors y1,...,yn,—r € V, then we can define
a form on M by

volps (21, ooy @) = VOl (Z1, vory Ty Y1y oooy Yn—k)

where x1,...,xr € M. It is clear that vol,; is linear in each variable and also al-
ternating as vol has those properties. Moreover, if yi, ..., y,— form a basis for a
complement to M in V, then x1, ..., Tk, y1, ..., Yyn—k Will be a basis for V' as long as
T1,...,TE 18 a basis for M. In this case voly; becomes a nontrivial volume form as
well. If, however, some linear combination of y, ..., y,_x lies in M then it follows
that volp; = 0.

2.1. Exercises.
(1) Let V be a 3-dimensional real inner product space and vol a volume form
so that vol (e1, e, e3) = 1 for some orthonormal basis. For z,y € V define
x X y as the unique vector such that
vol (z,, 2) = vol (2,2, ) = (2] x 9).
(a) Show that © X y = —y x x and that x — z x y is linear.
(b) Show that
(z1 X y1]|ze X y2) = (21]22) (Y1]y2) — (21]y2) (T2]y1) -
(¢) Show that
[l > yll = [l lyll [sin 6],
where

cosf = 7(% y)

el lyll°
(d) Show that

z X (y % 2) = (z|2)y — (z[y) 2.
(e) Show that the Jacobi identity holds
ex(yxz)+zx(xxy)+yx(zxz)=0.
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(2) Let z1,...,z, € R™ and do a Gram-Schmidt procedure so as to obtain a
QR decomposition
T - Tin
(21 - oz ]=[e - en] ST
0 T’ILTL

Show that
vol (z1, ..., @p) =711+ Tnn vol(e1, ..., en)

and explain why 717 - -7y, gives the geometrically defined volume that
comes from the formula where one multiplies height and base “area” and
in turn uses that same principle to compute the base “area” etc. In other
words

T = HﬂﬂlH,

T2 = sz — proj,, (z2)

)

Tp —Projy, ., (zn)

(5 [3]) o

defines a volume form on F? such that vol (e, es) = 1.
(4) Show that we can define a volume form on F? by

a11 a12 a13
1 _ 1 @22 a23
Vo a21 y | @22 , | @23 = ai1Vvo ,

a32 a33
asi a32 a33
a a
—ay5 vol 21 ’ 23
a3 ass
a a
+ay3 vol 21 ’ 22
as3i a32

= 011022033 + (12023031 + Q13032021

Tnn - ‘

(3) Show that

—@11023032 — 433412021 — 422013031 -

5) Assume that vol (e, ...,e4) = 1 for the standard basis in R*. Using the
g

permutation formula for the volume form determine with a minimum of

calculations the sign for the volume of the columns in each of the matrices.

[ 1000 -1 2 —1
(a) 1 1000 1 2
3 -2 1 1000
2 -1 1000 2 |
[ 2 1000 2 -1
1 -1 1000 2
(b) 3 -2 1 1000
| 1000 -1 1 2
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2 -2 2 1000 ]
© 1 -1 1000 2
3 1000 1 -1
| 1000 -1 1 2|
[ 2 -2 1000 -1
1 1000 2 2
(d) 3 -1 1 1000
| 1000 -1 1 2 |

3. How to Calculate Volumes

Before establishing the existence of the volume form we shall try to use what we
learned in the previous section in a more concrete fashion to calculate vol (z1, ..., z).
Assume that vol (z1, ..., 2,) is a volume form on V and that there is a basis x1, ..., z,
for V' where vol (21, ..., x,) is known. First observe that when

(22 o oz ] =[a@ - @, ]A
and A = [aij] is an upper triangular matrix then o;,1---o;,» = 0 unless i3 <
1,...,7, < n. Since we also need all the indices i1, ...,4, to be distinct, this implies
that i1 = 1,....,%, = n. Thus we have the simple relationship

VOl (21, ooy 2n) = @11+ + * Qi VOL (Z1, ooy Ty)

While we can’t expect this to happen too often it is possible to change z1, ..., z, to
vectors yi, ..., Y, in such a way that

vol (21, oy 2n) = £ vOl (Y1, vy Yn)
and
(1 o g ]=[21 - z,]A
where A is upper triangular.

To construct the y;s we simply use elementary column operations. This works in
almost the same way as Gauss elimination but with the twist that we are multiplying
by matrices on the right (see also “Row Reduction” in chapter 1). The allowable
operations are

(1) Interchanging vectors zx and z;.
(2) Multiplying z; by o € F and adding it to zj.

The second operation does change volume, hwile the first changes it by a sign.
Soif [ 41 -+ yn | is obtained from [ z1 -+ =z, | through these operations
we have

vol (21, ey 2n) = £vOl (Y1, -y Yn) -
The minus sign occurs exactly when we have done an odd number of interchanges.

We now need to explain why we can obtain [ Y1 o Yn ] such that
Q11 Q2 s Qg
0 ax Qap
[0 yn | =[ = T ]| .
0 0 -
The only thing to note is that the process might break down if z1, ...., z,, are linearly

dependent. In that case we have vol = 0.
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Instead of describing the procedure abstractly let us see how it works in prac-
tice. In the case of F" we assume that we are using a volume form such that
vol (e1, ...,e,) = 1 for the canonical basis. Since that uniquely defines the volume
form we introduce some special notation for it

Al =] 21 - @ | =vol(z1,....,2,)
where A € Mat,,x, (F) is the matrix such that
(21  2p]=[er - en]A

EXAMPLE 97. Let

0 1 0
[ Z1 R2 Z3 ] = 0 0 3
-2 0 0
We can rearrange this into
1 0 0
[ Z2 Z3 21 ] = 0 3 0
0 0 -2
This takes two transpositions. Thus
vol (21, 29,23) = vol(z2,23,21)

1-3-(=2)vol(ey,eq,e3)

= —6vol(ey,eq,e3).

EXAMPLE 98. Let

3 0 1 3
[21 5 2 24]: 1 -1 2 0
-1 1 0 -2
-3 1 1 -3
3 0 1 3
1 -1 2 0
-1 1 0 -2
-3 1 1 -3
0 1 2 3
= 1 _11 22 02 after eliminating entries in row 4,
3 73
0 O 0 -3
3 2 2 3
= 10 22 0 after eliminating entries in row 3,
00 —5 -2
00 0 -3
2 3 2 3
= 0 4 22 02 after switching column one and two.
00 3
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Thus we get

Vol (21, 24) = —2-4. (-i) (=3)vol (ex, ..., e4)

—16vol(ey,...,eq).

