
ptg7615500

ptg7615500

“The simplified yet deep level of detail, comprehensive coverage of material,
and informative historical references make this book perfect for the class-
room... An easy read, with complex examples presented simply, and great
historical references rarely found in such books. Awesome!”

—Gloria W.

Praise for the Previous Edition

“The long-awaited second edition of Wesley Chun’s Core Python Programming
proves to be well worth the wait—its deep and broad coverage and useful
exercises will help readers learn and practice good Python.”

—Alex Martelli, author of Python in a Nutshell and editor of Python Cookbook

“There has been lot of good buzz around Wesley Chun’s Core Python
Programming. It turns out that all the buzz is well earned. I think this is the
best book currently available for learning Python. I would recommend Chun’s
book over Learning Python (O’Reilly), Programming Python (O’Reilly), or The
Quick Python Book (Manning).”

—David Mertz, Ph.D., IBM DeveloperWorks

“I have been doing a lot of research [on] Python for the past year and have
seen a number of positive reviews of your book. The sentiment expressed
confirms the opinion that Core Python Programming is now considered the
standard introductory text.”

—Richard Ozaki, Lockheed Martin

“Finally, a book good enough to be both a textbook and a reference on the
Python language now exists.”

—Michael Baxter, Linux Journal

“Very well written. It is the clearest, friendliest book I have come across
yet for explaining Python, and putting it in a wider context. It does not
presume a large amount of other experience. It does go into some impor-
tant Python topics carefully and in depth. Unlike too many beginner
books, it never condescends or tortures the reader with childish hide-and-
seek prose games. [It] sticks to gaining a solid grasp of Python syntax and
structure.”

—http://python.org bookstore Web site

http://python.org

ptg7615500

“[If] I could only own one Python book, it would be Core Python Programming
by Wesley Chun. This book manages to cover more topics in more depth
than Learning Python but includes it all in one book that also more than
adequately covers the core language. [If] you are in the market for just one
book about Python, I recommend this book. You will enjoy reading it,
including its wry programmer’s wit. More importantly, you will learn
Python. Even more importantly, you will find it invaluable in helping
you in your day-to-day Python programming life. Well done, Mr. Chun!”

—Ron Stephens, Python Learning Foundation

“I think the best language for beginners is Python, without a doubt. My
favorite book is Core Python Programming.”

—s003apr, MP3Car.com Forums

“Personally, I really like Python. It’s simple to learn, completely intuitive,
amazingly flexible, and pretty darned fast. Python has only just started to
claim mindshare in the Windows world, but look for it to start gaining lots
of support as people discover it. To learn Python, I’d start with Core Python
Programming by Wesley Chun.”

—Bill Boswell, MCSE, Microsoft Certified Professional Magazine Online

“If you learn well from books, I suggest Core Python Programming. It is by
far the best I’ve found. I’m a Python newbie as well and in three months’
time I’ve been able to implement Python in projects at work (automating
MSOffice, SQL DB stuff, etc.).”

—ptonman, Dev Shed Forums

“Python is simply a beautiful language. It’s easy to learn, it’s cross-plat-
form, and it works. It has achieved many of the technical goals that Java
strives for. A one-sentence description of Python would be: ‘All other lan-
guages appear to have evolved over time—but Python was designed.’ And
it was designed well. Unfortunately, there aren’t a large number of books for
Python. The best one I’ve run across so far is Core Python Programming.”

—Chris Timmons, C. R. Timmons Consulting

“If you like the Prentice Hall Core series, another good full-blown treat-
ment to consider would be Core Python Programming. It addresses in elabo-
rate concrete detail many practical topics that get little, if any, coverage in
other books.”

—Mitchell L. Model, MLM Consulting

ptg7615500

Core

PYTHON
Applications Programming

Third Edition

ptg7615500
The Core Series is designed to provide you � the experienced programmer �
with the essential information you need to quickly learn and apply the latest,
most important technologies.

Authors in The Core Series are seasoned professionals who have pioneered
the use of these technologies to achieve tangible results in real-world settings.
These experts:
� Share their practical experiences
� Support their instruction with real-world examples
� Provide an accelerated, highly effective path to learning the subject at hand

The resulting book is a no-nonsense tutorial and thorough reference that allows
you to quickly produce robust, production-quality code.

Visit informit.com/coreseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Core Series

ptg7615500

Core

PYTHON
Applications Programming

Third Edition

Wesley J. Chun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg7615500

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Chun, Wesley.

Core python applications programming / Wesley J. Chun. — 3rd ed.
p. cm.

Rev. ed. of: Core Python programming / Wesley J. Chun. c2007.
Includes index.
ISBN 0-13-267820-9 (pbk. : alk. paper)
1. Python (Computer program language) I. Chun, Wesley. Core Python

programming. II. Title.
QA76.73.P98C48 2012
005.1'17—dc23 2011052903

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-267820-9
ISBN-10: 0-13-267820-9

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,
Michigan.
First printing, March 2012

ptg7615500

To my parents,
who taught me that everybody is different.

And to my wife,
who lives with someone who is different.

ptg7615500

This page intentionally left blank

ptg7615500

ix

CONTENTS

Preface xv

Acknowledgments xxvii

About the Author xxxi

Part I General Application Topics 1

Chapter 1 Regular Expressions 2

1.1 Introduction/Motivation 3
1.2 Special Symbols and Characters 6
1.3 Regexes and Python 16
1.4 Some Regex Examples 36
1.5 A Longer Regex Example 41
1.6 Exercises 48

Chapter 2 Network Programming 53

2.1 Introduction 54
2.2 What Is Client/Server Architecture? 54
2.3 Sockets: Communication Endpoints 58
2.4 Network Programming in Python 61
2.5 *The SocketServer Module 79
2.6 *Introduction to the Twisted Framework 84
2.7 Related Modules 88
2.8 Exercises 89

ptg7615500

x Contents

Chapter 3 Internet Client Programming 94

3.1 What Are Internet Clients? 95
3.2 Transferring Files 96
3.3 Network News 104
3.4 E-Mail 114
3.5 Related Modules 146
3.6 Exercises 148

Chapter 4 Multithreaded Programming 156

4.1 Introduction/Motivation 157
4.2 Threads and Processes 158
4.3 Threads and Python 160
4.4 The thread Module 164
4.5 The threading Module 169
4.6 Comparing Single vs. Multithreaded Execution 180
4.7 Multithreading in Practice 182
4.8 Producer-Consumer Problem and the Queue/queue Module 202
4.9 Alternative Considerations to Threads 206
4.10 Related Modules 209
4.11 Exercises 210

Chapter 5 GUI Programming 213

5.1 Introduction 214
5.2 Tkinter and Python Programming 216
5.3 Tkinter Examples 221
5.4 A Brief Tour of Other GUIs 236
5.5 Related Modules and Other GUIs 247
5.6 Exercises 250

Chapter 6 Database Programming 253

6.1 Introduction 254
6.2 The Python DB-API 259
6.3 ORMs 289
6.4 Non-Relational Databases 309
6.5 Related References 316
6.6 Exercises 319

Chapter 7 *Programming Microsoft Office 324

7.1 Introduction 325
7.2 COM Client Programming with Python 326
7.3 Introductory Examples 328
7.4 Intermediate Examples 338
7.5 Related Modules/Packages 357
7.6 Exercises 357

ptg7615500

Contents xi

Chapter 8 Extending Python 364

8.1 Introduction/Motivation 365
8.2 Extending Python by Writing Extensions 368
8.3 Related Topics 384
8.4 Exercises 388

Part II Web Development 389

Chapter 9 Web Clients and Servers 390

9.1 Introduction 391
9.2 Python Web Client Tools 396
9.3 Web Clients 410
9.4 Web (HTTP) Servers 428
9.5 Related Modules 433
9.6 Exercises 436

Chapter 10 Web Programming: CGI and WSGI 441

10.1 Introduction 442
10.2 Helping Web Servers Process Client Data 442
10.3 Building CGI Applications 446
10.4 Using Unicode with CGI 464
10.5 Advanced CGI 466
10.6 Introduction to WSGI 478
10.7 Real-World Web Development 487
10.8 Related Modules 488
10.9 Exercises 490

Chapter 11 Web Frameworks: Django 493

11.1 Introduction 494
11.2 Web Frameworks 494
11.3 Introduction to Django 496
11.4 Projects and Apps 501
11.5 Your “Hello World” Application (A Blog) 507
11.6 Creating a Model to Add Database Service 509
11.7 The Python Application Shell 514
11.8 The Django Administration App 518
11.9 Creating the Blog’s User Interface 527
11.10 Improving the Output 537
11.11 Working with User Input 542
11.12 Forms and Model Forms 546
11.13 More About Views 551
11.14 *Look-and-Feel Improvements 553
11.15 *Unit Testing 554
11.16 *An Intermediate Django App: The TweetApprover 564
11.17 Resources 597
11.18 Conclusion 597
11.19 Exercises 598

ptg7615500

xii Contents

Chapter 12 Cloud Computing: Google App Engine 604

12.1 Introduction 605
12.2 What Is Cloud Computing? 605
12.3 The Sandbox and the App Engine SDK 612
12.4 Choosing an App Engine Framework 617
12.5 Python 2.7 Support 626
12.6 Comparisons to Django 628
12.7 Morphing “Hello World” into a Simple Blog 631
12.8 Adding Memcache Service 647
12.9 Static Files 651
12.10 Adding Users Service 652
12.11 Remote API Shell 654
12.12 Lightning Round (with Python Code) 656
12.13 Sending Instant Messages by Using XMPP 660
12.14 Processing Images 662
12.15 Task Queues (Unscheduled Tasks) 663
12.16 Profiling with Appstats 670
12.17 The URLfetch Service 672
12.18 Lightning Round (without Python Code) 673
12.19 Vendor Lock-In 675
12.20 Resources 676
12.21 Conclusion 679
12.22 Exercises 680

Chapter 13 Web Services 684

13.1 Introduction 685
13.2 The Yahoo! Finance Stock Quote Server 685
13.3 Microblogging with Twitter 690
13.4 Exercises 707

Part III Supplemental/Experimental 713

Chapter 14 Text Processing 714

14.1 Comma-Separated Values 715
14.2 JavaScript Object Notation 719
14.3 Extensible Markup Language 724
14.4 References 738
14.5 Related Modules 740
14.6 Exercises 740

Chapter 15 Miscellaneous 743

15.1 Jython 744
15.2 Google+ 748
15.3 Exercises 759

ptg7615500

Contents xiii

Appendix A Answers to Selected Exercises 763

Appendix B Reference Tables 768

Appendix C Python 3: The Evolution of a Programming Language 798

C.1 Why Is Python Changing? 799
C.2 What Has Changed? 799
C.3 Migration Tools 805
C.4 Conclusion 806
C.5 References 806

Appendix D Python 3 Migration with 2.6+ 807

D.1 Python 3: The Next Generation 807
D.2 Integers 809
D.3 Built-In Functions 812
D.4 Object-Oriented Programming: Two Different Class Objects 814
D.5 Strings 815
D.6 Exceptions 816
D.7 Other Transition Tools and Tips 817
D.8 Writing Code That is Compatible in Both Versions 2.x and 3.x 818
D.9 Conclusion 822

Index 823

ptg7615500

This page intentionally left blank

ptg7615500

xv

PREFACE

Welcome to the Third Edition of Core Python
Applications Programming!

We are delighted that you have engaged us to help you learn Python as
quickly and as deeply as possible. The goal of the Core Python series of
books is not to just teach developers the Python language; we want you
you to develop enough of a personal knowledge base to be able to develop
software in any application area.

In our other Core Python offerings, Core Python Programming and Core
Python Language Fundamentals, we not only teach you the syntax of the
Python language, but we also strive to give you in-depth knowledge of
how Python works under the hood. We believe that armed with this
knowledge, you will write more effective Python applications, whether
you’re a beginner to the language or a journeyman (or journeywoman!).

Upon completion of either or any other introductory Python books, you
might be satisfied that you have learned Python and learned it well. By
completing many of the exercises, you’re probably even fairly confident in
your newfound Python coding skills. Still, you might be left wondering,
“Now what? What kinds of applications can I build with Python?” Per-
haps you learned Python for a work project that’s constrained to a very
narrow focus. “What else can I build with Python?”

ptg7615500

xvi Preface

About this Book

In Core Python Applications Programming, you will take all the Python
knowledge gained elsewhere and develop new skills, building up a toolset
with which you’ll be able to use Python for a variety of general applica-
tions. These advanced topics chapters are meant as intros or “quick dives”
into a variety of distinct subjects. If you’re moving toward the specific
areas of application development covered by any of these chapters, you’ll
likely discover that they contain more than enough information to get you
pointed in the right direction. Do not expect an in-depth treatment because
that will detract from the breadth-oriented treatment that this book is
designed to convey.

Like all other Core Python books, throughout this one, you will find
many examples that you can try right in front of your computer. To ham-
mer the concepts home, you will also find fun and challenging exercises at
the end of every chapter. These easy and intermediate exercises are meant
to test your learning and push your Python skills. There simply is no sub-
stitute for hands-on experience. We believe you should not only pick up
Python programming skills but also be able to master them in as short a
time period as possible.

Because the best way for you to extend your Python skills is through
practice, you will find these exercises to be one of the greatest strengths of
this book. They will test your knowledge of chapter topics and definitions
as well as motivate you to code as much as possible. There is no substitute
for improving your skills more effectively than by building applications.
You will find easy, intermediate, and difficult problems to solve. It is also
here that you might need to write one of those “large” applications that
many readers wanted to see in the book, but rather than scripting
them—which frankly doesn’t do you all that much good—you gain by
jumping right in and doing it yourself. Appendix A, “Answers to Selected
Exercises,” features answers to selected problems from each chapter. As
with the second edition, you’ll find useful reference tables collated in
Appendix B, “Reference Tables.”

I’d like to personally thank all readers for your feedback and encourage-
ment. You’re the reason why I go through the effort of writing these books.
I encourage you to keep sending your feedback and help us make a fourth
edition possible, and even better than its predecessors!

ptg7615500

Preface xvii

Who Should Read This Book?

This book is meant for anyone who already knows some Python but wants
to know more and expand their application development skillset.

Python is used in many fields, including engineering, information tech-
nology, science, business, entertainment, and so on. This means that the list
of Python users (and readers of this book) includes but is not limited to

• Software engineers

• Hardware design/CAD engineers

• QA/testing and automation framework developers

• IS/IT/system and network administrators

• Scientists and mathematicians

• Technical or project management staff

• Multimedia or audio/visual engineers

• SCM or release engineers

• Web masters and content management staff

• Customer/technical support engineers

• Database engineers and administrators

• Research and development engineers

• Software integration and professional services staff

• Collegiate and secondary educators

• Web service engineers

• Financial software engineers

• And many others!

Some of the most famous companies that use Python include Google,
Yahoo!, NASA, Lucasfilm/Industrial Light and Magic, Red Hat, Zope, Disney,
Pixar, and Dreamworks.

ptg7615500

xviii Preface

The Author and Python

I discovered Python over a decade ago at a company called Four11. At the
time, the company had one major product, the Four11.com White Page
directory service. Python was being used to design its next product: the
Rocketmail Web-based e-mail service that would eventually evolve into
what today is Yahoo! Mail.

It was fun learning Python and being on the original Yahoo! Mail engi-
neering team. I helped re-design the address book and spell checker. At
the time, Python also became part of a number of other Yahoo! sites,
including People Search, Yellow Pages, and Maps and Driving Directions,
just to name a few. In fact, I was the lead engineer for People Search.

Although Python was new to me then, it was fairly easy to pick
up—much simpler than other languages I had learned in the past. The
scarcity of textbooks at the time led me to use the Library Reference and
Quick Reference Guide as my primary learning tools; it was also a driving
motivation for the book you are reading right now.

Since my days at Yahoo!, I have been able to use Python in all sorts of
interesting ways at the jobs that followed. In each case, I was able to har-
ness the power of Python to solve the problems at hand, in a timely man-
ner. I have also developed several Python courses and have used this book
to teach those classes—truly eating my own dogfood.

Not only are the Core Python books great learning devices, but they’re
also among the best tools with which to teach Python. As an engineer, I
know what it takes to learn, understand, and apply a new technology. As a
professional instructor, I also know what is needed to deliver the most effective
sessions for clients. These books provide the experience necessary to be able
to give you real-world analogies and tips that you cannot get from some-
one who is “just a trainer” or “just a book author.”

What to Expect of the Writing Style:
Technical, Yet Easy Reading

Rather than being strictly a “beginners” book or a pure, hard-core com-
puter science reference book, my instructional experience has taught me
that an easy-to-read, yet technically oriented book serves the purpose the
best, which is to get you up to speed on Python as quickly as possible so
that you can apply it to your tasks posthaste. We will introduce concepts

ptg7615500

Preface xix

coupled with appropriate examples to expedite the learning process. At the
end of each chapter you will find numerous exercises to reinforce some of
the concepts and ideas acquired in your reading.

We are thrilled and humbled to be compared with Bruce Eckel’s writing
style (see the reviews to the first edition at the book’s Web site, http://
corepython.com). This is not a dry college textbook. Our goal is to have a
conversation with you, as if you were attending one of my well-received
Python training courses. As a lifelong student, I constantly put myself in
my student’s shoes and tell you what you need to hear in order to learn
the concepts as quickly and as thoroughly as possible. You will find read-
ing this book fast and easy, without losing sight of the technical details.

As an engineer, I know what I need to tell you in order to teach you a
concept in Python. As a teacher, I can take technical details and boil them
down into language that is easy to understand and grasp right away. You
are getting the best of both worlds with my writing and teaching styles,
but you will enjoy programming in Python even more.

Thus, you’ll notice that even though I’m the sole author, I use the “third-
person plural” writing structure; that is to say, I use verbiage such as “we”
and “us” and “our,” because in the grand scheme of this book, we’re all in
this together, working toward the goal of expanding the Python program-
ming universe.

About This Third Edition

At the time the first edition of this book was published, Python was enter-
ing its second era with the release of version 2.0. Since then, the language
has undergone significant improvements that have contributed to the
overall continued success, acceptance, and growth in the use of the lan-
guage. Deficiencies have been removed and new features added that bring
a new level of power and sophistication to Python developers worldwide.
The second edition of the book came out in 2006, at the height of Python’s
ascendance, during the time of its most popular release to date, 2.5.

The second edition was released to rave reviews and ended up outsell-
ing the first edition. Python itself had won numerous accolades since that
time as well, including the following:

• Tiobe (www.tiobe.com)

– Language of the Year (2007, 2010)

http://corepython.com
http://corepython.com
www.tiobe.com

ptg7615500

xx Preface

• LinuxJournal (linuxjournal.com)

– Favorite Programming Language (2009–2011)

– Favorite Scripting Language (2006–2008, 2010, 2011)

• LinuxQuestions.org Members Choice Awards

– Language of the Year (2007–2010)

These awards and honors have helped propel Python even further.
Now it’s on its next generation with Python 3. Likewise, Core Python Pro-
gramming is moving towards its “third generation,” too, as I’m exceedingly
pleased that Prentice Hall has asked me to develop this third edition.
Because version 3.x is backward-incompatible with Python 1 and 2, it will
take some time before it is universally adopted and integrated into indus-
try. We are happy to guide you through this transition. The code in this
edition will be presented in both Python 2 and 3 (as appropriate—not
everything has been ported yet). We’ll also discuss various tools and prac-
tices when porting.

The changes brought about in version 3.x continue the trend of iterating
and improving the language, taking a larger step toward removing some
of its last major flaws, and representing a bigger jump in the continuing
evolution of the language. Similarly, the structure of the book is also mak-
ing a rather significant transition. Due to its size and scope, Core Python
Programming as it has existed wouldn’t be able to handle all the new mate-
rial introduced in this third edition.

Therefore, Prentice Hall and I have decided the best way of moving for-
ward is to take that logical division represented by Parts I and II of the pre-
vious editions, representing the core language and advanced applications
topics, respectively, and divide the book into two volumes at this juncture.
You are holding in your hands (perhaps in eBook form) the second half of
the third edition of Core Python Programming. The good news is that the
first half is not required in order to make use of the rich amount of content
in this volume. We only recommend that you have intermediate Python
experience. If you’ve learned Python recently and are fairly comfortable
with using it, or have existing Python skills and want to take it to the next
level, then you’ve come to the right place!

As existing Core Python Programming readers already know, my primary
focus is teaching you the core of the Python language in a comprehen-
sive manner, much more than just its syntax (which you don’t really need
a book to learn, right?). Knowing more about how Python works under
the hood—including the relationship between data objects and memory
management—will make you a much more effective Python programmer

ptg7615500

Preface xxi

right out of the gate. This is what Part I, and now Core Python Language
Fundamentals, is all about.

As with all editions of this book, I will continue to update the book’s
Web site and my blog with updates, downloads, and other related articles
to keep this publication as contemporary as possible, regardless to which
new release of Python you have migrated.

For existing readers, the new topics we have added to this edition include:
• Web-based e-mail examples (Chapter 3)

• Using Tile/Ttk (Chapter 5)

• Using MongoDB (Chapter 6)

• More significant Outlook and PowerPoint examples (Chapter 7)

• Web server gateway interface (WSGI) (Chapter 10)

• Using Twitter (Chapter 13)

• Using Google+ (Chapter 15)

In addition, we are proud to introduce three brand new chapters to the
book: Chapter 11, “Web Frameworks: Django,” Chapter 12, “Cloud Com-
puting: Google App Engine,” and Chapter 14, “Text Processing.” These rep-
resent new or ongoing areas of application development for which Python
is used quite often. All existing chapters have been refreshed and updated
to the latest versions of Python, possibly including new material. Take a
look at the chapter guide that follows for more details on what to expect
from every part of this volume.

Chapter Guide

This book is divided into three parts. The first part, which takes up about
two-thirds of the text, gives you treatment of the “core” members of any
application development toolset (with Python being the focus, of course).
The second part concentrates on a variety of topics, all tied to Web pro-
gramming. The book concludes with the supplemental section which pro-
vides experimental chapters that are under development and hopefully
will grow into independent chapters in future editions.

All three parts provide a set of various advanced topics to show what
you can build by using Python. We are certainly glad that we were at least
able to provide you with a good introduction to many of the key areas of
Python development including some of the topics mentioned previously.

Following is a more in-depth, chapter-by-chapter guide.

ptg7615500

xxii Preface

Part I: General Application Topics

Chapter 1—Regular Expressions

Regular expressions are a powerful tool that you can use for pattern
matching, extracting, and search-and-replace functionality.

Chapter 2—Network Programming

So many applications today need to be network oriented. In this chapter, you
learn to create clients and servers using TCP/IP and UDP/IP as well as get an
introduction to SocketServer and Twisted.

Chapter 3—Internet Client Programming

Most Internet protocols in use today were developed using sockets. In
Chapter 3, we explore some of those higher-level libraries that are used to
build clients of these Internet protocols. In particular, we focus on file
transfer (FTP), the Usenet news protocol (NNTP), and a variety of e-mail
protocols (SMTP, POP3, IMAP4).

Chapter 4—Multithreaded Programming

Multithreaded programming is one way to improve the execution perfor-
mance of many types of applications by introducing concurrency. This
chapter ends the drought of written documentation on how to implement
threads in Python by explaining the concepts and showing you how to
correctly build a Python multithreaded application and what the best use
cases are.

Chapter 5—GUI Programming

Based on the Tk graphical toolkit, Tkinter (renamed to tkinter in Python 3)
is Python’s default GUI development library. We introduce Tkinter to you
by showing you how to build simple GUI applications. One of the best
ways to learn is to copy, and by building on top of some of these applica-
tions, you will be on your way in no time. We conclude the chapter by tak-
ing a brief look at other graphical libraries, such as Tix, Pmw, wxPython,
PyGTK, and Ttk/Tile.

ptg7615500

Preface xxiii

Chapter 6—Database Programming

Python helps simplify database programming, as well. We first review
basic concepts and then introduce you to the Python database application
programmer’s interface (DB-API). We then show you how you can connect
to a relational database and perform queries and operations by using
Python. If you prefer a hands-off approach that uses the Structured Query
Language (SQL) and want to just work with objects without having to
worry about the underlying database layer, we have object-relational man-
agers (ORMs) just for that purpose. Finally, we introduce you to the world
of non-relational databases, experimenting with MongoDB as our NoSQL
example.

Chapter 7—Programming Microsoft Office

Like it or not, we live in a world where we will likely have to interact with
Microsoft Windows-based PCs. It might be intermittent or something we
have to deal with on a daily basis, but regardless of how much exposure
we face, the power of Python can be used to make our lives easier. In this
chapter, we explore COM Client programming by using Python to control
and communicate with Office applications, such as Word, Excel, Power-
Point, and Outlook. Although experimental in the previous edition, we’re
glad we were able to add enough material to turn this into a standalone
chapter.

Chapter 8—Extending Python

We mentioned earlier how powerful it is to be able to reuse code and
extend the language. In pure Python, these extensions are modules and
packages, but you can also develop lower-level code in C/C++, C#, or Java.
Those extensions then can interface with Python in a seamless fashion.
Writing your extensions in a lower-level programming language gives you
added performance and some security (because the source code does not
have to be revealed). This chapter walks you step-by-step through the
extension building process using C.

ptg7615500

xxiv Preface

Part II: Web Development

Chapter 9—Web Clients and Servers

Extending our discussion of client-server architecture in Chapter 2, we apply
this concept to the Web. In this chapter, we not only look at clients, but also
explore a variety of Web client tools, parsing Web content, and finally, we
introduce you to customizing your own Web servers in Python.

Chapter 10—Web Programming: CGI and WSGI

The main job of Web servers is to take client requests and return results.
But how do servers get that data? Because they’re really only good at
returning results, they generally do not have the capabilities or logic nec-
essary to do so; the heavy lifting is done elsewhere. CGI gives servers the
ability to spawn another program to do this processing and has histori-
cally been the solution, but it doesn’t scale and is thus not really used in
practice; however, its concepts still apply, regardless of what framework(s)
you use, so we’ll spend most of the chapter learning CGI. You will also
learn how WSGI helps application developers by providing them a com-
mon programming interface. In addition, you’ll see how WSGI helps
framework developers who have to connect to Web servers on one side
and application code on the other so that application developers can write
code without having to worry about the execution platform.

Chapter 11—Web Frameworks: Django

Python features a host of Web frameworks with Django being one of the
most popular. In this chapter, you get an introduction to this framework
and learn how to write simple Web applications. With this knowledge,
you can then explore other Web frameworks as you wish.

Chapter 12—Cloud Computing: Google App Engine

Cloud computing is taking the industry by storm. While the world is most
familiar with infrastructure services like Amazon’s AWS and online appli-
cations such as Gmail and Yahoo! Mail, platforms present a powerful alter-
native that take advantage of infrastructure without user involvement but
give more flexibility than cloud software because you control the application
and its code. In this chapter, you get a comprehensive introduction to the first
platform service using Python, Google App Engine. With the knowledge
gained here, you can then explore similar services in the same space.

ptg7615500

Preface xxv

Chapter 13—Web Services

In this chapter, we explore higher-level services on the Web (using HTTP).
We look at an older service (Yahoo! Finance) and a newer one (Twitter).
You learn how to interact with both of these services by using Python as
well as knowledge you’ve gained from earlier chapters.

Part III: Supplemental/Experimental

Chapter 14—Text Processing

Our first supplemental chapter introduces you to text processing using
Python. We first explore CSV, then JSON, and finally XML. In the last part
of this chapter, we take our client/server knowledge from earlier in the
book and combine it XML to look at how you can create online remote
procedure calls (RPC) services by using XML-RPC.

Chapter 15—Miscellaneous

This chapter consists of bonus material that we will likely develop into
full, individual chapters in the next edition. Topics covered here include
Java/Jython and Google+.

Conventions

All program output and source code are in monospaced font. Python key-
words appear in Bold-monospaced font. Lines of output with three leading
greater than signs (>>>) represent the Python interpreter prompt. A lead-
ing asterisk (*) in front of a chapter, section, or exercise, indicates that this
is advanced and/or optional material.

Represents Core Notes

Represents Core Module

Represents Core Tips

New features to Python are highlighted with this icon, with the num-
ber representing version(s) of Python in which the features first
appeared.

2.5

ptg7615500

xxvi Preface

Book Resources

We welcome any and all feedback—the good, the bad, and the ugly. If you
have any comments, suggestions, kudos, complaints, bugs, questions, or
anything at all, feel free to contact me at corepython@yahoo.com.

You will find errata, source code, updates, upcoming talks, Python train-
ing, downloads, and other information at the book’s Web site located at:
http://corepython.com. You can also participate in the community discus-
sion around the “Core Python” books at their Google+ page, which is
located at: http://plus.ly/corepython.

http://corepython.com
http://plus.ly/corepython

ptg7615500

xxvii

ACKNOWLEDGMENTS

Acknowledgments for the Third Edition

Reviewers and Contributors

Gloria Willadsen (lead reviewer)
Martin Omander (reviewer and also coauthor of Chapter 11, “Web
Frameworks: Django,” creator of the TweetApprover application, and
coauthor of Section 15.2, “Google+,” in Chapter 15, “Miscellaneous”).
Darlene Wong
Bryce Verdier
Eric Walstad
Paul Bissex (coauthor of Python Web Development with Django)
Johan “proppy” Euphrosine
Anthony Vallone

Inspiration

My wife Faye, who has continued to amaze me by being able to run the
household, take care of the kids and their schedule, feed us all, handle the
finances, and be able to do this while I’m off on the road driving cloud
adoption or under foot at home, writing books.

ptg7615500

xxviii Acknowledgments

Editorial

Mark Taub (Editor-in-Chief)
Debra Williams Cauley (Acquisitions Editor)
John Fuller (Managing Editor)
Elizabeth Ryan (Project Editor)
Bob Russell, Octal Publishing, Inc. (Copy Editor)
Dianne Russell, Octal Publishing, Inc. (Production and Management Services)

Acknowledgments for the Second Edition

Reviewers and Contributors

Shannon -jj Behrens (lead reviewer)
Michael Santos (lead reviewer)
Rick Kwan
Lindell Aldermann (coauthor of the Unicode section in Chapter 6)
Wai-Yip Tung (coauthor of the Unicode example in Chapter 20)
Eric Foster-Johnson (coauthor of Beginning Python)
Alex Martelli (editor of Python Cookbook and author of Python in a Nutshell)
Larry Rosenstein
Jim Orosz
Krishna Srinivasan
Chuck Kung

Inspiration

My wonderful children and pet hamster.

ptg7615500

Acknowledgments xxix

Acknowledgments for the First Edition

Reviewers and Contributors

Guido van Rossum (creator of the Python language)
Dowson Tong
James C. Ahlstrom (coauthor of Internet Programming with Python)
S. Candelaria de Ram
Cay S. Horstmann (coauthor of Core Java and Core JavaServer Faces)
Michael Santos
Greg Ward (creator of distutils package and its documentation)
Vincent C. Rubino
Martijn Faassen
Emile van Sebille
Raymond Tsai
Albert L. Anders (coauthor of MT Programming chapter)
Fredrik Lundh (author of Python Standard Library)
Cameron Laird
Fred L. Drake, Jr. (coauthor of Python & XML and editor of the official
Python documentation)
Jeremy Hylton
Steve Yoshimoto
Aahz Maruch (author of Python for Dummies)
Jeffrey E. F. Friedl (author of Mastering Regular Expressions)
Pieter Claerhout
Catriona (Kate) Johnston
David Ascher (coauthor of Learning Python and editor of Python Cookbook)
Reg Charney
Christian Tismer (creator of Stackless Python)
Jason Stillwell
and my students at UC Santa Cruz Extension

Inspiration

I would like to extend my great appreciation to James P. Prior, my high
school programming teacher.

To Louise Moser and P. Michael Melliar-Smith (my graduate thesis advi-
sors at The University of California, Santa Barbara), you have my deepest
gratitude.)

ptg7615500

xxx Acknowledgments

Thanks to Alan Parsons, Eric Woolfson, Andrew Powell, Ian Bairnson, Stuart
Elliott, David Paton, all other Project participants, and fellow Projectologists
and Roadkillers (for all the music, support, and good times).

I would like to thank my family, friends, and the Lord above, who have kept
me safe and sane during this crazy period of late nights and abandonment,
on the road and off. I want to also give big thanks to all those who
believed in me for the past two decades (you know who you are!)—I
couldn’t have done it without you.

Finally, I would like to thank you, my readers, and the Python community
at large. I am excited at the prospect of teaching you Python and hope that
you enjoy your travels with me on this, our third journey.

Wesley J. Chun
Silicon Valley, CA
(It’s not so much a place as it is a state of sanity.)
October 2001; updated July 2006,
March 2009, March 2012

ptg7615500

xxxi

ABOUT THE AUTHOR

Wesley Chun was initiated into the world of computing during high
school, using BASIC and 6502 assembly on Commodore systems. This was
followed by Pascal on the Apple IIe, and then ForTran on punch cards. It
was the last of these that made him a careful/cautious developer, because
sending the deck out to the school district’s mainframe and getting the
results was a one-week round-trip process. Wesley also converted the
journalism class from typewriters to Osborne 1 CP/M computers. He got
his first paying job as a student-instructor teaching BASIC programming to
fourth, fifth, and sixth graders and their parents.

After high school, Wesley went to University of California at Berkeley
as a California Alumni Scholar. He graduated with an AB in applied math
(computer science) and a minor in music (classical piano). While at Cal, he
coded in Pascal, Logo, and C. He also took a tutoring course that featured
videotape training and psychological counseling. One of his summer
internships involved coding in a 4GL and writing a “Getting Started” user
manual. He then continued his studies several years later at University of
California, Santa Barbara, receiving an MS in computer science (distributed
systems). While there, he also taught C programming. A paper based on his
master’s thesis was nominated for Best Paper at the 29th HICSS conference,
and a later version appeared in the University of Singapore’s Journal of High
Performance Computing.

ptg7615500

xxxii About the Author

Wesley has been in the software industry since graduating and has con-
tinued to teach and write, publishing several books and delivering hun-
dreds of conference talks and tutorials, plus Python courses, both to the
public as well as private corporate training. Wesley’s Python experience
began with version 1.4 at a startup where he designed the Yahoo! Mail
spellchecker and address book. He then became the lead engineer for
Yahoo! People Search. After leaving Yahoo!, he wrote the first edition of
this book and then traveled around the world. Since returning, he has
used Python in a variety of ways, from local product search, anti-spam
and antivirus e-mail appliances, and Facebook games/applications to
something completely different: software for doctors to perform spinal
fracture analysis.

In his spare time, Wesley enjoys piano, bowling, basketball, bicycling,
ultimate frisbee, poker, traveling, and spending time with his family. He
volunteers for Python users groups, the Tutor mailing list, and PyCon.
He also maintains the Alan Parsons Project Monster Discography. If you
think you’re a fan but don’t have “Freudiana,” you had better find it! At
the time of this writing, Wesley was a Developer Advocate at Google, rep-
resenting its cloud products. He is based in Silicon Valley, and you can fol-
low him at @wescpy or plus.ly/wescpy.

ptg7615500

PAR T

General
Application

Topics

ptg7615500

2

CHAPTER

Regular Expressions

Some people, when confronted with a problem, think, “I know, I’ll
use regular expressions.” Now they have two problems.

—Jamie “jwz” Zawinski, August 1997

In this chapter...

• Introduction/Motivation
• Special Symbols and Characters
• Regexes and Python
• Some Regex Examples
• A Longer Regex Example

ptg7615500

1.1 Introduction/Motivation 3

1.1 Introduction/Motivation
Manipulating text or data is a big thing. If you don’t believe me, look very
carefully at what computers primarily do today. Word processing, “fill-
out-form” Web pages, streams of information coming from a database
dump, stock quote information, news feeds—the list goes on and on.
Because we might not know the exact text or data that we have pro-
grammed our machines to process, it becomes advantageous to be able to
express it in patterns that a machine can recognize and take action upon.

If I were running an e-mail archiving company, and you, as one of my
customers, requested all of the e-mail that you sent and received last Feb-
ruary, for example, it would be nice if I could set a computer program to
collate and forward that information to you, rather than having a human
being read through your e-mail and process your request manually. You
would be horrified (and infuriated) that someone would be rummaging
through your messages, even if that person were supposed to be looking
only at time-stamp. Another example request might be to look for a subject
line like “ILOVEYOU,” indicating a virus-infected message, and remove
those e-mail messages from your personal archive. So this begs the ques-
tion of how we can program machines with the ability to look for patterns
in text.

Regular expressions provide such an infrastructure for advanced text pat-
tern matching, extraction, and/or search-and-replace functionality. To put
it simply, a regular expression (a.k.a. a “regex” for short) is a string that use
special symbols and characters to indicate pattern repetition or to repre-
sent multiple characters so that they can “match” a set of strings with sim-
ilar characteristics described by the pattern (Figure 1-1). In other words,
they enable matching of multiple strings—a regex pattern that matched
only one string would be rather boring and ineffective, wouldn’t you say?

Python supports regexes through the standard library re module. In
this introductory subsection, we will give you a brief and concise intro-
duction. Due to its brevity, only the most common aspects of regexes used
in everyday Python programming will be covered. Your experience will,
of course, vary. We highly recommend reading any of the official support-
ing documentation as well as external texts on this interesting subject. You
will never look at strings in the same way again!

ptg7615500

4 Chapter 1 • Regular Expressions

CORE NOTE: Searching vs. matching

Throughout this chapter, you will find references to searching and matching.
When we are strictly discussing regular expressions with respect to patterns in
strings, we will say “matching,” referring to the term pattern-matching. In Python
terminology, there are two main ways to accomplish pattern-matching:
searching, that is, looking for a pattern match in any part of a string; and matching,
that is, attempting to match a pattern to an entire string (starting from the begin-
ning). Searches are accomplished by using the search() function or method, and
matching is done with the match() function or method. In summary, we keep

Regular
 Expression
 Engine

Figure 1-1 You can use regular expressions, such as the one here, which recognizes valid Python
identifiers. [A-Za-z]\w+ means the first character should be alphabetic, that is, either A–Z or a–z,
followed by at least one (+) alphanumeric character (\w). In our filter, notice how many strings go
into the filter, but the only ones to come out are the ones we asked for via the regex. One
example that did not make it was “4xZ” because it starts with a number.

ptg7615500

1.1 Introduction/Motivation 5

the term “matching” universal when referencing patterns, and we differentiate
between “searching” and “matching” in terms of how Python accomplishes
pattern-matching.

1.1.1 Your First Regular Expression

As we mentioned earlier, regexes are strings containing text and special
characters that describe a pattern with which to recognize multiple strings.
We also briefly discussed a regular expression alphabet. For general text, the
alphabet used for regular expressions is the set of all uppercase and lower-
case letters plus numeric digits. Specialized alphabets are also possible; for
instance, you can have one consisting of only the characters “0” and “1.”
The set of all strings over this alphabet describes all binary strings, that is,
“0,” “1,” “00,” “01,” “10,” “11,” “100,” etc.

Let’s look at the most basic of regular expressions now to show you that
although regexes are sometimes considered an advanced topic, they can
also be rather simplistic. Using the standard alphabet for general text, we
present some simple regexes and the strings that their patterns describe.
The following regular expressions are the most basic, “true vanilla,” as it
were. They simply consist of a string pattern that matches only one string:
the string defined by the regular expression. We now present the regexes
followed by the strings that match them:

The first regular expression pattern from the above chart is “foo.” This
pattern has no special symbols to match any other symbol other than those
described, so the only string that matches this pattern is the string “foo.”
The same thing applies to “Python” and “abc123.” The power of regular
expressions comes in when special characters are used to define character
sets, subgroup matching, and pattern repetition. It is these special symbols
that allow a regex to match a set of strings rather than a single one.

Regex Pattern String(s) Matched

foo foo

Python Python

abc123 abc123

ptg7615500

6 Chapter 1 • Regular Expressions

1.2 Special Symbols and Characters
We will now introduce the most popular of the special characters and sym-
bols, known as metacharacters, which give regular expressions their power
and flexibility. You will find the most common of these symbols and char-
acters in Table 1-1.

Table 1-1 Common Regular Expression Symbols and Special Characters

Notation Description Example Regex

Symbols

literal Match literal string value literal foo

re1|re2 Match regular expressions re1
or re2

foo|bar

. Match any character (except
\n)

b.b

^ Match start of string ^Dear

$ Match end of string /bin/*sh$

* Match 0 or more occurrences of pre-
ceding regex

[A-Za-z0-9]*

+ Match 1 or more occurrences of pre-
ceding regex

[a-z]+\.com

? Match 0 or 1 occurrence(s) of pre-
ceding regex

goo?

{N} Match N occurrences of preceding
regex

[0-9]{3}

{M,N} Match from M to N occurrences of
preceding regex

[0-9]{5,9}

[...] Match any single character from
character class

[aeiou]

[..x-y..] Match any single character in the
range from x to y

[0-9],[A-Za-z]

ptg7615500

1.2 Special Symbols and Characters 7

Notation Description Example Regex

Symbols

[^...] Do not match any character from
character class, including any
ranges, if present

[^aeiou],
[^A-Za-z0-9_]

(*|+|?|{})? Apply “non-greedy” versions of
above occurrence/repetition symbols
(*, +, ?, {})

.*?[a-z]

(...) Match enclosed regex and save as
subgroup

([0-9]{3})?,
f(oo|u)bar

Special Characters

\d Match any decimal digit, same as
[0-9] (\D is inverse of \d: do not
match any numeric digit)

data\d+.txt

\w Match any alphanumeric character,
same as [A-Za-z0-9_] (\W is inverse
of \w)

[A-Za-z_]\w+

\s Match any whitespace character,
same as [\n\t\r\v\f] (\S is inverse
of \s)

of\sthe

\b Match any word boundary (\B is
inverse of \b)

\bThe\b

\N Match saved subgroup N (see (...)
above)

price: \16

\c Match any special character c verba-
tim (i.e., without its special mean-
ing, literal)

\., \\, *

\A (\Z) Match start (end) of string (also see ^
and $ above)

\ADear

(Continued)

ptg7615500

8 Chapter 1 • Regular Expressions

Table 1-1 Common Regular Expression Symbols and Special Characters
(Continued)

Notation Description Example Regex

Extension Notation

(?iLmsux) Embed one or more special “flags”
parameters within the regex itself
(vs. via function/method)

(?x), (?im)

(?:...) Signifies a group whose match is not
saved

(?:\w+\.)*

(?P<name>...) Like a regular group match only
identified with name rather than a
numeric ID

(?P<data>)

(?P=name) Matches text previously grouped by
(?P<name>) in the same string

(?P=data)

(?#...) Specifies a comment, all contents
within ignored

(?#comment)

(?=...) Matches if ... comes next without
consuming input string; called
positive lookahead assertion

(?=.com)

(?!...) Matches if ... doesn’t come next
without consuming input; called
negative lookahead assertion

(?!.net)

(?<=...) Matches if ... comes prior without
consuming input string; called posi-
tive lookbehind assertion

(?<=800-)

(?<!...) Matches if ... doesn’t come prior
without consuming input; called
negative lookbehind assertion

(?<!192\.168\.)

(?(id/name)Y|N) Conditional match of regex Y if
group with given id or name exists
else N; |N is optional

(?(1)y|x

ptg7615500

1.2 Special Symbols and Characters 9

1.2.1 Matching More Than One Regex Pattern

with Alternation (|)

The pipe symbol (|), a vertical bar on your keyboard, indicates an
alternation operation. It is used to separate different regular expressions.
For example, the following are some patterns that employ alternation,
along with the strings they match:

With this one symbol, we have just increased the flexibility of our regular
expressions, enabling the matching of more than just one string. Alterna-
tion is also sometimes called union or logical OR.

1.2.2 Matching Any Single Character (.)

The dot or period (.) symbol matches any single character except for \n.
(Python regexes have a compilation flag [S or DOTALL], which can override
this to include \ns.) Whether letter, number, whitespace (not including
“\n”), printable, non-printable, or a symbol, the dot can match them all.

Q: What if I want to match the dot or period character?
A: To specify a dot character explicitly, you must escape its functionality

with a backslash, as in “\.”.

Regex Pattern Strings Matched

at|home at, home

r2d2|c3po r2d2, c3po

bat|bet|bit bat, bet, bit

Regex Pattern Strings Matched

f.o Any character between “f ” and “o”; for example,
fao, f9o, f#o, etc.

.. Any pair of characters

.end Any character before the string end

ptg7615500

10 Chapter 1 • Regular Expressions

1.2.3 Matching from the Beginning or End of

Strings or Word Boundaries (^, $, \b, \B)

There are also symbols and related special characters to specify searching
for patterns at the beginning and end of strings. To match a pattern start-
ing from the beginning, you must use the carat symbol (^) or the special
character \A (backslash-capital “A”). The latter is primarily for keyboards
that do not have the carat symbol (for instance, an international key-
board). Similarly, the dollar sign ($) or \Z will match a pattern from the
end of a string.

Patterns that use these symbols differ from most of the others we
describe in this chapter because they dictate location or position. In the
previous Core Note, we noted that a distinction is made between matching
(attempting matches of entire strings starting at the beginning) and search-
ing (attempting matches from anywhere within a string). With that said,
here are some examples of “edge-bound” regex search patterns:

Again, if you want to match either (or both) of these characters verba-
tim, you must use an escaping backslash. For example, if you wanted to
match any string that ended with a dollar sign, one possible regex solution
would be the pattern .*\$$.

The special characters \b and \B pertain to word boundary matches. The
difference between them is that \b will match a pattern to a word bound-
ary, meaning that a pattern must be at the beginning of a word, whether
there are any characters in front of it (word in the middle of a string) or not
(word at the beginning of a line). And likewise, \B will match a pattern
only if it appears starting in the middle of a word (i.e., not at a word
boundary). Here are some examples:

Regex Pattern Strings Matched

^From Any string that starts with From

/bin/tcsh$ Any string that ends with /bin/tcsh

^Subject: hi$ Any string consisting solely of the string Subject: hi

Regex Pattern Strings Matched

the Any string containing the

\bthe Any word that starts with the

ptg7615500

1.2 Special Symbols and Characters 11

1.2.4 Creating Character Classes ([])

Whereas the dot is good for allowing matches of any symbols, there might
be occasions for which there are specific characters that you want to
match. For this reason, the bracket symbols ([]) were invented. The regu-
lar expression will match any of the enclosed characters. Here are some
examples:

One side note regarding the regex [cr][23][dp][o2]—a more restric-
tive version of this regex would be required to allow only “r2d2” or
“c3po” as valid strings. Because brackets merely imply logical OR func-
tionality, it is not possible to use brackets to enforce such a requirement.
The only solution is to use the pipe, as in r2d2|c3po.

For single-character regexes, though, the pipe and brackets are equiva-
lent. For example, let’s start with the regular expression “ab,” which
matches only the string with an “a” followed by a “b.” If we wanted either
a one-letter string, for instance, either “a” or a “b,” we could use the regex
[ab]. Because “a” and “b” are individual strings, we can also choose the
regex a|b. However, if we wanted to match the string with the pattern
“ab” followed by “cd,” we cannot use the brackets because they work
only for single characters. In this case, the only solution is ab|cd, similar to
the r2d2/c3po problem just mentioned.

\bthe\b Matches only the word the

\Bthe Any string that contains but does not begin
with the

Regex Pattern Strings Matched

b[aeiu]t bat, bet, bit, but

[cr][23][dp][o2] A string of four characters: first is “c” or “r,”
then “2” or “3,” followed by “d” or “p,” and
finally, either “o” or “2.” For example, c2do,
r3p2, r2d2, c3po, etc.

Regex Pattern Strings Matched

ptg7615500

12 Chapter 1 • Regular Expressions

1.2.5 Denoting Ranges (-) and Negation (^)

In addition to single characters, the brackets also support ranges of charac-
ters. A hyphen between a pair of symbols enclosed in brackets is used to
indicate a range of characters; for example A–Z, a–z, or 0–9 for uppercase
letters, lowercase letters, and numeric digits, respectively. This is a lexico-
graphic range, so you are not restricted to using just alphanumeric charac-
ters. Additionally, if a caret (^) is the first character immediately inside the
open left bracket, this symbolizes a directive not to match any of the char-
acters in the given character set.

1.2.6 Multiple Occurrence/Repetition Using

Closure Operators (*, +, ?, {})

We will now introduce the most common regex notations, namely, the spe-
cial symbols *, +, and ?, all of which can be used to match single, multiple,
or no occurrences of string patterns. The asterisk or star operator (*) will
match zero or more occurrences of the regex immediately to its left (in lan-
guage and compiler theory, this operation is known as the Kleene Closure).
The plus operator (+) will match one or more occurrences of a regex
(known as Positive Closure), and the question mark operator (?) will match
exactly 0 or 1 occurrences of a regex.

There are also brace operators ({}) with either a single value or a
comma-separated pair of values. These indicate a match of exactly N occur-
rences (for {N}) or a range of occurrences; for example, {M, N} will match
from M to N occurrences. These symbols can also be escaped by using the
backslash character; * matches the asterisk, etc.

Regex Pattern Strings Matched

z.[0-9] “z” followed by any character then followed by a
single digit

[r-u][env-y]
[us]

“r,” “s,” “t,” or “u” followed by “e,” “n,” “v,” “w,”
“x,” or “y” followed by “u” or “s”

[^aeiou] A non-vowel character (Exercise: why do we say
“non-vowels” rather than “consonants”?)

[^\t\n] Not a TAB or \n

["-a] In an ASCII system, all characters that fall between
‘"’ and “a,” that is, between ordinals 34 and 97

ptg7615500

1.2 Special Symbols and Characters 13

In the previous table, we notice the question mark is used more than
once (overloaded), meaning either matching 0 or 1 occurrences, or its
other meaning: if it follows any matching using the close operators, it will
direct the regular expression engine to match as few repetitions as possible.

What does “as few repetitions as possible” mean? When pattern-
matching is employed using the grouping operators, the regular expres-
sion engine will try to “absorb” as many characters as possible that match
the pattern. This is known as being greedy. The question mark tells the
engine to lay off and, if possible, take as few characters as possible in the
current match, leaving the rest to match as many succeeding characters of
the next pattern (if applicable). Toward the end of the chapter, we will
show you a great example where non-greediness is required. For now, let’s
continue to look at the closure operators:

Regex Pattern Strings Matched

[dn]ot? “d” or “n,” followed by an “o” and, at most,
one “t” after that; thus, do, no, dot, not.

0?[1-9] Any numeric digit, possibly prepended with
a “0.” For example, the set of numeric repre-
sentations of the months January to September,
whether single or double-digits.

[0-9]{15,16} Fifteen or sixteen digits (for example, credit
card numbers.

</?[^>]+> Strings that match all valid (and invalid)
HTML tags.

[KQRBNP][a-h][1-8]-
[a-h][1-8]

Legal chess move in “long algebraic” notation
(move only, no capture, check, etc.); that is,
strings that start with any of “K,” “Q,” “R,”
“B,” “N,” or “P” followed by a hyphenated-
pair of chess board grid locations from “a1” to
“h8” (and everything in between), with the
first coordinate indicating the former posi-
tion, and the second being the new position.

ptg7615500

14 Chapter 1 • Regular Expressions

1.2.7 Special Characters Representing

Character Sets

We also mentioned that there are special characters that can represent
character sets. Rather than using a range of “0–9,” you can simply use \d to
indicate the match of any decimal digit. Another special character, \w, can
be used to denote the entire alphanumeric character class, serving as a
shortcut for A-Za-z0-9_, and \s can be used for whitespace characters.
Uppercase versions of these strings symbolize non-matches; for example,
\D matches any non-decimal digit (same as [^0-9]), etc.

Using these shortcuts, we will present a few more complex examples:

1.2.8 Designating Groups with Parentheses (())

Now, we have achieved the goal of matching a string and discarding non-
matches, but in some cases, we might also be more interested in the data
that we did match. Not only do we want to know whether the entire string
matched our criteria, but also whether we can extract any specific
strings or substrings that were part of a successful match. The answer is
yes. To accomplish this, surround any regex with a pair of parentheses.

A pair of parentheses (()) can accomplish either (or both) of the follow-
ing when used with regular expressions:

• Grouping regular expressions

• Matching subgroups

Regex Pattern Strings Matched

\w+-\d+ Alphanumeric string and number separated by a
hyphen

[A-Za-z]\w* Alphabetic first character; additional characters (if
present) can be alphanumeric (almost equivalent to
the set of valid Python identifiers [see exercises])

\d{3}-\d{3}-
\d{4}

American-format telephone numbers with an area
code prefix, as in 800-555-1212

\w+@\w+\.com Simple e-mail addresses of the form XXX@YYY.com

ptg7615500

1.2 Special Symbols and Characters 15

One good example of why you would want to group regular expres-
sions is when you have two different regexes with which you want to
compare a string. Another reason is to group a regex in order to use a rep-
etition operator on the entire regex (as opposed to an individual character
or character class).

One side effect of using parentheses is that the substring that matched
the pattern is saved for future use. These subgroups can be recalled for the
same match or search, or extracted for post-processing. You will see some
examples of pulling out subgroups at the end of Section 1.3.9.

Why are matches of subgroups important? The main reason is that there
are times when you want to extract the patterns you match, in addition to
making a match. For example, what if we decided to match the pattern
\w+-\d+ but wanted save the alphabetic first part and the numeric second
part individually? We might want to do this because with any successful
match, we might want to see just what those strings were that matched
our regex patterns.

If we add parentheses to both subpatterns such as (\w+)-(\d+), then we
can access each of the matched subgroups individually. Subgrouping is
preferred because the alternative is to write code to determine we have a
match, then execute another separate routine (which we also had to create)
to parse the entire match just to extract both parts. Why not let Python do
it; it’s a supported feature of the re module, so why reinvent the wheel?

Regex Pattern Strings Matched

\d+(\.\d*)? Strings representing simple floating-point num-
bers; that is, any number of digits followed
optionally by a single decimal point and zero or
more numeric digits, as in “0.004,” “2,” “75.,” etc.

(Mr?s?\.)?[A-Z]
[a-z]* [A-Za-z-]+

First name and last name, with a restricted first
name (must start with uppercase; lowercase only
for remaining letters, if any), the full name, pre-
pended by an optional title of “Mr.,” “Mrs.,”
“Ms.,” or “M.,” and a flexible last name, allowing
for multiple words, dashes, and uppercase letters

ptg7615500

16 Chapter 1 • Regular Expressions

1.2.9 Extension Notations

One final aspect of regular expressions we have not touched upon yet
include the extension notations that begin with the question mark symbol
(? . . .). We are not going to spend a lot of time on these as they are gen-
erally used more to provide flags, perform look-ahead (or look-behind), or
check conditionally before determining a match. Also, although paren-
theses are used with these notations, only (?P<name>) represents a grouping
for matches. All others do not create a group. However, you should still
know what they are because they might be “the right tool for the job.”

1.3 Regexes and Python
Now that we know all about regular expressions, we can examine how
Python currently supports regular expressions through the re module,
which was introduced way back in ancient history (Python 1.5), replac-
ing the deprecated regex and regsub modules—both modules were
removed from Python in version 2.5, and importing either module from
that release on triggers an ImportError exception.

The re module supports the more powerful and regular Perl-style (Perl 5)
regexes, allows multiple threads to share the same compiled regex objects,
and supports named subgroups.

Regex Pattern Notation Definition

(?:\w+\.)* Strings that end with a dot, like “google.”, “twitter.”,
“facebook.”, but such matches are neither saved for
use nor retrieval later.

(?#comment) No matching here, just a comment.

(?=.com) Only do a match if “.com” follows; do not consume
any of the target string.

(?!.net) Only do a match if “.net” does not follow.

(?<=800-) Only do a match if string is preceded by “800-”, pre-
sumably for phone numbers; again, do not consume
the input string.

(?<!192\.168\.) Only do a match if string is not preceded by “192.168.”,
presumably to filter out a group of Class C IP addresses.

(?(1)y|x) If a matched group 1 (\1) exists, match against y;
otherwise, match against x.

2.5

ptg7615500

1.3 Regexes and Python 17

1.3.1 The re Module: Core Functions and

Methods

The chart in Table 1-2 lists the more popular functions and methods from
the re module. Many of these functions are also available as methods of
compiled regular expression objects (regex objects and regex match objects.
In this subsection, we will look at the two main functions/methods, match()
and search(), as well as the compile() function. We will introduce several
more in the next section, but for more information on all these and the others
that we do not cover, we refer you to the Python documentation.

Table 1-2 Common Regular Expression Attributes

Function/Method Description

re Module Function Only

compile(pattern,
flags=0)

Compile regex pattern with any optional flags and
return a regex object

re Module Functions and Regex Object Methods

match(pattern,
string, flags=0)

Attempt to match pattern to string with optional
flags; return match object on success, None on failure

search(pattern,
string, flags=0)

Search for first occurrence of pattern within string
with optional flags; return match object on success,
None on failure

findall(pattern,
string[,flags])a

Look for all (non-overlapping) occurrences of pattern
in string; return a list of matches

finditer(pattern,
string[, flags])b

Same as findall(), except returns an iterator instead
of a list; for each match, the iterator returns a match
object

split(pattern,
string, max=0)c

Split string into a list according to regex pattern
delimiter and return list of successful matches, split-
ting at most max times (split all occurrences is the
default)

(Continued)

ptg7615500

18 Chapter 1 • Regular Expressions

Table 1-2 Common Regular Expression Attributes (Continued)

Function/Method Description

re Module Functions and Regex Object Methods

sub(pattern, repl,
string, count=0)c

Replace all occurrences of the regex pattern in string
with repl, substituting all occurrences unless count
provided (see also subn(), which, in addition, returns
the number of substitutions made)

purge() Purge cache of implicitly compiled regex patterns

Common Match Object Methods (see documentation for others)

group(num=0) Return entire match (or specific subgroup num)

groups
(default=None)

Return all matching subgroups in a tuple (empty if
there aren’t any)

groupdict
(default=None)

Return dict containing all matching named subgroups
with the names as the keys (empty if there weren’t any)

Common Module Attributes (flags for most regex functions)

re.I, re.IGNORECASE Case-insensitive matching

re.L, re.LOCALE Matches via \w, \W, \b, \B, \s, \S depends on locale

re.M, re.MULTILINE Respectively causes ^ and $ to match the beginning
and end of each line in target string rather than strictly
the beginning and end of the entire string itself

re.S, re.DOTALL The . normally matches any single character except \n;
this flag says . should match them, too

re.X, re.VERBOSE All whitespace plus # (and all text after it on a single
line) are ignored unless in a character class or back-
slash-escaped, allowing comments and improving
readability

a. New in Python 1.5.2; flags parameter added in 2.4.
b. New in Python 2.2; flags parameter added in 2.4.
c. flags parameter added in version 2.7 and 3.1.

ptg7615500

1.3 Regexes and Python 19

CORE NOTE: Regex compilation (to compile or not to compile?)

In the Execution Environment chapter of Core Python Programming or the forth-
coming Core Python Language Fundamentals, we describe how Python code is
eventually compiled into bytecode, which is then executed by the interpreter. In
particular, we specified that calling eval() or exec (in version 2.x or exec()
in version 3.x) with a code object rather than a string provides a performance
improvement due to the fact that the compilation process does not have to be
performed repeatedly. In other words, using precompiled code objects is faster
than using strings because the interpreter will have to compile it into a code object
(anyway) each time before execution.

The same concept applies to regexes—regular expression patterns must be
compiled into regex objects before any pattern matching can occur. For regexes,
which are compared many times during the course of execution, we highly
recommend using precompilation because, again, regexes have to be compiled
anyway, so doing it ahead of time is prudent for performance reasons.
re.compile() provides this functionality.

The module functions do cache the compiled objects, though, so it’s not as if
every search() and match() with the same regex pattern requires compila-
tion. Still, you save the cache lookups and do not have to make function calls
with the same string, over and over. The number of compiled regex objects that
are cached might vary between releases, and is undocumented. The purge()
function can be used to clear this cache.

1.3.2 Compiling Regexes with compile()

Almost all of the re module functions we will be describing shortly are
available as methods for regex objects. Remember, even though we recom-
mend it, precompilation is not required. If you compile, you will use
methods; if you don’t, you will just use functions. The good news is that
either way, the names are the same, whether a function or a method. (This
is the reason why there are module functions and methods that are identi-
cal; for example, search(), match(), etc., in case you were wondering.)
Because it saves one small step for most of our examples, we will use
strings, instead. We will throw in a few with compilation, though, just so
you know how it is done.

Optional flags may be given as arguments for specialized compilation.
These flags allow for case-insensitive matching, using system locale set-
tings for matching alphanumeric characters, etc. Please see the entries in

ptg7615500

20 Chapter 1 • Regular Expressions

Table 1-2 and the official documentation for more information on these
flags (re.IGNORECASE, re.MULTILINE, re.DOTALL, re.VERBOSE, etc.). They can
be combined by using the bitwise OR operator (|).

These flags are also available as a parameter to most re module functions.
If you want to use these flags with the methods, they must already be inte-
grated into the compiled regex objects, or you need to use the (?F) nota-
tion directly embedded in the regex itself, where F is one or more of i (for
re.I/IGNORECASE), m (for re.M/MULTILINE), s (for re.S/DOTALL), etc. If more
than one is desired, you place them together rather than using the bitwise OR
operation; for example, (?im) for both re.IGNORECASE plus re.MULTILINE.

1.3.3 Match Objects and the group() and

groups() Methods

When dealing with regular expressions, there is another object type in
addition to the regex object: the match object. These are the objects returned
on successful calls to match() or search(). Match objects have two primary
methods, group() and groups().

group() either returns the entire match, or a specific subgroup, if
requested. groups() simply returns a tuple consisting of only/all the sub-
groups. If there are no subgroups requested, then groups() returns an
empty tuple while group() still returns the entire match.

Python regexes also allow for named matches, which are beyond the
scope of this introductory section. We refer you to the complete re module
documentation for a complete listing of the more advanced details we
have omitted here.

1.3.4 Matching Strings with match()

match() is the first re module function and regex object (regex object)
method we will look at. The match() function attempts to match the pat-
tern to the string, starting at the beginning. If the match is successful, a
match object is returned; if it is unsuccessful, None is returned. The group()
method of a match object can be used to show the successful match. Here
is an example of how to use match() [and group()]:

>>> m = re.match('foo', 'foo') # pattern matches string
>>> if m is not None: # show match if successful
... m.group()
...
'foo'

ptg7615500

1.3 Regexes and Python 21

The pattern “foo” matches exactly the string “foo.” We can also confirm
that m is an example of a match object from within the interactive interpreter:

>>> m # confirm match object returned
<re.MatchObject instance at 80ebf48>

Here is an example of a failed match for which None is returned:
>>> m = re.match('foo', 'bar')# pattern does not match string
>>> if m is not None: m.group() # (1-line version of if clause)
...
>>>

The preceding match fails, thus None is assigned to m, and no action is
taken due to the way we constructed our if statement. For the remaining
examples, we will try to leave out the if check for brevity, if possible, but
in practice, it is a good idea to have it there to prevent AttributeError
exceptions. (None is returned on failures, which does not have a group()
attribute [method].)

A match will still succeed even if the string is longer than the pattern, as
long as the pattern matches from the beginning of the string. For example,
the pattern “foo” will find a match in the string “food on the table”
because it matches the pattern from the beginning:

>>> m = re.match('foo', 'food on the table') # match succeeds
>>> m.group()
'foo'

As you can see, although the string is longer than the pattern, a success-
ful match was made from the beginning of the string. The substring “foo”
represents the match, which was extracted from the larger string.

We can even sometimes bypass saving the result altogether, taking
advantage of Python’s object-oriented nature:

>>> re.match('foo', 'food on the table').group()
'foo'

Note from a few paragraphs above that an AttributeError will be gen-
erated on a non-match.

1.3.5 Looking for a Pattern within a String with

search() (Searching versus Matching)

The chances are greater that the pattern you seek is somewhere in the mid-
dle of a string, rather than at the beginning. This is where search() comes
in handy. It works exactly in the same way as match, except that it searches

ptg7615500

22 Chapter 1 • Regular Expressions

for the first occurrence of the given regex pattern anywhere with its string
argument. Again, a match object is returned on success; None is returned
otherwise.

We will now illustrate the difference between match() and search().
Let’s try a longer string match attempt. This time, let’s try to match our
string “foo” to “seafood”:

>>> m = re.match('foo', 'seafood') # no match
>>> if m is not None: m.group()
...
>>>

As you can see, there is no match here. match() attempts to match the
pattern to the string from the beginning; that is, the “f” in the pattern is
matched against the “s” in the string, which fails immediately. However,
the string “foo” does appear (elsewhere) in “seafood,” so how do we get
Python to say “yes”? The answer is by using the search() function. Rather
than attempting a match, search() looks for the first occurrence of the pat-
tern within the string. search() evaluates a string strictly from left to right.

>>> m = re.search('foo', 'seafood') # use search() instead
>>> if m is not None: m.group()
...
'foo' # search succeeds where match failed
>>>

Furthermore, both match() and search() take the optional flags parame-
ter described earlier in Section 1.3.2. Lastly, we want to note that the equiv-
alent regex object methods optionally take pos and endpos arguments to
specify the search boundaries of the target string.

We will be using the match() and search() regex object methods and
the group() and groups() match object methods for the remainder of this
subsection, exhibiting a broad range of examples of how to use regular
expressions with Python. We will be using almost all of the special charac-
ters and symbols that are part of the regular expression syntax.

1.3.6 Matching More than One String (|)

In Section 1.2, we used the pipe character in the regex bat|bet|bit. Here
is how we would use that regex with Python:

>>> bt = 'bat|bet|bit' # regex pattern: bat, bet, bit
>>> m = re.match(bt, 'bat') # 'bat' is a match
>>> if m is not None: m.group()
...

ptg7615500

1.3 Regexes and Python 23

'bat'
>>> m = re.match(bt, 'blt') # no match for 'blt'
>>> if m is not None: m.group()
...
>>> m = re.match(bt, 'He bit me!') # does not match string
>>> if m is not None: m.group()
...
>>> m = re.search(bt, 'He bit me!') # found 'bit' via search
>>> if m is not None: m.group()
...
'bit'

1.3.7 Matching Any Single Character (.)

In the following examples, we show that a dot cannot match a \n or a non-
character; that is, the empty string:

>>> anyend = '.end'
>>> m = re.match(anyend, 'bend') # dot matches 'b'
>>> if m is not None: m.group()
...
'bend'
>>> m = re.match(anyend, 'end') # no char to match
>>> if m is not None: m.group()
...
>>> m = re.match(anyend, '\nend') # any char except \n
>>> if m is not None: m.group()
...
>>> m = re.search('.end', 'The end.')# matches ' ' in search
>>> if m is not None: m.group()
...
' end'

The following is an example of searching for a real dot (decimal point)
in a regular expression, wherein we escape its functionality by using a
backslash:

 >>> patt314 = '3.14' # regex dot
 >>> pi_patt = '3\.14' # literal dot (dec. point)
>>> m = re.match(pi_patt, '3.14') # exact match
>>> if m is not None: m.group()
...
'3.14'
>>> m = re.match(patt314, '3014') # dot matches '0'
>>> if m is not None: m.group()
...
'3014'
>>> m = re.match(patt314, '3.14') # dot matches '.'
>>> if m is not None: m.group()
...
'3.14'

ptg7615500

24 Chapter 1 • Regular Expressions

1.3.8 Creating Character Classes ([])

Earlier, we had a long discussion about [cr][23][dp][o2] and how it dif-
fers from r2d2|c3po” In the following examples, we will show that
r2d2|c3po is more restrictive than [cr][23][dp][o2]:

>>> m = re.match('[cr][23][dp][o2]', 'c3po')# matches 'c3po'
>>> if m is not None: m.group()
...
'c3po'
>>> m = re.match('[cr][23][dp][o2]', 'c2do')# matches 'c2do'
>>> if m is not None: m.group()
...
'c2do'
>>> m = re.match('r2d2|c3po', 'c2do')# does not match 'c2do'
>>> if m is not None: m.group()
...
>>> m = re.match('r2d2|c3po', 'r2d2')# matches 'r2d2'
>>> if m is not None: m.group()
...
'r2d2'

1.3.9 Repetition, Special Characters, and

Grouping

The most common aspects of regexes involve the use of special characters,
multiple occurrences of regex patterns, and using parentheses to group
and extract submatch patterns. One particular regex we looked at related
to simple e-mail addresses (\w+@\w+\.com). Perhaps we want to match more
e-mail addresses than this regex allows. To support an additional host-
name that precedes the domain, for example, www.xxx.com as opposed to
accepting only xxx.com as the entire domain, we have to modify our
existing regex. To indicate that the hostname is optional, we create a
pattern that matches the hostname (followed by a dot), use the ? opera-
tor, indicating zero or one copy of this pattern, and insert the optional
regex into our previous regex as follows: \w+@(\w+\.)?\w+\.com. As you
can see from the following examples, either one or two names are now
accepted before the .com:

>>> patt = '\w+@(\w+\.)?\w+\.com'
>>> re.match(patt, 'nobody@xxx.com').group()
'nobody@xxx.com'
>>> re.match(patt, 'nobody@www.xxx.com').group()
'nobody@www.xxx.com'

ptg7615500

1.3 Regexes and Python 25

Furthermore, we can even extend our example to allow any number of
intermediate subdomain names with the following pattern. Take special
note of our slight change from using ? to *. : \w+@(\w+\.)*\w+\.com:

>>> patt = '\w+@(\w+\.)*\w+\.com'
>>> re.match(patt, 'nobody@www.xxx.yyy.zzz.com').group()
'nobody@www.xxx.yyy.zzz.com'

However, we must add the disclaimer that using solely alphanumeric
characters does not match all the possible characters that might make up
e-mail addresses. The preceding regex patterns would not match a domain
such as xxx-yyy.com or other domains with \W characters.