EXAMPLE 99. Let us try to find

1 11 1
1 2 2 2
1 2 3 3
1 2 3 n

Instead of starting with the last column vector we are going to start with the first.
This will lead us to a lower triangular matriz, but otherwise we are using the same
principles.

1 1 1 1 1 0 0 0
1 2 2 2 1 1 1 1
1 2 3 31 - |1 1 2 2
1 2 3 n 1 1 2 n—1
1 0 0 0
1 1 0 0
_ |1 11 1
1 1 1 n—2
1 0 0 0
1 1 0 0
_ |1 11 0
1 1 1 1
= 1

3.1. Exercises.

(1) The following problem was first considered by Leibniz and appears to be
the first use of determinants. Let A € Mat(,41)x,, (F) and b € F**+1
(a) If there is a solution to the over determined system Ax = b, x € F",
then the augmented matrix satisfies | A|b| = 0.
(b) Conversely, if A has rank (A) = n and |A|b] = 0, then there is a
solution to Ax = b, x € F".
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(2) Find
11 1 1
0 1 1 1
1 0 1 1
1 - 1 0 1

(3) Let x1,...,xx € R™ and assume that vol (eq, ..., ,) = 1. Show that
2 2
|G (@1, ey i) | <l |- ol
where G (z1,...,zx) is the Gram matrix whose ij entries are the inner
products (z;]z;) .

(4) Think of R™ as an inner product space where vol (ey, ..., e,,) = 1.
(a) If 1, ..., x, € R™, show that

G (21, .yp) = [ 1 - Ty ]* [ 1 - Ty ]
(b) Show that
|G (21, ..., )| = [VOL (21, .oy )| .

(¢) Using the previous exercise conclude that Hadamard’s inequality
holds

Vol (1, ey @) [* < [l ]|+ |z
(d) When is
[vol (1, ey )[* = [l |-~ a2

(5) Assume that vol (eq,...,eq) = 1 for the standard basis in R*. Find the

volumes
0o -1 2 -1
1 0 1 2
@13 51 ¢
2 -1 0 2
2 0 2 -1
1 -1 0 2
(b) 3 -2 1 1
0O -1 1 2
2 =2 2 0
1 -1 1 2
©1s 0 1 -1
1 -1 1 2
2 -2 0 -1
1 1 2 2
(d) 3 -1 1 1
1 -1 1 2
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4. Existence of the Volume Form

The construction of vol (z1, ...,x,) proceeds by induction on the dimension of
V. Thus fix a basis ey, ..., e, € V that we assume is going to have unit volume. Next
we assume, by induction, that there is a volume form vol” ™! on span {e2,...,en}
such that es,...,e, has unit volume. Finally let £ : V — V be the projection
onto span {es, ..., e, } whose kernel is span{e;}. For a collection x1,...,z, € V we
decompose z; = ;e + F (x;) . The volume form vol” on V is now defined by

n

Vol (21, ey ) = 3 (~1)F g vol (E (ml),...,m7...7E(xn)) .
k=1
This is essentially like defining the volume via a Laplace expansion along the first
row. As ay, E, and vol™ ! are linear it is obvious that the new vol™ form is linear
in each variable. The alternating property follows if we can show that the form
vanishes when z; = x;. This is done as follows

vol” (..., @i, ...xj, ...)
—_—

D DN s (...,E(ﬂci),...,E(xk),...,E(xj)7...)

+ (=1 Ty vol" ! (, E/(\xl-), v B (), )
+(=1)" "y vol" ! (,E (x:), ...,E/(-a;), )
Using that E (z;) = F (x;) and vol” " is alternating on span {es, ..., e, } shows
ol (...,E(xi) o B (21), s B (2) ) -0
Hence
vol™ (...,ZCi,....Z‘j,...)
i—1 n—1 =
= (=1)" " a;vol (...,E(mi)7...,E(xj)7...)

+(=1)’ " ayj vol™ 7t (, E(z;), ... E/(—\zj), )

it place

= (—l)i_l (—1)j_1_i (67 VOln_1 (, E (xi—l) 5 E (.Z‘]) 5 E (-Ti-‘rl) )

+ (—1)j_1 ajvol™ ! (, E (), ..., E/(;j), ) ,
where moving E (z;) to the i*"-place in the expression

vol" ™ (...,E/(-\xi), o E(xj), )

requires j — 1 —4 moves since E (x;) is in the (j — 1)-place. Using that o; = o; and

E (x;) = E (), this shows
ith place
i—92 e
(=1 % a; vol™ (, E(zj),..,, )

+ (=1 vol™ ! (,E (), ...7E/(E-), )
= 0.

vol” (..., z, ...j, ...)
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Aside from defining the volume form we also get a method for calculating
volumes using induction on dimension. In F we just define vol (z) = x. For F? we

have
a c
vol({ b ] , { d ]) = ad — cb.
In F3 we get
a11 a2 a13
vol a1 |, | @22 |, | a23 = a V01<[ 22 } ) [ 425 })
asz a3s3

asi a32 a33

az1 a23
([ ) ])
sl ]2 ])

as as2

= (11022033 + (12023031 + 013021032
—011032023 — Q12021033 — 13031022
= 011022033 + G12023031 + Q13032021

—a11023032 — 033012021 — 224134371 -

In the above definition there is, of course, nothing special about the choice of
basis ey, ..., e, or the ordering of the basis. Let us refer to the specific choice of
volume form as vol; as we are expanding along the first row. If we switch e; and e
then we are apparently expanding along the k" row instead. This defines a volume
form vol . By construction we have

voly (e1,...,en) = 1,
kth place
Volk(ek,GQ,..., €1 ,...,6n> = 1.
Thus
volj = (=1)"""vol,

= (=D vol.

So if we wish to calculate vol; by an expansion along the k™" row we need to
remember the extra sign (—1)*"' . In the case of F" we define the volume form vol
to be vol; as constructed above. In this case we shall often just write

| T o Ty | =vol(x1,...,Zn)
as in the previous section.

EXAMPLE 100. Let us try this with the example from the previous section

3 0 1 3
1 —-1.2 0
22 s al=) 5
3 1 1 -3
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Ezpansion along the first row gives

-1 2 0 1 2 0
|21 22 23 2| = 3] 1 0 —2|-0/ -1 0 -2
1 1 -3 -3 1 =3
1 -1 0 1 -1 2
+1 -1 1 -2]|-3] -1 1 O
-3 1 =3 -3 1 1
= 3-0-0+4+1-(—4)—-3-4
—16
FExpansion along the second row gives
01 3 3 1 3
21 22 23 24 = —-1{1 0 -2 +(—1) -1 0 -2
1 1 -3 -3 1 -3
3 0 3 3 01
-2/ -1 1 -2|+0| -1 1 0
-3 1 -3 -3 1 1
= —-1-4-1-6-2-340
= -16
The general formula in F™ for expanding along the k' row in an n x n matrix
A= [ 1 o Tn ] is called the Laplace expansion along the k*® row and looks
like
Al = (D" e Al + (D are [Agal + - 4 (1) g | Ara
= Z(—l)k+iaki|Aki\.
i=1

Here «;; is the ij entry in A, i.e., the it" coordinate for xj, and A;; is the companion
(n — 1)x(n — 1) matrix for a;;. The matrix A;; is constructed from A by eliminating
the i*" row and j*"* column. Note that the exponent for —1 is i + j when we are at
the ij entry ay;.

This expansion gives us a very intriguing formula for the determinant that looks
like we have used the chain rule for differentiation in several variables. To explain
this let us think of |A] as a function in the entries z;;. The expansion along the k'
row then looks like

Al = (1" 2 [A] + (1) 2z [Apa| + - + (= 1) 2 [ A -
From the definition of |Ay;| it follows that it does depend on the variables ;. Thus

I A
Oxyi

k+1 OTr1 k2 0Tk ktn OTkn
= DM i+ (D) A (ST A

= (D" Aul.
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Replacing (—1)** |Ay;| by the partial derivative then gives us the formula

|A| = k1M+$k2M+'“+$k 8|A‘
8xk1 8zk2 ”&mm

o 914

= ) For,

Since we get the same answer for each k this implies

= dlA
nldl= Z i &lcw‘"

i,7=1

4.1. Exercises.

(1) Find the determinant of the following n x n matrix where all entries are
1 except the entries just below the diagonal which are 0.

1 1 1 1
0 1 1 1
1 0 1

o1 . 1
1 1 0 1

(2) Find the determinant of the following n x n matrix

1 .- 1 1 1
2 2 2 1
3 ... 3 1

: 1 ...

n 1 .- 1 1

(3) (The Vandermonde Determinant)
(a) Show that

1 1

A An

: : i<j
Ant At

(b) When Ay, ..., \,, are the complex roots of a polynomial p (t) = t" +
An_1t""' + -+ ait + ag, we define the discriminant of p as
2
A=D=[JJ=x)
i<j
When n = 2 show that this conforms with the usual definition. In
general one can compute A from the coefficients of p. Show that A

is real if p is real.
(4) Consider the polynomial in n variables

p) = H (x; — ;)

i<j

p(zy, .-
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(a) If o € S, is a permutation, then

sign (o) p (z1,...,Tn) =p (330(1)7 ...,xa(n)) .

(b) Using this show that the sign function S,, — {£1} is a homomor-
phism, i.e., sign (o7) = sign (o) sign (7).
(c) Using the above characterization show that sign (o) can be deter-
mined by the number of inversions in the permutation. An inversion
in ¢ is a pair of consecutive integers whose order is reversed, i.e.,
o) >o(+1).
(5) Let A, = [oj;] be a real skew-symmetric n x n matrix, i.e., a;; = —aj; .
(a) Show that |As| = a,.
(b) Show that |A4| = (a12a34 + apq0i03 — a13a24)2.
(¢) Show that |As,| > 0.
(d) Show that |Ag, 41| =0.
(6) Show that the n x n matrix satisfies

B a B -+ B
bopa s Bl=(atn-1)p)a—p)"".
B B B - «
(7) Show that the n x n matrix
a; 1 o --- 0
-1 (6) 1 0
An: 0 —1 (0% 0
0 0 0 ay,
satisfies
|A1| = a1
|42 = 14 aiag,
|An| = Op |An—1| + |An—2| .

(8) Show that an n x m matrix has (column) rank > k if and only there is a
submatrix of size k X k with nonzero determinant. Use this to prove that
row and column ranks are equal.

(9) (a) Show that the area of the triangle whose vertices are

s g e

is given by
11 1
5| @1 G2 a3
Br B2 Bs

(b) Show that 3 vectors

IR
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satisfy
1 1 1
a1 Qo Q3 =0
Bi By B3

if and only if they are collinear, i.e., lie on a line I = {at + b: t € R},
where a,b € R2.
(¢) Show that 4 vectors

a1 Q2 a3 [ Oy
ﬂl ) ﬂQ ) 53 ’ 54 € RS
71 Y2 V3 L V4
satisfy
1 1 1 1
Q1 Qz Q3 Qg | 0
B1 By Bs Ba
Y1 Y2 V3 V4

if and only if they are coplanar, i.e., lie in the same plane m =
{z eR?: (a,2) = a}.

(10) Let
e ] g e

be three points in the plane.
(a) If g, 9,3 are distinet, then the equation for the parabola y =
axz? 4 bx + ¢ passing through the three given points is given by

11 1 1

X Q1 Qo Q3

22 a% oz% a%

y Bi By B -0
1 1 1 o

a1 Qg Q3

af a3 o}

(b) If the points are not collinear, then the equation for the circle 2% +
y? + az + by + ¢ = 0 passing through the three given points is given

by

1 1 1 1

X (65} (%) Qs

Yy B4 Ba B3

P4y’ o+ B b+ o348 |
1 1 1 -
Q. Gy Q3
By By Bs

5. Determinants of Linear Operators

To define the determinant of a linear operator L : V' — V we simply note that
vol (L (z1) ..., L (z,)) defines an alternating n-form that is linear in each variable.

Thus
vol (L (z1),...,L (zy)) = det (L) vol (z1, ..., x,)
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for some scalar det (L) € F. This is the determinant of L. We note that a different
volume form voly (z1, ...,x,) gives the same definition of the determinant. To see
this we first use that vol; = A vol and then observe that

voly (L(x1),...., L(zy)) = Avol(L(z1),....,L(zn))
= det (L) Avol (z1,...,z,)
= det(L)voly (z1,...,2y) .
If ey, ..., ey is chosen so that vol (ey, ..., e;,) = 1, then we get the simpler formula
vol (L (e1) ..., L(en)) = det (L).