Earlier, we discussed the merits of using parentheses to match and save
subgroups for further processing rather than coding a separate routine to
manually parse a string after a regex match had been determined. In par-
ticular, we discussed a simple regex pattern of an alphanumeric string and
a number separated by a hyphen, \w+-\d+, and how adding subgrouping
to form a new regex, (\w+)-(\d+), would do the job. Here is how the
original regex works:

>>> m = re.match('\w\w\w-\d\d\d', 'abc-123')
>>> if m is not None: m.group()
...
'abc-123'

>>> m = re.match('\w\w\w-\d\d\d', 'abc-xyz')
>>> if m is not None: m.group()
...
>>>

In the preceding code, we created a regex to recognize three alphanu-
meric characters followed by three digits. Testing this regex on abc-123,
we obtained positive results, whereas abc-xyz fails. We will now modify
our regex as discussed before to be able to extract the alphanumeric string
and number. Note how we can now use the group() method to access indi-
vidual subgroups or the groups() method to obtain a tuple of all the sub-
groups matched:

>>> m = re.match('(\w\w\w)-(\d\d\d)', 'abc-123')
>>> m.group() # entire match
'abc-123'
>>> m.group(1) # subgroup 1
'abc'
>>> m.group(2) # subgroup 2
'123'
>>> m.groups() # all subgroups
('abc', '123')

ptg7615500

26 Chapter 1 • Regular Expressions

As you can see, group() is used in the normal way to show the entire
match, but it can also be used to grab individual subgroup matches. We
can also use the groups() method to obtain a tuple of all the substring
matches.

Here is a simpler example that shows different group permutations,
which will hopefully make things even more clear:

>>> m = re.match('ab', 'ab') # no subgroups
>>> m.group() # entire match
'ab'
>>> m.groups() # all subgroups
()
>>>
>>> m = re.match('(ab)', 'ab') # one subgroup
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.groups() # all subgroups
('ab',)
>>>
>>> m = re.match('(a)(b)', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'a'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups
('a', 'b')
>>>
>>> m = re.match('(a(b))', 'ab') # two subgroups
>>> m.group() # entire match
'ab'
>>> m.group(1) # subgroup 1
'ab'
>>> m.group(2) # subgroup 2
'b'
>>> m.groups() # all subgroups
('ab', 'b')

1.3.10 Matching from the Beginning and End of

Strings and on Word Boundaries

The following examples highlight the positional regex operators. These
apply more for searching than matching because match() always starts at
the beginning of a string.

ptg7615500

1.3 Regexes and Python 27

>>> m = re.search('^The', 'The end.') # match
>>> if m is not None: m.group()
...
'The'
>>> m = re.search('^The', 'end. The') # not at beginning
>>> if m is not None: m.group()
...
>>> m = re.search(r'\bthe', 'bite the dog') # at a boundary
>>> if m is not None: m.group()
...
'the'
>>> m = re.search(r'\bthe', 'bitethe dog') # no boundary
>>> if m is not None: m.group()
...
>>> m = re.search(r'\Bthe', 'bitethe dog') # no boundary
>>> if m is not None: m.group()
...
'the'

You will notice the appearance of raw strings here. You might want to
take a look at the Core Note, “Using Python raw strings,” toward the end
of this chapter for clarification on why they are here. In general, it is a
good idea to use raw strings with regular expressions.

There are four other re module functions and regex object methods that
we think you should be aware of: findall(), sub(), subn(), and split().

1.3.11 Finding Every Occurrence with findall()

and finditer()

findall() looks for all non-overlapping occurrences of a regex pattern in a
string. It is similar to search() in that it performs a string search, but it dif-
fers from match() and search() in that findall() always returns a list. The
list will be empty if no occurrences are found, but if successful, the list will
consist of all matches found (grouped in left-to-right order of occurrence).

>>> re.findall('car', 'car')
['car']
>>> re.findall('car', 'scary')
['car']
>>> re.findall('car', 'carry the barcardi to the car')
['car', 'car', 'car']

Subgroup searches result in a more complex list returned, and that makes
sense, because subgroups are a mechanism with which you can extract
specific patterns from within your single regular expression, such as
matching an area code that is part of a complete telephone number, or a
login name that is part of an entire e-mail address.

ptg7615500

28 Chapter 1 • Regular Expressions

For a single successful match, each subgroup match is a single element
of the resulting list returned by findall(); for multiple successful matches,
each subgroup match is a single element in a tuple, and such tuples (one
for each successful match) are the elements of the resulting list. This part
might sound confusing at first, but if you try different examples, it will
help to clarify things.

The finditer() function, which was added back in Python 2.2, is a sim-
ilar, more memory-friendly alternative to findall(). The main difference
between it and its cousin, other than the return of an iterator versus a list
(obviously), is that rather than returning matching strings, finditer()
iterates over match objects. The following are the differences between the
two with different groups in a single string:

>>> s = 'This and that.'
>>> re.findall(r'(th\w+) and (th\w+)', s, re.I)
[('This', 'that')]
>>> re.finditer(r'(th\w+) and (th\w+)', s,
... re.I).next().groups()
('This', 'that')
>>> re.finditer(r'(th\w+) and (th\w+)', s,
... re.I).next().group(1)
'This'
>>> re.finditer(r'(th\w+) and (th\w+)', s,
... re.I).next().group(2)
'that'
>>> [g.groups() for g in re.finditer(r'(th\w+) and (th\w+)',
... s, re.I)]
[('This', 'that')]

In the example that follows, we have multiple matches of a single group
in a single string:

>>> re.findall(r'(th\w+)', s, re.I)
['This', 'that']
>>> it = re.finditer(r'(th\w+)', s, re.I)
>>> g = it.next()
>>> g.groups()
('This',)
>>> g.group(1)
'This'
>>> g = it.next()
>>> g.groups()
('that',)
>>> g.group(1)
'that'
>>> [g.group(1) for g in re.finditer(r'(th\w+)', s, re.I)]
['This', 'that']

Note all the additional work that we had to do using finditer() to get
its output to match that of findall().

2.2

ptg7615500

1.3 Regexes and Python 29

Finally, like match() and search(), the method versions of findall()
and finditer() support the optional pos and endpos parameters that con-
trol the search boundaries of the target string, as described earlier in this
chapter.

1.3.12 Searching and Replacing with sub()

and subn()

There are two functions/methods for search-and-replace functionality: sub()
and subn(). They are almost identical and replace all matched occur-
rences of the regex pattern in a string with some sort of replacement. The
replacement is usually a string, but it can also be a function that returns a
replacement string. subn() is exactly the same as sub(), but it also returns
the total number of substitutions made—both the newly substituted string
and the substitution count are returned as a 2-tuple.

>>> re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
'attn: Mr. Smith\012\012Dear Mr. Smith,\012'
>>>
>>> re.subn('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
('attn: Mr. Smith\012\012Dear Mr. Smith,\012', 2)
>>>
>>> print re.sub('X', 'Mr. Smith', 'attn: X\n\nDear X,\n')
attn: Mr. Smith

Dear Mr. Smith,

>>> re.sub('[ae]', 'X', 'abcdef')
'XbcdXf'
>>> re.subn('[ae]', 'X’, 'abcdef')
('XbcdXf', 2)

As we saw in an earlier section, in addition to being able to pull out the
matching group number using the match object’s group() method, you can
use \N, where N is the group number to use in the replacement string.
Below, we’re just converting the American style of date presentation, MM/
DD/YY{,YY} to the format used by all other countries, DD/MM/YY{,YY}:

>>> re.sub(r'(\d{1,2})/(\d{1,2})/(\d{2}|\d{4})',
... r'\2/\1/\3', '2/20/91') # Yes, Python is...
'20/2/91'
>>> re.sub(r'(\d{1,2})/(\d{1,2})/(\d{2}|\d{4})',
... r'\2/\1/\3', '2/20/1991') # ... 20+ years old!
'20/2/1991'

ptg7615500

30 Chapter 1 • Regular Expressions

1.3.13 Splitting (on Delimiting Pattern) with

split()

The re module and regex object method split() work similarly to its
string counterpart, but rather than splitting on a fixed string, they split a
string based on a regex pattern, adding some significant power to string
splitting capabilities. If you do not want the string split for every occur-
rence of the pattern, you can specify the maximum number of splits by set-
ting a value (other than zero) to the max argument.

If the delimiter given is not a regular expression that uses special sym-
bols to match multiple patterns, then re.split() works in exactly the
same manner as str.split(), as illustrated in the example that follows
(which splits on a single colon):

>>> re.split(':', 'str1:str2:str3')
['str1', 'str2', 'str3']

That’s a simple example. What if we have a more complex example,
such as a simple parser for a Web site like Google or Yahoo! Maps? Users
can enter city and state, or city plus ZIP code, or all three? This requires
more powerful processing than just a plain ’ol string split:

>>> import re
>>> DATA = (
... 'Mountain View, CA 94040',
... 'Sunnyvale, CA',
... 'Los Altos, 94023',
... 'Cupertino 95014',
... 'Palo Alto CA',
...)
>>> for datum in DATA:
... print re.split(', |(?= (?:\d{5}|[A-Z]{2})) ', datum)
...
['Mountain View', 'CA', '94040']
['Sunnyvale', 'CA']
['Los Altos', '94023']
['Cupertino', '95014']
['Palo Alto', 'CA']

The preceding regex has a simple component, split on comma-space
(“, “). The harder part is the last regex, which previews some of the exten-
sion notations that you’ll learn in the next subsection. In plain English, this
is what it says: also split on a single space if that space is immediately fol-
lowed by five digits (ZIP code) or two capital letters (US state abbrevia-
tion). This allows us to keep together city names that have spaces in them.

Naturally, this is just a simplistic regex that could be a starting point for
an application that parses location information. It doesn’t process (or fails)

ptg7615500

1.3 Regexes and Python 31

lowercase states or their full spellings, street addresses, country codes,
ZIP+4 (nine-digit ZIP codes), latitude-longitude, multiple spaces, etc. It’s
just meant as a simple demonstration of re.split() doing something
str.split() can’t do.

As we just demonstrated, you benefit from much more power with a
regular expression split; however, remember to always use the best tool
for the job. If a string split is good enough, there’s no need to bring in the
additional complexity and performance impact of regexes.

1.3.14 Extension Notations (?...)

There are a variety of extension notations supported by Python regular
expressions. Let’s take a look at some of them now and provide some
usage examples.

With the (?iLmsux) set of options, users can specify one or more flags
directly into a regular expression rather than via compile() or other re
module functions. Below are several examples that use re.I/IGNORECASE,
with the last mixing in re.M/MULTILINE:

>>> re.findall(r'(?i)yes', 'yes? Yes. YES!!')
['yes', 'Yes', 'YES']
>>> re.findall(r'(?i)th\w+', 'The quickest way is through this
tunnel.')
['The', 'through', 'this']
>>> re.findall(r'(?im)(^th[\w]+)', """
... This line is the first,
... another line,
... that line, it's the best
... """)
['This line is the first', 'that line']

For the previous examples, the case-insensitivity should be fairly
straightforward. In the last example, by using “multiline” we can perform
the search across multiple lines of the target string rather than treating the
entire string as a single entity. Notice that the instances of “the” are
skipped because they do not appear at the beginning of their respective
lines.

The next pair demonstrates the use of re.S/DOTALL. This flag indicates
that the dot (.) can be used to represent \n characters (whereas normally it
represents all characters except \n):

>>> re.findall(r'th.+', '''
... The first line
... the second line
... the third line

ptg7615500

32 Chapter 1 • Regular Expressions

... ''')
['the second line', 'the third line']
>>> re.findall(r'(?s)th.+', '''
... The first line
... the second line
... the third line
... ''')
['the second line\nthe third line\n']

The re.X/VERBOSE flag is quite interesting; it lets users create more
human-readable regular expressions by suppressing whitespace charac-
ters within regexes (except those in character classes or those that are
backslash-escaped). Furthermore, hash/comment/octothorpe symbols (#)
can also be used to start a comment, also as long as they’re not within a
character class backslash-escaped:

>>> re.search(r'''(?x)
... \((\d{3})\) # area code
... [] # space
... (\d{3}) # prefix
... - # dash
... (\d{4}) # endpoint number
... ''', '(800) 555-1212').groups()
('800', '555', '1212')

The (?:...) notation should be fairly popular; with it, you can group
parts of a regex, but it does not save them for future retrieval or use. This
comes in handy when you don’t want superfluous matches that are saved
and never used:

>>> re.findall(r'http://(?:\w+\.)*(\w+\.com)',
... 'http://google.com http://www.google.com http://
code.google.com')
['google.com', 'google.com', 'google.com']
>>> re.search(r'\((?P<areacode>\d{3})\) (?P<prefix>\d{3})-(?:\d{4})',
... '(800) 555-1212').groupdict()
{'areacode': '800', 'prefix': '555'}

You can use the (?P<name>) and (?P=name) notations together. The for-
mer saves matches by using a name identifier rather than using increasing
numbers, starting at one and going through N, which are then retrieved
later by using \1, \2, ... \N. You can retrieve them in a similar manner
using \g<name>:

>>> re.sub(r'\((?P<areacode>\d{3})\) (?P<prefix>\d{3})-(?:\d{4})',
... '(\g<areacode>) \g<prefix>-xxxx', '(800) 555-1212')
'(800) 555-xxxx'

Using the latter, you can reuse patterns in the same regex without spec-
ifying the same pattern again later on in the (same) regex, such as in this
example, which presumably lets you validate normalization of phone

ptg7615500

1.3 Regexes and Python 33

numbers. Here are the ugly and compressed versions followed by a good
use of (?x) to make things (slightly) more readable:

>>> bool(re.match(r'\((?P<areacode>\d{3})\) (?P<prefix>\d{3})-
(?P<number>\d{4}) (?P=areacode)-(?P=prefix)-(?P=number)
1(?P=areacode)(?P=prefix)(?P=number)',
... '(800) 555-1212 800-555-1212 18005551212'))
True
>>> bool(re.match(r'''(?x)
...
... # match (800) 555-1212, save areacode, prefix, no.
... \((?P<areacode>\d{3})\)[](?P<prefix>\d{3})-(?P<number>\d{4})
...
... # space
... []
...
... # match 800-555-1212
... (?P=areacode)-(?P=prefix)-(?P=number)
...
... # space
... []
...
... # match 18005551212
... 1(?P=areacode)(?P=prefix)(?P=number)
...
... ''', '(800) 555-1212 800-555-1212 18005551212'))
True

You use the (?=...) and (?!...) notations to perform a lookahead in
the target string without actually consuming those characters. The first is
the positive lookahead assertion, while the latter is the negative. In the
examples that follow, we are only interested in the first names of the per-
sons who have a last name of “van Rossum,” and the next example let’s us
ignore e-mail addresses that begin with “noreply” or “postmaster.”

The third snippet is another demonstration of the difference between
findall() and finditer(); we use the latter to build a list of e-mail
addresses (in a more memory-friendly way by skipping the creation of the
intermediary list that would be thrown away) using the same login names
but on a different domain.

>>> re.findall(r'\w+(?= van Rossum)',
... '''
... Guido van Rossum
... Tim Peters
... Alex Martelli
... Just van Rossum
... Raymond Hettinger
... ''')
['Guido', 'Just']
>>> re.findall(r'(?m)^\s+(?!noreply|postmaster)(\w+)',

ptg7615500

34 Chapter 1 • Regular Expressions

... '''

... sales@phptr.com

... postmaster@phptr.com

... eng@phptr.com

... noreply@phptr.com

... admin@phptr.com

... ''')
['sales', 'eng', 'admin']
>>> ['%s@aw.com' % e.group(1) for e in \
re.finditer(r'(?m)^\s+(?!noreply|postmaster)(\w+)',
... '''
... sales@phptr.com
... postmaster@phptr.com
... eng@phptr.com
... noreply@phptr.com
... admin@phptr.com
... ''')]
['sales@aw.com', 'eng@aw.com', 'admin@aw.com']

The last examples demonstrate the use of conditional regular expres-
sion matching. Suppose that we have another specialized alphabet consist-
ing only of the characters ‘x’ and ‘y,’ where we only want to restrict the
string in such a way that two-letter strings must consist of one character
followed by the other. In other words, you can’t have both letters be the
same; either it’s an ‘x’ followed by a ‘y’ or vice versa:

>>> bool(re.search(r'(?:(x)|y)(?(1)y|x)', 'xy'))
True
>>> bool(re.search(r'(?:(x)|y)(?(1)y|x)', 'xx'))
False

1.3.15 Miscellaneous

There can be confusion between regular expression special characters and
special ASCII symbols. We can use \n to represent a NEWLINE character,
but we can use \d meaning a regular expression match of a single numeric
digit.

Problems can occur if there is a symbol used by both ASCII and regular
expressions, so in the following Core Note, we recommend the use of
Python raw strings to prevent any problems. One more caution: the \w and
\W alphanumeric character sets are affected by the re.L/LOCALE and Unicode
(re.U/UNICODE) flags.

ptg7615500

1.3 Regexes and Python 35

CORE NOTE: Using Python raw strings

You might have seen the use of raw strings in some of the previous examples.
Regular expressions were a strong motivation for the advent of raw strings. The
reason lies in the conflicts between ASCII characters and regular expression spe-
cial characters. As a special symbol, \b represents the ASCII character for back-
space, but \b is also a regular expression special symbol, meaning “match” on a
word boundary. For the regex compiler to see the two characters \b as your string
and not a (single) backspace, you need to escape the backslash in the string by
using another backslash, resulting in \\b.

This can get messy, especially if you have a lot of special characters in your
string, adding to the confusion. We were introduced to raw strings in the
Sequences chapter of Core Python Programming or Core Python Language
Fundamentals, and they can be (and are often) used to help keep regexes looking
somewhat manageable. In fact, many Python programmers swear by these and
only use raw strings when defining regular expressions.

Here are some examples of differentiating between the backspace \b and the
regular expression \b, with and without raw strings:

>>> m = re.match('\bblow', 'blow') # backspace, no match
>>> if m: m.group()
...
>>> m = re.match('\\bblow', 'blow') # escaped \, now it works
>>> if m: m.group()
...
'blow'
>>> m = re.match(r'\bblow', 'blow') # use raw string instead
>>> if m: m.group()
...
'blow'

You might have recalled that we had no trouble using \d in our regular expres-
sions without using raw strings. That is because there is no ASCII equivalent
special character, so the regular expression compiler knew that you meant a
decimal digit.

ptg7615500

36 Chapter 1 • Regular Expressions

1.4 Some Regex Examples
Let’s look at a few examples of some Python regex code that takes us a step
closer to something that you would actually use in practice. Take, for
example, the output from the POSIX (Unix-flavored systems like Linux,
Mac OS X, etc.) who command, which lists all the users logged in to a system:

$ who
wesley console Jun 20 20:33
wesley pts/9 Jun 22 01:38 (192.168.0.6)
wesley pts/1 Jun 20 20:33 (:0.0)
wesley pts/2 Jun 20 20:33 (:0.0)
wesley pts/4 Jun 20 20:33 (:0.0)
wesley pts/3 Jun 20 20:33 (:0.0)
wesley pts/5 Jun 20 20:33 (:0.0)
wesley pts/6 Jun 20 20:33 (:0.0)
wesley pts/7 Jun 20 20:33 (:0.0)
wesley pts/8 Jun 20 20:33 (:0.0)

Perhaps we want to save some user login information such as login
name, the teletype at which the user logged in, when the user logged in,
and from where. Using str.split() on the preceding example would not
be effective because the spacing is erratic and inconsistent. The other prob-
lem is that there is a space between the month, day, and time for the login
timestamps. We would probably want to keep these fields together.

You need some way to describe a pattern such as “split on two or more
spaces.” This is easily done with regular expressions. In no time, we whip up
the regex pattern \s\s+, which means at least two whitespace characters.

Let’s create a program called rewho.py that reads the output of the who
command, presumably saved into a file called whodata.txt. Our rewho.py
script initially looks something like this:

import re
f = open('whodata.txt', 'r')
for eachLine in f:
 print re.split(r'\s\s+', eachLine)
f.close()

The preceding code also uses raw strings (leading “r” or “R” in front of
the opening quotes). The main idea is to avoid translating special string
characters like \n, which is not a special regex pattern. For regex patterns
that do have backslashes, you want them treated verbatim; otherwise,
you’d have to double-backslash them to keep them safe.

We will now execute the who command, saving the output into whodata.txt,
and then call rewho.py to take a look at the results:

ptg7615500

1.4 Some Regex Examples 37

$ who > whodata.txt
$ rewho.py
['wesley', 'console', 'Jun 20 20:33\012']
['wesley', 'pts/9', 'Jun 22 01:38\011(192.168.0.6)\012']
['wesley', 'pts/1', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/2', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/4', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/3', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/5', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/6', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/7', 'Jun 20 20:33\011(:0.0)\012']
['wesley', 'pts/8', 'Jun 20 20:33\011(:0.0)\012']

It was a good first try, but not quite correct. For one thing, we did not
anticipate a single TAB (ASCII \011) as part of the output (which looked
like at least two spaces, right?), and perhaps we aren’t really keen on saving
the \n (ASCII \012), which terminates each line. We are now going to fix
those problems as well as improve the overall quality of our application by
making a few more changes.

First, we would rather run the who command from within the script
instead of doing it externally and saving the output to a whodata.txt
file—doing this repeatedly gets tiring rather quickly. To accomplish invok-
ing another program from within ours, we call upon the os.popen() com-
mand. Although os.popen() has now been made obsolete by the subprocess
module, it’s still simpler to use, and the main point is to illustrate the func-
tionality of re.split().

We get rid of the trailing \ns (with str.rstrip()) and add the detection of a
single TAB as an additional, alternative re.split() delimiter. Example 1-1
presents the final Python 2 version of our rewho.py script:

Example 1-2 presents rewho3.py, which is the Python 3 version with an
additional twist. The main difference from the Python 2 version is the

Example 1-1 Split Output of the POSIX who Command (rewho.py)

This script calls the who command and parses the input by splitting up its data
along various types of whitespace characters.

1 #!/usr/bin/env python
2
3 import os
4 import re
5
6 f = os.popen('who', 'r')
7 for eachLine in f:
8 print re.split(r'\s\s+|\t', eachLine.rstrip())
9 f.close()

3.x

ptg7615500

38 Chapter 1 • Regular Expressions

print() function (vs. a statement). This entire line is italicized to indicate
critical Python 2 versus 3 differences. The with statement, available as
experimental in version 2.5, and official in version 2.6, works with objects
built to support it.

Objects that have context managers implemented for them makes them
eligible to be used with with. For more on the with statement and context
management, please review the “Errors and Exceptions” chapter of Core
Python Programming or Core Python Language Fundamentals. Don’t forget for
either version (rewho.py or rewho3.py) that the who command is only avail-
able on POSIX systems unless you’re using Cygwin on a Windows-based
computer. For PCs running Microsoft Windows, try tasklist instead, but
there’s an additional tweak you need to do. Keep reading to see a sample
execution using that command.

Example 1-3 merges together both rewho.py and rewho3.py into
rewhoU.py, with the name meaning “rewho universal.” It runs under both
Python 2 and 3 interpreters. We cheat and avoid the use of print or
print() by using a less than fully-featured function that exists in both ver-
sion 2.x and version 3.x: distutils.log.warn(). It’s a one-string output
function, so if your display is more complex than that, you’ll need to
merge it all into a single string, and then make the call. To indicate its use
within our script, we’ll name it printf().

We also roll in the with statement here, too. This means that you need at
least version 2.6 to run this. Well, that’s not quite true. We mentioned ear-
lier that it’s experimental in version 2.5. This means that you need to
include this additional statement if you wish to use it: from __future__
import with_statement. If you’re still using version 2.4 or older, you have
no access to this import and must run code such as that in Example 1-1.

Example 1-2 Python 3 Version of rewho.py Script (rewho3.py)

This Python 3 equivalent of rewho.py simply replaces the print statement with
the print() function. When using the with statement (available starting in
Python 2.5), keep in mind that the file (Python 2) or io (Python 3) object’s
context manager will automatically call f.close() for you.

1 #!/usr/bin/env python
2
3 import os
4 import re
5
6 with os.popen('who', 'r') as f:
7 for eachLine in f:
8 print(re.split(r'\s\s+|\t', eachLine.strip()))

2.5-2.6

ptg7615500

1.4 Some Regex Examples 39

The creation of rewhoU.py is one example of how you can create a uni-
versal script that helps avoid the need to maintain two versions of the
same script for both Python 2 and 3.

Executing any of these scripts with the appropriate interpreter yields
the corrected, cleaner output:

$ rewho.py
['wesley', 'console', 'Feb 22 14:12']
['wesley', 'ttys000', 'Feb 22 14:18']
['wesley', 'ttys001', 'Feb 22 14:49']
['wesley', 'ttys002', 'Feb 25 00:13', '(192.168.0.20)']
['wesley', 'ttys003', 'Feb 24 23:49', '(192.168.0.20)']

Also don’t forget that the re.split() function also takes the optional
flags parameter described earlier in this chapter.

A similar exercise can be achieved on Windows-based computers by
using the tasklist command in place of who. Let’s take a look at its output
on the following page.

C:\WINDOWS\system32>tasklist

Image Name PID Session Name Session# Mem Usage
========================= ====== ================ ======== ============
System Idle Process 0 Console 0 28 K
System 4 Console 0 240 K
smss.exe 708 Console 0 420 K
csrss.exe 764 Console 0 4,876 K
winlogon.exe 788 Console 0 3,268 K
services.exe 836 Console 0 3,932 K
. . .

As you can see, the output contains different information than that of
who, but the format is similar, so we can consider our previous solution by
performing an re.split() on one or more spaces (no TAB issue here).

Example 1-3 Universal Version of rewho.py Script (rewhoU.py)

This script runs under both Python 2 and 3 by proxying out the print statement
and the print() function with a cheap substitute. It also includes the with
statement available starting in Python 2.5.

1 #!/usr/bin/env python
2
3 import os
4 from distutils.log import warn as printf
5 import re
6
7 with os.popen('who', 'r') as f:
8 for eachLine in f:
9 printf(re.split(r'\s\s+|\t', eachLine.strip()))

ptg7615500

40 Chapter 1 • Regular Expressions

The problem is that the command name might have a space, and we
(should) prefer to keep the entire command name together. The same is
true of the memory usage, which is given by “NNN K,” where NNN is the
amount of memory K designates kilobytes. We want to keep this together,
too, so we’d better split off of at least one space, right?

Nope, no can do. Notice that the process ID (PID) and Session Name
columns are delimited only by a single space. This means that if we split
off at least one space, the PID and Session Name would be kept together
as a single result. If we copied one of the preceding scripts and call it
retasklist.py, change the command from who to tasklist /nh (the /nh
option suppresses the column headers), and use a regex of \s\s+, we get
output that looks like this:

Z:\corepython\ch1>python retasklist.py
['']
['System Idle Process', '0 Console', '0', '28 K']
['System', '4 Console', '0', '240 K']
['smss.exe', '708 Console', '0', '420 K']
['csrss.exe', '764 Console', '0', '5,028 K']
['winlogon.exe', '788 Console', '0', '3,284 K']
['services.exe', '836 Console', '0', '3,924 K']
. . .

We have confirmed that although we’ve kept the command name and
memory usage strings together, we’ve inadvertently put the PID and Ses-
sion Name together. We have to discard our use of split and just do a regular
expression match. Let’s do that and filter out both the Session Name and
Number because neither add value to our output. Example 1-4 shows the
final version of our Python 2 retasklist.py:

Example 1-4 Processing the DOS tasklist Command Output
(retasklist.py)

This script uses a regex and findall() to parse the output of the DOS tasklist
command, displaying only the data that’s interesting to us. Porting this script to
Python 3 merely requires a switch to the print() function.

1 #!/usr/bin/env python
2
3 import os
4 import re
5
6 f = os.popen('tasklist /nh', 'r')
7 for eachLine in f:
8 print re.findall(
9 r'([\w.]+(?: [\w.]+)*)\s\s+(\d+) \w+\s\s+\d+\s\s+([\d,]+ K)',
10 eachLine.rstrip())
11 f.close()

ptg7615500

1.5 A Longer Regex Example 41

If we run this script, we get our desired (truncated) output:
Z:\corepython\ch1>python retasklist.py
[]
[('System Idle Process', '0', '28 K')]
[('System', '4', '240 K')]
[('smss.exe', '708', '420 K')]
[('csrss.exe', '764', '5,016 K')]
[('winlogon.exe', '788', '3,284 K')]
[('services.exe', '836', '3,932 K')]
. . .

The meticulous regex used goes through all five columns of the output
string, grouping together only those values that matter to us: the com-
mand name, its PID, and how much memory it takes. It uses many regex
features that we’ve already read about in this chapter.

Naturally, all of the scripts we’ve done in this subsection merely display
output to the user. In practice, you’re likely to be processing this data,
instead, saving it to a database, using the output to generate reports to
management, etc.

1.5 A Longer Regex Example
We will now run through an in-depth example of the different ways to use
regular expressions for string manipulation. The first step is to come up
with some code that actually generates random (but not too random) data
on which to operate. In Example 1-5, we present gendata.py, a script that
generates a data set. Although this program simply displays the generated
set of strings to standard output, this output could very well be redirected
to a test file.

Example 1-5 Data Generator for Regex Exercises (gendata.py)

This script creates random data for regular expressions practice and outputs
the generated data to the screen. To port this to Python 3, just convert print to
a function, switch from xrange() back to range(), and change from using
sys.maxint to sys.maxsize.

1 #!/usr/bin/env python
2
3 from random import randrange, choice
4 from string import ascii_lowercase as lc
5 from sys import maxint
6 from time import ctime
7

(Continued)

ptg7615500

42 Chapter 1 • Regular Expressions

This script generates strings with three fields, delimited by a pair of
colons, or a double-colon. The first field is a random (32-bit) integer, which
is converted to a date. The next field is a randomly generated e-mail
address, and the final field is a set of integers separated by a single dash (-).

Running this code, we get the following output (your mileage will defi-
nitely vary) and store it locally as the file redata.txt:

Thu Jul 22 19:21:19 2004::izsp@dicqdhytvhv.edu::1090549279-4-11
Sun Jul 13 22:42:11 2008::zqeu@dxaibjgkniy.com::1216014131-4-11
Sat May 5 16:36:23 1990::fclihw@alwdbzpsdg.edu::641950583-6-10
Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8
Thu Jun 26 19:08:59 2036::ugxfugt@jkhuqhs.net::2098145339-7-7
Tue Apr 10 01:04:45 2012::zkwaq@rpxwmtikse.com::1334045085-5-10

You might or might not be able to tell, but the output from this program
is ripe for regular expression processing. Following our line-by-line expla-
nation, we will implement several regexes to operate on this data as well
as leave plenty for the end-of-chapter exercises.

Line-by-Line Explanation

Lines 1–6
In our example script, we require the use of multiple modules. Although
we caution against the use of from-import because of various reasons (e.g.,
it’s easier to determine where a function comes from, possible local mod-
ule conflict, etc.), we choose to import only specific attributes from these
modules to help you focus on those attributes only as well as shortening
each line of code.

Example 1-5 Data Generator for Regex Exercises (gendata.py)
(Continued)

8 tlds = ('com', 'edu', 'net', 'org', 'gov')
9
10 for i in xrange(randrange(5, 11)):
11 dtint = randrange(maxint) # pick date
12 dtstr = ctime(dtint) # date string
13 llen = randrange(4, 8) # login is shorter
14 login = ''.join(choice(lc) for j in range(llen))
15 dlen = randrange(llen, 13) # domain is longer
16 dom = ''.join(choice(lc) for j in xrange(dlen))
17 print '%s::%s@%s.%s::%d-%d-%d' % (dtstr, login,
18 dom, choice(tlds), dtint, llen, dlen)

ptg7615500

1.5 A Longer Regex Example 43

Line 8
tlds is simply a set of higher-level domain names from which we will ran-
domly pick for each randomly generated e-mail address.

Lines 10–12
Each time gendata.py executes, between 5 and 10 lines of output are gen-
erated. (Our script uses the random.randrange() function for all cases for
which we desire a random integer.) For each line, we choose a random
integer from the entire possible range (0 to 231 – 1 [sys.maxint]), and then
convert that integer to a date by using time.ctime(). System time in
Python and most POSIX-based computers is based on the number of sec-
onds that have elapsed since the “epoch,” which is midnight UTC/GMT
on January 1, 1970. If we choose a 32-bit integer, that represents one
moment in time from the epoch to the maximum possible time, 232 seconds
after the epoch.

Lines 13–16
The login name for the fake e-mail address should be between 4 and 7
characters in length (thus randrange(4, 8)). To put it together, we randomly
choose between 4 and 7 random lowercase letters, concatenating each letter
to our string, one at a time. The functionality of the random.choice() func-
tion is to accept a sequence, and then return a random element of that
sequence. In our case, the sequence is the set of all 26 lowercase letters of
the alphabet, string.ascii_lowercase.

We decided that the main domain name for the fake e-mail address
should be no more than 12 characters in length, but at least as long as the
login name. Again, we use random lowercase letters to put this name
together, letter by letter.

Lines 17–18
The key component of our script puts together all of the random data into
the output line. The date string comes first, followed by the delimiter. We
then put together the random e-mail address by concatenating the login
name, the “@” symbol, the domain name, and a randomly chosen high-
level domain. After the final double-colon, we put together a random integer
string using the original time chosen (for the date string), followed by the
lengths of the login and domain names, all separated by a single hyphen.

ptg7615500

44 Chapter 1 • Regular Expressions

1.5.1 Matching a String

For the following exercises, create both permissive and restrictive versions
of your regexes. We recommend that you test these regexes in a short
application that utilizes our sample redata.txt, presented earlier (or use
your own generated data from running gendata.py). You will need to use
it again when you do the exercises.

To test the regex before putting it into our little application, we will import
the re module and assign one sample line from redata.txt to a string variable
data. These statements are constant across both illustrated examples.

>>> import re
>>> data = 'Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8'

In our first example, we will create a regular expression to extract (only)
the days of the week from the timestamps from each line of the data file
redata.txt. We will use the following regex:

“^Mon|^Tue|^Wed|^Thu|^Fri|^Sat|^Sun”

This example requires that the string start with (“^” regex operator) any
of the seven strings listed. If we were to “translate” the above regex to
English, it would read something like, “the string should start with
“Mon,” “Tue,”. . . , “Sat,” or “Sun.”

Alternatively, we can bypass all the caret operators with a single caret if
we group the day strings like this:

“^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)”

The parentheses around the set of strings mean that one of these strings
must be encountered for a match to succeed. This is a “friendlier” version
of the original regex we came up with, which did not have the parenthe-
ses. Using our modified regex, we can take advantage of the fact that we
can access the matched string as a subgroup:

>>> patt = '^(Mon|Tue|Wed|Thu|Fri|Sat|Sun)'
>>> m = re.match(patt, data)
>>> m.group() # entire match
'Thu'
>>> m.group(1) # subgroup 1
'Thu'
>>> m.groups() # all subgroups
('Thu',)

This feature might not seem as revolutionary as we have made it out to
be for this example, but it is definitely advantageous in the next example
or anywhere you provide extra data as part of the regex to help in the

ptg7615500

1.5 A Longer Regex Example 45

string matching process, even though those characters might not be part of
the string you are interested in.