This leads us to one of the standard formulas for the determinant of a matrix. From
the properties of volume forms we see that

det (L) = vol(L(e1),....,L(en))
= Zaill---ainnvol(eil,...7ein)

Z Tai 1 Qign
= Zsign (015 ey i) Qg1+ * Qs
where [a;;] = [L] is the matrix representation for L with respect to ey, ..., e,. This
formula is often used as the definition of determinants. Note that it also shows that
det (L) = det ([L]) since
[ L(e1) -+ L(epn) ] = [ er - ey ] [L]

Q11 Qan

[ €1 e €n ]
Qni e Onn

The next proposition contains the fundamental properties for determinants.

PRrROPOSITION 31. (Determinant Characterization of Invertibility)
(1) If L, K : V =V are linear operators, then
det (L o K) = det (L) det (K)
(2) det (aly) =a™.
(3) If L is invertible then

1
det L™l = —
¢ det L

(4) If det (L) # 0, then L is invertible.
ProoOF. For any z1, ..., z, we have
det (Lo K)vol(x1,...,2,) = vol(LoK (x1),...,LoK (z,))

= det(L)vol (K (z1),..., L (zn))
= det (L)det (K)vol (z1,...,zp) .

The second property follows from

vol (azxq, ...,axy,) = & vol (z1, ..., xy,) .
For the third we simply use that 1y, = Lo L™! so
1 =det(L)det (L7").
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For the last property select a basis x4, ..., z, for V. Then
vol (L (z1),....,L(x,)) = det(L)vol(z1,...,xx)
# 0.
Thus L (z1), ..., L (z,) is also a basis for V. This implies that L is invertible. O

One can in fact show that any map A : hom (V,V) — F such that
A(KoL) = A(K)A(L)
A(ly) = 1
depends only on the determinant of the operator (see also exercises).

We have some further useful and interesting results for determinants of matri-
ces.

PROPOSITION 32. If A € Mat,,x,, (F) can be written in block form

| A A
A= { 0 Ay |’
where A1 € Maty,, xn, (F), A12 € Mat,, xn, (F), and Azg € Mat,,xn, (F), n1 +
ng = n, then
det A = det A1 det Ao

PROOF. Write the canonical basis for F™ as ey, ..., en,, f1, .., fn, according to
the block decomposition. Next observe that A can be written as a composition in
the following way

A A
do L
B {1 A12:||:A11 O]
0 Ao 0 1
= BC
Thus it suffices to show that
det[ (1) i;z ] = detB
= det (Ag)
and
det[Agl (1)} = detC
= det(A411).

To prove the last formula note that for fixed fi,..., fn, and
X1y ey Tpy € span{e, ..., en, }
the volume form
VOL (X1, ooy Tiys f1y vy fri)
defines the usual volume form on span {ey, ..., e, } = F"'. Thus
detC = wvol(C(e1),...,C(eny),C(f1),-, C(fns))

= VOI(All (61)7"‘7A11 (en1)7f17~'7fn2)
= detAu.
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For the first equation we observe
det B = vol(B(e1),....B(en;),B(f1),-, B(fn,))
= vol(e,...,eny, A12 (f1) + A22 (f1) 5y A12 (fry) + A22 (fnr))
= vol(er,...,en,, Aoa (f1), ., A2a (f1n,))
since A1z (f;) € span{ei, ..., en, } . Then we get det B = det Ay, as before. O

PROPOSITION 33. If A € Mat,,«,, (F), then det A = det A’

PRrROOF. First note that the result is obvious if A is upper triangular. Using
row operations we can always find an invertible P such that PA is upper triangular.
Here P is a product of the elementary matrices of the types I;; and R;; (o). The row
interchange matrices I;; are symmetric, i.e., Ifj = I;; and have det I;; = —1. While
Rji (@) is upper or lower triangular with 1s on the diagonal. Hence (R;; (o))" =
Rji () and det R;; (o) = 1. In particular, it follows that det P = det P* = =+1.
Thus
det (PA)

det P
det ((PA)t)
det (P)*
det (At P?)
det (P)"
det (A)

detA =

O

This last proposition tells us that the determinant map A — |A| defined on
Mat,, xr (F) is linear and alternating in both columns and rows. This can be ex-
tremely useful when calculating determinants. It also tells us that one can do
Laplace expansions along columns as well as rows.

5.1. Exercises.

(1) Find the determinant of
L : Matyxn (F) = Mat,x, (F)
L(X) = X.
(2) Find the determinant of L : P, — P,, where
(a) L(p(t) =p(~1)
(b) L(p(t) =p(t)+p(-1)
(¢) L(p)=Dp=1yp.
(3) Find the determinant of L = p (D), for p € C[t] when restricted to the
spaces
(a) V=P,
(b) V = span {exp (A1t),...,exp (Ant)}.
(4) Let L : V — V be an operator on a finite dimensional inner product space.
Show that
det (L) = det (L*).
(5) Let V be an n-dimensional inner product space and vol a volume form so
that vol (eq, ..., e,) = 1 for some orthonormal basis e, ..., e,.
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(a) If L:V — V is an isometry, then |det L| = 1.

(b) Show that the set of isometries L with det L = 1 forms a group.
Show that O € O,, has type I if and only if det (O) = 1. Conclude that
SO, is a group.

Given A € Mat,,«y, (F) consider the two linear operators Lg (X) = AX
and Ra (X) = XA on Mat, x, (F). Compute the determinant for these
operators in terms of the determinant for A.

If L:V — V is a linear operator and vol a volume form on V, then

tr (A)vol (z1,...,z,) = vol(L(z1),...,%n)
+vol(x1,L(z2),...,xn)

+vol(x1,..., L (zy)).

Show that
1 ... 1 1
AN A,
p(t) = det .
)\711 . )\z i

defines a polynomial of degree n whose roots are Ay, ..., A,,. Compute k
where

p(t) :k(t_Al)(t_)‘n)
by doing a Laplace expansion along the last column.
Assume that the n x n matrix A has a block decomposition

A A
A=
{ Ay Az } ’

where A1y is an invertible matrix. Show that
det (A) = det (A11) det (A22 — A21A1_11A12) .
Hint: Select a suitable product decomposition of the form

A A | _ | Bu 0 Cn Ch2
Azr Ago By By 0 Cy» |-

(Jacobi’s Theorem) Let A be an invertible n x n matrix. Assume that A
and A~! have block decompositions

A Are
A =
|:A21 Az |7
1 11 12
A7 = .
]

Show
det (A) det (AL,) = det (A17) .

Hint: Compute the matrix product

A A 1 Af,
Agr Ao 0 Al |°



272 5. DETERMINANTS

(12) Let A = Mat,, «, (F). We say that A has an LU decomposition if A = LU,
where L is lower triangular with 1s on the diagonal and U is upper trian-
gular. Show that A has an LU decomposition if all the leading principal
minors have nonzero determinant. The leading principal k£ X k minor is
the k x k submatrix gotten from A by eliminating the last n — k rows and
columns.