Both of the above regexes are the most restrictive, specifically requiring
a set number of strings. This might not work well in an internationaliza-
tion environment, where localized days and abbreviations are used. A
looser regex would be: ^\w{3}. This one requires only that a string begin
with three consecutive alphanumeric characters. Again, to translate the
regex into English, the caret indicates “begins with,” the \w means any
single alphanumeric character, and the {3} means that there should be 3
consecutive copies of the regex which the {3} embellishes. Again, if you
want grouping, parentheses should be used, such as ^(\w{3}):

>>> patt = '^(\w{3})'
>>> m = re.match(patt, data)
>>> if m is not None: m.group()
...
'Thu'
>>> m.group(1)
'Thu'

Note that a regex of ^(\w){3} is not correct. When the {3} was inside the
parentheses, the match for three consecutive alphanumeric characters was
made first, and then represented as a group. But by moving the {3} outside,
it is now equivalent to three consecutive single alphanumeric characters:

>>> patt = '^(\w){3}'
>>> m = re.match(patt, data)
>>> if m is not None: m.group()
...
'Thu'
>>> m.group(1)
'u'

The reason why only the “u” shows up when accessing subgroup 1 is
that subgroup 1 was being continually replaced by the next character. In
other words, m.group(1) started out as “T,” then changed to “h,” and then
finally was replaced by “u.” These are three individual (and overlapping)
groups of a single alphanumeric character, as opposed to a single group
consisting of three consecutive alphanumeric characters.

In our next (and final) example, we will create a regular expression to
extract the numeric fields found at the end of each line of redata.txt.

ptg7615500

46 Chapter 1 • Regular Expressions

1.5.2 Search versus Match... and Greediness, too

Before we create any regexes, however, we realize that these integer data
items are at the end of the data strings. This means that we have a choice
of using either search or match. Initiating a search makes more sense
because we know exactly what we are looking for (a set of three integers),
that what we seek is not at the beginning of the string, and that it does
not make up the entire string. If we were to perform a match, we would
have to create a regex to match the entire line and use subgroups to save
the data we are interested in. To illustrate the differences, we will perform
a search first, and then do a match to show you that searching is more
appropriate.

Because we are looking for three integers delimited by hyphens, we cre-
ate our regex to indicate as such: \d+-\d+-\d+. This regular expression
means, “any number of digits (at least one, though) followed by a hyphen,
then more digits, another hyphen, and finally, a final set of digits.” We test
our regex now by using search():

>>> patt = '\d+-\d+-\d+'
>>> re.search(patt, data).group() # entire match
'1171590364-6-8'

A match attempt, however, would fail. Why? Because matches start at
the beginning of the string, the numeric strings are at the end. We would
have to create another regex to match the entire string. We can be lazy,
though, by using .+ to indicate just an arbitrary set of characters followed
by what we are really interested in:

patt = '.+\d+-\d+-\d+'
>>> re.match(patt, data).group() # entire match
'Thu Feb 15 17:46:04 2007::uzifzf@dpyivihw.gov::1171590364-6-8'

This works great, but we really want the number fields at the end, not
the entire string, so we have to use parentheses to group what we want:

>>> patt = '.+(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'4-6-8'

What happened? We should have extracted 1171590364-6-8, not just
4-6-8. Where is the rest of the first integer? The problem is that regular
expressions are inherently greedy. This means that with wildcard patterns,
regular expressions are evaluated in left-to-right order and try to “grab” as
many characters as possible that match the pattern. In the preceding case,
the .+ grabbed every single character from the beginning of the string,
including most of the first integer field that we wanted. The \d+ needed only

ptg7615500

1.5 A Longer Regex Example 47

a single digit, so it got “4,” whereas the .+ matched everything from the
beginning of the string up to that first digit: “Thu Feb 15 17:46:04
2007::uzifzf@dpyivihw.gov::117159036,” as indicated in Figure 1–2.

One solution is to use the “don’t be greedy” operator: ?. You can use this
operator after *, +, or ?. It directs the regular expression engine to match as
few characters as possible. So if we place a ? after the .+, we obtain the
desired result, as illustrated in Figure 1–3.

>>> patt = '.+?(\d+-\d+-\d+)'
>>> re.match(patt, data).group(1) # subgroup 1
'1171590364-6-8'

Another solution, which is actually easier, is to recognize that “::” is our
field separator. You can then just use the regular string strip('::')
method to get all the parts, and then take another split on the dash with
strip('-') to obtain the three integers you were originally seeking. Now,
we did not choose this solution first because this is how we put the strings
together to begin with using gendata.py!

���������	��
���������
�������������������������
�	��� ����

� !� �!� �!�

 is a greedy operator

Figure 1-2 Why our match went awry: + is a greedy operator.

� requests non-greedy operation

��������	
�	���������������������������������		�	
�������

�!�� "�!�"�!�"�!

Figure 1-3 Solving the greedy problem: ? requests non-greediness.

ptg7615500

48 Chapter 1 • Regular Expressions

One final example: suppose that we want to pull out only the middle
integer of the three-integer field. Here is how we would do it (using a
search so that we don’t have to match the entire string): -(\d+)-. Trying
out this pattern, we get:

>>> patt = '-(\d+)-'
>>> m = re.search(patt, data)
>>> m.group() # entire match
'-6-'
>>> m.group(1) # subgroup 1
'6'

We barely touched upon the power of regular expressions, and in this
limited space we have not been able to do them justice. However, we hope
that we have given an informative introduction so that you can add this
powerful tool to your programming skills. We suggest that you refer to the
documentation for more details on how to use regexes with Python. For a
more complete immersion into the world of regular expressions, we rec-
ommend Mastering Regular Expressions by Jeffrey E. F. Friedl.

1.6 Exercises
Regular Expressions. Create regular expressions in Exercises 1-1 to1-12 that:

1-1. Recognize the following strings: “bat,” “bit,” “but,” “hat,”
“hit,” or “hut.”

1-2. Match any pair of words separated by a single space, that is,
first and last names.

1-3. Match any word and single letter separated by a comma and
single space, as in last name, first initial.

1-4. Match the set of all valid Python identifiers.
1-5. Match a street address according to your local format (keep

your regex general enough to match any number of street
words, including the type designation). For example, American
street addresses use the format: 1180 Bordeaux Drive. Make
your regex flexible enough to support multi-word street
names such as: 3120 De la Cruz Boulevard.

1-6. Match simple Web domain names that begin with “www.”
and end with a “.com” suffix; for example, www.yahoo.com.
Extra Credit: If your regex also supports other high-level
domain names, such as .edu, .net, etc. (for example,
www.foothill.edu).

www.yahoo.com
www.foothill.edu

ptg7615500

1.6 Exercises 49

1-7. Match the set of the string representations of all Python
integers.

1-8. Match the set of the string representations of all Python longs.
1-9. Match the set of the string representations of all Python floats.

1-10. Match the set of the string representations of all Python com-
plex numbers.

1-11. Match the set of all valid e-mail addresses (start with a loose
regex, and then try to tighten it as much as you can, yet
maintain correct functionality).

1-12. Match the set of all valid Web site addresses (URLs) (start
with a loose regex, and then try to tighten it as much as you
can, yet maintain correct functionality).

1-13. type(). The type() built-in function returns a type object,
which is displayed as the following Pythonic-looking string:
>>> type(0)
<type 'int'>
>>> type(.34)
<type 'float'>
>>> type(dir)
<type 'builtin_function_or_method'>

Create a regex that would extract the actual type name from
the string. Your function should take a string like this <type
'int'> and return int. (Ditto for all other types, such as
‘float’, ‘builtin_function_or_method’, etc.) Note: You
are implementing the value that is stored in the __name__
attribute for classes and some built-in types.

1-14. Processing Dates. In Section 1.2, we gave you the regex pattern
that matched the single or double-digit string representations of
the months January to September (0?[1-9]). Create the regex
that represents the remaining three months in the standard
calendar.

1-15. Processing Credit Card Numbers. Also in Section 1.2, we gave
you the regex pattern that matched credit card (CC) numbers
([0-9]{15,16}). However, this pattern does not allow for
hyphens separating blocks of numbers. Create the regex that
allows hyphens, but only in the correct locations. For exam-
ple, 15-digit CC numbers have a pattern of 4-6-5, indicating
four digits-hyphen-six digits-hyphen-five digits; and 16-digit
CC numbers have a 4-4-4-4 pattern. Remember to “balloon”

ptg7615500

50 Chapter 1 • Regular Expressions

the size of the entire string correctly. Extra Credit: There is a
standard algorithm for determining whether a CC number is
valid. Write some code that not only recognizes a correctly
formatted CC number, but also a valid one.

Playing with gendata.py. The next set of Exercises (1-16 through 1-27) deal
specifically with the data that is generated by gendata.py. Before approach-
ing Exercises 1-17 and 1-18, you might want to do 1-16 and all the regular
expressions first.

1-16. Update the code for gendata.py so that the data is written
directly to redata.txt rather than output to the screen.

1-17. Determine how many times each day of the week shows up
for any incarnation of redata.txt. (Alternatively, you can
also count how many times each month of the year was
chosen.)

1-18. Ensure that there is no data corruption in redata.txt by con-
firming that the first integer of the integer field matches the
timestamp given at the beginning of each output line.

Create Regular Expressions That:

1-19. Extract the complete timestamps from each line.
1-20. Extract the complete e-mail address from each line.
1-21. Extract only the months from the timestamps.
1-22. Extract only the years from the timestamps.
1-23. Extract only the time (HH:MM:SS) from the timestamps.
1-24. Extract only the login and domain names (both the main

domain name and the high-level domain together) from the
e-mail address.

1-25. Extract only the login and domain names (both the main
domain name and the high-level domain) from the e-mail
address.

1-26. Replace the e-mail address from each line of data with your
e-mail address.

1-27. Extract the months, days, and years from the timestamps and
output them in “Mon, Day, Year” format, iterating over each
line only once.

ptg7615500

1.6 Exercises 51

Processing Telephone Numbers. For Exercises 1-28 and 1-29, recall the regular
expression introduced in Section 1.2, which matched telephone numbers
but allowed for an optional area code prefix: \d{3}-\d{3}-\d{4}. Update
this regular expression so that:

1-28. Area codes (the first set of three-digits and the accompany-
ing hyphen) are optional, that is, your regex should match
both 800-555-1212 as well as just 555-1212.

1-29. Either parenthesized or hyphenated area codes are sup-
ported, not to mention optional; make your regex match
800-555-1212, 555-1212, and also (800) 555-1212.

Regex Utilities. The final set of exercises make useful utility scripts when
processing online data:

1-30. HTML Generation. Given a list of links (and optional short
description), whether user-provided on command-line, via
input from another script, or from a database, generate a
Web page (.html) that includes all links as hypertext anchors,
which upon viewing in a Web browser, allows users to click
those links and visit the corresponding site. If the short
description is provided, use that as the hypertext instead of
the URL.

1-31. Tweet Scrub. Sometimes all you want to see is the plain text of
a tweet as posted to the Twitter service by users. Create a
function that takes a tweet and an optional “meta” flag
defaulted False, and then returns a string of the scrubbed
tweet, removing all the extraneous information, such as an
“RT” notation for “retweet”, a leading ., and all “#hashtags”.
If the meta flag is True, then also return a dict containing the
metadata. This can include a key “RT,” whose value is a
tuple of strings of users who retweeted the message, and/or
a key “hashtags” with a tuple of the hashtags. If the values
don’t exist (empty tuples), then don’t even bother creating a
key-value entry for them.

ptg7615500

52 Chapter 1 • Regular Expressions

1-32. Amazon Screenscraper. Create a script that helps you to keep
track of your favorite books and how they’re doing on Amazon
(or any other online bookseller that tracks book rankings).
For example, the Amazon link for any book is of the format,
http://amazon.com/dp/ISBN (for example, http://amazon.com/
dp/0132678209). You can then change the domain name to
check out the equivalent rankings on Amazon sites in other
countries, such as Germany (.de), France (.fr), Japan (.jp),
China (.cn), and the UK (.co.uk). Use regular expressions or a
markup parser, such as BeautifulSoup, lxml, or html5lib to
parse the ranking, and then let the user pass in a command-
line argument that specifies whether the output should be in
plain text, perhaps for inclusion in an e-mail body, or format-
ted in HTML for Web consumption.

http://amazon.com/dp/ISBN
http://amazon.com/dp/0132678209
http://amazon.com/dp/0132678209

ptg7615500

53

CHAPTER

Network Programming

So, IPv6. You all know that we are almost out of IPv4 address space. I
am a little embarrassed about that because I was the guy who decided
that 32-bit was enough for the Internet experiment. My only defense

is that that choice was made in 1977, and I thought it was an
experiment. The problem is the experiment didn't end, so here we are.

—Vint Cerf, January 20111

(verbally at linux.conf.au conference)

In this chapter...

• Introduction
• What Is Client/Server

Architecture?
• Sockets: Communication

Endpoints
• Network Programming in Python

1. Dates back to 2004 via http://www.educause.edu/EDUCAUSE+Review/
EDUCAUSEReviewMagazineVolume39/MusingsontheInternetPart2/
157899

• *The SocketServer Module
• *Introduction to the Twisted

Framework
• Related Modules

http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume39/MusingsontheInternetPart2/157899
http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume39/MusingsontheInternetPart2/157899
http://www.educause.edu/EDUCAUSE+Review/EDUCAUSEReviewMagazineVolume39/MusingsontheInternetPart2/157899

ptg7615500

54 Chapter 2 • Network Programming

2.1 Introduction
In this section, we will take a brief look at network programming using
sockets. But before we delve into that, we will present some background
information on network programming, how sockets apply to Python, and
then show you how to use some of Python’s modules to build networked
applications.

2.2 What Is Client/Server Architecture?
What is client/server architecture? It means different things to different peo-
ple, depending on whom you ask as well as whether you are describing a
software or a hardware system. In either case, the premise is simple: the
server—a piece of hardware or software—provides a “service” that is
needed by one or more clients (users of the service). Its sole purpose of
existence is to wait for (client) requests, respond to those clients (provide
the service), and then wait for more requests.

Clients, on the other hand, contact a server for a particular request, send
over any necessary data, and then wait for the server to reply, either com-
pleting the request or indicating the cause of failure. The server runs indef-
initely, continually processing requests; clients make a one-time request for
service, receive that service, and thus conclude their transaction. A client
might make additional requests at some later time, but these are consid-
ered separate transactions.

The most common notion of the client/server architecture today is illustrated
in Figure 2-1, which depicts a user or client computer retrieving information
from a server across the Internet. Although such a system is indeed an example
of a client/server architecture, it isn’t the only one. Furthermore, client/server
architecture can be applied to computer hardware as well as software.

The Internet

Client Server

Figure 2-1 Typical conception of a client/server system on the Internet.

ptg7615500

2.2 What Is Client/Server Architecture? 55

2.2.1 Hardware Client/Server Architecture

Print(er) servers are examples of hardware servers. They process incoming
print jobs and send them to a printer (or some other printing device)
attached to such a system. Such a computer is generally network-accessible
and client computers would send it print requests.

Another example of a hardware server is a file server. These are typically
computers with large, generalized storage capacity, which is remotely
accessible to clients. Client computers mount the disks from the server
computer as if the disk itself were on the local computer. One of the most
popular network operating systems that support file servers is Sun Micro-
systems’ Network File System (NFS). If you are accessing a networked disk
drive and cannot tell whether it is local or on the network, then the client/
server system has done its job. The goal is for the user experience to be
exactly the same as that of a local disk—the abstraction is normal disk
access. It is up to the programmed implementation to make it behave in
such a manner.

2.2.2 Software Client/Server Architecture

Software servers also run on a piece of hardware but do not have dedi-
cated peripheral devices as hardware servers do (i.e., printers, disk drives,
etc.). The primary services provided by software servers include program
execution, data transfer retrieval, aggregation, update, or other types of
programmed or data manipulation.

One of the more common software servers today is the Web server. Indi-
viduals or companies desiring to run their own Web server will get one or
more computers, install the Web pages and or Web applications they wish
to provide to users, and then start the Web server. The job of such a server
is to accept client requests, send back Web pages to (Web) clients, that is,
browsers on users’ computers, and then wait for the next client request.
These servers are started with the expectation of running forever.
Although they do not achieve that goal, they go for as long as possible
unless stopped by some external force such as being shut down, either
explicitly or catastrophically (due to hardware failure).

Database servers are another kind of software server. They take client
requests for either storage or retrieval, act upon that request, and then wait
for more business. They are also designed to run forever.

The last type of software server we will discuss are windows servers.
These servers can almost be considered hardware servers. They run on a

ptg7615500

56 Chapter 2 • Network Programming

computer with an attached display, such as a monitor of some sort. Windows
clients are actually programs that require a windowing environment in
which to execute. These are generally considered graphical user interface
(GUI) applications. If they are executed without a window server, meaning, in
a text-based environment such as a DOS window or a Unix shell, they are
unable to start. Once a windows server is accessible, then things are fine.

Such an environment becomes even more interesting when networking
comes into play. The usual display for a windows client is the server on
the local computer, but it is possible in some networked windowing envi-
ronments, such as the X Window system, to choose another computer’s
window server as a display. In such situations, you can be running a GUI
program on one computer, but have it displayed at another!

2.2.3 Bank Tellers as Servers?

One way to imagine how client/server architecture works is to create in your
mind the image of a bank teller who neither eats, sleeps, nor rests, serving
one customer after another in a line that never seems to end (see Figure 2-2).
The line might be long or it might be empty on occasion, but at any given
moment, a customer might show up. Of course, such a teller was fantasy
years ago, but automated teller machines (ATMs) seem to come close to
such a model now.

The teller is, of course, the server that runs in an infinite loop. Each cus-
tomer is a client with a need that must be addressed. Customers arrive
and are handled by the teller in a first-come-first-served manner. Once a
transaction has been completed, the client goes away while the server
either serves the next customer or sits and waits until one comes along.

Why is all this important? The reason is that this style of execution is
how client/server architecture works in a general sense. Now that you
have the basic idea, let’s adapt it to network programming, which follows
the software client/server architecture model.

2.2.4 Client/Server Network Programming

Before a server can respond to client requests, some preliminary setup
procedures must be performed to prepare it for the work that lies ahead. A
communication endpoint is created which allows a server to listen for
requests. One can liken our server to a company receptionist or switch-
board operator who answers calls on the main corporate line. Once the
phone number and equipment are installed and the operator arrives,
the service can begin.

ptg7615500

2.2 What Is Client/Server Architecture? 57

This process is the same in the networked world—once a communica-
tion endpoint has been established, our listening server can now enter its
infinite loop, waiting for clients to connect, and responding to requests. Of
course, to keep our corporate phone receptionist busy, we must not forget
to put that phone number on company letterhead, in advertisements, or
some sort of press release; otherwise, no one will ever call!

Similarly, potential clients must be made aware that this server exists to
handle their needs—otherwise, the server will never get a single request.
Imagine creating a brand new Web site. It might be the most super-duper,
awesome, amazing, useful, and coolest Web site of all, but if the Web
address or URL is never broadcast or advertised in any way, no one will
ever know about it, and it will never see the any visitors.

Now you have a good idea as to how the server works. You have made
it past the difficult part. The client-side stuff is much more simple than
that on the server side. All the client has to do is to create its single com-
munication endpoint, and then establish a connection to the server. The
client can now make a request, which includes any necessary exchange of
data. Once the request has been processed and the client has received the
result or some sort of acknowledgement, communication is terminated.

Figure 2-2 The bank teller in this diagram works “forever” serving client requests. The teller
runs in an infinite loop receiving requests, servicing them, and then going back to serve or wait
for another client. There might be a long line of clients, or there might be none at all, but in either
case, a server’s work is never done.

ptg7615500

58 Chapter 2 • Network Programming

2.3 Sockets: Communication Endpoints
In this subsection, you’ll be introduced to sockets, get some background
on their origins, learn about the various types of sockets, and finally, how
they’re used to allow processes running on different (or the same) comput-
ers to communicate with each other.

2.3.1 What Are Sockets?

Sockets are computer networking data structures that embody the concept
of the “communication endpoint,” described in the previous section. Net-
worked applications must create sockets before any type of communica-
tion can commence. They can be likened to telephone jacks, without
which, engaging in communication is impossible.

Sockets can trace their origins to the 1970s as part of the University of
California, Berkeley version of Unix, known as BSD Unix. Therefore, you
will sometimes hear these sockets referred to as Berkeley sockets or BSD
sockets. Sockets were originally created for same-host applications where
they would enable one running program (a.k.a. a process) to communicate
with another running program. This is known as interprocess communication,
or IPC. There are two types of sockets: file-based and network-oriented.

Unix sockets are the first family of sockets we are looking at and have a
“family name” of AF_UNIX (a.k.a. AF_LOCAL, as specified in the
POSIX1.g standard), which stands for address family: UNIX. Most popular
platforms, including Python, use the term address families and the abbrevi-
ation AF; other perhaps older systems might refer to address families as
domains or protocol families and use PF rather than AF. Similarly,
AF_LOCAL (standardized in 2000–2001) is supposed to replace AF_UNIX;
however, for backward-compatibility, many systems use both and just
make them aliases to the same constant. Python itself still uses AF_UNIX.

Because both processes run on the same computer, these sockets are
file-based, meaning that their underlying infrastructure is supported by
the file system. This makes sense, because the file system is a shared con-
stant between processes running on the same host.

The second type of socket is networked-based and has its own family name,
AF_INET, or address family: Internet. Another address family, AF_INET6, is
used for Internet Protocol version 6 (IPv6) addressing. There are other
address families, all of which are either specialized, antiquated, seldom
used, or remain unimplemented. Of all address families, AF_INET is now
the most widely used.

ptg7615500

2.3 Sockets: Communication Endpoints 59

Support for a special type of Linux socket was introduced in Python 2.5.
The AF_NETLINK family of (connectionless [see Section 2.3.3]) sockets
allow for IPC between user and kernel-level code using the standard BSD
socket interface. It is seen as an elegant and less risky solution over previous
and more cumbersome solutions, such as adding new system calls, /proc
support, or “IOCTL”s to an operating system.

Another feature (new in version 2.6) for Linux is support for the Trans-
parent Interprocess Communication (TIPC) protocol. TIPC is used to
allow clusters of computers to “talk” to each other without using IP-based
addressing. The Python support for TIPC comes in the form of the
AF_TIPC family.

Overall, Python supports only the AF_UNIX, AF_NETLINK, AF_TIPC,
and AF_INET{,6} families. Because of our focus on network programming,
we will be using AF_INET for most of the remainder of this chapter.

2.3.2 Socket Addresses: Host-Port Pairs

If a socket is like a telephone jack—a piece of infrastructure that enables
communication—then a hostname and port number are like an area code
and telephone number combination. Having the hardware and ability to
communicate doesn’t do any good unless you know to whom and how
to “dial.” An Internet address is comprised of a hostname and port num-
ber pair, which is required for networked communication. It goes without
saying that there should also be someone listening at the other end; other-
wise, you get the familiar tones, followed by “I’m sorry, that number is
no longer in service. Please check the number and try your call again.” You
have probably seen one networking analogy during Web surfing, for
example, “Unable to contact server. Server is not responding or is unreach-
able.”

Valid port numbers range from 0–65535, although those less than 1024
are reserved for the system. If you are using a POSIX-compliant system
(e.g., Linux, Mac OS X, etc.), the list of reserved port numbers (along with
servers/protocols and socket types) is found in the /etc/services file. A
list of well-known port numbers is accessible at this Web site:

http://www.iana.org/assignments/port-numbers

2.5

2.6

http://www.iana.org/assignments/port-numbers

ptg7615500

60 Chapter 2 • Network Programming

2.3.3 Connection-Oriented Sockets vs.

Connectionless

Connection-Oriented Sockets

Regardless of which address family you are using, there are two different
styles of socket connections. The first type is connection-oriented. What
this means is that a connection must be established before communication
can occur, such as calling a friend using the telephone system. This type of
communication is also referred to as a virtual circuit or stream socket.

Connection-oriented communication offers sequenced, reliable, and
unduplicated delivery of data, without record boundaries. That basically
means that each message may be broken up into multiple pieces, which
are all guaranteed to arrive at their destination, put back together and in
order, and delivered to the waiting application.

The primary protocol that implements such connection types is the
Transmission Control Protocol (better known by its acronym, TCP). To create
TCP sockets, one must use SOCK_STREAM as the socket type. The
SOCK_STREAM name for a TCP socket is based on one of its denotations
as stream socket. Because the networked version of these sockets
(AF_INET) use the Internet Protocol (IP) to find hosts in the network, the
entire system generally goes by the combined names of both protocols
(TCP and IP), or TCP/IP. (Of course, you can also use TCP with local [non-
networked AF_LOCAL/AF_UNIX] sockets, but obviously there’s no IP
usage there.)

Connectionless Sockets

In stark contrast to virtual circuits is the datagram type of socket, which is con-
nectionless. This means that no connection is necessary before communica-
tion can begin. Here, there are no guarantees of sequencing, reliability, or non-
duplication in the process of data delivery. Datagrams do preserve record
boundaries, however, meaning that entire messages are sent rather than being
broken into pieces first, such as with connection-oriented protocols.

Message delivery using datagrams can be compared to the postal ser-
vice. Letters and packages might not arrive in the order they were sent. In
fact, they might not arrive at all! To add to the complication, in the land of
networking, duplication of messages is even possible.

ptg7615500

2.4 Network Programming in Python 61

So with all this negativity, why use datagrams at all? (There must be
some advantage over using stream sockets.) Because of the guarantees
provided by connection-oriented sockets, a good amount of overhead is
required for their setup as well as in maintaining the virtual circuit con-
nection. Datagrams do not have this overhead and thus are “less expen-
sive.” They usually provide better performance and might be suitable for
some types of applications.

The primary protocol that implements such connection types is the User
Datagram Protocol (better known by its acronym, UDP). To create UDP
sockets, we must use SOCK_DGRAM as the socket type. The SOCK_
DGRAM name for a UDP socket, as you can probably tell, comes from the
word “datagram.” Because these sockets also use the Internet Protocol to
find hosts in the network, this system also has a more general name, going
by the combined names of both of these protocols (UDP and IP), or UDP/IP.

2.4 Network Programming in Python
Now that you know all about client/server architecture, sockets, and net-
working, let’s try to bring these concepts to Python. The primary module
we will be using in this section is the socket module. Found within this
module is the socket() function, which is used to create socket objects.
Sockets also have their own set of methods, which enable socket-based
network communication.

2.4.1 socket() Module Function

To create a socket, you must use the socket.socket() function, which has
the general syntax:

socket(socket_family, socket_type, protocol=0)

The socket_family is either AF_UNIX or AF_INET, as explained ear-
lier, and the socket_type is either SOCK_STREAM or SOCK_ DGRAM,
also explained earlier. The protocol is usually left out, defaulting to 0.

So to create a TCP/IP socket, you call socket.socket() like this:
tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Likewise, to create a UDP/IP socket you perform:
udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

ptg7615500

62 Chapter 2 • Network Programming

Because there are numerous socket module attributes, this is one of the
exceptions where using from module import * is somewhat acceptable. If
we applied from socket import *, we bring the socket attributes into our
namespace, but our code is shortened considerably, as demonstrated in
the following:

tcpSock = socket(AF_INET, SOCK_STREAM)

Once we have a socket object, all further interaction will occur using
that socket object’s methods.

2.4.2 Socket Object (Built-In) Methods

In Table 2-1, we present a list of the most common socket methods. In the
next subsections, we will create both TCP and UDP clients and servers,
using some of these methods. Although we focus on Internet sockets,
these methods have similar meanings when using local/non-networked
sockets.

Table 2-1 Common Socket Object Methods and Attributes

Name Description

Server Socket Methods

s.bind() Bind address (hostname, port number pair) to socket

s.listen() Set up and start TCP listener

s.accept() Passively accept TCP client connection, waiting until
connection arrives (blocking)

Client Socket Methods

s.connect() Actively initiate TCP server connection

s.connect_ex() Extended version of connect(), where problems
returned as error codes rather than an exception
being thrown

ptg7615500

2.4 Network Programming in Python 63

Name Description

General Socket Methods

s.recv() Receive TCP message

s.recv_into()a Receive TCP message into specified buffer

s.send() Transmit TCP message

s.sendall() Transmit TCP message completely

s.recvfrom() Receive UDP message

s.recvfrom_into()a Receive UDP message into specified buffer

s.sendto() Transmit UDP message

s.getpeername() Remote address connected to socket (TCP)

s.getsockname() Address of current socket

s.getsockopt() Return value of given socket option

s.setsockopt() Set value for given socket option

s.shutdown() Shut down the connection

s.close() Close socket

s.detach()b Close socket without closing file descriptor, return
the latter

s.ioctl()c Control the mode of a socket (Windows only)

Blocking-Oriented Socket Methods

s.setblocking() Set blocking or non-blocking mode of socket

s.settimeout()d Set timeout for blocking socket operations

s.gettimeout()d Get timeout for blocking socket operations

(Continued)

ptg7615500

64 Chapter 2 • Network Programming

CORE TIP: Install clients and servers on different computers to run

networked applications

In our multitude of examples in this chapter, you will often see code and out-
put referring to host “localhost” or see an IP address of 127.0.0.1. Our examples
are running the client(s) and server(s) on the same computer. We encourage the
reader to change the hostnames and copy the code to different computers as it
is much more fun developing and playing around with code that lets comput-
ers talk to one another across the network, and to see network programs that
really do work!

2.4.3 Creating a TCP Server

We will first present some general pseudocode needed to create a generic
TCP server, followed by a general description of what is going on. Keep in
mind that this is only one way of designing your server. Once you become
comfortable with server design, you will be able to modify the following
pseudocode to operate the however want it to:

Table 2-1 Common Socket Object Methods and Attributes (Continued)

Name Description

File-Oriented Socket Methods

s.fileno() File descriptor of socket

s.makefile() Create a file object associated with socket

Data Attributes

s.familya The socket family

s.typea The socket type

s.protoa The socket protocol

a. New in Python 2.5.
b. New in Python 3.2.
c. New in Python 2.6; Windows platform only. POSIX systems can use functl module

functions.
d. New in Python 2.3.

ptg7615500

2.4 Network Programming in Python 65

ss = socket() # create server socket
ss.bind() # bind socket to address
ss.listen() # listen for connections
inf_loop: # server infinite loop
 cs = ss.accept() # accept client connection
 comm_loop: # communication loop
 cs.recv()/cs.send() # dialog (receive/send)
 cs.close() # close client socket
ss.close() # close server socket # (opt)

All sockets are created by using the socket.socket() function. Servers
need to “sit on a port” and wait for requests, so they all must bind to a local
address. Because TCP is a connection-oriented communication system,
some infrastructure must be set up before a TCP server can begin opera-
tion. In particular, TCP servers must “listen” for (incoming) connections.
Once this setup process is complete, a server can start its infinite loop.

A simple (single-threaded) server will then sit on an accept() call, wait-
ing for a connection. By default, accept() is blocking, meaning that execu-
tion is suspended until a connection arrives. Sockets do support a non-
blocking mode; refer to the documentation or operating systems textbooks
for more details on why and how you would use non-blocking sockets.

Once a connection is accepted, a separate client socket is returned (by
accept()) for the upcoming message interchange. Using the new client
socket is similar to handing off a customer call to a service representative.
When a client eventually does come in, the main switchboard operator
takes the incoming call and patches it through, using another line to con-
nect to the appropriate person to handle the client’s needs.

This frees up the main line (the original server socket) so that the opera-
tor can resume waiting for new calls (client requests) while the customer
and the service representative he is connected to carry on their own con-
versation. Likewise, when an incoming request arrives, a new communica-
tion port is created to converse directly with that client, again, leaving the
main port free to accept new client connections.

CORE TIP: Spawning threads to handle client requests

We do not implement this in our examples, but it is also fairly common to hand
off a client request to a new thread or process to complete the client processing.
The SocketServer module, a high-level socket communication module written
on top of socket, supports both threaded and spawned process handling of
client requests. Refer to the documentation to obtain more information about the
SocketServer module as well as the exercises in Chapter 4, “Multithreaded
Programming.”

ptg7615500

66 Chapter 2 • Network Programming

Once the temporary socket is created, communication can commence,
and both client and server proceed to engage in a dialog of sending and
receiving, using this new socket until the connection is terminated. This
usually happens when one of the parties either closes its connection or
sends an empty string to its counterpart.

In our code, after a client connection is closed, the server goes back to
wait for another client connection. The final line of code, in which we close
the server socket, is optional. It is never encountered because the server is
supposed to run in an infinite loop. We leave this code in our example as a
reminder to the reader that calling the close() method is recommended
when implementing an intelligent exit scheme for the server—for example,
when a handler detects some external condition whereby the server
should be shut down. In those cases, a close() method call is warranted.

In Example 2-1, we present tsTserv.py, a TCP server program that takes
the data string sent from a client and returns it timestamped (format:
[timestamp]data) back to the client. (“tsTserv” stands for timestamp TCP
server. The other files are named in a similar manner.)

Example 2-1 TCP Timestamp Server (tsTserv.py)

This script creates a TCP server that accepts messages from clients and returns
them with a timestamp prefix.

1 #!/usr/bin/env python
2
3 from socket import *
4 from time import ctime
5
6 HOST = ''
7 PORT = 21567
8 BUFSIZ = 1024
9 ADDR = (HOST, PORT)
10
11 tcpSerSock = socket(AF_INET, SOCK_STREAM)
12 tcpSerSock.bind(ADDR)
13 tcpSerSock.listen(5)
14
15 while True:
16 print 'waiting for connection...'
17 tcpCliSock, addr = tcpSerSock.accept()
18 print '...connected from:', addr
19
20 while True:
21 data = tcpCliSock.recv(BUFSIZ)
22 if not data:
23 break
24 tcpCliSock.send('[%s] %s' % (
25 ctime(), data))
26
27 tcpCliSock.close()
28 tcpSerSock.close()

ptg7615500

2.4 Network Programming in Python 67

Line-by-Line Explanation

Lines 1–4
After the Unix start-up line, we import time.ctime() and all the attributes
from the socket module.

Lines 6–13
The HOST variable is blank, which is an indication to the bind() method
that it can use any available address. We also choose a random port num-
ber, which does not appear to be used or reserved by the system. For our
application, we set the buffer size to 1K. You can vary this size based on
your networking capability and application needs. The argument for the
listen() method is simply a maximum number of incoming connection
requests to accept before connections are turned away or refused.

The TCP server socket (tcpSerSock) is allocated on line 11, followed by the
calls to bind the socket to the server’s address and to start the TCP listener.

Lines 15–28
Once we are inside the server’s infinite loop, we (passively) wait for a con-
nection. When one comes in, we enter the dialog loop where we wait for
the client to send its message. If the message is blank, that means that the
client has quit, so we would break from the dialog loop, close the client
connection, and then go back to wait for another client. If we did get a
message from the client, we format and return the same data but prepend
it with the current timestamp. The final line is never executed; it is there as
a reminder to the reader that a close() call should be made if a handler is
written to allow for a more graceful exit, as we discussed earlier.

Now let’s take a look at the Python 3 version (tsTserv3.py), as shown in
Example 2-2:

Example 2-2 Python 3 TCP Timestamp Server (tsTserv3.py)

This script creates a TCP server that accepts messages from clients and returns
them with a timestamp prefix.

1 #!/usr/bin/env python
2
3 from socket import *
4 from time import ctime
5

(Continued)

ptg7615500

68 Chapter 2 • Network Programming

We’ve italicized the relevant changes in lines 16, 18, and 25, wherein
print becomes a function, and we also transmit the strings as an ASCII
bytes “string” rather than in Unicode. Later in this book, we'll discuss
Python 2-to-Python 3 migration and how it’s also possible to write code
that runs unmodified by either version 2.x or 3.x interpreters.

Another pair of variations to support the IPv6, tsTservV6.py and
tsTserv3V6.py, are not shown here, but you would only need to change
the address family from AF_INET (IPv4) to AF_INET6 (IPv6) when creating
the socket. (In case you’re not familiar with these terms, IPv4 describes the
current Internet Protocol. The next generation is version 6, hence “IPv6.”)

2.4.4 Creating a TCP Client

Creating a client is much simpler than a server. Similar to our description
of the TCP server, we will present the pseudocode with explanations first,
then show you the real thing.

cs = socket() # create client socket
cs.connect() # attempt server connection
comm_loop: # communication loop
 cs.send()/cs.recv() # dialog (send/receive)
cs.close() # close client socket

Example 2-2 Python 3 TCP Timestamp Server (tsTserv3.py) (Continued)

6 HOST = ''
7 PORT = 21567
8 BUFSIZ = 1024
9 ADDR = (HOST, PORT)
10
11 tcpSerSock = socket(AF_INET, SOCK_STREAM)
12 tcpSerSock.bind(ADDR)
13 tcpSerSock.listen(5)
14
15 while True:
16 print('waiting for connection...')
17 tcpCliSock, addr = tcpSerSock.accept()
18 print('...connected from:', addr)
19
20 while True:
21 data = tcpCliSock.recv(BUFSIZ)
22 if not data:
23 break
24 tcpCliSock.send('[%s] %s' % (
25 bytes(ctime(), 'utf-8'), data))
26
27 tcpCliSock.close()
28 tcpSerSock.close()

ptg7615500

2.4 Network Programming in Python 69

As we noted earlier, all sockets are created by using socket.socket().
Once a client has a socket, however, it can immediately make a connection
to a server by using the socket’s connect() method. When the connection
has been established, it can participate in a dialog with the server. Once
the client has completed its transaction, it can close its socket, terminating
the connection.

We present the code for tsTclnt.py in Example 2-3. This script con-
nects to the server and prompts the user for line after line of data. The
server returns this data timestamped, which is presented to the user by
the client code.

Line-by-Line Explanation

Lines 1–3
After the Unix startup line, we import all the attributes from the socket
module.

Example 2-3 TCP Timestamp Client (tsTclnt.py)

This script creates a TCP client that prompts the user for messages to send to the
server, receives them back from the server with a timestamp prefix, and then
displays the results to the user.

1 #!/usr/bin/env python
2
3 from socket import *
4
5 HOST = 'localhost'
6 PORT = 21567
7 BUFSIZ = 1024
8 ADDR = (HOST, PORT)
9
10 tcpCliSock = socket(AF_INET, SOCK_STREAM)
11 tcpCliSock.connect(ADDR)
12
13 while True:
14 data = raw_input('> ')
15 if not data:
16 break
17 tcpCliSock.send(data)
18 data = tcpCliSock.recv(BUFSIZ)
19 if not data:
20 break
21 print data
22
23 tcpCliSock.close()

ptg7615500

70 Chapter 2 • Network Programming

Lines 5–11
The HOST and PORT variables refer to the server’s hostname and port num-
ber. Because we are running our test (in this case) on the same computer,
HOST contains the local hostname (change it accordingly if you are running
your server on a different host). The port number PORT should be exactly
the same as what you set for your server (otherwise, there won’t be much
communication). We also choose the same 1K buffer size.

The TCP client socket (tcpCliSock) is allocated in line 10, followed by
(an active) call to connect to the server.

Lines 13–23
The client also has an infinite loop, but it is not meant to run forever like
the server’s loop. The client loop will exit on either of two conditions: the
user enters no input (lines 14–16), or the server somehow quit and our call
to the recv() method fails (lines 18–20). Otherwise, in a normal situation,
the user enters in some string data, which is sent to the server for process-
ing. The newly timestamped input string is then received and displayed to
the screen.

Similar to what we did for the server, let’s take a look at the Python 3
and IPv6 versions of the client (tsTclnt3.py), starting with the former as
shown in Example 2-4:

Example 2-4 Python 3 TCP Timestamp Client (tsTclnt3.py)

This is the Python 3 equivalent to tsTclnt.py.

1 #!/usr/bin/env python
2
3 from socket import *
4
5 HOST = '127.0.0.1' # or 'localhost'
6 PORT = 21567
7 BUFSIZ = 1024
8 ADDR = (HOST, PORT)
9
10 tcpCliSock = socket(AF_INET, SOCK_STREAM)
11 tcpCliSock.connect(ADDR)
12
13 while True:
14 data = input('> ')
15 if not data:
16 break
17 tcpCliSock.send(data)
18 data = tcpCliSock.recv(BUFSIZ)
19 if not data:
20 break
21 print(data.decode('utf-8'))
22
23 tcpCliSock.close()

ptg7615500

2.4 Network Programming in Python 71

In addition to changing print to a function, we also have to decode the
string that comes from the server. (With the help of distutils.log.warn(), it
would be simple to convert the original script to run under both Python 2
and 3, just like rewhoU.py from Chapter 1, “Regular Expressions.”) Finally,
let’s take a look at the (Python 2) IPv6 version (tsTclntV6.py), as shown in
Example 2-5.

In this snippet, we needed to change the localhost to its IPv6 address of
“::1” as well as request the AF_INET6 family of sockets. If you combine the
changes from tsTclnt3.py and tsTclntV6.py, you should also be able to
arrive at an IPv6 Python 3 version of the TCP client.

2.4.5 Executing Our TCP Server and Client(s)

Now let’s run the server and client programs to see how they work.
Should we run the server first or the client? Naturally, if we ran the client
first, no connection would be possible because there is no server waiting to
accept the request. The server is considered a passive partner because it
has to establish itself first and passively wait for a connection. A client, on

Example 2-5 IPv6 TCP Timestamp Client (tsTclntV6.py)

This is the IPv6 version of the TCP client from the previous two examples.

1 #!/usr/bin/env python
2
3 from socket import *
4
5 HOST = '::1'
6 PORT = 21567
7 BUFSIZ = 1024
8 ADDR = (HOST, PORT)
9
10 tcpCliSock = socket(AF_INET6, SOCK_STREAM)
11 tcpCliSock.connect(ADDR)
12
13 while True:
14 data = raw_input('> ')
15 if not data:
16 break
17 tcpCliSock.send(data)
18 data = tcpCliSock.recv(BUFSIZ)
19 if not data:
20 break
21 print data
22
23 tcpCliSock.close()

ptg7615500

72 Chapter 2 • Network Programming

the other hand, is an active partner because it actively initiates a connec-
tion. In other words:

Start the server first (before any clients try to connect).
In our example, we use the same computer, but there is nothing to stop

us from using another host for the server. If this is the case, just change the
hostname. (It is rather exciting when you get your first networked applica-
tion running the server and client from different machines!)

We now present the corresponding input and output from the client
program, which exits with a simple Return (or Enter) keystroke with no
data entered:

$ tsTclnt.py
> hi
[Sat Jun 17 17:27:21 2006] hi
> spanish inquisition
[Sat Jun 17 17:27:37 2006] spanish inquisition
>
$

The server’s output is mainly diagnostic:
$ tsTserv.py
waiting for connection...
...connected from: ('127.0.0.1', 1040)
waiting for connection...

The “. . . connected from . . .” message was received when our client
made its connection. The server went back to wait for new clients while we
continued receiving “service.” When we exited from the server, we had to
break out of it, resulting in an exception. The best way to avoid such an
error is to create a more graceful exit, as we have been discussing.

CORE TIP: Exit gracefully and call the server close()method

One way to create this “friendly” exit in development is to put the server’s
while loop inside the except clause of a try-except statement and monitor for
EOFError or KeyboardInterrupt exceptions so that you can close the server’s
socket in the except or finally clauses. In production, you’ll want to be able
to start up and shut down servers in a more automated fashion. In these cases,
you’ll want to set a flag to shut down service by using a thread or creating a
special file or database entry.

The interesting thing about this simple networked application is that we
are not only showing how our data takes a round trip from the client to

ptg7615500

2.4 Network Programming in Python 73

the server and back to the client, but we also use the server as a sort of
“time server,” because the timestamp we receive is purely from the server.

2.4.6 Creating a UDP Server

UDP servers do not require as much setup as TCP servers because they are
not connection-oriented. There is virtually no work that needs to be done
other than just waiting for incoming connections.

ss = socket() # create server socket
ss.bind() # bind server socket
inf_loop: # server infinite loop
 cs = ss.recvfrom()/ss.sendto()# dialog (receive/send)
ss.close() # close server socket

As you can see from the pseudocode, there is nothing extra other than
the usual create-the-socket and bind it to the local address (host/port pair).
The infinite loop consists of receiving a message from a client, timestamping
and returning the message, and then going back to wait for another mes-
sage. Again, the close() call is optional and will not be reached due to the
infinite loop, but it serves as a reminder that it should be part of the grace-
ful or intelligent exit scheme we’ve been mentioning.

One other significant difference between UDP and TCP servers is that
because datagram sockets are connectionless, there is no “handing off” of
a client connection to a separate socket for succeeding communication.
These servers just accept messages and perhaps reply.

You will find the code to tsUserv.py in Example 2-6, which is a UDP
version of the TCP server presented earlier. It accepts a client message and
returns it to the client with a timestamp.

Example 2-6 UDP Timestamp Server (tsUserv.py)

This script creates a UDP server that accepts messages from clients and
returns them with a timestamp prefix.

1 #!/usr/bin/env python
2
3 from socket import *
4 from time import ctime
5
6 HOST = ''
7 PORT = 21567
8 BUFSIZ = 1024
9 ADDR = (HOST, PORT)
10

(Continued)

ptg7615500

74 Chapter 2 • Network Programming

Line-by-Line Explanation

Lines 1–4
After the Unix startup line, we import time.ctime() and all the attributes
from the socket module, just like the TCP server setup.

Lines 6–12
The HOST and PORT variables are the same as before, and for all the same
reasons. The call socket() differs only in that we are now requesting a
datagram/UDP socket type, but bind() is invoked in the same way as in
the TCP server version. Again, because UDP is connectionless, no call to
“listen for incoming connections” is made here.

Lines 14–21
Once we are inside the server’s infinite loop, we (passively) wait for a mes-
sage (a datagram). When one comes in, we process it (by adding a time-
stamp to it), then send it right back and go back to wait for another message.
The socket close() method is there for show only, as indicated before.

2.4.7 Creating a UDP Client

Of the four clients highlighted here in this section, the UDP client is the
shortest bit of code that we will look at. The pseudocode looks like this:

cs = socket() # create client socket
comm_loop: # communication loop
 cs.sendto()/cs.recvfrom() # dialog (send/receive)
cs.close() # close client socket

Once a socket object is created, we enter the dialog loop, wherein we
exchange messages with the server. When communication is complete, the
socket is closed.

Example 2-6 UDP Timestamp Server (tsUserv.py) (Continued)

11 udpSerSock = socket(AF_INET, SOCK_DGRAM)
12 udpSerSock.bind(ADDR)
13
14 while True:
15 print 'waiting for message...'
16 data, addr = udpSerSock.recvfrom(BUFSIZ)
17 udpSerSock.sendto('[%s] %s' % (
18 ctime(), data), addr)
19 print '...received from and returned to:', addr
20
21 udpSerSock.close()

ptg7615500

2.4 Network Programming in Python 75

The real client code, tsUclnt.py, is presented in Example 2-7.

Line-by-Line Explanation

Lines 1–3
After the Unix startup line, we import all the attributes from the socket
module, again, just like in the TCP version of the client.

Lines 5–10
Because we are running the server on our local computer again, we use
“localhost” and the same port number on the client side, not to mention
the same 1K buffer. We allocate our socket object in the same way as the
UDP server.

Example 2-7 UDP Timestamp Client (tsUclnt.py)

This script creates a UDP client that prompts the user for messages to send to
the server, receives them back with a timestamp prefix, and then displays them
back to the user.

1 #!/usr/bin/env python
2
3 from socket import *
4
5 HOST = 'localhost'
6 PORT = 21567
7 BUFSIZ = 1024
8 ADDR = (HOST, PORT)
9
10 udpCliSock = socket(AF_INET, SOCK_DGRAM)
11
12 while True:
13 data = raw_input('> ')
14 if not data:
15 break
16 udpCliSock.sendto(data, ADDR)
17 data, ADDR = udpCliSock.recvfrom(BUFSIZ)
18 if not data:
19 break
20 print data
21
22 udpCliSock.close()

ptg7615500

76 Chapter 2 • Network Programming

Lines 12–22
Our UDP client loop works in almost the exact manner as the TCP client.
The only difference is that we do not have to establish a connection to the
UDP server first; we simply send a message to it and await the reply. After
the timestamped string is returned, we display it to the screen and go back
for more. When the input is complete, we break out of the loop and close
the socket.

Based on the TCP client/server examples, it should be pretty straightfor-
ward to create Python 3 and IPv6 equivalents for UDP.

2.4.8 Executing Our UDP Server and Client(s)

The UDP client behaves the same as the TCP client:
$ tsUclnt.py
> hi
[Sat Jun 17 19:55:36 2006] hi
> spam! spam! spam!
[Sat Jun 17 19:55:40 2006] spam! spam! spam!
>
$

Likewise for the server:
$ tsUserv.py
waiting for message...
...received from and returned to: ('127.0.0.1', 1025)
waiting for message...

In fact, we output the client’s information because we can be receiving
messages from multiple clients and sending replies, and such output helps
by indicating where messages came from. With the TCP server, we know
where messages come from because each client makes a connection. Note
how the messages says “waiting for message,” as opposed to “waiting for
connection.”

2.4.9 socket Module Attributes

In addition to the socket.socket() function that we are now familiar with,
the socket module features many more attributes that are used in net-
work application development. Some of the most popular ones are shown
in Table 2-2.

ptg7615500

2.4 Network Programming in Python 77

Table 2-2 socket Module Attributes

Attribute Name Description

Data Attributes

AF_UNIX, AF_INET, AF_INET6,a
AF_NETLINK,b AF_TIPCc

Socket address families supported by Python

SO_STREAM, SO_DGRAM Socket types (TCP = stream, UDP = datagram)

has_ipv6d Boolean flag indicating whether IPv6 is
supported

Exceptions

error Socket-related error

herrora Host and address-related error

gaierrora Address-related error

timeout Timeout expiration

Functions

socket() Create a socket object from the given address
family, socket type, and protocol type (optional)

socketpair()e Create a pair of socket objects from the given
address family, socket type, and protocol type
(optional)

create_connection() Convenience function that takes an address
(host, port) pair and returns the socket object

fromfd() Create a socket object from an open file descriptor

ssl() Initiates a Secure Socket Layer connection over
socket; does not perform certificate validation

getaddrinfo()a Gets address information as a sequence of
5-tuples

getnameinfo() Given a socket address, returns (host, port)
2-tuple

(Continued)

ptg7615500

78 Chapter 2 • Network Programming

For more information, refer to the socket module documentation in the
Python Library Reference.

Table 2-2 socket Module Attributes (Continued)

Attribute Name Description

Functions

getfqdn()f Returns fully-qualified domain name

gethostname() Returns current hostname

gethostbyname() Maps a hostname to its IP address

gethostbyname_ex() Extended version of gethostbyname() returning
hostname, set of alias hostnames, and list of IP
addresses

gethostbyaddr() Maps an IP address to DNS information; returns
same 3-tuple as gethostbyname_ex()

getprotobyname() Maps a protocol name (e.g., 'tcp') to a number

getservbyname()/
getservbyport()

Maps a service name to a port number or vice
versa; a protocol name is optional for either
function

ntohl()/ntohs() Converts integers from network to host byte order

htonl()/htons() Converts integers from host to network byte order

inet_aton()/inet_ntoa() Convert IP address octet string to 32-bit packed
format or vice versa (for IPv4 addresses only)

inet_pton()/inet_ntop() Convert IP address string to packed binary for-
mat or vice versa (for both IPv4 and IPv6
addresses)

getdefaulttimeout()/
setdefaulttimeout()

Return default socket timeout in seconds (float);
set default socket timeout in seconds (float)

a. New in Python 2.2.
b. New in Python 2.5.
c. New in Python 2.6.
d. New in Python 2.3.
e. New in Python 2.4.
f. New in Python 2.0.

ptg7615500

2.5 *The SocketServer Module 79

2.5 *The SocketServer Module
SocketServer is a higher-level module in the standard library (renamed
as socketserver in Python 3.x). Its goal is to simplify a lot of the boiler-
plate code that is necessary to create networked clients and servers. In this
module there are various classes created on your behalf, as shown in
Table 2-3 below.

We will create a TCP client and server that duplicates the base TCP
example shown earlier. You will notice the immediate similarities but
should recognize how some of the dirty work is now taken care of so that

Table 2-3 SocketServer Module Classes

Class Description

BaseServer Contains core server functionality and hooks for
mix-in classes; used only for derivation so you will
not create instances of this class; use TCPServer or
UDPServer instead

TCPServer/
UDPServer

Basic networked synchronous TCP/UDP server

UnixStreamServer/
UnixDatagramServer

Basic file-based synchronous TCP/UDP server

ForkingMixIn/Threading
MixIn

Core forking or threading functionality; used only
as mix-in classes with one of the server classes to
achieve some asynchronicity; you will not instanti-
ate this class directly

ForkingTCPServer/
ForkingUDPServer

Combination of ForkingMixIn and TCPServer/
UDPServer

ThreadingTCPServer/
ThreadingUDPServer

Combination of ThreadingMixIn and TCPServer/
UDPServer

BaseRequestHandler Contains core functionality for handling service
requests; used only for derivation so you will
create instances of this class; use StreamRequest
Handler or DatagramRequestHandler instead

StreamRequestHandler/
DatagramRequestHandler

Implement service handler for TCP/UDP servers

3.x

ptg7615500

80 Chapter 2 • Network Programming

you do not have to worry about that boilerplate code. These represent the
simplest synchronous servers you can write. (To configure your server to
run asynchronously, go to the exercises at the end of the chapter.)

In addition to hiding implementation details from you, another differ-
ence is that we are now writing our applications using classes. Doing
things in an object-oriented way helps us organize our data and logically
direct functionality to the right places. You will also notice that our appli-
cations are now event-driven, meaning that they only work when reacting
to an occurrence of an event in our system.

Events include the sending and receiving of messages. In fact, you will
see that our class definition only consists of an event handler for receiving
a client message. All other functionality is taken from the SocketServer
classes we use. GUI programming (see Chapter 5, "GUI Programming,") is
also event-driven. You will notice the similarity immediately as the final
line of our code is usually a server’s infinite loop waiting for and respond-
ing to client service requests. It works almost the same as our infinite while
loop in the original base TCP server earlier in this chapter.

In our original server loop, we block waiting for a request, service it when
something comes in, and then go back to waiting. In the server loop here,
instead of building your code in the server, you define a handler so that the
server can just call your function when it receives an incoming request.

2.5.1 Creating a SocketServer TCP Server

In Example 2-8, we first import our server classes, and then define the
same host constants as before. That is followed by our request handler class,
and then startup. More details follow our code snippet.

Example 2-8 SocketServer Timestamp TCP Server (tsTservSS.py)

This script creates a timestamp TCP server by using SocketServer classes,
TCPServer and StreamRequestHandler.

1 #!/usr/bin/env python
2
3 from SocketServer import (TCPServer as TCP,
4 StreamRequestHandler as SRH)
5 from time import ctime
6

ptg7615500

2.5 *The SocketServer Module 81

Line-by-Line Explanation

Lines 1–9
The initial stuff consists of importing the right classes from SocketServer.
Note that we are using the multiline import feature introduced in Python 2.4.
If you are using an earlier version of Python, then you will have to use the
fully-qualified module.attribute names or put both attribute imports on
the same line:

from SocketServer import TCPServer as TCP, StreamRequestHandler as SRH

Lines 11–15
The bulk of the work happens here. We derive our request handler MyRequest
Handler as a subclass of SocketServer’s StreamRequestHandler and override
its handle() method, which is stubbed out in the Base Request class with no
default action as:

def handle(self):
pass

The handle() method is called when an incoming message is received
from a client. The StreamRequestHandler class treats input and output
sockets as file-like objects, so we will use readline() to get the client mes-
sage and write() to send a string back to the client.

Accordingly, we need additional carriage return and NEWLINE charac-
ters in both the client and server code. Actually, you will not see it in the
code because we are just reusing those which come from the client. Other
than these minor differences, it should look just like our earlier server.

7 HOST = ''
8 PORT = 21567
9 ADDR = (HOST, PORT)
10
11 class MyRequestHandler(SRH):
12 def handle(self):
13 print '...connected from:', self.client_address
14 self.wfile.write('[%s] %s' % (ctime(),
15 self.rfile.readline()))
16
17 tcpServ = TCP(ADDR, MyRequestHandler)
18 print 'waiting for connection...'
19 tcpServ.serve_forever()

2.4

ptg7615500

82 Chapter 2 • Network Programming

Lines 17–19
The final bits of code create the TCP server with the given host informa-
tion and request handler class. We then have our entire infinite loop wait-
ing for and servicing client requests.

2.5.2 Creating a SocketServer TCP Client

Our client, shown in Example 2-9, will naturally resemble our original
client, much more so than the server, but it has to be tweaked a bit to work
well with our new server.

Line-by-Line Explanation

Lines 1–8
Nothing special here; this is an exact replica of our original client code.

Example 2-9 SocketServer Timestamp TCP Client (tsTclntSS.py)

This is a timestamp TCP client that knows how to speak to the file-like Socket
Server class StreamRequestHandler objects.

1 #!/usr/bin/env python
2
3 from socket import *
4
5 HOST = 'localhost'
6 PORT = 21567
7 BUFSIZ = 1024
8 ADDR = (HOST, PORT)
9
10 while True:
11 tcpCliSock = socket(AF_INET, SOCK_STREAM)
12 tcpCliSock.connect(ADDR)
13 data = raw_input('> ')
14 if not data:
15 break
16 tcpCliSock.send('%s\r\n' % data)
17 data = tcpCliSock.recv(BUFSIZ)
18 if not data:
19 break
20 print data.strip()
21 tcpCliSock.close()

ptg7615500

2.5 *The SocketServer Module 83

Lines 10–21
The default behavior of the SocketServer request handlers is to accept a
connection, get the request, and then close the connection. This makes
it so that we cannot keep our connection throughout the execution of our
application, so we need to create a new socket each time we send a mes-
sage to the server.

This behavior makes the TCP server act more like a UDP server; how-
ever, this can be changed by overriding the appropriate methods in our
request handler classes. We leave this as an exercise at the end of this
chapter.

Other than the fact that our client is somewhat “inside-out” now
(because we have to create a connection each time), the only other minor
difference was previewed in the line-by-line explanation for the server
code: the handler class we are using treats socket communication like a
file, so we have to send line-termination characters (carriage return and
NEWLINE) each way. The server just retains and reuses the ones we send
here. When we get a message back from the server, we strip() them
and just use the NEWLINE that is automatically provided by the print
statement.

2.5.3 Executing our TCP Server and Client(s)

Here is the output of our SocketServer TCP client:
$ tsTclntSS.py
> 'Tis but a scratch.
[Tue Apr 18 20:55:49 2006] 'Tis but a scratch.
> Just a flesh wound.
[Tue Apr 18 20:55:56 2006] Just a flesh wound.
>
$

And here is the server’s output:
$ tsTservSS.py
waiting for connection...
...connected from: ('127.0.0.1', 53476)
...connected from: ('127.0.0.1', 53477)

The output is similar to that of our original TCP client and servers; how-
ever, you will notice that we connected to the server twice.

ptg7615500

84 Chapter 2 • Network Programming

2.6 *Introduction to the Twisted Framework
Twisted is a complete event-driven networking framework with which you
can both use and develop complete asynchronous networked applications
and protocols. It is not part of the Python Standard Library as of this writ-
ing and must be downloaded and installed separately (you can use the
link at the end of the chapter). It provides a significant amount of support
for you to build complete systems, including network protocols, threading,
security and authentication, chat/IM, DBM and RDBMS database integration,
Web/Internet, e-mail, command-line arguments, GUI toolkit integration, etc.

Using Twisted to implement our tiny simplistic example is like using a sledge-
hammer to pound a thumbtack, but you have to get started somehow, and our
application is the equivalent to the “hello world” of networked applications.

Like SocketServer, most of the functionality of Twisted lies in its
classes. In particular for our examples, we will be using the classes found
in the reactor and protocol subpackages of Twisted’s Internet component.

2.6.1 Creating a Twisted Reactor TCP Server

You will find the code in Example 2-10 similar to that of the SocketServer
example. Instead of a handler class, however, we create a protocol class
and override several methods in the same manner as installing callbacks.
Also, this example is asynchronous. Let’s take a look at the server now.

Example 2-10 Twisted Reactor Timestamp TCP Server (tsTservTW.py)

This is a timestamp TCP server that uses Twisted Internet classes.

1 #!/usr/bin/env python
2
3 from twisted.internet import protocol, reactor
4 from time import ctime
5
6 PORT = 21567
7
8 class TSServProtocol(protocol.Protocol):
9 def connectionMade(self):
10 clnt = self.clnt = self.transport.getPeer().host
11 print '...connected from:', clnt
12 def dataReceived(self, data):
13 self.transport.write('[%s] %s' % (
14 ctime(), data))
15
16 factory = protocol.Factory()
17 factory.protocol = TSServProtocol
18 print 'waiting for connection...'
19 reactor.listenTCP(PORT, factory)
20 reactor.run()

ptg7615500

2.6 *Introduction to the Twisted Framework 85

Line-by-Line Explanation

Lines 1–6
The setup lines of code include the usual module imports, most notably
the protocol and reactor subpackages of twisted.internet and our con-
stant port number.

Lines 8–14
We derive the Protocol class and call ours TSServProtocol for our time-
stamp server. We then override connectionMade(), a method that is exe-
cuted when a client connects to us, and dataReceived(), called when a
client sends a piece of data across the network. The reactor passes in the
data as an argument to this method so that we can get access to it right
away without having to extract it ourselves.

The transport instance object is how we can communicate with the cli-
ent. You can see how we use it in connectionMade() to get the host infor-
mation about who is connecting to us as well as in dataReceived() to
return data back to the client.

Lines 16–20
In the final part of our server, we create a protocol Factory. It is called a
factory because an instance of our protocol is “manufactured” every time
we get an incoming connection. We then install a TCP listener in our reac-
tor to check for service requests; when it receives a request, it creates a
TSServProtocol instance to take care of that client.

2.6.2 Creating a Twisted Reactor TCP Client

Unlike the SocketServer TCP client, Example 2-11 will not look like all
the other clients—this one is distinctly Twisted.

Example 2-11 Twisted Reactor Timestamp TCP Client (tsTclntTW.py)

Our familiar timestamp TCP client, written from a Twisted point of view.

1 #!/usr/bin/env python
2
3 from twisted.internet import protocol, reactor
4

(Continued)

ptg7615500

86 Chapter 2 • Network Programming

Line-by-Line Explanation

Lines 1–6
Again, nothing really new here apart from the import of Twisted compo-
nents. It is very similar to all of our other clients.

Lines 8–22
Like the server, we extend Protocol by overriding the connectionMade()
and dataReceived() methods. Both execute for the same reason as the
server. We also add our own method for when data needs to be sent and
call it sendData().

Because this time we are the client, we are the ones initiating a conversa-
tion with the server. Once that connection has been established, we take
the first step and send a message. The server replies, and we handle it by
displaying it to the screen and sending another message to the server.

This continues in a loop until we terminate the connection by giving no
input when prompted. Instead of calling the write() method of the transport

Example 2-11 Twisted Reactor Timestamp TCP Client (tsTclntTW.py)
(Continued)

5 HOST = 'localhost'
6 PORT = 21567
7
8 class TSClntProtocol(protocol.Protocol):
9 def sendData(self):
10 data = raw_input('> ')
11 if data:
12 print '...sending %s...' % data
13 self.transport.write(data)
14 else:
15 self.transport.loseConnection()
16
17 def connectionMade(self):
18 self.sendData()
19
20 def dataReceived(self, data):
21 print data
22 self.sendData()
23
24 class TSClntFactory(protocol.ClientFactory):
25 protocol = TSClntProtocol
26 clientConnectionLost = clientConnectionFailed = \
27 lambda self, connector, reason: reactor.stop()
28
29 reactor.connectTCP(HOST, PORT, TSClntFactory())
30 reactor.run()

ptg7615500

2.6 *Introduction to the Twisted Framework 87

object to send another message to the server, loseConnection() is executed,
closing the socket. When this occurs, the factory’s clientConnectionLost()
method will be called and our reactor is stopped, completing execution of our
script. We also stop the reactor if a clientConnectionFailed() for some
other reason.

The final part of the script is where we create a client factory and make a
connection to the server and run the reactor. Note that we instantiate the cli-
ent factory here instead of passing it in to the reactor, as we did in the server.
This is because we are not the server waiting for clients to talk to us, and its
factory makes a new protocol object for each connection. We are one client, so
we make a single protocol object that connects to the server, whose factory
makes one to talk to ours.

2.6.3 Executing Our TCP Server and Client(s)

The Twisted client displays output similar to all of our other clients:
$ tsTclntTW.py
> Where is hope
...sending Where is hope...
[Tue Apr 18 23:53:09 2006] Where is hope
> When words fail
...sending When words fail...
[Tue Apr 18 23:53:14 2006] When words fail
>
$

The server is back to a single connection. Twisted maintains the connec-
tion and does not close the transport after every message:

$ tsTservTW.py
waiting for connection...
...connected from: 127.0.0.1

The “connection from” output does not have the other information
because we only asked for the host/address from the getPeer() method of
the server’s transport object.

Keep in mind that most applications based on Twisted are much more
complex than the examples built in this subsection. It is a feature-rich
library, but it does come with a level of complexity for which you need to
be prepared.

ptg7615500

88 Chapter 2 • Network Programming

2.7 Related Modules
Table 2-4 lists some of the other Python modules that are related to net-
work and socket programming. The select module is usually used in
conjunction with the socket module when developing lower-level socket
applications. It provides the select() function, which manages sets of
socket objects. One of the most useful things it does is to take a set of sock-
ets and listen for active connections on them. The select() function will
block until at least one socket is ready for communication, and when that
happens, it provides you with a set of those that are ready for reading. (It
can also determine which sockets are ready for writing, although that is
not as common as the former operation.)

The async* and SocketServer modules both provide higher-level func-
tionality as far as creating servers is concerned. Written on top of the
socket and/or select modules, they enable more rapid development of
client/server systems because all the lower-level code is handled for you.
All you have to do is to create or subclass the appropriate base classes, and
you are on your way. As we mentioned earlier, SocketServer even pro-
vides the capability of integrating threading or new processes into the
server, which affords a more parallel-like processing of client requests.

Although async* provides the only asynchronous development support
in the standard library, in the previous section, you were introduced to
Twisted, a third-party package that is more powerful than those older

Table 2-4 Network/Socket Programming Related Modules

Module Description

socket Lower-level networking interface, as discussed in this
chapter

asyncore/
asynchat

Provide infrastructure to create networked applications
that process clients asynchronously

select Manages multiple socket connections in a single-threaded
network server application

SocketServer High-level module that provides server classes for networked
applications, complete with forking or threading varieties

ptg7615500

2.8 Exercises 89

modules. Although the example code we have seen in this chapter is
slightly longer than the barebones scripts, Twisted provides a much more
powerful and flexible framework and has implemented many protocols
for you already. You can find out more about Twisted at its Web site:

http://twistedmatrix.com
A more modern networking framework is Concurrence, which is the

engine behind the Dutch social network, Hyves. Concurrence is a high-
performance I/O system paired with libevent, the lower-level event call-
back dispatching system. Concurrence follows an asynchronous model,
using lightweight threads (executing callbacks) in an event-driven way to
do the work and message-passing for interthread communication. You can
find out more info about Concurrence at:

http://opensource.hyves.org/concurrence
Modern networking frameworks follow one of many asynchronous

models (greenlets, generators, etc.) to provide high-performance asyn-
chronous servers. One of the goals of these frameworks is to push the com-
plexity of asynchronous programming so as to allow users to code in a
more familiar, synchronous manner.

The topics we have covered in this chapter deal with network program-
ming with sockets in Python and how to create custom applications using
lower-level protocol suites such as TCP/IP and UDP/IP. If you want to
develop higher-level Web and Internet applications, we strongly encour-
age you to move ahead to Chapter 3, “Internet Client Programming,” or
perhaps skip to Part II of the book.

2.8 Exercises

2-1. Sockets. What is the difference between connection-oriented
and connectionless sockets?

2-2. Client/Server Architecture. Describe in your own words what
this term means and give several examples.

2-3. Sockets. Between TCP and UDP, which type of servers accept
connections and hands them off to separate sockets for client
communication?

http://twistedmatrix.com
http://opensource.hyves.org/concurrence

ptg7615500

90 Chapter 2 • Network Programming

2-4. Clients. Update the TCP (tsTclnt.py) and UDP (tsUclnt.py)
clients so that the server name is not hardcoded into the
application. Allow the user to specify a hostname and port
number, and only use the default values if either or both
parameters are missing.

2-5. Internetworking and Sockets. Implement the sample TCP client/
server programs found in the Python Library Reference doc-
umentation on the socket module and get them to work. Set
up the server and then the client. An online version of the
source is also available here:

http://docs.python.org/library/socket#example
You decide the server is too boring. Update the server so that
it can do much more, recognizing the following commands:
date Server will return its current date/timestamp, that is,

time.ctime().
os Get OS information (os.name).
ls Give a listing of the current directory. (Hints:

os.listdir() lists a directory, os.curdir is the cur-
rent directory.) Extra Credit: Accept ls dir and return
dir’s file listing.

You do not need a network to do this assignment—your
computer can communicate with itself. Be aware that after
the server exits, the binding must be cleared before you can
run it again. You might experience “port already bound”
errors. The operating system usually clears the binding
within 5 minutes, so be patient.