(13) (Sylvester’s Criterion) Let A be a real and symmetric n X n matrix. Show
that A has positive eigenvalues if and only if all leading principal minors
have positive determinant. Hint: As with the A = LU decomposition
in the previous exercise show by induction on n that A = U*U, where
U is upper triangular. Such a decomposition is also called a Choleski
factorization.

(14) (Characterization of Determinant Functions) Let A : Mat,, «p, (F) — F be
a function such that

A(AB) = A(A)A(B),
Alp) = 1.

(a) Show that there is a function f :F — F satisfying

flap) = f(a) f(B)

such that A (A) = f(det (4)). Hint: Use the relationships between
the elementary matrices established in the exercises to “Row Reduc-
tion” to show that

A(L;) = =1,
A(Mi(a)) = A(M(a)),
A(Bu (@) = A(Ru (1)) =A (R (1)),
and define f (o) = A (M; (@)).
(b) If F = R and n is even show that A (A) = |det (A)| defines a function
such that
A(AB) = A(A)A(B),
A(Mgn) = A"
(¢) If F = C and in addition A (Algr) = A", then show that A (A4) =
det (A).

(d) If F =R and in addition A (Algn) = A", where n is odd, then show
that A (A) = det (A).

6. Linear Equations

Cramer’s rule is a formula for the solution to n linear equations in n variables
when we know that only one solution exists. We will generalize this construction a
bit so as to see that it can be interpreted as an inverse to the isomorphism

[xl xn]:IF”—>V

when x4, ..., x, is a basis.
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THEOREM 44. Let V' be an n dimensional vector space and vol a volume form.
If x1,...,xy is a basis for V and x = z100 + - - - T, @S the expansion of x € V

with respect to that basis, then

vol (z, 29, ..., Tp)

o = — 27T
! vol (21, .o, )
VOl ey T 1, Ty T 1y ey Ty)
a; = )
vol (x1, ..., zp)
o, = vol (21, ..oy Tp—1, T)

vol (z1, ..., xy)

PRrOOF. First note that each a; depends linearly on x. Thus we have defined
a linear map V — F”. This means that we only need to check what happens when
x is one of the vectors in the basis. If z = z;, then

= vol (z;, T2, ..., Tn) _o
! vol (1, ...y Zp) ’

o VOI(.%'l,...,.’Iﬁi,l,CI?i,CI?ile,...,:Cn) -1
! vol (z1, ..., Tp)

)

@, = vol (.Il,...,xn—lam’i) —0.
vol (xl, ,xn)

Showing that x; is mapped to e;. This means that it is the inverse to
[ Ty e+ Ty, ] F— V.

O

Cramer’s rule isn’t necessarily very practical when solving equations, but it
is often a useful abstract tool. It also comes in handy, as we shall see below in
“Differential Equations” when solving inhomogeneous linear differential equations.

Cramer’s rule can also be used to solve linear equations L (x) = b, as long as
L :V — V is an isomorphism. In particular, it can be used to compute the inverse
of L as is done in one of the exercises. To see how we can solve L () = b, we first
select a basis 1, ..., x, for V and then consider the problem of solving

aq

Qn
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Since L (x1),..., L (z,,) is also a basis we know that this forces

vol (b, L (z2),..., L (xn))

YT (L (@), L @)
o VOU(L (1) s ooy L (2i-1) 1 by L (i) + oo L ()
' Vol (L (z1) 5 L (zn)) ;
. Vol (L (1) s L (1) , )

vol (L (w1), ..., L (x,))

with * = 2107 + - - T, being the solution. If we use b = x1, ..., z,, then we get
the matrix representation for L=' by finding the coordinates to the solutions of
L(z) = x;.

As an example let us see how we can solve

01 -0 31 B1
o0 : &2 B B

; 1 : :
10 0 &n B

First we see directly that

& = B
53 = BZa
51 = 571
From Cramer’s rule we get that
B; 1 0
By 0
: 1
B, 0 0
$=T0 1 0
0 0
1
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A Laplace expansion along the first column tells us that

B, 1 -~ 0 0 1
0o .o 0 0

Pa = 5|2
T |

B, 0 0 0 0

here all of the determinants are upper triangular and all but the last has zeros on

the diagonal. Thus

8, 1 0
By 0
: 1
ﬁn 0 0
Similarly
0 1 0
0 0
: 1
1 0 0
SO
51 = Bn

Similar calculations will confirm our answers for &,,...,¢,,. By using b = ey, ...

we can also find the inverse

o1 --- 0 0
00 . o |1
N | :
1 0 --- 0 0
6.1. Exercises.
(1) Let
2 -1 0
-1 2 -1
A, = 0o -1 2
0 0

(a) Compute det A4,, for n =1,2,3,4.
(b) Compute A, for n =1,2,3,4.

(c) Find det A,, and A,;! for general n.
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(2) Given a nontrivial volume form vol on an n-dimensional vector space V, a
linear operator L : V — V and a basis z1, ..., x, for V define the classical
adjoint adj (L) : V — V by

adj (L) () = wvol(z,L(x2),....,L(xy,))x1
+vol (L (z1),2, L(x3),.... L (x)) T2

+vol(L(z1),...,L(xpn-1),x)xpn.

(a) Show that Loadj(L) =adj(L)o L =det(L)1y.

(b) Show that if L is an n x n matrix, then adj (L) = (cofA)", where
cof A is the cofactor matrix whose ij entry is (—1)"* det A;;, where
A;; is the (n — 1) x (n — 1) matrix obtained from A by deleting the
it" row and j*" column.

(¢) Show that adj (L) does not depend on the choice of basis x1, ..., T,
or volume form vol.

(3) (Lagrange Interpolation) Use Cramer’s rule and

1 ... 1 1
AN o A,
p(t) = det .
)\? )\Z tm

to find p € P, such that p(tg) = bo,...., p(t,) = b, where tg,...,t, € C
are distinct.
(4) Let A € Maty,xn, (F), where F is R or C. Show that there is a constant C,,
depending only on n such that if A is invertible, then
A
A7 < CnHi.
1471 < Cn oot
(5) Let A be an n X n matrix whose entries are integers. If A is invertible
show that A~! has integer entries if and only if det (A4) = +1.
(6) Decide when the system

G oa]-15]

can be solved for all 8¢, 55. Write down a formula for the solution.
(7) For which « is the matrix invertible

a o 1
a 1 1|7
1 1 1

(8) In this exercise we will see how Cramer used his rule to study Leibniz’s
problem of when Az = b can be solved assuming that A € Mat 1 1), (F)
and b € F"*1. Assume in addition that rank (4) = n. Then delete one
row from [A]b] so that the resulting system [A’|b] has a unique solution.
Use Cramer’s rule to solve A’z = b’ and then insert this solution in the
equation that was deleted. Show that this equation is satisfied if and
only if det [A|b] = 0. Hint: The last equation is equivalent to a Laplace
expansion of det [A]b] = 0 along the deleted row.
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(9) For a,b,c € C consider the real equation af + bv = ¢, where &,v € R.
(a) Write this as a system of the real equations.
(b) Show that this system has a unique solution when Im (ab) # 0.
(¢) Use Cramer’s rule to find a formula for ¢ and v that depends Im (ab) ,
Im (ac) , Im (bc) .

7. The Characteristic Polynomial

Now that we know that the determinant of a linear operator characterizes
whether or not it is invertible it would seem perfectly natural to define the charac-
teristic polynomial of L : V' — V by

xr (t) =det (t1y — L).

Clearly a zero for the function x; (t) corresponds a value of ¢ where t1y — L is not
invertible and therefore ker (t1y — L) # {0}, but this means that such a ¢ is an
eigenvalue. We now need to justify why this definition yields the same function we
constructed using Gauss elimination.

THEOREM 45. Let A € Maty,xn, (F), then x4 (t) = det (¢1gn — A) is a monic
polynomial of degree n whose roots in F are the eigenvalues for A : F* — F™.
Moreover, this definition for the characteristic polynomial agrees with the one given
using Gauss elimination.

PrOOF. First we show that if L : V — V is a linear operator on an n-
dimensional vector space, then x; (t) = det (¢1y — L) defines a monic polynomial
of degree n. To see this consider

= VOI((th — L) €1, --0y (tlv — L) en)

and use linearity of vol to separate each of the terms (t1y — L) ey = tey, — L (er)
When doing this we get to factor out ¢ several times so it is easy to see that we get
a polynomial in ¢. To check the degree we group terms involving powers of ¢ that
are lower than n in the expression O (t”_l)
det (t1y — A) = wvol((tly — L)ey,...,(tly — L) ey)
= tvol(ey, (tly — L)eg, ..., (t1y — L) ey)
—vol(L(e1),(tly — L)ea,...,(tly — L) ey,)
= tvol (61, (tlv — L) €2, ..., (tlv — L) en) +0 (tn_l)
= t*>vol(er, e, ..., (tly — L)e,) + O (")

= t"vol(ey,ea,...,e,)+ O (t"_l)
= t"+O ("),
In chapter 2 we proved that (t1gn — A) = PU, where

’I“l(t> *
0 ro(t) oo
U=|. .
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and P is the product of the elementary matrices: 1. Ij; interchanging rows, 2.
Ry (r (t)) which multiplies row [ by a function r (¢) and adds it to row k, and 3.
Mj; (e) which simply multiplies row k& by o € F—{0}. For each fixed ¢ we have
det (Ikl) = —].7
det (R (r (1)) = 1,
det (M (a))

Q.
This means that

det (t1lpn — A) = det (PT)
= det (P)det (T)
= det(P)ry(t) - (t)
where det (P) is a nonzero scalar that does not depend on ¢t and 71 (¢) - -7y, (¢) is

the function that we used to define the characteristic polynomial in chapter 2. This
shows that the two definitions have to agree. O

With this new definition of the characteristic polynomial we can establish some
further interesting properties.

PROPOSITION 34. Assume that L : V — V has

xg (1) =t" + an 1 t" " 4+ agt + ao.

Then
an_1 = —trl,
ag = (=1)"det L.
PrOOF. To show the last property just note that
a = xr(0)
= det(—L)

(—=1)"det (L).

The first property takes a little more thinking. We use the calculation that lead to
the formula

det (t1y — A) = vol((tly — L) zq, ..., (tly — L) 2,)
t"+o (")

from the previous proof. Evidently we have to calculate the coefficient in front of
t"~1. That term must look like

t" 1 (vol (=L (e1) , €2, ..., en) + --- +vol (e1, €2, ..., =L (e,))) .
Thus we have to show
tr (L) = vol (L (e1),e2,...,en) + -+ vol (e1, €2, ..., L (ey)).

To see this expand

L (67,) = Z €0,
7j=1
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so that [a;;] = [L] and tr (L) = aq1 + - - - + p. Next note that if we insert that
expansion in, say, vol (L (e1) , ea, ..., €,) , then we have

n
vol (L (e1),e2...,e,) = vol Zejozjl,eg,...,en
Jj=1

= vol(ejaq1,€2,...,€n)
= ajgvol(ey,ea,...,en)
ar1.
This implies that
tr (L) = a4+ ann
= vol(L(e1),ea,....,en)+
-4 vol (e1,e2,..., L (en)) .
O

PROPOSITION 35. Assume that L : V — V and that M C V is an L invariant
subspace, then xp,, (t) divides xp, (t).

PRrROOF. Select a basis z1, ..., z, for V such that x1,..,x; form a basis for M.
Then the matrix representation for L in this basis looks like
| A A
[L] - |: O A22 9

where Aj; € Matgxy (F), A2 € Math(n_k) (F), and Ags € Mat(n_k)x(n_k) (F).
This means that

o tl[gk — Au A12
ten = [L] = [ 0 tlgn—k — Aoy |

Thus we have

xp () = X[L] (t)
= det (tl]Fk — All) det (t].]pn—k — AQQ) .

Now Aj; is the matrix representation for L|ys so we have proven

xz (t) = xg,, () p ()

where p (t) is some polynomial. O

7.1. Exercises.

(1) Let K,L:V — V be linear operators.
(a) Show that det (K —tL) is a polynomial in ¢.
(b) If K or L is invertible show that det (¢ — Lo K) =det (tI — Ko L).
(¢) Show part b. in general.
(2) Let V be a finite dimensional real vector space and L : V — V a linear
operator.
(a) Show that the number of complex roots of the characteristic polyno-
mial is even. Hint: They come in conjugate pairs.
(b) If dimg V is odd then L has an eigenvalue whose sign is the same as
that of det L.
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(¢) If dimg V is even and det L < 0 then L has two real eigenvalues, one
negative and one positive.