2-6. Daytime Service. Use the socket.getservbyname() to deter-
mine the port number for the “daytime” service under the
UDP protocol. Check the documentation for getservbyname()
to get the exact usage syntax (i.e., socket.getservbyname.
__doc__). Now write an application that sends a dummy
message over and wait for the reply. Once you have received
a reply from the server, display it to the screen.

2-7. Half-Duplex Chat. Create a simple, half-duplex chat program.
By half-duplex, we mean that when a connection is made
and the service starts, only one person can type. The other
participant must wait to get a message before being
prompted to enter a message. Once a message is sent, the

http://docs.python.org/library/socket#example

ptg7615500

2.8 Exercises 91

sender must wait for a reply before being allowed to send
another message. One participant will be on the server side;
the other will be on the client side.

2-8. Full-Duplex Chat. Update your solution to the previous exer-
cise so that your chat service is now full-duplex, meaning that
both parties can send and receive, independent of each other.

2-9. Multi-User Full Duplex Chat. Further update your solution so
that your chat service is multi-user.

2-10. Multi-User, Multiroom, Full Duplex Chat. Now make your chat
service multi-user and multiroom.

2-11. Web Client. Write a TCP client that connects to port 80 of your
favorite Web site (remove the “http://” and any trailing infor-
mation; use only the hostname). Once a connection has been
established, send the HTTP command string GET /\n and
write all the data that the server returns to a file. (The GET
command retrieves a Web page, the / file indicates the file to
get, and the \n sends the command to the server.) Examine
the contents of the retrieved file. What is it? How can you
check to make sure the data you received is correct? (Note:
You might have to insert one or two NEWLINEs after the
command string. One usually works.)

2-12. Sleep Server. Create a sleep server. A client will request to be
“put to sleep” for a number of seconds. The server will issue
the command on behalf of the client then return a message to
the client indicating success. The client should have slept or
should have been idle for the exact time requested. This is
a simple implementation of a remote procedure call, where a
client’s request invokes commands on another computer
across the network.

2-13. Name Server. Design and implement a name server. Such
a server is responsible for maintaining a database of host-
name-port number pairs, perhaps along with the string
description of the service that the corresponding servers
provide. Take one or more existing servers and have them
register their service with your name server. (Note that these
servers are, in this case, clients of the name server.)
Every client that starts up has no idea where the server is that
it is looking for. Also as clients of the name server, these
clients should send a request to the name server indicating
what type of service they are seeking. The name server, in

ptg7615500

92 Chapter 2 • Network Programming

reply, returns a hostname-port number pair to this client,
which then connects to the appropriate server to process its
request.
Extra Credit:

1) Add caching to your name server for popular requests.

2) Add logging capability to your name server, keeping
track of which servers have registered and which ser-
vices clients are requesting.

3) Your name server should periodically ping the regis-
tered hosts at their respective port numbers to ensure
that the service is indeed up. Repeated failures will
cause a server to be delisted from the list of services.

You can implement real services for the servers that regis-
ter for your name service, or just use dummy servers (which
merely acknowledge a request).

2-14. Error Checking and Graceful Shutdown. All of the sample
client/server code presented in this chapter is poor in terms
of error-checking. We do not handle scenarios such as when
users press Ctrl+C to exit out of a server or Ctrl+D to termi-
nate client input, nor do we check other improper input to
raw_input() or handle network errors. Because of this weak-
ness, quite often we terminate an application without closing
our sockets, potentially losing data. Choose a client/server
pair of one of our examples, and add enough error-checking
so that each application properly shuts down, that is, closes
network connections.

2-15. Asynchronicity and SocketServer/socketserver. Take the
example TCP server and use either mix-in class to support
an asynchronous server. To test your server, create and run
multiple clients simultaneously and show output that your
server is serving requests from both, interleaved.

ptg7615500

2.8 Exercises 93

2-16. *Extending SocketServer Classes. In the SocketServer TCP
server code, we had to change our client from the original
base TCP client because the SocketServer class does not
maintain the connection between requests.
a) Subclass the TCPServer and StreamRequestHandler

classes and re-design the server so that it maintains
and uses a single connection for each client (not one per
request).

b) Integrate your solution for the previous exercise with
your solution to part (a), such that multiple clients are
being serviced in parallel.

2-17. *Asynchronous Systems. Research at least five different
Python-based asynchronous systems—choose from Twisted,
Greenlets, Tornado, Diesel, Concurrence, Eventlet, Gevent,
etc. Describe what they are, categorize them, find similarities
and differences, and then create some demonstration code
samples.

ptg7615500

94

CHAPTER

Internet Client Programming

You can’t take something off the Internet, that’s like trying to take
pee out of a swimming pool. Once it’s in there, it’s in there.

—Joe Garrelli, March 1996
(verbally via “Joe Rogan,” a character from

NewsRadio [television program]),

In this chapter...

• What Are Internet Clients?
• Transferring Files
• Network News
• E-Mail
• Related Modules

ptg7615500

3.1 What Are Internet Clients? 95

n Chapter 2, “Network Programming,” we took a look at low-level
networking communication protocols using sockets. This type of net-
working is at the heart of most of the client/server protocols that exist

on the Internet today. These protocols include those for transferring files
(FTP, etc.), reading Usenet newsgroups (Network News Transfer Protocol),
sending e-mail (SMTP), and downloading e-mail from a server (POP3,
IMAP), etc. These protocols work in a way much like the client/server
examples in Chapter 2. The only difference is that now we have taken
lower-level protocols such as TCP/IP and created newer, more specific
protocols on top of them to implement these higher-level services.

3.1 What Are Internet Clients?
Before we take a look at these protocols, we first must ask, “What is an Inter-
net client?” To answer this question, we simplify the Internet to a place
where data is exchanged, and this interchange is made up of someone offer-
ing a service and a user of such services. You will hear the term producer-
consumer in some circles (although this phrase is generally reserved for
conversations on operating systems). Servers are the producers, provid-
ing the services, and clients consume the offered services. For any one par-
ticular service, there is usually only one server (process, host, etc.) and more
than one consumer. We previously examined the client/server model, and
although we do not need to create Internet clients with the low-level socket
operations seen earlier, the model is an accurate match.

In this chapter, we’ll explore a variety of these Internet protocols and
create clients for each. When finished, you should be able to recognize
how similar the application programming interfaces (APIs) of all of these
protocols are—this is done by design, as keeping interfaces consistent is a
worthy cause—and most importantly, the ability to create real clients of
these and other Internet protocols. And even though we are only high-
lighting these three specific protocols, at the end of this chapter, you
should feel confident enough to write clients for just about any Internet
protocol.

I

ptg7615500

96 Chapter 3 • Internet Client Programming

3.2 Transferring Files

3.2.1 File Transfer Internet Protocols

One of the most popular Internet activities is file exchange. It happens all the
time. There have been many protocols to transfer files over the Internet, with
some of the most popular including the File Transfer Protocol, the Unix-to-
Unix Copy Protocol (UUCP), and of course, the Web’s Hypertext Transfer
Protocol (HTTP). We should also include the remote (Unix) file copy com-
mand, rcp (and now its more secure and flexible cousins, scp and rsync).

HTTP, FTP, and scp/rsync are still quite popular today. HTTP is primar-
ily used for Web-based file download and accessing Web services. It gen-
erally doesn’t require clients to have a login and/or password on the server
host to obtain documents or service. The majority of all HTTP file transfer
requests are for Web page retrieval (file downloads).

On the other hand, scp and rsync require a user login on the server
host. Clients must be authenticated before file transfers can occur, and
files can be sent (upload) or retrieved (download). Finally, we have FTP.
Like scp/rsync, FTP can be used for file upload or download; and like
scp/rsync, it employs the Unix multi-user concepts of usernames and
passwords. FTP clients must use the login/password of existing users;
however, FTP also allows anonymous logins. Let’s now take a closer look
at FTP.

3.2.2 File Transfer Protocol

The File Transfer Protocol (FTP) was developed by the late Jon Postel and
Joyce Reynolds in the Internet Request for Comment (RFC) 959 document
and published in October 1985. It is primarily used to download publicly
accessible files in an anonymous fashion. It can also be used to transfer
files between two computers, especially when you’re using a Unix-based
system for file storage or archiving and a desktop or laptop PC for work.
Before the Web became popular, FTP was one of the primary methods of
transferring files on the Internet, and one of the only ways to download soft-
ware and/or source code.

As mentioned previously, you must have a login/password to access the
remote host running the FTP server. The exception is anonymous logins,
which are designed for guest downloads. These permit clients who do not
have accounts to download files. The server’s administrator must set up an

ptg7615500

3.2 Transferring Files 97

FTP server with anonymous logins to enable this. In these cases, the login
of an unregistered user is called anonymous, and the password is generally
the e-mail address of the client. This is akin to a public login and access to
directories that were designed for general consumption as opposed to log-
ging in and transferring files as a particular user. The list of available com-
mands via the FTP protocol is also generally more restrictive than that for
real users.

The protocol is diagrammed in Figure 3-1 and works as follows:

1. Client contacts the FTP server on the remote host
2. Client logs in with username and password (or anonymous

and e-mail address)
3. Client performs various file transfers or information requests
4. Client completes the transaction by logging out of the remote

host and FTP server

Of course, this is generally how it works. Sometimes there are circum-
stances whereby the entire transaction is terminated before it’s completed.
These include being disconnected from the network if one of the two hosts
crash or because of some other network connectivity issue. For inactive
clients, FTP connections will generally time out after 15 minutes (900 seconds)
of inactivity.

Under the hood, it is good to know that FTP uses only TCP (see Chapter 2)
—it does not use UDP in any way. Also, FTP can be seen as a more
unusual example of client/server programming because both the clients
and the servers use a pair of sockets for communication: one is the control
or command port (port 21), and the other is the data port (sometimes
port 20).

FTP serverFTP client

M + 1

Internet

M (> 1023) 21

20 [active] or
N (> 1023) [passive]

ctrl/cmd

data

Figure 3-1 FTP Clients and Servers on the Internet. The client and server communicate using the
FTP protocol on the command or control port data; is transferred using the data port.

ptg7615500

98 Chapter 3 • Internet Client Programming

We say sometimes because there are two FTP modes: Active and Pas-
sive, and the server’s data port is only 20 for Active mode. After the server
sets up 20 as its data port, it “actively” initiates the connection to the client’s
data port. For Passive mode, the server is only responsible for letting the
client know where its random data port is; the client must initiate the data
connection. As you can see in this mode, the FTP server is taking a more
passive role in setting up the data connection. Finally, there is now support
for a new Extended Passive Mode to support version 6 Internet Protocol
(IPv6) addresses—see RFC 2428.

Python supports most Internet protocols, including FTP. Other supported
client libraries can be found at http://docs.python.org/library/internet. Now
let’s take a look at just how easy it is to create an Internet client with Python.

3.2.3 Python and FTP

So, how do we write an FTP client by using Python? What we just
described in the previous section covers it pretty well. The only additional
work required is to import the appropriate Python module and make the
appropriate calls in Python. So let’s review the protocol briefly:

1. Connect to server
2. Log in
3. Make service request(s) (and hopefully get response[s])
4. Quit

When using Python’s FTP support, all you do is import the ftplib mod-
ule and instantiate the ftplib.FTP class. All FTP activity—logging in,
transferring files, and logging out—will be accomplished using your
object.

Here is some Python pseudocode:
from ftplib import FTP
f = FTP('some.ftp.server')
f.login('anonymous', 'your@email.address')
 :
f.quit()

Soon we will look at a real example, but for now, let’s familiarize our-
selves with methods from the ftplib.FTP class, which you will likely use
in your code.

http://docs.python.org/library/internet

ptg7615500

3.2 Transferring Files 99

3.2.4 ftplib.FTP Class Methods

We outline the most popular methods in Table 3-1. The list is not comprehen-
sive—see the source code for the class itself for all methods—but the ones
presented here are those that make up the API for FTP client programming
in Python. In other words, you don’t really need to use the others because
they are either utility or administrative functions or are used by the API
methods later.

Table 3-1 Methods for FTP Objects

Method Description

login(user='anonymous',
passwd='', acct='')

Log in to FTP server; all arguments are optional

pwd() Current working directory

cwd(path) Change current working directory to path

dir([path[,...[,cb]]) Displays directory listing of path; optional call-
back cb passed to retrlines()

nlst([path[,...]) Like dir() but returns a list of filenames instead
of displaying

retrlines(cmd[, cb]) Download text file given FTP cmd, for example,
RETR filename; optional callback cb for processing
each line of file

retrbinary(cmd,
cb[, bs=8192[, ra]])

Similar to retrlines() except for binary file; call-
back cb for processing each block (size bs defaults
to 8K) downloaded required

storlines(cmd, f) Upload text file given FTP cmd, for example, STOR
filename; open file object f required

storbinary(cmd,
f[, bs=8192])

Similar to storlines() but for binary file; open file
object f required, upload blocksize bs defaults to 8K

rename(old, new) Rename remote file from old to new

delete(path) Delete remote file located at path

mkd(directory) Create remote directory

rmd(directory) Remove remote directory

quit() Close connection and quit

ptg7615500

100 Chapter 3 • Internet Client Programming

The methods you will most likely use in a normal FTP transaction
include login(), cwd(), dir(), pwd(), stor*(), retr*(), and quit(). There
are more FTP object methods not listed in the table that you might find
useful. For more detailed information about FTP objects, read the Python
documentation available at http://docs.python.org/library/ftplib#ftp-objects.

3.2.5 An Interactive FTP Example

An example of using FTP with Python is so simple to use that you do not
even have to write a script. You can just do it all from the interactive inter-
preter and see the action and output in real time. Here is a sample session
from a few years ago when there was still an FTP server running at
python.org, but it will not work today, so this is just an example of what
you might experience with a running FTP server:

>>> from ftplib import FTP
>>> f = FTP('ftp.python.org')
>>> f.login('anonymous', 'guido@python.org')
'230 Guest login ok, access restrictions apply.'
>>> f.dir()
total 38
drwxrwxr-x 10 1075 4127 512 May 17 2000 .
drwxrwxr-x 10 1075 4127 512 May 17 2000 ..
drwxr-xr-x 3 root wheel 512 May 19 1998 bin
drwxr-sr-x 3 root 1400 512 Jun 9 1997 dev
drwxr-xr-x 3 root wheel 512 May 19 1998 etc
lrwxrwxrwx 1 root bin 7 Jun 29 1999 lib -> usr/lib
-r--r--r-- 1 guido 4127 52 Mar 24 2000 motd
drwxrwsr-x 8 1122 4127 512 May 17 2000 pub
drwxr-xr-x 5 root wheel 512 May 19 1998 usr
>>> f.retrlines('RETR motd')
Sun Microsystems Inc. SunOS 5.6 Generic August 1997
'226 Transfer complete.
>>> f.quit()
'221 Goodbye.'

3.2.6 A Client Program FTP Example

We mentioned previously that an example script is not even necessary
because you can run one interactively and not get lost in any code. We will
try anyway. For example, suppose that you want a piece of code that goes to
download the latest copy of Bugzilla from the Mozilla Web site. Example 3-1
is what we came up with. We are attempting an application here, but even
so, you can probably run this one interactively, too. Our application uses the
FTP library to download the file and includes some error-checking.

http://docs.python.org/library/ftplib#ftp-objects

ptg7615500

3.2 Transferring Files 101

Be aware that this script is not automated, so it is up to you to run it
whenever you want to perform the download, or if you are on a Unix-based
system, you can set up a cron job to automate it for you. Another issue is
that it will break if either the file or directory names change.

Example 3-1 FTP Download Example (getLatestFTP.py)

This program is used to download the latest version of a file from a Web site.
You can tweak it to download your favorite application.

1 #!/usr/bin/env python
2
3 import ftplib
4 import os
5 import socket
6
7 HOST = 'ftp.mozilla.org'
8 DIRN = 'pub/mozilla.org/webtools'
9 FILE = 'bugzilla-LATEST.tar.gz'
10
11 def main():
12 try:
13 f = ftplib.FTP(HOST)
14 except (socket.error, socket.gaierror) as e:
15 print 'ERROR: cannot reach "%s"' % HOST
16 return
17 print '*** Connected to host "%s"' % HOST
18
19 try:
20 f.login()
21 except ftplib.error_perm:
22 print 'ERROR: cannot login anonymously’
23 f.quit()
24 return
25 print '*** Logged in as "anonymous"'
26
27 try:
28 f.cwd(DIRN)
29 except ftplib.error_perm:
30 print 'ERROR: cannot CD to "%s"' % DIRN
31 f.quit()
32 return
33 print '*** Changed to "%s" folder' % DIRN
34
35 try:
36 f.retrbinary('RETR %s' % FILE,
37 open(FILE, 'wb').write)
38 except ftplib.error_perm:
39 print 'ERROR: cannot read file "%s"' % FILE
40 os.unlink(FILE)
41 else:
42 print '*** Downloaded "%s" to CWD' % FILE
43 f.quit()
44 return
45
46 if __name__ == '__main__':
47 main()

ptg7615500

102 Chapter 3 • Internet Client Programming

If no errors occur when we run our script, we get the following output:
$ getLatestFTP.py
*** Connected to host "ftp.mozilla.org"
*** Logged in as "anonymous"
*** Changed to "pub/mozilla.org/webtools" folder
*** Downloaded "bugzilla-LATEST.tar.gz" to CWD
$

Line-by-Line Explanation

Lines 1–9
The initial lines of code import the necessary modules (mainly to grab
exception objects) and set a few constants.

Lines 11–44
The main() function consists of various steps of operation: create an FTP
object and attempt to connect to the FTPs server (lines 12–17) and (return
and) quit on any failure. We attempt to login as anonymous and abort if
unsuccessful (lines 19–25). The next step is to change to the distribution
directory (lines 27–33), and finally, we try to download the file (lines 35–44).

For line 14 and all other exception handlers in this book where you’re
saving the exception instance—in this case e—if you’re using Python 2.5
and older, you need to change the as to a comma, because this new syntax
was introduced (but not required) in version 2.6 to help with 3.x migra-
tion. Python 3 only understands the new syntax shown in line 14.

On lines 35–36, we pass a callback to retrbinary() that should be exe-
cuted for every block of binary data downloaded. This is the write()
method of a file object we create to write out the local version of the file. We
are depending on the Python interpreter to adequately close our file after
the transfer is done and to not lose any of our data. Although more conve-
nient, I usually try to avoid using this style, because the programmer should
be responsible for freeing resources directly allocated rather than depend-
ing on other code. In this case, we should save the open file object to a variable,
say loc, and then pass loc.write in the call to ftp.retrbinary().

After the transfer has completed, we would call loc.close(). If for some
reason we are not able to save the file, we remove the empty file to avoid
cluttering up the file system (line 40). We should put some error-checking
around that call to os.unlink(FILE) in case the file does not exist. Finally, to
avoid another pair of lines (lines 43–44) that close the FTP connection and
return, we use an else clause (lines 35–42).

Lines 46–47
This is the usual idiom for running a stand-alone script.

2.6

ptg7615500

3.2 Transferring Files 103

3.2.7 Miscellaneous FTP

Python supports both Active and Passive modes. Note, however, that
in Python 2.0 and older releases, Passive mode was off by default; in
Python 2.1 and all successive releases, it is on by default.

Here is a list of typical FTP clients:

• Command-line client program: This is where you execute
FTP transfers by running an FTP client program such as /bin/
ftp, or NcFTP, which allows users to interactively participate
in an FTP transaction via the command line.

• GUI client program: Similar to a command-line client
program, except that it is a GUI application like WS_FTP,
Filezilla, CuteFTP, Fetch, or SmartFTP.

• Web browser: In addition to using HTTP, most Web browsers
(also referred to as a client) can also speak FTP. The first
directive in a URL/URI is the protocol, that is, “http://
blahblah.” This tells the browser to use HTTP as a means of
transferring data from the given Web site. By changing the
protocol, one can make a request using FTP, as in “ftp://
blahblah.” It looks pretty much exactly the same as a URL,
which uses HTTP. (Of course, the “blahblah” can expand
to the expected “host/path?attributes” after the protocol
directive “ftp://”.) Because of the login requirement, users can
add their logins and passwords (in clear text) into their URL,
for example, “ftp://user:passwd@host/path?attr1=val1&attr2=
val2. . .”.

• Custom application: A program you write that uses FTP to
transfer files. It generally does not allow the user to interact
with the server as the application was created for specific
purposes.

All four types of clients can be created by using Python. We used ftplib
above to create our custom application, but you can just as well create an
interactive command-line application. On top of that, you can even bring a
GUI toolkit such as Tk, wxWidgets, GTK+, Qt, MFC, and even Swing into
the mix (by importing their respective Python [or Jython] interface mod-
ules) and build a full GUI application on top of your command-line client
code. Finally, you can use Python’s urllib module to parse and perform
FTP transfers using FTP URLs. At its heart, urllib imports and uses
ftplib making urllib another client of ftplib.

2.1

ptg7615500

104 Chapter 3 • Internet Client Programming

FTP is not only useful for downloading client applications to build and/
or use, but it can also be helpful in your everyday job for moving files
between systems. For example, suppose that you are an engineer or a sys-
tem administrator needing to transfer files. It is an obvious choice to use
the scp or rsync commands when crossing the Internet boundary or
pushing files to an externally visible server. However, there is a penalty
when moving extremely large logs or database files between internal com-
puters on a secure network in that manner: security, encryption, compres-
sion/decompression, etc. If what you want to do is just build a simple FTP
application that moves files for you quickly during the after-hours, using
Python is a great way to do it!

You can read more about FTP in the FTP Protocol Definition/Specification
(RFC 959) at http://tools.ietf.org/html/rfc959 as well as on the www. network
sorcery.com/enp/protocol/ftp.htm Web page. Other related RFCs include
2228, 2389, 2428, 2577, 2640, and 4217. To find out more about Python’s FTP
support, you can start at http://docs.python.org/library/ftplib.

3.3 Network News

3.3.1 Usenet and Newsgroups

The Usenet News System is a global archival bulletin board. There are
newsgroups for just about any topic, from poems to politics, linguistics to
computer languages, software to hardware, planting to cooking, finding
or announcing employment opportunities, music and magic, breaking up
or finding love. Newsgroups can be general and worldwide or targeted
toward a specific geographic region.

The entire system is a large global network of computers that participate
in sharing Usenet postings. Once a user uploads a message to his local
Usenet computer, it will then be propagated to other adjoining Usenet
computers, and then to the neighbors of those systems, until it’s gone
around the world and everyone has received the posting. Postings will live
on Usenet for a finite period of time, either dictated by a Usenet system
administrator or the posting itself via an expiration date/time.

Each system has a list of newsgroups that it subscribes to and only
accepts postings of interest—not all newsgroups may be archived on a
server. Usenet news service is dependent on which provider you use.
Many are open to the public; others only allow access to specific users,
such as paying subscribers, or students of a particular university, etc. A

http://tools.ietf.org/html/rfc959
http://docs.python.org/library/ftplib
www.networksorcery.com/enp/protocol/ftp.htm
www.networksorcery.com/enp/protocol/ftp.htm

ptg7615500

3.3 Network News 105

login and password are optional, configurable by the Usenet system
administrator. The ability to post only download is another parameter
configurable by the administrator.

Usenet has lost its place as the global bulletin board, superseded in
large part by online forums. Still it’s worthwhile looking at Usenet here
specifically for its network protocol.

While older incarnations of the Usenet used UUCP as its network trans-
port mechanism, another protocol arose in the mid-1980s when most net-
work traffic began to migrate to TCP/IP. We’ll look at this new protocol
next.

3.3.2 Network News Transfer Protocol

The method by which users can download newsgroup postings or articles
or perhaps post new articles, is called the Network News Transfer Proto-
col (NNTP). It was authored by Brian Kantor (University of California, San
Diego) and Phil Lapsley (University of California, Berkeley) in RFC 977,
published in February 1986. The protocol has since been updated in RFC
2980, published in October 2000.

As another example of client/server architecture, NNTP operates in a
fashion similar to FTP; however, it is much simpler. Rather than having a
whole set of different port numbers for logging in, data, and control,
NNTP uses only one standard port for communication, 119. You give the
server a request, and it responds appropriately, as shown in Figure 3-2.

3.3.3 Python and NNTP

Based on your experience with Python and FTP in the previous section,
you can probably guess that there is an nntplib and an nntplib.NNTP
class that you need to instantiate, and you would be right. As with FTP,
all we need to do is to import that Python module and make the appropri-
ate calls in Python. So let’s review the protocol briefly:

1. Connect to server
2. Log in (if applicable)
3. Make service request(s)
4. Quit

ptg7615500

106 Chapter 3 • Internet Client Programming

Look somewhat familiar? It should, because it’s practically a carbon
copy of using the FTP protocol. The only change is that the login step is
optional, depending on how an NNTP server is configured.

Here is some Python pseudocode to get started:
from nntplib import NNTP
n = NNTP('your.nntp.server')
r,c,f,l,g = n.group('comp.lang.python')
...
n.quit()

Typically, once you log in, you will choose a newsgroup of interest and
call the group() method. It returns the server reply, a count of the number
of articles, the ID of the first and last articles, and superfluously, the group
name again. Once you have this information, you will then perform some
sort of action, such as scroll through and browse articles, download entire
postings (headers and body of article), or perhaps post an article.

Before we take a look at a real example, let’s introduce some of the more
popular methods of the nntplib.NNTP class.

NNTP
clients

(newsreaders)

NNTP

Usenet on the Internet

(update)

NNTP

(update)
NNTP (p

ost)

NNTP (post)

NNTP (re
ad)

NNTP (read)
NNTP

servers

Figure 3-2 NNTP Clients and Servers on the Internet. Clients mostly read news but can also post.
Articles are then distributed as servers update each other.

ptg7615500

3.3 Network News 107

3.3.4 nntplib.NNTP Class Methods

As in the previous section outlining the ftplib.FTP class methods, we will
not show you all methods of nntplib.NNTP, just the ones you need in
order to create an NNTP client application.

As with the FTP objects in Table 3-1, there are more NNTP object meth-
ods than are described in Table 3-2. To avoid clutter, we list only the ones
we think you would most likely use. For the rest, we again refer you to the
Python Library Reference.

Table 3-2 Methods for NNTP Objects

Method Description

group(name) Select newsgroup name and return a tuple (rsp, ct, fst,
lst, group): server response, number of articles, first and
last article numbers and group name, all of which are
strings (name == group)

xhdr(hdr,
artrg[, ofile])

Returns list of hdr headers for article range artrg (“first-
last” format) or outputs data to file ofile

body(id[, ofile]) Get article body given its id, which is either a message
ID (enclosed in <...> or an article number (as a string);
returns tuple (rsp, anum, mid, data): server response, arti-
cle number (as a string), message ID (enclosed in <...>),
and list of article lines or outputs data to file ofile

head(id) Similar to body(); same tuple returned except lines only
contain article headers

article(id) Also similar to body(); same tuple returned except lines
contain both headers and article body

stat(id) Set article “pointer” to id (message ID or article num-
ber as above); returns tuple similar to body (rsp, anum,
mid) but contains no data from article

next() Used with stat(), moves article pointer to next article
and returns similar tuple

last() Also used with stat(), moves article pointer to last
article and returns similar tuple

post(ufile) Upload data from ufile file object (using
ufile.readline()) and post to current newsgroup

quit() Close connection and quit

ptg7615500

108 Chapter 3 • Internet Client Programming

3.3.5 An Interactive NNTP Example

Here is an interactive example of how to use Python’s NNTP library. It
should look similar to the interactive FTP example. (The e-mail addresses
have been changed for privacy reasons.)

When connecting to a group, you get a 5-tuple back from the group()
method, as described in Table 3-2.

>>> from nntplib import NNTP
>>> n = NNTP('your.nntp.server')
>>> rsp, ct, fst, lst, grp = n.group('comp.lang.python')
>>> rsp, anum, mid, data = n.article('110457')
>>> for eachLine in data:
... print eachLine
From: "Alex Martelli" <alex@...>
Subject: Re: Rounding Question
Date: Wed, 21 Feb 2001 17:05:36 +0100
"Remco Gerlich" <remco@...> wrote:
> Jacob Kaplan-Moss <jacob@...> wrote in comp.lang.python:
>> So I've got a number between 40 and 130 that I want to round up to
>> the nearest 10. That is:
>>
>> 40 --> 40, 41 --> 50, ..., 49 --> 50, 50 --> 50, 51 --> 60
> Rounding like this is the same as adding 5 to the number and then
> rounding down. Rounding down is substracting the remainder if you were
> to divide by 10, for which we use the % operator in Python.
This will work if you use +9 in each case rather than +5 (note that he
doesn't really want rounding -- he wants 41 to 'round' to 50, for ex).
Alex
>>> n.quit()
'205 closing connection - goodbye!'
>>>

3.3.6 Client Program NNTP Example

For our NNTP client in Example 3-2, we are going to try to be more adven-
turous. It will be similar to the FTP client example in that we are going to
download the latest of something—this time it will be the latest article
available in the Python language newsgroup, comp.lang.python.

Once we have it, we will display (up to) the first 20 lines in the article,
and on top of that, (up to) the first 20 meaningful lines of the article. By that,
we mean lines of real data, not quoted text (which begin with “>” or “|”)
or even quoted text introductions like “In article <. . .>, soAndSo@some.domain
wrote:”.

ptg7615500

3.3 Network News 109

Finally, we are going to process blank lines intelligently. We will display
one blank line when we see one in the article, but if there are more than one
consecutive blank lines, we only show the first blank line of the set. Only
lines with real data are counted toward the first 20 lines, so it is possible
to display a maximum of 39 lines of output, 20 real lines of data interleaved
with 19 blank lines.

Example 3-2 NNTP Download Example (getFirstNNTP.py)

This script downloads and displays the first meaningful (up to 20) lines of the
most recently available article in comp.lang.python, the Python newsgroup.

1 #!/usr/bin/env python
2
3 import nntplib
4 import socket
5
6 HOST = 'your.nntp.server'
7 GRNM = 'comp.lang.python'
8 USER = 'wesley'
9 PASS = 'youllNeverGuess'
10
11 def main():
12
13 try:
14 n = nntplib.NNTP(HOST)
15 #, user=USER, password=PASS)
16 except socket.gaierror as e:
17 print 'ERROR: cannot reach host "%s"' % HOST
18 print ' ("%s")' % eval(str(e))[1]
19 return
20 except nntplib.NNTPPermanentError as e:
21 print 'ERROR: access denied on "%s"' % HOST
22 print ' ("%s")' % str(e)
23 return
24 print '*** Connected to host "%s"' % HOST
25
26 try:
27 rsp, ct, fst, lst, grp = n.group(GRNM)
28 except nntplib.NNTPTemporaryError as ee:
29 print 'ERROR: cannot load group "%s"' % GRNM
30 print ' ("%s")' % str(e)
31 print ' Server may require authentication'
32 print ' Uncomment/edit login line above'
33 n.quit()
34 return

(Continued)

ptg7615500

110 Chapter 3 • Internet Client Programming

Example 3-2 NNTP Download Example (getFirstNNTP.py) (Continued)

35 except nntplib.NNTPTemporaryError as ee:
36 print 'ERROR: group "%s" unavailable' % GRNM
37 print ' ("%s")' % str(e)
38 n.quit()
39 return
40 print '*** Found newsgroup "%s"' % GRNM
41
42 rng = '%s-%s' % (lst, lst)
43 rsp, frm = n.xhdr('from', rng)
44 rsp, sub = n.xhdr('subject', rng)
45 rsp, dat = n.xhdr('date', rng)
46 print '''*** Found last article (#%s):
47
48 From: %s
49 Subject: %s
50 Date: %s
51 '''% (lst, frm[0][1], sub[0][1], dat[0][1])
52
53 rsp, anum, mid, data = n.body(lst)
54 displayFirst20(data)
55 n.quit()
56
57 def displayFirst20(data):
58 print '*** First (<= 20) meaningful lines:\n'
59 count = 0
60 lines = (line.rstrip() for line in data)
61 lastBlank = True
62 for line in lines:
63 if line:
64 lower = line.lower()
65 if (lower.startswith('>') and not \
66 lower.startswith('>>>')) or \
67 lower.startswith('|') or \
68 lower.startswith('in article') or \
69 lower.endswith('writes:') or \
70 lower.endswith('wrote:'):
71 continue
72 if not lastBlank or (lastBlank and line):
73 print ' %s' % line
74 if line:
75 count += 1
76 lastBlank = False
77 else:
78 lastBlank = True
79 if count == 20:
80 break
81
82 if __name__ == '__main__':
83 main()

ptg7615500

3.3 Network News 111

If no errors occur when we run our script, we might see something like
this:

$ getLatestNNTP.py
*** Connected to host "your.nntp.server"
*** Found newsgroup "comp.lang.python"
*** Found last article (#471526):
 From: "Gerard Flanagan" <grflanagan@...>
 Subject: Re: Generate a sequence of random numbers that sum up to 1?
 Date: Sat Apr 22 10:48:20 CEST 2006
*** First (<= 20) meaningful lines:
 def partition(N=5):
 vals = sorted(random.random() for _ in range(2*N))
 vals = [0] + vals + [1]
 for j in range(2*N+1):
 yield vals[j:j+2]
 deltas = [x[1]-x[0] for x in partition()]
 print deltas
 print sum(deltas)
 [0.10271966686994982, 0.13826576491042208, 0.064146913555132801,
 0.11906452454467387, 0.10501198456091299, 0.011732423830768779,
 0.11785369256442912, 0.065927165520102249, 0.098351305878176198,
 0.077786747076205365, 0.099139810689226726]
 1.0
$

This output is given the original newsgroup posting, which looks like this:
From: "Gerard Flanagan" <grflanagan@...>
Subject: Re: Generate a sequence of random numbers that sum up to 1?
Date: Sat Apr 22 10:48:20 CEST 2006
Groups: comp.lang.python
Gerard Flanagan wrote:
> Anthony Liu wrote:
> > I am at my wit's end.
> > I want to generate a certain number of random numbers.
> > This is easy, I can repeatedly do uniform(0, 1) for
> > example.
> > But, I want the random numbers just generated sum up
> > to 1 .
> > I am not sure how to do this. Any idea? Thanks.
> --
> import random
> def partition(start=0,stop=1,eps=5):
> d = stop - start
> vals = [start + d * random.random() for _ in range(2*eps)]
> vals = [start] + vals + [stop]
> vals.sort()
> return vals
> P = partition()
> intervals = [P[i:i+2] for i in range(len(P)-1)]
> deltas = [x[1] - x[0] for x in intervals]
> print deltas

ptg7615500

112 Chapter 3 • Internet Client Programming

> print sum(deltas)
> ---
def partition(N=5):

vals = sorted(random.random() for _ in range(2*N))
vals = [0] + vals + [1]
for j in range(2*N+1):

yield vals[j:j+2]
deltas = [x[1]-x[0] for x in partition()]
print deltas
print sum(deltas)
[0.10271966686994982, 0.13826576491042208, 0.064146913555132801,
0.11906452454467387, 0.10501198456091299, 0.011732423830768779,
0.11785369256442912, 0.065927165520102249, 0.098351305878176198,
0.077786747076205365, 0.099139810689226726]
1.0

Of course, the output will always be different, because articles are
always being posted. No two executions will result in the same output
unless your news server has not been updated with another article since
you last ran the script.

Line-by-Line Explanation

Lines 1–9
This application starts with a few import statements and some constants,
much like the FTP client example.

Lines 11–40
In the first section, we attempt to connect to the NNTP host server and
abort if unsuccessful (lines 13–24). Line 15 is commented out deliberately
in case your server requires authentication (with login and password)—if
so, uncomment this line and edit it in line 14. This is followed by trying to
load up the specific newsgroup. Again, it will quit if that newsgroup does
not exist, is not archived by this server, or if authentication is required
(lines 26–40).

Lines 42–55
In the next part, we get some headers to display (lines 42–51). The ones
that have the most meaning are the author, subject, and date. This data is
retrieved and displayed to the user. Each call to the xhdr() method
requires us to give the range of articles from which to extract the headers.
We are only interested in a single message, so the range is “X-X,” where X
is the last message number.

ptg7615500

3.3 Network News 113

xhdr() returns a 2-tuple consisting of a server response (rsp) and a list
of the headers in the range we specify. Because we are only requesting
this information for one message (the last one), we just take the first ele-
ment of the list (hdr[0]). That data item is a 2-tuple consisting of the arti-
cle number and the data string. Because we already know the article
number (we give it in our range request), we are only interested in the sec-
ond item, the data string (hdr[0][1]).

The last part is to download the body of the article itself (lines 53–55). It
consists of a call to the body() method, a display of the first 20 or fewer mean-
ingful lines (as defined at the beginning of this section), a logout of the
server, and complete execution.

Lines 57–80
The core piece of processing is done by the displayFirst20() function
(lines 57–80). It takes the set of lines that make up the article body and does
some preprocessing, such as setting our counter to 0, creating a generator
expression that lazily iterates through our (possibly large) set of lines mak-
ing up the body, and “pretends” that we have just seen and displayed a
blank line (more on this later; lines 59–61). “Genexps” were added in
Python 2.4, so if you’re still using version 2.0–2.3, change this to a list com-
prehension, instead. (Really, you shouldn’t be using anything older than
version 2.4.) When we strip the line of data, we only remove the trailing
whitespace (rstrip()) because leading spaces might be intended lines of
Python code.

One criterion we have is that we should not show any quoted text or
quoted text introductions. That is what the big if statement is for on lines
65–71 (also include line 64). We do this checking if the line is not blank
(line 63). We lowercase the line so that our comparisons are case-insensitive
(line 64).

If a line begins with “>” or “|,” it means it is usually a quote. We make
an exception for lines that start with “>>>” because it might be an interac-
tive interpreter line, although this does introduce a flaw that a triply-old
message (one quoted three times for the fourth responder) is displayed.
(One of the exercises at the end of the chapter is to remove this flaw.) Lines
that begin with “in article. . .”, and/or end with “writes:” or “wrote:”, both
with trailing colons (:), are also quoted text introductions. We skip all these
with the continue statement.

Now to address the blank lines. We want our application to be smart. It
should show blank lines as seen in the article, but it should be smart about
it. If there is more than one blank line consecutively, only show the first

2.4

ptg7615500

114 Chapter 3 • Internet Client Programming

one so that the user does not see unneccessary lines, scrolling useful infor-
mation off the screen. We should also not count any blank lines in our
set of 20 meaningful lines. All of these requirements are taken care of in
lines 72–78.

The if statement on line 72 only displays the line if the last line was not
blank, or if the last line was blank but now we have a non-blank line. In
other words, if we fall through and we print the current line, it is because
it is either a line with data or a blank line, as long as the previous line was
not blank. Now the other tricky part: if we have a non-blank line, count it
and set the lastBlank flag to False because this line was not empty (lines
74–76). Otherwise, we have just seen a blank line, so set the flag to True.

Now back to the business on line 61. We set the lastBlank flag to True,
because if the first real (non-introductory or quoted) line of the body is a
blank, we do not want to display it; we want to show the first real data line!

Finally, if we have seen 20 non-blank lines, then we quit and discard the
remaining lines (lines 79–80). Otherwise, we would have exhausted all the
lines and the for loop terminates normally.

3.3.7 Miscellaneous NNTP

You can read more about NNTP in the NNTP Protocol Definition/
Specification (RFC 977) at http://tools.ietf.org/html/rfc977 as well as on
the http://www.networksorcery.com/enp/protocol/nntp.htm Web page. Other
related RFCs include 1036 and 2980. To find out more about Python’s NNTP
support, you can start at http://docs.python.org/library/nntplib.

3.4 E-Mail
E-mail, is both archaic and modern at the same time. For those of us who
have been using the Internet since the early days, e-mail seems so “old,”
especially compared to newer and more immediate communication mech-
anisms, such as Web-based online chat, instant messaging (IM), and digi-
tal telephony such as Voice over Internet Protocol (VoIP) applications. The
next section gives a high-level overview of how e-mail works. If you are
already familiar with this and just want to move on to developing e-mail-
related clients in Python, skip to the succeeding sections.

Before we take a look at the e-mail infrastructure, have you ever asked
yourself what is the exact definition of an e-mail message? Well, according
to RFC 2822, “[a] message consists of header fields (collectively called ‘the

http://tools.ietf.org/html/rfc977
http://www.networksorcery.com/enp/protocol/nntp.htm
http://docs.python.org/library/nntplib

ptg7615500

3.4 E-Mail 115

header of the message’) followed, optionally, by a body.” When we think
of e-mail as users, we immediately think of its contents, whether it be a
real message or an unsolicited commercial advertisement (a.k.a. spam).
However, the RFC states that the body itself is optional and that only the
headers are required. Imagine that!

3.4.1 E-Mail System Components and Protocols

Despite what you might think, e-mail actually existed before the modern
Internet came around. It actually started as a simple message exchange
between mainframe users; there wasn’t even any networking involved as
senders and receivers all used the same computer. Then when networking
became a reality, it was possible for users on different hosts to exchange
messages. This, of course, was a complicated concept because people used
different computers, which more than likely also used different network-
ing protocols. It was not until the early 1980s that message exchange set-
tled on a single de facto standard for moving e-mail around the Internet.

Before we get into the details, let’s first ask ourselves, how does e-mail
work? How does a message get from sender to recipient across the vast-
ness of all the computers accessible on the Internet? To put it simply, there
is the originating computer (the sender’s message departs from here) and
the destination computer (recipient’s mail server). The optimal solution is
if the sending computer knows exactly how to reach the receiving host,
because then it can make a direct connection to deliver the message. How-
ever, this is usually not the case.

The sending computer queries to find another intermediate host that
can pass the message along its way to the final recipient host. Then that
host searches for the next host who is another step closer to the destina-
tion. So in between the originating and final destination hosts are any
number of computers. These are called hops. If you look carefully at the
full e-mail headers of any message you receive, you will see a “passport”
stamped with all the places your message bounced to before it finally
reached you.

To get a clearer picture, let’s take a look at the components of the e-mail
system. The foremost component is the message transport agent (MTA). This
is a server process running on a mail exchange host that is responsible for
the routing, queuing, and sending of e-mail. These represent all the hosts
that an e-mail message bounces from, beginning at the source host all the
way to the final destination host and all hops in between. Thus, they are
“agents” of “message transport.”

ptg7615500

116 Chapter 3 • Internet Client Programming

For all this to work, MTAs need to know two things: 1) how determine
the next MTA to forward a message to, and 2) how to talk to another MTA.
The first is solved by using a domain name service (DNS) lookup to find the MX
(Mail eXchange) of the destination domain. This is not necessarily the final
recipient; it might simply be the next recipient who can eventually get the
message to its final destination. Next, how do MTAs forward messages to
other MTAs?

3.4.2 Sending E-Mail

To send e-mail, your mail client must connect to an MTA, and the only
language they understand is a communication protocol. The way MTAs
communicate with one another is by using a message transport system
(MTS). This protocol must be recognized by a pair of MTAs before they
can communicate with one another. As we described at the beginning
of this section, such communication was dicey and unpredictable in the
early days because there were so many different types of computer
systems, each running different networking software. In addition, com-
puters were using both networked transmission as well as dial-up
modem, so delivery times were unpredictable. In fact, this author
remembers a message not showing up for almost nine months after the
message was originally sent! How is that for Internet speed? Out of this
complexity rose the Simple Mail Transfer Protocol (SMTP), one of the
foundations of modern e-mail.

SMTP, ESMTP, LMTP

SMTP was originally authored by the late Jonathan Postel (ISI) in RFC 821,
published in August 1982 and has gone through a few revisions since
then. In November 1995, via RFC 1869, SMTP received a set of service
extensions (ESMTP), and both SMTP and ESMTP were rolled into the cur-
rent RFC 5321, published in October 2008. We’ll just use the term “SMTP”
to refer to both SMTP and ESMTP. For general applications, you really
only need to be able to log in to a server, send a message, and quit. Every-
thing else is supplemental.

ptg7615500

3.4 E-Mail 117

There is also one other alternative known as LMTP (Local Mail Transfer
Protocol) based on SMTP and ESMTP, defined in October 1996 as RFC
2033. One requirement for SMTP is having mail queues, but this requires
additional storage and management, so LMTP provides for a more light-
weight system that avoids the necessity of mail queues but does require
messages to be delivered immediately (and not queued). LMTP servers
aren’t exposed externally and work directly with a mail gateway that is
Internet-facing to indicate whether messages are accepted or rejected. The
gateway serves as the queue for LMTP.

MTAs

Some well-known MTAs that have implemented SMTP include:

Open Source MTAs

• Sendmail

• Postfix

• Exim

• qmail

Commercial MTAs

• Microsoft Exchange

• Lotus Notes Domino Mail Server

Note that although they have all implemented the minimum SMTP pro-
tocol requirements, most of them, especially the commercial MTAs, have
added even more features to their servers, going above and beyond the
protocol definition.

SMTP is the MTS that is used by most of the MTAs on the Internet for
message exchange. It is the protocol used by MTAs to transfer e-mail from
(MTA) host to (MTA) host. When you send e-mail, you must connect to an
outgoing SMTP server, with which your mail application acts as an SMTP
client. Your SMTP server, therefore, is the first hop for your message.

ptg7615500

118 Chapter 3 • Internet Client Programming

3.4.3 Python and SMTP

Yes, there is an smtplib and an smtplib.SMTP class to instantiate. Let’s
review this familiar story:

1. Connect to server
2. Log in (if applicable)
3. Make service request(s)
4. Quit

As with NNTP, the login step is optional and only required if the server
has SMTP authentication (SMTP-AUTH) enabled. SMTP-AUTH is defined
in RFC 2554. Also similar to NNTP, speaking SMTP only requires commu-
nicating with one port on the server; this time, it’s port 25.

Here is some Python pseudocode to get started:
from smtplib import SMTP
n = SMTP('smtp.yourdomain.com')
...
n.quit()

Before we take a look at a real example, let’s introduce some of the more
popular methods of the smtplib.SMTP class.

3.4.4 smtplib.SMTP Class Methods

In addition to the smtplib.SMTP class, Python 2.6 introduced another pair:
SMTP_SSL and LMTP. The latter implements LMTP, as described earlier in
Section 3.4.2, whereas the former works just like SMTP, except that it com-
municates over an encrypted socket and is an alternative to SMTP using
TLS. If omitted, the default port for SMTP_SSL is 465.

 As in the previous sections, we won't show you all methods which
belong to the class, just the ones you need in order to create an SMTP client
application. For most e-mail sending applications, only two are required:
sendmail() and quit().

All arguments to sendmail() should conform to RFC 2822; that is, e-mail
addresses must be properly formatted, and the message body should have
appropriate leading headers and contain lines that must be delimited by
carriage-return and NEWLINE pairs (\r\n).

Note that an actual message body is not required. According to RFC
2822, “[the] only required header fields are the origination date field and
the originator address field(s),” for example, “Date:” and “From:” (MAIL
FROM, RCPT TO, DATA).

2.6

ptg7615500

3.4 E-Mail 119

Table 3-3 presents some common SMTP object methods. There are a few
more methods not described here, but they are not normally required to
send an e-mail message. For more information about all the SMTP object
methods, refer to the Python documentation.

3.4.5 Interactive SMTP Example

Once again, we present an interactive example:
>>> from smtplib import SMTP as smtp
>>> s = smtp('smtp.python.is.cool')
>>> s.set_debuglevel(1)
>>> s.sendmail('wesley@python.is.cool', ('wesley@python.is.cool',
'chun@python.is.cool'), ''' From: wesley@python.is.cool\r\nTo:
wesley@python.is.cool, chun@python.is.cool\r\nSubject: test
msg\r\n\r\nxxx\r\n.''')
send: 'ehlo myMac.local\r\n'
reply: '250-python.is.cool\r\n'
reply: '250-7BIT\r\n'
reply: '250-8BITMIME\r\n'

Table 3-3 Common Methods for SMTP Objects

Method Description

sendmail(from, to,
msg[, mopts, ropts])

Sends msg from from to to (list/tuple) with
optional ESMTP mail (mopts) and recipient
(ropts) options.

ehlo() or helo() Initiates a session with an SMTP or ESMTP
server using EHLO or HELO, respectively.
Should be optional because sendmail() will
call these as necessary.

starttls(keyfile=None,
certfile=None)

Directs server to begin Transport Layer Security
(TLS) mode. If either keyfile or certfile are
given, they are used in the creation of the secure
socket.

set_debuglevel(level) Sets the debug level for server communication.

quit() Closes connection and quits.

login(user, passwd)a Log in to SMTP server with user name and
passwd.

a. SMTP-AUTH only.

ptg7615500

120 Chapter 3 • Internet Client Programming

reply: '250-AUTH CRAM-MD5 LOGIN PLAIN\r\n'
reply: '250-DSN\r\n'
reply: '250-EXPN\r\n'
reply: '250-HELP\r\n'
reply: '250-NOOP\r\n'
reply: '250-PIPELINING\r\n'
reply: '250-SIZE 15728640\r\n'
reply: '250-STARTTLS\r\n'
reply: '250-VERS V05.00c++\r\n'
reply: '250 XMVP 2\r\n'
reply: retcode (250); Msg: python.is.cool
7BIT
8BITMIME
AUTH CRAM-MD5 LOGIN PLAIN
DSN
EXPN
HELP
NOOP
PIPELINING
SIZE 15728640
STARTTLS
VERS V05.00c++
XMVP 2
send: 'mail FROM:<wesley@python.is.cool> size=108\r\n'
reply: '250 ok\r\n'
reply: retcode (250); Msg: ok
send: 'rcpt TO:<wesley@python.is.cool>\r\n'
reply: '250 ok\r\n'
reply: retcode (250); Msg: ok
send: 'data\r\n'
reply: '354 ok\r\n'
reply: retcode (354); Msg: ok
data: (354, 'ok')
send: 'From: wesley@python.is.cool\r\nTo:
wesley@python.is.cool\r\nSubject: test msg\r\n\r\nxxx\r\n..\r\n.\r\n'
reply: '250 ok ; id=2005122623583701300or7hhe\r\n'
reply: retcode (250); Msg: ok ; id=2005122623583701300or7hhe
data: (250, 'ok ; id=2005122623583701300or7hhe')
{}
>>> s.quit()
send: 'quit\r\n'
reply: '221 python.is.cool\r\n'
reply: retcode (221); Msg: python.is.cool

3.4.6 Miscellaneous SMTP

You can read more about SMTP in the SMTP Protocol Definition/Specification,
RFC 5321, at http://tools.ietf.org/html/rfc2821. To find out more about Python’s
SMTP support, go to http://docs.python.org/library/smtplib.

http://tools.ietf.org/html/rfc2821
http://docs.python.org/library/smtplib

ptg7615500

3.4 E-Mail 121

One of the more important aspects of e-mail which we have not dis-
cussed yet is how to properly format Internet addresses as well as e-mail
messages themselves. This information is detailed in the latest Internet
Message Format specification, RFC 5322, which is accessible at http://
tools.ietf.org/html/rfc5322.

3.4.7 Receiving E-Mail

Back in the day, communicating by e-mail on the Internet was relegated to
university students, researchers, and employees of private industry and
commercial corporations. Desktop computers were predominantly still
Unix-based workstations. Home users focused mainly on dial-up Web
access on PCs and really didn’t use e-mail. When the Internet began to
explode in the mid-1990s, e-mail came home to everyone.

Because it was not feasible for home users to have workstations in their
dens running SMTP, a new type of system had to be devised to leave e-mail
on an incoming mail host while periodically downloading mail for offline
reading. Such a system had to consist of both a new application and a new
protocol to communicate with the mail server.

The application, which runs on a home computer, is called a mail user
agent (MUA). An MUA will download mail from a server, perhaps auto-
matically deleting it from the server in the process (or leaving the mail on
the server to be deleted manually by the user). However, an MUA must
also be able to send mail; in other words, it should also be able to speak
SMTP to communicate directly to an MTA when sending mail. We have
already seen this type of client in the previous section when we looked at
SMTP. How about downloading mail then?

3.4.8 POP and IMAP

The first protocol developed for downloading was the Post Office Protocol.
As stated in the original RFC document, RFC 918 published in October
1984, “The intent of the Post Office Protocol (POP) is to allow a user’s
workstation to access mail from a mailbox server. It is expected that mail
will be posted from the workstation to the mailbox server via the Simple
Mail Transfer Protocol (SMTP).” The most recent version of POP is version 3,
otherwise known as POP3. POP3, defined in RFC 1939, is still widely used
today.

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

ptg7615500

122 Chapter 3 • Internet Client Programming

A competing protocol came a few years after POP, known as the Internet
Message Access Protocol, or IMAP. (IMAP has also been known by various
other names: “Internet Mail Access Protocol,” “Interactive Mail Access
Protocol,” and “Interim Mail Access Protocol.”) The first version was
experimental, and it was not until version 2 that its RFC was published
(RFC 1064 in July 1988). It is stated in RFC 1064 that IMAP2 was inspired
by the second version of POP, POP2.

The intent of IMAP is to provide a more complete solution than POP;
however, it is more complex than POP. For example, IMAP is extremely
suitable for today’s needs due to users interacting with their e-mail mes-
sages from more than a single device, such as desktop/laptop/tablet com-
puters, mobile phones, video game systems, etc. POP does not work well
with multiple mail clients, and although still widely used, is mostly obso-
lete. Note that many ISPs currently only provide POP for receiving (and
SMTP for sending) e-mail. We anticipate more adoption of IMAP as we
move forward.

The current version of IMAP in use today is IMAP4rev1, and it, too, is
widely used. In fact, Microsoft Exchange, one of the predominant mail
servers in the world today, uses IMAP as its download mechanism. At the
time of this writing, the latest draft of the IMAP4rev1 protocol definition is
spelled out in RFC 3501, published in March 2003. We use the term
“IMAP4” to refer to both the IMAP4 and IMAP4rev1 protocols, collectively.

For further reading, we suggest that you take a look at the aforemen-
tioned RFC documents. The diagram in Figure 3-3 illustrates this complex
system we know simply as e-mail.

Now let’s take a closer look at POP3 and IMAP4 support in Python.

3.4.9 Python and POP3

No surprises here: import poplib and instantiate the poplib.POP3 class; the
standard conversation is as expected:

1. Connect to server
2. Log in
3. Make service request(s)
4. Quit

ptg7615500

3.4 E-Mail 123

And the expected Python pseudocode:
from poplib import POP3
p = POP3('pop.python.is.cool')
p.user(...)
p.pass_(...)
...
p.quit()

Before we take a look at a real example, we should mention that there is
also a poplib.POP3_SSL class (added in version 2.4) which performs mail
transfer over an encrypted connection, provided the appropriate creden-
tials are supplied. Let’s take a look at an interactive example as well as
introduce the basic methods of the poplib.POP3 class.

3.4.10 An Interactive POP3 Example

Below is an interactive example that uses Python’s poplib. The exception
you see comes from deliberately entering an incorrect password just to
demonstrate what you’ll get back from the server in practice. Here is the
interactive output:

>>> from poplib import POP3
>>> p = POP3('pop.python.is.cool')
>>> p.user('wesley')
'+OK'
>>> p.pass_("you'llNeverGuess")

MTA

MUA

Mail
client IMAP4POP3 (receive)SMTP (send)

POP3/IM
AP4 (re

ce
ive

)

SMTP (s
end)

Sender
(or recipient) (or sender)

Recipient
MUAMTA

Mail
server

Mail
client

SPAM & virus
filtering
device

Internet

SMTP (send)

POP3/IMAP4
(receive)

Figure 3-3 E-Mail Senders and Recipients on the Internet. Clients download and send mail via
their MUAs, which talk to their corresponding MTAs. E-mail “hops” from MTA to MTA until it
reaches the correct destination.

2.4

ptg7615500

124 Chapter 3 • Internet Client Programming

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/usr/local/lib/python2.4/poplib.py", line 202,
in pass_

return self._shortcmd('PASS %s' % pswd)
 File "/usr/local/lib/python2.4/poplib.py", line 165,
in _shortcmd
 return self._getresp()
 File "/usr/local/lib/python2.4/poplib.py", line 141,
in _getresp
 raise error_proto(resp)
poplib.error_proto: -ERR directory status: BAD PASSWORD
>>> p.user('wesley')
'+OK'
>>> p.pass_('youllNeverGuess')
'+OK ready'
>>> p.stat()
(102, 2023455)
>>> rsp, msg, siz = p.retr(102)
>>> rsp, siz
('+OK', 480)
>>> for eachLine in msg:
... print eachLine
...
Date: Mon, 26 Dec 2005 23:58:38 +0000 (GMT)
Received: from c-42-32-25-43.smtp.python.is.cool
 by python.is.cool (scmrch31) with ESMTP
 id <2005122623583701300or7hhe>; Mon, 26 Dec 2005 23:58:37
+0000
From: wesley@python.is.cool
To: wesley@python.is.cool
Subject: test msg

xxx
.
>>> p.quit()
'+OK python.is.cool'

3.4.11 poplib.POP3 Class Methods

The POP3 class provides numerous methods to help you download and man-
age your inbox offline. Those most widely used are included in Table 3-4.

ptg7615500

3.4 E-Mail 125

When logging in, the user() method not only sends the login name to
the server, but it also awaits the reply that indicates the server is waiting
for the user’s password. If pass_() fails due to authentication issues, the
exception raised is poplib.error_proto. If it is successful, it gets back a
positive reply, for example, “+OK ready,” and the mailbox on the server
is locked until quit() is called.

For the list() method, the msg_list is of the form [‘msgnum msgsiz’,…]
where msgnum and msgsiz are the message number and message sizes,
respectively, of each message.

 There are a few other methods that are not listed here. For the full details,
check out the documentation for poplib in the Python Library Reference.

Table 3-4 Common Methods for POP3 Objects

Method Description

user(login) Sends the login name to the server; awaits reply indicat-
ing the server is waiting for user’s password

pass_(passwd) Sends passwd (after user logs in with user()); an excep-
tion occurs on login/passwd failure

stat() Returns mailbox status, a 2-tuple (msg_ct, mbox_siz): the
total message count and total message size, a.k.a. octets

list([msgnum]) Superset of stat(); returns entire message list from
server as a 3-tuple (rsp, msg_list, rsp_siz): server
response, message list, response message size; if msgnum
given, return data for that message only

retr(msgnum) Retrieves message msgnum from server and sets its
“seen” flag; returns a 3-tuple (rsp, msglines, msgsiz):
server response, all lines of message msgnum, and mes-
sage size in bytes/octets

dele(msgnum) Tag message number msgnum for deletion; most servers
process deletes upon quit()

quit() Logs out, commits changes (e.g., process “seen,” “delete”
flags, etc.), unlocks mailbox, terminates connection, and
then quits

ptg7615500

126 Chapter 3 • Internet Client Programming

3.4.12 SMTP and POP3 Example

Example 3-3 shows how to use both SMTP and POP3 to create a client that
both receives and downloads e-mail as well as one that uploads and sends
it. What we are going to do is send an e-mail message to ourselves (or some
test account) via SMTP, wait for a bit—we arbitrarily chose ten seconds—and
then use POP3 to download our message and assert that the messages are
identical. Our operation will be a success if the program completes silently,
meaning that there should be no output or any errors.

Example 3-3 SMTP and POP3 Example (myMail.py)

This script sends a test e-mail message to the destination address (via the outgoing/
SMTP mail server) and retrieves it immediately from the (incoming mail/POP)
server. You must change the server names and e-mail addresses to make it work
properly.

1 #!/usr/bin/env python
2
3 from smtplib import SMTP
4 from poplib import POP3
5 from time import sleep
6
7 SMTPSVR = 'smtp.python.is.cool'
8 POP3SVR = 'pop.python.is.cool'
9
10 who = 'wesley@python.is.cool'
11 body = '''\
12 From: %(who)s
13 To: %(who)s
14 Subject: test msg
15
16 Hello World!
17 ''' % {'who': who}
18
19 sendSvr = SMTP(SMTPSVR)
20 errs = sendSvr.sendmail(who, [who], origMsg)
21 sendSvr.quit()
22 assert len(errs) == 0, errs
23 sleep(10) # wait for mail to be delivered
24
25 recvSvr = POP3(POP3SVR)
26 recvSvr.user('wesley')
27 recvSvr.pass_('youllNeverGuess')
28 rsp, msg, siz = recvSvr.retr(recvSvr.stat()[0])
29 # strip headers and compare to orig msg
30 sep = msg.index('')
31 recvBody = msg[sep+1:]
32 assert origBody == recvBody # assert identical

ptg7615500

3.4 E-Mail 127

Line-by-Line Explanation

Lines 1–8
This application starts with a few import statements and some constants,
much like the other examples in this chapter. The constants here are the
outgoing (SMTP) and incoming (POP3) mail servers.

Lines 10–17
These lines represent the preparation of the message contents. For this test
message, the sender and the recipient will be the same user. Don’t forget
the RFC 2822-required line delimiters with a blank line separating the two
sections.

Lines 19–23
We connect to the outgoing (SMTP) server and send our message. There is
another pair of From and To addresses here. These are the “real” e-mail
addresses, or the envelope sender and recipient(s). The recipient field
should be an iterable. If a string is passed in, it will be transformed
into a list of one element. For unsolicited spam e-mail, there is usually
a discrepancy between the message headers and the envelope headers.

The third argument to sendmail() is the e-mail message itself. Once it
has returned, we log out of the SMTP server and check that no errors
have occurred. Then we give the servers some time to send and receive the
message.

Lines 25–32
The final part of our application downloads the just-sent message and
asserts that both it and the received messages are identical. A connection is
made to the POP3 server with a username and password. After success-
fully logging in, a stat() call is made to get a list of available messages.
The first message is chosen ([0]), and retr() is instructed to download it.

We look for the blank line separating the headers and message, discard
the headers, and compare the original message body with the incoming
message body. If they are identical, nothing is displayed and the program
ends successfully. Otherwise, an assertion is made.

Note that due to the numerous errors, we left out all the error-checking
for this script to make it a bit more easy on the eyes. (One of the exercises
at the end of the chapter is to add the error-checking.)

ptg7615500

128 Chapter 3 • Internet Client Programming

Now you have a very good idea of how sending and receiving e-mail
works in today’s environment. If you wish to continue exploring this realm
of programming expertise, see the next section for other e-mail-related
Python modules, which will prove valuable in application development.

3.4.13 Python and IMAP4

Python supports IMAP4 via the imaplib module. Its use is quite similar to
that of other Internet protocols described in this chapter. To begin, import
imaplib and instantiate one of the imaplib.IMAP4* classes; the standard
conversation is as expected:

1. Connect to server
2. Log in
3. Make service request(s)
4. Quit

The Python pseudocode is also similar to what we’ve seen before:
from imaplib import IMAP4
s= IMAP4('imap.python.is.cool')
s.login(...)
...
s.close()
s.logout()

This module defines three classes, IMAP4, IMAP4_SSL, and IMAP4_stream
with which you can use to connect to an IMAP4-compatible server. Like
POP3_SSL for POP, IMAP4_SSL lets you connect to an IMAP4 server by using
an SSL-encrypted socket. Another subclass of IMAP is IMAP4_stream which
gives you a file-like object interface to an IMAP4 server. The latter pair of
classes was added in Python 2.3.

Now let’s take a look at an interactive example as well as introduce the
basic methods of the imaplib.IMAP4 class.

3.4.14 An Interactive IMAP4 Example

Here is an interactive example that uses Python’s imaplib:
>>> s = IMAP4('imap.python.is.cool') # default port: 143
>>> s.login('wesley', 'youllneverguess')
('OK', ['LOGIN completed'])
>>> rsp, msgs = s.select('INBOX', True)
>>> rsp
'OK'

2.3

ptg7615500

3.4 E-Mail 129

>>> msgs
['98']
>>> rsp, data = s.fetch(msgs[0], '(RFC822)')
>>> rsp
'OK'
>>> for line in data[0][1].splitlines()[:5]:
... print line
...
Received: from mail.google.com
 by mx.python.is.cool (Internet Inbound) with ESMTP id
316ED380000ED
 for <wesley@python.is.cool>; Fri, 11 Mar 2011 10:49:06 -0500 (EST)
Received: by gyb11 with SMTP id 11so125539gyb.10
 for <wesley@python.is.cool>; Fri, 11 Mar 2011 07:49:03 -0800
(PST)
>>> s.close()
('OK', ['CLOSE completed'])
>>> s.logout()
('BYE', ['IMAP4rev1 Server logging out'])

3.4.15 Common imaplib.IMAP4 Class Methods

As we mentioned earlier, the IMAP protocol is more complex than POP, so
there are many more methods that we’re not documenting here. Table 3-5 lists
just the basic ones you are most likely to use for a simple e-mail application.

Table 3-5 Common Methods for IMAP4 Objects

Method Description

close() Closes the current mailbox. If access is not set to
read-only, any deleted messages will be
discarded.

fetch(message_set,
message_parts)

Retrieve e-mail messages (or requested parts via
message_parts) stated by message_set.

login(user, password) Logs in user by using given password.

logout() Logs out from the server.

(Continued)

ptg7615500

130 Chapter 3 • Internet Client Programming

Below are some examples of using some of these methods.

• NOP, NOOP, or “no operation.” This is meant as a keepalive
to the server:
>>> s.noop()
('OK', ['NOOP completed'])

• Get information about a specific message:
>>> rsp, data = s.fetch('98', '(BODY)')
>>> data[0]
'98 (BODY ("TEXT" "PLAIN" ("CHARSET" "ISO-8859-1" "FORMAT" "flowed"
"DELSP" "yes") NIL NIL "7BIT" 1267 33))'

• Get just the headers of a message:
>>> rsp, data = s.fetch('98', '(BODY[HEADER])')
>>> data[0][1][:45]
'Received: from mail-gy.google.com (mail-gy.go'

• Get the IDs of the messages that have been viewed (try also
using 'ALL', 'NEW', etc.):
>>> s.search(None, 'SEEN')
('OK', ['1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 59 60 61 62
63 64 97'])

• Get more than one message (use a colon (:) as the delimiter;
note ‘)’ is used to delimit results):
>>> rsp, data = s.fetch('98:100', '(BODY[TEXT])')
>>> data[0][1][:45]
'Welcome to Google Accounts. To activate your'

Table 3-5 Common Methods for IMAP4 Objects (Continued)

Method Description

noop() Ping the server but take no action (“no
operation”).

search(charset,
*criteria)

Searches mailbox for messages matching at least
one piece of criteria. If charset is False, it
defaults to US-ASCII.

select(mailbox= 'INBOX',
read-only=False)

Selects a mailbox (default is INBOX); user not
allowed to modify contents if readonly is set.

ptg7615500

3.4 E-Mail 131

>>> data[2][1][:45]
'\r\n-b1_aeb1ac91493d87ea4f2aa7209f56f909\r\nCont'
>>> data[4][1][:45]
'This is a multi-part message in MIME format.'
>>> data[1], data[3], data[5]
(')', ')', ')')

3.4.16 In Practice

E-Mail Composition

So far, we’ve taken a pretty in-depth look at the various ways Python
helps you download e-mail messages. We’ve even discussed how to create
simple text e-mail messages and then connect to SMTP servers to send
them. However, what has been missing is guidance on how to construct
slightly more complex messages in Python. As you can guess, I’m speak-
ing about e-mail messages that are more than plain text, with attachments,
alternative formats, etc. Now is the right time to briefly visit this topic.

These longer messages are comprised normally of multiple parts, say a
plain text portion for the message, optionally an HTML equivalent for
those with Web browsers as their mail clients, and one or more attach-
ments. The global standard for identifying and differentiating each of
these parts is known as Mail Interchange Message Extension format, or
MIME for short.

Python’s email package is perfectly suited to handle and manage MIME
parts of entire e-mail messages, and we’ll be using it for this entire subsec-
tion along with smtplib, of course. The email package has separate com-
ponents that parse as well as construct e-mail. We will start with the latter
then conclude with a quick look at parsing and message walkthrough.

In Example 3-4, you’ll see two examples of creating e-mail messages,
make_mpa_msg() and make_img_msg(), both of which make a single e-mail
message with one attachment. The former creates a single multipart alter-
native message and sends it, and the latter creates an e-mail message con-
taining one image and sends that. Following the example is the line-by-line
explanation.

ptg7615500

132 Chapter 3 • Internet Client Programming

Example 3-4 Composing E-Mail (email-examples.py)

This Python 2 script creates and sends two different e-mail message types.

1 #!/usr/bin/env python
2 'email-examples.py - demo creation of email messages'
3
4 from email.mime.image import MIMEImage
5 from email.mime.multipart import MIMEMultipart
6 from email.mime.text import MIMEText
7 from smtplib import SMTP
8
9 # multipart alternative: text and html
10 def make_mpa_msg():
11 email = MIMEMultipart('alternative')
12 text = MIMEText('Hello World!\r\n', 'plain')
13 email.attach(text)
14 html = MIMEText(
15 '<html><body><h4>Hello World!</h4>'
16 '</body></html>', 'html')
17 email.attach(html)
18 return email
19
20 # multipart: images
21 def make_img_msg(fn):
22 f = open(fn, 'r')
23 data = f.read()
24 f.close()
25 email = MIMEImage(data, name=fn)
26 email.add_header('Content-Disposition',
27 'attachment; filename="%s"' % fn)
28 return email
29
30 def sendMsg(fr, to, msg):
31 s = SMTP('localhost')
32 errs = s.sendmail(fr, to, msg)
33 s.quit()
34
35 if __name__ == '__main__':
36 print 'Sending multipart alternative msg...'
37 msg = make_mpa_msg()
38 msg['From'] = SENDER
39 msg['To'] = ', '.join(RECIPS)
40 msg['Subject'] = 'multipart alternative test'
41 sendMsg(SENDER, RECIPS, msg.as_string())
42
43 print 'Sending image msg...'
44 msg = make_img_msg(SOME_IMG_FILE)
45 msg['From'] = SENDER
46 msg['To'] = ', '.join(RECIPS)
47 msg['Subject'] = 'image file test'
48 sendMsg(SENDER, RECIPS, msg.as_string())

ptg7615500

3.4 E-Mail 133

Line-by-Line Explanation

Lines 1–7
In addition to the standard startup line and docstring, we see the import of
MIMEImage, MIMEMultipart, MIMEText, and SMTP classes.