_ | a7
A‘{ﬁ 5]

xa(t) = t?—(trA)t+detA
= ?—(a+08)t+ (ad—B7).
(4) If A € Matsys (F) and A = [o;], then
Xa () =t = (tr A) 2 + (|An] + [Aga| + [ As3]) t — det A,

where A;; are the companion matrix we get from eliminating the i*" row
and column in A.
(5) If L is invertible then

(=" (t1).

X1 (t) = dot L XL

(6) Let L:V — V be a linear operator on a finite dimensional inner product
space with

Xz (8) =t" 4+ ap1t" P+ -+ art + ao.
Show that
Xpe () =t" + @ 1 t" " 4 agt + ao.
(7) Let
xr () =t" +an_1t" -+ ayt +ag
be the characteristic polynomial for L : V' — V. If vol is a volume form
on V show that
k
(=1)" ap—g vol (z1, ..., xy)
= Z VOI("vmilflaL(mil)7xi1+17”'7xi;€717L(xi1€)axik+17")7
11 <ig<---<ig
i.e., we are summing over all possible choices of i1 < 75 < -+ < if and in
each summand replacing z;; by L (331]) .

(8) Suppose we have a sequence V; L Vs I3 V3 of linear maps, where L;
is one-to-one, Lo is onto, and im (L) = ker (Lz). Show that dim Vs =
dim V7 dim V3. Assume furthermore that we have linear operators K; :
V; — V; such that the diagram commutes

L L
Vi = Vo BV

Ki1 Ky 1 Ks 1
i o Bown By
Show that
Xre, () = Xx, (8) Xpe, (1) -
(9) Using the definition

det A = Zsign (T1y oy in) Qiy1* Qi

reprove the results from this section for matrices.



8. DIFFERENTIAL EQUATIONS* 281

(10) (The Newton Identities) In this exercise we wish to generalize the formulae
an_1=—trL, ap = (—1)" det L, for the characteristic polynomial

t"+an,1t”_1+"'+a1ﬁ+a0:(t—)\l)"'(ﬁ—)\n)

of L.
(a) Prove that

ap = (_1)n7k Z )\il s )\in—k‘

11 < <lp—j
(b) Prove that
(L)’ = a2,
tr (LF) = A+ + )b

(c) Prove
(tI‘ L)2 = ftr (L2) + 22 >\i>\j

i<j
= tr (Lz) + 2a,_o.
(d) Prove more generally that

(trD)" = k(=1 ans
( )(trL)k % tr L2

(G- ()
(0)-6)
(AR R )

(e) If tr L =0, then

((Z) B <ni 1> ot ()" <Z>> tr L™ = nldet L.

(f) IftrL=trL? = --- = tr L™ = 0, then x, (t) = t".

w

8. Differential Equations*

We are now going to apply the theory of determinants to the study of linear
differential equations. We start with the system L (z) = & — Az = b, where

x(t) € C",
b ¢ C"
A € Mat,x, (C)
and z (t) is the vector valued function we need to find. We know that the homo-

geneous problem L () = 0 has n linearly independent solutions z1, ..., z,. More
generally we can show something quite interesting about collections of solutions.
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LEMMA 24. Let xq,...,z, be solutions to the homogeneous problem L (x) = 0,
then

d
= (vol (z1,...,xyn)) = tr (A) vol (z1, ..., xy) .

In particular
vol (21, ...y @p) (t) = vol (21, ..., 2p) (to) exp (tr (A) (t — to)) .

Moreover, x1,...,x, are linearly independent solutions if and only if x1 (to), ...,
Zp (to) € C™ are linearly independent. FEach of these two conditions in turn imply
that z1 (t), ..., x, (t) € C™ are linearly independent for all t.

PrOOF. To compute the derivative we find the Taylor expansion for
vol (z1,...,xy) (t + h)

in terms of h and then identify the term that is linear in h. This is done along the
lines of our proof that a,_; = —tr A, where a,,_; is the coefficient in front of "1
in the characteristic polynomial.
vol (1, ..., xp) (t+ h)

= vol(z1 (t+h),....,zn (t+h))

= Vol(xl(t)—i—Aacl()h—i—o(h) &y (8) + Az, () R+ 0 (h))

= vol(z1 (1), ...,zn (1))

+h vol (Aml ( ) Ty (1))

+hvol(x1 (1), ..., Az, (t))
+o(h)
= vol(z1 (t),....,xpn (t)) + htr (A) vol (z1 (t),...,xn (t)) + 0 (h).
Thus
v (t) = vol(z1,...,z,) (t)
solves the differential equation
0 =tr(A)v.
implying that
v (t) = v (to)exp (tr (A) (t — to)) .
In particular, we see that v (t) # 0 provided only v (¢y) # 0.
It remains to prove that x1, ..., z,, are linearly independent solutions if and only

if 1 (to) , ..., Tn (to) € C™ are linearly independent. It is obvious that x1, ..., x,, are
linearly independent if z1 (¢g), ..., ©n (tg) € C™ are linearly independent. Con-
versely, if we assume that z; (¢9), ..., &, (tg) € C™ are linearly dependent, then we

can find aq, ..., a, € C" not all zero so that
a1 (to) + -+ Ay Ty (to) =0.

Uniqueness of solutions to the initial value problem L (z) = 0, x (to) = 0, then
implies that

() =a1m1 (t) + -+ @z, (£) =0
for all ¢. 0



8. DIFFERENTIAL EQUATIONS* 283

We now claim that the inhomogeneous problem can be solved provided we
have found a linearly independent set of solutions z1,...,x, to the homogeneous
equation. The formula comes from Cramer’s rule but is known as the variations of
constants method. We assume that the solution z to

L(zx) = d&—Ax=0b,
z(tg) = 0
looks like
z(t)=ci(t)x1 (t)+- - +cn(t)zn(t),
where ¢; (1), ..., ¢ (t) € C* (R, C) are functions rather than constants. Then
T = @1+ F Cpln F G+ -+ CpTy
= Axy+ -+ Ar, + G+ -+ Cpay
= A(x)+ e+ -+ .
In other terms
L(z)=¢1z1 4+ + épn.
This means that for each ¢ the values ¢q (¢) , ..., ¢, (t) should solve the linear equation
éxy+ -+ ¢y =0
Cramer’s rule for solutions to linear systems then tells us that
vol (b, ..., z,,) (t)

a(t) = vol (z1, ..., Ty, (t)’
. B .V01($17--~7b) (t)
Cn (t) ~ vol (zl,...,mn) (t)7
1mplylﬂg that
t vol (b77wn) (8)
C1 (t) a [0 vol (1’1, ceey ZUn) (S) o

o t) = /ft vol (21, ..., b) () ds.

vol (z1, ..., xy) (8)
In practice there are more efficient methods that can be used when we know
something about b. These methods also use linear algebra in order to solve certain
linear systems of equations.

Having dealt with systems we next turn to higher order equations: L (z) =
p(D) (z) = f, where

p(D)=D"+a, D" ' +---+aD+ap

is a polynomial with complex or real coefficients and f (t) € C* (R, C). This can
be translated into a system z — Az = b, or



284 5. DETERMINANTS

by using
x
Dx
z = )
D";lx
If we have n functions 1, ..., x, € C*° (R,C), then the Wronskian
W (21, ...,2n) (£) = vol(z1,...,2n) (t)
1 (1) )
(Da1) (t) o (D) (1)
= det | . .
(DF12)) () - (D 1a) (8)

In the case where z1, ..., z,, solve L (z) = p (D) () = 0 this tells us that
W (21, ...,zpn) (t) = W (21, ..., ) (to) exp (—an—1 (t — o)) -

Finally we can again try the variation of constants method to solve the inho-
mogeneous equation. It is slightly tricky to do this directly by assuming that

z(t)=ci(t)xi (t)+ -+ cn(t)zn (t).
Instead we use the system zZ — Az = b, and guess that
z=c1(t)z1 () + -+ en(t)2zn (t).
This certainly implies that
z(t)=c(t)x1 () + -+ )z (8),
but the converse is not true. As above we get

o) = /t vol (b, ..., zn) () ds,

o Vol (z1,..., zn) ()

B ot vol (21, ...,b) (s) s
Cn (t> N /to vol (Zlv"'azn) (S)d .

Here

vol (21, ooy 2n) = W (21, oy Tn,) -
The numerator can also be simplified by using a Laplace expansion along the column
vector b. This gives us

0 1 e Ty
vol (b, za, ..., zp,) 0 Dnte, . Drotg
b D" lgy ... D" lg,
Z1 In
) :
D" 2, D" 2,
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Thus

o = o [

- e [ g

and therefore a solution to the inhomogeneous equation is given by

w0 = (o [ o

(o [Ty D) )

- n n-+k ¢ b(S)W(l‘l,...,i‘k,...,Zﬁn) (S)
= ;(_1) R (t)/to W (e o) (5) ds

Let us try to solve a concrete problem using these methods.

EXAMPLE 101. Find the complete set of solutions to &t —2&+x = exp (t) . We see
that & — 2& 4+ = (D — 1) z, thus the characteristic equation is (A —1)* = 1. This
means that we only get one solution 1 = exp (t) from the eigenvalue X\ = 1. The
other solution is then given by x2 (t) = texp (t). We now compute the Wronskian
to check that they are linearly independent.

B exp (t) texp (t)
W (zy,22) = exp (t) (1+1t)exp (¢) ‘
1 t
= eXP(Qt)‘ 1 (141 ’
= ((141t)—t)exp(2t)
= exp(2t).

Note we could also have found x4 from our knowledge that
W (21, 22) (t) = W (21, 22) (to) exp (2(t — tp)) .

Assuming that to = 0 and we want W (x1,x2) (to) = 1, we simply need to solve

W (21, 22) (t) = 2182 — T122 = exp (2t) .
Since x1 = exp (t), this implies that

&g — x9 = exp (¢).
Hence
t

x2(t) = exp(?) / exp (—s) exp () ds

= texp(t) ’

as expected.
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The variation of constants formula now tells us to compute

at) = 2+1/ Wz, z )ds
L exp (s) (sexp (s )) S
- /0 exp (2s) !
- 7/ sds
0
_ _th
- 2
and
. 1\2+2 tm S
() = (=1 /OW(xl,dfz)(S)d
= /1ds
0
= t
Thus
T = _%tle (1) + ta (1)

- _%ﬁ exp (t) +t (texp (t))

1
= 5152 exp (t)

solves the inhomogeneous problem and © = oy exp (t) + astexp (t) + 1t?exp (1)
represents the complete set of solutions.

8.1. Exercises.
(1) Let po (t),...,pn (t) € C[t] and assume that t € R. If

pi (t) = anit™ + -+ + a5t + ao;,

show that
— Do (t) N Dn (t)
(Dpo) (t) -+ (Dpn) (1)
W(p07"-apn) = det : :
| (Do) (1) --- (D"py) (t)
[ aoo SR )
aio S Qi
= det| 2020 -+ 2a2,
| nlang - nlag,
apo " Qon
ayp - Qin
= n!~(n—1)!.....2,1det aso  cc Gon

Gpo " Apn
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(2) Let x1, ..., z, be linearly independent solutions to
p (D) (z) = (D" +ap D" 44 ao) (x)=0.
Do the following questions without using what we know about existence
and uniqueness of solutions to differential equations.
(a) Show that

(D) (0) = s

(b) Conclude that p (D) (z) = 0 if and only if W (x, 2;...,2,) = 0.

(¢) ¥ W (z,21...,2,) = 0, then z is a linear combination of z1, ..., .

(d) If x,y are solutions with the same initial values: z(0) = y(0),
Dz (0) = Dy (0), ..., D" 'z (0) = D"y (0), then z = y.

(3) Assume two monic polynomials p, ¢ € C [t] have the property that p (D) (z) =
0 and ¢ (D) (z) = 0 have the same solutions. Is it true that p = ¢7? Hint if
p(D)(z) =0=q(D)(x), then ged (p,q) (D) (z) = 0.

(4) Assume that z is a solution to p (D) (z) = 0, where p(D) = D"+ --- +
a1 D + ag.

(a) Show that the phase shifts z,, (t) = x (¢ + w) are also solutions.
(b) If the vectors

T (w1) z (wn)
Dz (wy) Dz (wy)
D" g (wr) D" g (wy)

form a basis for C", then all solutions to p(D)(x) = 0 are linear
combinations of the phase shifted solutions z,, ..., 2.,
(c) If the vectors

z (w1) z (wn)
Dz (w1) Dz (wy,)
D" g (wr) D 1g (w)

never form a basis for C”, then z is a solution to a k*" order equation
for kK < n. Hint: If x is not a solution to a lower order equation, the
x,Dx,...,D" ' is a (cyclic) basis for the solution space.

(5) Find a formula for the real solutions to the system

:i,’l o a —b X _ bl
i‘z b a o) o b2 ’
where a,b € R and by,bs € C* (R,R).
(6) Find a formula for the real solutions to the equation

T+ at+br = f,
where a,b € R and f € C* (R,R).
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