Lines 9–18
Multipart alternative messages usually consist of the following two parts:
the body of an e-mail message in plain text and its equivalent on the
HTML side. It was up to the mail client to determine which gets shown.
For example, a Web-based e-mail system would generally show the HTML
version, whereas a command-line mail reader would only show the plain
text version.

To create this type of message, you need to use the email.mime.multiple.
MIMEMultipart class and instantiate it by passing in 'alternative' as its
only argument. If you don’t pass this value in, each of the two parts will be
a separate attachment; thus, some e-mail systems might show both parts.

The email.mime.text.MIMEText class was used for both parts (because
they really are both bodies of plain text). Each part is then attached to the
entire e-mail message because they are created before the return message
is returned.

Lines 20–28
The make_img_msg() function takes a single parameter, a filename. Its data
is absorbed then fed directly to a new instance of email.mime.image.MIMEImage.
A Content-Disposition header is added and then a message is returned to
the user.

Lines 30–33
The sole purpose of sendMsg() is to take the basic e-mail-sending criteria
(sender, recipient[s], message body), transmit the message, and then return
to the caller.

Looking for more verbose output? Try this extension: s.set_debuglevel
(True), where “s” is the smtplib.SMTP server. Finally, we’ll repeat what we
said earlier that many SMTP servers require logins, so you’d do that here
(just after logging in but before sending an e-mail message).

ptg7615500

134 Chapter 3 • Internet Client Programming

Lines 35–48
The “main” part of this script just tests each of these two functions. The
functions create the message, add the From, To, and Sender fields, and
then transmit the message to those recipients. Naturally, you need to fill in
all of the following for your application to work: SENDER, RECIPS, and
SOME_IMG_FILE.

E-Mail Parsing

Parsing is somewhat easier than constructing a message from scratch.
You would typically use several tools from the email package: the
email.message_from_string() function as well as the message.walk() and
message.get_payload() methods. Here is the typical pattern:

def processMsg(entire_msg):
 body = ''
 msg = email.message_from_string(entire_msg)
 if msg.is_multipart():
 for part in msg.walk():
 if part.get_content_type() == 'text/plain':
 body = part.get_payload()
 break
 else:
 body = msg.get_payload(decode=True)
 else:
 body = msg.get_payload(decode=True)
 return body

This snippet should be fairly simple to figure out. Here are the major
players:

• email.message_from_string(), used to parse the message.

• msg.walk(): Let’s “walk down” the attachment hierarchy of a
mall stand/shop.

• part.get_content_type(): Guess the correct MIME type.

• msg.get_payload(): Pull out the specific part from the message
body. Typically the decode flag is set to True so as to decode
the body part as per the Content-Transfer-Encoding header.

ptg7615500

3.4 E-Mail 135

Web-Based Cloud E-Mail Services

The use of the protocols that we’ve covered so far in this chapter, for the
most part, have been ideal: there hasn’t been much of a focus on security
or the messiness that comes with it. Of course, we did mention that some
servers require logins.

However, when coding in real life, we need to come back down to earth
and recognize that servers that are actively maintained really don’t want
to be the focus or target of hackers who want a free spam and/or phishing
e-mail relay or other nefarious activity. Such systems, predominantly e-mail
systems, are locked down appropriately. The e-mail examples given ear-
lier in the chapter are for generic e-mail services that come with your ISP.
Because you’re paying a monthly fee for your Internet service, you gener-
ally get e-mail uploading/sending and downloading/receiving for “free.”

Let’s take a look at some public Web-based e-mail services such as
Yahoo! Mail and Google’s Gmail service. Because such software as a ser-
vice (SaaS) cloud services don’t require you to pay a monthly fee up front,
it seems completely free to you. However, users generally “pay” by being
exposed to advertising. The better the ad relevance, the more likely the
service provider is able to recoup some of the costs of offering such ser-
vices free of charge.

Gmail features algorithms that scan e-mail messages to get a sense of its
context and hopefully, with good machine learning algorithms, presents
ads that are more likely to be clicked by users than generic ad inventory.
The ads are generally in plain text and along the right side of the e-mail
message panel. Because of the efficacy of their algorithms, Google not only
offers Web access to their Gmail service for free, they even allow outbound
transfer of messages through a client service via POP3 and IMAP4 as well
as the ability to send e-mail using SMTP.

Yahoo!, on the other hand, shows more general ads in image format
embedded in parts of their Web application. Because their ads don’t target
as well, they likely don’t derive as much revenue, which might be a con-
tributing factor for why they require a paid subscription service (called
Yahoo! Mail Plus) in order to download your e-mail. Another reason could
be that they don’t want users to easily be able to move their mail else-
where. Yahoo! currently does not charge for sending e-mail via SMTP at
the time of this writing. We will look at some code examples of both in the
remainder of this subsection.

ptg7615500

136 Chapter 3 • Internet Client Programming

Best Practices: Security, Refactoring

We need to take a moment to also discuss best practices, including security
and refactoring. Sometimes, the best laid plans are thwarted because of the
reality that different releases of a programming language will have
improvements and bugfixes that aren’t found in older releases, so in prac-
tice, you might have to do a little bit more work than you had originally
planned.

Before we look at the two e-mail services from Google and Yahoo!, let’s
look at some boilerplate code that we’ll use for each set of examples:

from imaplib import IMAP4_SSL
from poplib import POP3_SSL
from smtplib import SMTP_SSL

from secret import * # where MAILBOX, PASSWD come from

who = . . . # xxx@yahoo/gmail.com where MAILBOX = xxx
from_ = who
to = [who]

headers = [
 'From: %s' % from_,
 'To: %s' % ', '.join(to),
 'Subject: test SMTP send via 465/SSL',
]

body = [
 'Hello',
 'World!',
]

msg = '\r\n\r\n'.join(('\r\n'.join(headers), '\r\n'.join(body)))

The first thing you’ll notice is that we’re no longer in utopia; the realities
of living and working, nay even existing, on the Web requires that we use
secure connections, so we’re using the SSL-equivalents of all three proto-
cols; hence, the “_SSL” appended to the end of each of the original class
names.

Secondly, we can’t use our mailboxes (login names) and passwords in
plain text as we did in the codes examples in previous sections. In practice,
putting account names and passwords in plain text and embedding them
in source code is... well, horrific to say the least. In practice, they should be
fetched from either a secure database, imported from a bytecode-compiled
.pyc or .pyo file, or retrieved from some live server or broker found some-
where on your company’s intranet. For our example, we’ll assume they’re
in a secret.pyc file that contains MAILBOX and PASSWD attributes associated
with the equivalent privileged information.

ptg7615500

3.4 E-Mail 137

The last set of variables just represent the actual e-mail message plus
sender and receiver (both the same people to make it easy). The way we’ve
structured the e-mail message itself is slightly more complex than we did
in the earlier example, in which the body was a single string that required
us to fill in the necessary field data:

body = '''\
From: %(who)s
To: %(who)s
Subject: test msg

Hello World!
''' % {'who': who}

However, we chose to use lists instead, because in practice, the body of
the e-mail message is more likely to be generated or somehow controlled
by the application instead of being a hardcoded string. The same may be
true of the e-mail headers. By making them lists, you can easily add (or
even remove) lines to (from) an e-mail message. Then when ready for
transmission, the process only requires a couple of str.join() calls with
\r\n pairs. (Recall from an earlier subsection in this chapter that this is the
official delimiter accepted by RFC5322-compliant SMTP servers—some
servers won’t accept only NEWLINEs.)

We’ve also made another minor tweak to the message body data: there
might be more than one receiver, so the to variable has also been changed
to a list. We then have to str.join() them together when creating the final
set of e-mail headers. Finally, let’s look at a specific utility function we’re
going to use for our upcoming Yahoo! Mail and Gmail examples; it’s a
short snippet that just goes and grabs the Subject line from inbound e-mail
messages.

def getSubject(msg, default='(no Subject line)'):
 '''\
 getSubject(msg) - 'msg' is an iterable, not a
 delimited single string; this function iterates
 over 'msg' look for Subject: line and returns
 if found, else the default is returned if one isn't
 found in the headers
 '''
 for line in msg:
 if line.startswith('Subject:'):
 return line.rstrip()
 if not line:
 return default

The getSubject() function is fairly simplistic; it looks for the Subject
line only within the headers. As soon as one is found, the function returns
immediately. The headers have completed when a blank line is reached, so

ptg7615500

138 Chapter 3 • Internet Client Programming

if one hasn’t been found at this point, return a default, which is a local
variable with a default argument allowing the user to pass in a custom
default string as desired. Yeah, I know some of you performance buffs will
want to use line[:8] == 'Subject:' to avoid the str.startswith()
method call, but guess what? Don’t forget that line[:8] results in a
str.__getslice__() call; although to be honest, for this case it is about
40 percent faster than str.startswith(), as shown in a few timeit tests:

>>> t = timeit.Timer('s[:8] == "Subject:"', 's="Subject: xxx"')
>>> t.timeit()
0.14157199859619141
>>> t.timeit()
0.1387479305267334
>>> t.timeit()
0.13623881340026855
>>>
>>> t = timeit.Timer('s.startswith("Subject:")', 's="Subject: xxx"')
>>> t.timeit()
0.23016810417175293
>>> t.timeit()
0.23104190826416016
>>> t.timeit()
0.24139499664306641

Using timeit is another best practice and we’ve just gone over one of its
most common use cases: you have a pair of snippets that do the same
thing, so you’re in a situation in which you need to know which one is
more efficient. Now let’s see how we can apply some of this knowledge on
some real code.

Yahoo! Mail

Assuming that all of the preceding boilerplate code has been executed,
we’ll start with Yahoo! Mail. The code we’re going to look at is an extension
of Example 3-3. We’ll also send e-mail via SMTP but will retrieve messages
via both POP then IMAP. Here’s the prototype script:

s = SMTP_SSL('smtp.mail.yahoo.com', 465)
s.login(MAILBOX, PASSWD)
s.sendmail(from_, to, msg)
s.quit()
print 'SSL: mail sent!'

s = POP3_SSL('pop.mail.yahoo.com', 995)
s.user(MAILBOX)
s.pass_(PASSWD)
rv, msg, sz = s.retr(s.stat()[0])
s.quit()

ptg7615500

3.4 E-Mail 139

line = getSubject(msg)
print 'POP:', line

s = IMAP4_SSL('imap.n.mail.yahoo.com', 993)
s.login(MAILBOX, PASSWD)
rsp, msgs = s.select('INBOX', True)
rsp, data = s.fetch(msgs[0], '(RFC822)')
line = getSubject(StringIO(data[0][1]))
s.close()
s.logout()
print 'IMAP:', line

Assuming we stick all of this into a ymail.py file, our execution might
look something like this:

$ python ymail.py
SSL mail sent!
POP: Subject:Meet singles for dating, romance and more.
IMAP: Subject: test SMTP send via 465/SSL

In our case, we had a Yahoo! Mail Plus account, which allows us to
download e-mail. (The sending is free regardless of whether you’re a
paying or non-paying subscriber.) However, note a couple of things that
didn’t work out quite right. The first is that the message obtained via POP
was not that of our sent message, whereas IMAP was able to find it. In gen-
eral, you’ll find IMAP more reliable. Also in the preceding example, we’re
assuming that you’re a paying customer and using a current version of
Python (version 2.6.3+); reality sets in rather quickly if you’re not.

If you’re not paying for Yahoo! Mail Plus, you’re not allowed to down-
load e-mail. Here’s a sample traceback that you’ll get if you attempt it:

Traceback (most recent call last):
 File "ymail.py", line 101, in <module>
 s.pass_(PASSWD)
 File "/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7/poplib.py", line 189, in pass_
 return self._shortcmd('PASS %s' % pswd)
 File "/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7/poplib.py", line 152, in _shortcmd
 return self._getresp()
 File "/Library/Frameworks/Python.framework/Versions/2.7/lib/
python2.7/poplib.py", line 128, in _getresp
 raise error_proto(resp)
poplib.error_proto: -ERR [SYS/PERM] pop not allowed for user.

Furthermore, the SMTP_SSL class was only added in version 2.6, and on
top of that, it was buggy until version 2.6.3, so that’s the minimum version
you need in order to be able to write code that uses SMTP over SSL. If you

2.6

ptg7615500

140 Chapter 3 • Internet Client Programming

using a release older than version 2.6, you won’t even get that class, and if
you’re using version 2.6(.0)–2.6.2, you’ll get an error that looks like this:

Traceback (most recent call last):
 File "ymail.py", line 61, in <module>
 s.login(MAILBOX, PASSWD)
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/
python2.6/smtplib.py", line 549, in login
 self.ehlo_or_helo_if_needed()
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/
python2.6/smtplib.py", line 509, in ehlo_or_helo_if_needed
 if not (200 <= self.ehlo()[0] <= 299):
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/
python2.6/smtplib.py", line 382, in ehlo
 self.putcmd(self.ehlo_msg, name or self.local_hostname)
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/
python2.6/smtplib.py", line 318, in putcmd
 self.send(str)
 File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/
python2.6/smtplib.py", line 310, in send
 raise SMTPServerDisconnected('please run connect() first')
smtplib.SMTPServerDisconnected: please run connect() first

These are just some of the issues you’ll discover in practice; it’s never as
perfect as what you’d find in a textbook. There are always weird, unantici-
pated gotchas that end up biting you. By simulating it here, hopefully it
will be less shocking for you.

Let’s clean up the output a bit. But more importantly, let’s add all these
(version) checks that you’d have to do in real life, just to get used to it. Our
final version of ymail.py can be found in Example 3-5.

Example 3-5 Yahoo! Mail SMTP, POP, IMAP Example (ymail.py)

This script exercises SMTP, POP, and IMAP for the Yahoo! Mail service.

1 #!/usr/bin/env python
2 'ymail.py - demo Yahoo!Mail SMTP/SSL, POP, IMAP'
3
4 from cStringIO import StringIO
5 from imaplib import IMAP4_SSL
6 from platform import python_version
7 from poplib import POP3_SSL, error_proto
8 from socket import error
9
10 # SMTP_SSL added in 2.6, fixed in 2.6.3
11 release = python_version()
12 if release > '2.6.2':
13 from smtplib import SMTP_SSL, SMTPServerDisconnected

ptg7615500

3.4 E-Mail 141

14 else:
15 SMTP_SSL = None
16
17 from secret import * # you provide MAILBOX, PASSWD
18
19 who = '%s@yahoo.com' % MAILBOX
20 from_ = who
21 to = [who]
22
23 headers = [
24 'From: %s' % from_,
25 'To: %s' % ', '.join(to),
26 'Subject: test SMTP send via 465/SSL',
27]
28 body = [
29 'Hello',
30 'World!',
31]
32 msg = '\r\n\r\n'.join(('\r\n'.join(headers), '\r\n'.join(body)))
33
34 def getSubject(msg, default='(no Subject line)'):
35 '''\
36 getSubject(msg) - iterate over 'msg' looking for
37 Subject line; return if found otherwise 'default'
38 '''
39 for line in msg:
40 if line.startswith('Subject:'):
41 return line.rstrip()
42 if not line:
43 return default
44
45 # SMTP/SSL
46 print '*** Doing SMTP send via SSL...'
47 if SMTP_SSL:
48 try:
49 s = SMTP_SSL('smtp.mail.yahoo.com', 465)
50 s.login(MAILBOX, PASSWD)
51 s.sendmail(from_, to, msg)
52 s.quit()
53 print ' SSL mail sent!'
54 except SMTPServerDisconnected:
55 print ' error: server unexpectedly disconnected... try

again'
56 else:
57 print ' error: SMTP_SSL requires 2.6.3+'
58
59 # POP
60 print '*** Doing POP recv...'

(Continued)

ptg7615500

142 Chapter 3 • Internet Client Programming

Line-by-Line Explanation

Lines 1–8
These are the normal header and import lines.

Lines 10–15
Here we ask for the Python release number as a string which comes from
platform.python_version(). We only perform the import smtplib attri-
butes if we’re using version 2.6.3 and newer; otherwise, set SMTP_SSL to
None.

Lines 17–21
As mentioned earlier, instead of hardcoding privileged information such
as login and password, we put them in somewhere else, such as a byte-
code-compiled secret.pyc file, where the average user cannot reverse engi-
neer the MAILBOX and PASSWD data. As this is just a test application, after
obtaining that information (line 17), we set the envelope sender and recip-
ient variables as the same person (lines 19–21). Why is the sender variable
named from_ instead of from?

Example 3-5 Yahoo! Mail SMTP, POP, IMAP Example (ymail.py)
(Continued)

61 try:
62 s = POP3_SSL('pop.mail.yahoo.com', 995)
63 s.user(MAILBOX)
64 s.pass_(PASSWD)
65 rv, msg, sz = s.retr(s.stat()[0])
66 s.quit()
67 line = getSubject(msg)
68 print ' Received msg via POP: %r' % line
69 except error_proto:
70 print ' error: POP for Yahoo!Mail Plus subscribers only'
71
72 # IMAP
73 print '*** Doing IMAP recv...'
74 try:
75 s = IMAP4_SSL('imap.n.mail.yahoo.com', 993)
76 s.login(MAILBOX, PASSWD)
77 rsp, msgs = s.select('INBOX', True)
78 rsp, data = s.fetch(msgs[0], '(RFC822)')
79 line = getSubject(StringIO(data[0][1]))
80 s.close()
81 s.logout()
82 print ' Received msg via IMAP: %r' % line
83 except error:
84 print ' error: IMAP for Yahoo!Mail Plus subscribers only

ptg7615500

3.4 E-Mail 143

Lines 23–32
These next set of lines constitute the body of the e-mail message. Lines
23–27 represent the headers (which you can have easily generated by
some code), lines 28–31 are for the actual body of the message (which can
also be generated or in an iterable). At the end (line 32), we have the line of
code that merges all of the previous information (headers + body) and creates
the entire e-mail message body with the correct delimiter(s).

Lines 34–43
We have already discussed the getSubject() function, whose sole purpose
is to seek the Subject line within an inbound message’s e-mail headers, tak-
ing a default string if no Subject line is found. It’s optional as we’ve imple-
mented a default value for default.

Lines 45–57
This is the SMTP code. Earlier in lines 10–15, we decided whether to use
SMTP_SSL or assign None to that value. Here, if we did get the class (line 7),
try to connect to the server, login, execute the e-mail send, and then quit
(lines 48–53). Otherwise, alert the user that version 2.6.3 or newer is
required (lines 56–57). Occasionally you might get disconnected from the
server due to a variety of reasons such as poor connectivity, etc. In such
cases, usually a retry does the trick, so we inform the user about the retry
attempt (lines 54–55).

Lines 59–70
This is the POP3 code that we already covered earlier for the most part
(lines 62–68). The only difference is that we’ve added a check in case
you’re not paying for the POP access but are trying to download your mail
anyway, which is why we need to catch the poplib.error_proto exception
(lines 69–70), seen earlier.

Lines 72–84
The same is true for the IMAP4 code. We wrap the basic functionality in a
try block (lines 74–82) and catch socket.error (lines 83–84). Did you also
notice that this is where we subtly use the cStringIO.StringIO object (line
79)? The reason for this is because IMAP returns the e-mail message as a
single large string. Because getSubject() iterates over multiple lines, we
need to provide it something similar that it can work with, so that’s
what we get from StringIO—it takes a long string and gives it a file-like
interface.

ptg7615500

144 Chapter 3 • Internet Client Programming

So that, in practice, is how you would actually deal with Yahoo! Mail.
Gmail is very similar, except that all the access is “free.” In addition, Gmail
also allows standard SMTP (using TLS).

Gmail

Example 3-6 looks at Google’s Gmail service. In addition to SMTP over
SSL, Gmail also offers SMTP using Transport Layer Security (TLS), so we’ll
see one additional import of the smtplib.SMTP class with its own section of
code. As far as everything else (SMTP over SSL, POP, and IMAP), they’ll
look quite similar to their equivalents for Yahoo! Mail. Because e-mail
download is completely free, we do not need the exception handler to pro-
cess access errors due to not being a subscriber.

Example 3-6 Gmail SMTPx2, POP, IMAP Example (gmail.py)

This script exercises SMTP, POP, and IMAP of the Google Gmail service.

1 #!/usr/bin/env python
2 'gmail.py - demo Gmail SMTP/TLS, SMTP/SSL, POP, IMAP'
3
4 from cStringIO import StringIO
5 from imaplib import IMAP4_SSL
6 from platform import python_version
7 from poplib import POP3_SSL
8 from smtplib import SMTP
9
10 # SMTP_SSL added in 2.6
11 release = python_version()
12 if release > '2.6.2':
13 from smtplib import SMTP_SSL # fixed in 2.6.3
14 else:
15 SMTP_SSL = None
16
17 from secret import * # you provide MAILBOX, PASSWD
18
19 who = '%s@gmail.com' % MAILBOX
20 from_ = who
21 to = [who]
22
23 headers = [
24 'From: %s' % from_,
25 'To: %s' % ', '.join(to),
26 'Subject: test SMTP send via 587/TLS',
27]
28 body = [
29 'Hello',
30 'World!',
31]
32 msg = '\r\n\r\n'.join(('\r\n'.join(headers), '\r\n'.join(body)))
33

ptg7615500

3.4 E-Mail 145

34 def getSubject(msg, default='(no Subject line)'):
35 '''\
36 getSubject(msg) - iterate over 'msg' looking for
37 Subject line; return if found otherwise 'default'
38 '''
39 for line in msg:
40 if line.startswith('Subject:'):
41 return line.rstrip()
42 if not line:
43 return default
44
45 # SMTP/TLS
46 print '*** Doing SMTP send via TLS...'
47 s = SMTP('smtp.gmail.com', 587)
48 if release < '2.6':
49 s.ehlo() # required in older releases
50 s.starttls()
51 if release < '2.5':
52 s.ehlo() # required in older releases
53 s.login(MAILBOX, PASSWD)
54 s.sendmail(from_, to, msg)
55 s.quit()
56 print ' TLS mail sent!'
57
58 # POP
59 print '*** Doing POP recv...'
60 s = POP3_SSL('pop.gmail.com', 995)
61 s.user(MAILBOX)
62 s.pass_(PASSWD)
63 rv, msg, sz = s.retr(s.stat()[0])
64 s.quit()
65 line = getSubject(msg)
66 print ' Received msg via POP: %r' % line
67
68 body = body.replace('587/TLS', '465/SSL')
69
70 # SMTP/SSL
71 if SMTP_SSL:
72 print '*** Doing SMTP send via SSL...'
73 s = SMTP_SSL('smtp.gmail.com', 465)
74 s.login(MAILBOX, PASSWD)
75 s.sendmail(from_, to, msg)
76 s.quit()
77 print ' SSL mail sent!'
78
79 # IMAP
80 print '*** Doing IMAP recv...'
81 s = IMAP4_SSL('imap.gmail.com', 993)
82 s.login(MAILBOX, PASSWD)
83 rsp, msgs = s.select('INBOX', True)
84 rsp, data = s.fetch(msgs[0], '(RFC822)')
85 line = getSubject(StringIO(data[0][1]))
86 s.close()
87 s.logout()
88 print ' Received msg via IMAP: %r' % line

ptg7615500

146 Chapter 3 • Internet Client Programming

Line-by-Line Explanation

Lines 1–8
These are the usual header and import lines with one addition: the import
of smtplib.SMTP. We will use this class with TLS to send an e-mail message.

Lines 10–43
These are pretty much the same as the equivalent lines in ymail.py. One
difference is that our who variable will have an @gmail.com e-mail address,
of course (line 19). The other change is that we’ll start with SMTP/TLS, so
the Subject line reflects this. We also don’t import the smtplib.SMTPServer-
Disconnected exception, because this exception wasn’t observed through-
out our testing.

Lines 45–56
This is the SMTP code that connects to the server by using TLS. As you can
see, successive releases of Python (lines 48–52) have resulted in less boiler-
plate necessary to communicate with the server. It also has a different port
number than SMTP/SSL (line 47).

Lines 58–88
The rest of the script is nearly identical to the equivalent in Yahoo! Mail.
As we mentioned earlier, there are fewer error checks because those issues
either don’t exist for Gmail or have not been observed when using Gmail.
One final minor difference is that as a result of sending both SMTP/TLS
and SMTP/SSL messages, the Subject line needed to be tweaked (line 68).

What we’re hoping that readers get out of these final pair of applica-
tions includes being able to take the concepts learned earlier in the chapter
and apply some realism to every day application development; how in
practice, security is a necessity; and yes, sometimes there are minor differ-
ences between Python releases. As much as we’d prefer solutions that are
more pure, we know this isn’t reality, and such issues are just examples of
things that you have to take into consideration on any development project.

3.5 Related Modules
One of Python’s greatest assets is the strength of its networking support in
the standard library, particularly those oriented toward Internet protocols
and client development. The subsections that follow present related mod-
ules, first focusing on e-mail, followed by Internet protocols in general.

ptg7615500

3.5 Related Modules 147

3.5.1 E-Mail

Python features numerous e-mail modules and packages to help you with
building an application. Some of them are listed in Table 3-6.

3.5.2 Other Internet “Client” Protocols

Table 3-7 presents other Internet “Client” Protocol-Related Modules.

Table 3-6 E-Mail-Related Modules

Module/Package Description

email Package for processing e-mail (also supports MIME)

smtpd SMTP server

base64 Base-16, 32, and 64 data encodings (RFC 3548)

mhlib Classes for handling MH folders and messages

mailbox Classes to support parsing mailbox file formats

mailcap Support for handling “mailcap” files

mimetools (deprecated) MIME message parsing tools (use email)

mimetypes Converts between filenames/URLs and associated MIME
types

MimeWriter (deprecated) MIME message processing (use email)

mimify (deprecated) Tools to MIME-process messages with (use
email)

quopri Encode/decode MIME quoted-printable data

binascii Binary and ASCII conversion

binhex Binhex4 encoding and decoding support

ptg7615500

148 Chapter 3 • Internet Client Programming

3.6 Exercises

FTP

3-1. Simple FTP Client. Given the FTP examples from this chapter,
write a small FTP client program that goes to your favorite
Web sites and downloads the latest versions of the applica-
tions you use. This can be a script that you run every few
months to ensure that you’re using the “latest and greatest.”
You should probably keep some sort of table with FTP loca-
tion, login, and password information for your convenience.

3-2. Simple FTP Client and Pattern-Matching. Use your solution to
Exercise 3-1 as a starting point for creating another simple
FTP client that either pushes or pulls a set of files from a
remote host by using patterns. For example, if you want to
move a set of Python or PDF files from one host to another,
allow users to enter *.py or doc*.pdf and only transfer
those files whose names match.

3-3. Smart FTP Command-Line Client. Create a command-line FTP
application similar to the vanilla Unix /bin/ftp program;
however, make it a “better FTP client,” meaning it should
have additional useful features. You can take a look at the
ncFTP application as motivation. It can be found at http://
ncftp.com. For example, it has the following features: history,

Table 3-7 Internet “Client” Protocol-Related Modules

Module Description

ftplib FTP protocol client

xmlrpclib XML-RPC protocol client

httplib HTTP and HTTPS protocol client

imaplib IMAP4 protocol client

nntplib NNTP protocol client

poplib POP3 protocol client

smtplib SMTP protocol client

http://ncftp.com
http://ncftp.com

ptg7615500

3.6 Exercises 149

bookmarks (saving FTP locations with log in and password),
download progress, etc. You might need to implement read-
line functionality for history and curses for screen control.

3-4. FTP and Multithreading. Create an FTP client that uses Python
threads to download files. You can either upgrade your exist-
ing Smart FTP client, as in Exercise 3-3, or just write a more
simple client to download files. This can be either a command-
line program in which you enter multiple files as arguments
to the program, or a GUI in which you let the user select 1+
file(s) to transfer. Extra Credit: Allow patterns, that is, *.exe.
Use individual threads to download each file.

3-5. FTP and GUI. Take the smart FTP client that you developed
earlier and add a GUI layer on top of it to form a complete
FTP application. You can choose from any of the modern
Python GUI toolkits.

3-6. Subclassing. Derive ftplib.FTP and make a new class FTP2
where you do not need to give STOR filename and RETR
filename commands with all four (4) retr*() and stor*()
methods; you only need to pass in the filename. You can
choose to either override the existing methods or create new
ones with a 2 suffix, for example, retrlines2().

The file Tools/scripts/ftpmirror.py in the Python source distribution is a
script that can mirror FTP sites, or portions thereof, using the ftplib mod-
ule. It can be used as an extended example that applies to this module. The
next five exercises feature the creation of solutions that revolve around code
such as ftpmirror.py. You can use code in ftpmirror.py or implement your
own solution with its code as your motivation.

3-7. Recursion. The ftpmirror.py script copies a remote direc-
tory recursively. Create a simpler FTP client in the spirit of
ftpmirror.py but one that does not recurse by default. Create
an -r option that instructs the application to recursively copy
subdirectories to the local filesystem.

3-8. Pattern-Matching. The ftpmirror.py script has an -s option
that lets users skip files that match the given pattern, such
as .exe. Create your own simpler FTP client or update your
solution to Exercise 3-7 so that it lets the user supply a pat-
tern and only copy those files matching that pattern. Use
your solution to an earlier exercise as a starting point.

3-9. Recursion and Pattern-Matching. Create an FTP client that inte-
grates both Exercises 3-7 and 3-8.

ptg7615500

150 Chapter 3 • Internet Client Programming

3-10. Recursion and ZIP files. This exercise is similar to Exercise 3-7;
however, instead of copying the remote files to the local file-
system, either update your existing FTP client or create a
new one to download remote files and compress them into a
ZIP (or TGZ or BZ2) file. This -z option allows your users to
back up an FTP site in an automated manner.

3-11. Kitchen Sink. Implement a single, final, all-encompassing FTP
application that has all the solutions to Exercises 3-7, 3-8, 3-9,
and 3-10, that is, -r, -s, and -z options.

NNTP

3-12. Introduction to NNTP. Change Example 3-2 (getLatestNNTP.py)
so that instead of the most recent article, it displays the first
available article, meaningfully.

3-13. Improving Code. Fix the flaw in getLatestNNTP.py where
triple-quoted lines show up in the output. This is because we
want to display Python interactive interpreter lines but not
triple-quoted text. Solve this problem by checking whether
the stuff that comes after the “>>>” is real Python code. If so,
display it as a line of data; if not, do not display this quoted
text. Extra Credit: Use your solution to solve another minor
problem—leading whitespace is not stripped from the body
because it might represent indented Python code. If it really
is code, display it; otherwise, it is text, so lstrip() that
before displaying.

3-14. Finding Articles. Create an NNTP client application that lets the
user log in and choose a newsgroup of interest. Once that has
been accomplished, prompt the user for keywords to search
article Subject lines. Bring up the list of articles that match the
requirement and display them to the user. The user should
then be allowed to choose an article to read from that list—dis-
play them and provide simple navigation like pagination,
etc. If no search field is entered, bring up all current articles.

3-15. Searching Bodies. Upgrade your solution to Exercise 3-14 by
searching both Subject lines and article bodies. Allow for
AND or OR searching of keywords. Also allow for AND or
OR searching of Subject lines and article bodies; that is, key-
word(s) must be in Subject lines only, article bodies only,
either, or both.

ptg7615500

3.6 Exercises 151

3-16. Threaded Newsreader. This doesn’t mean write a multi-
threaded newsreader—it means organize related postings
into “article threads.” In other words, group related articles
together, independent of when the individual articles were
posted. All the articles belonging to individual threads
should be listed chronologically though. Allow the user to
do the following:
a) Select individual articles (bodies) to view, then have the

option to go back to the list view or to previous or next
article, either sequentially or related to the current thread.

b) Allow replies to threads, option to copy and quote pre-
vious article, and reply to the entire newsgroup via
another post. Extra Credit: Allow personal reply to indi-
vidual via e-mail.

c) Permanently delete threads—no future related articles
should show up in the article list. For this, you will have
to temporarily keep a persistent list of deleted threads so
that they don’t show up again. You can assume a thread
is dead if no one posts an article with the same Subject
line after several months.

3-17. GUI Newsreader. Similar to an FTP exercise above, choose a
Python GUI toolkit to implement a complete standalone GUI
newsreader application.

3-18. Refactoring. Like ftpmirror.py for FTP, there is a demo script
for NNTP: Demo/scripts/newslist.py. Run it. This script was
written a long time ago and can use a facelift. For this exer-
cise, you are to refactor this program using features of the
latest versions of Python as well as your developing skills in
Python to perform the same task but run and complete in
less time. This can include using list comprehensions or gen-
erator expressions, using smarter string concatenation, not
calling unnecessary functions, etc.

3-19. Caching. Another problem with newslist.py is that, accord-
ing to its author, “I should really keep a list of ignored empty
groups and re-check them for articles on every run, but I
haven’t got around to it yet.” Make this improvement a real-
ity. You can use the default version as-is or your newly
improved one from Exercise 3-18.

ptg7615500

152 Chapter 3 • Internet Client Programming

E-Mail

3-20. Identifiers. The POP3 method pass_() is used to send the pass-
word to the server after giving it the login name by using
login(). Can you give any reasons why you believe this
method was named with a trailing underscore (pass_()),
instead of just plain, old pass()?

3-21. POP and IMAP. Write an application using one of the poplib
classes (POP3 or POP3_SSL) to download e-mail, then do the
same thing using imaplib.You can borrow some of the code
seen earlier in this chapter. Why would you want to leave
your login and password information out of the source code?

The next set of exercises deal with the myMail.py application presented in
Example 3-3.

3-22. E-Mail Headers. In myMail.py, the last few lines compared the
originally sent body with the body in the received e-mail.
Create similar code to assert the original headers. Hint:
Ignore newly added headers.

3-23. Error Checking. Add SMTP and POP error-checking.
3-24. SMTP and IMAP. Add support for IMAP. Extra Credit:

Support both mail download protocols, giving the user the
ability to choose which to use.

3-25. E-Mail Composition. Further develop your solution to Exer-
cise 3-24 by giving the users of your application the ability to
compose and send e-mail.

3-26. E-Mail Application. Further develop your e-mail application,
turning it into something more useful by adding in mailbox
management. Your application should be able to read in the
current set of e-mail messages in a user’s imbeds and display
their Subject lines. Users should be able to select messages to
view. Extra Credit: Add support to view attachments via
external applications.

3-27. GUI. Add a GUI layer on top of your solution to the previous
problem to make it practically a full e-mail application.

3-28. Elements of SPAM. Unsolicited junk e-mail, or spam, is a very
real and significant problem today. There are many good
solutions out there, validating this market. We do not want
you to (necessarily) reinvent the wheel, but we would like you
to get a taste of some of the elements of spam processing.

ptg7615500

3.6 Exercises 153

a) “mbox” format. Before we can get started, we should
convert any e-mail messages you want to work on to a
common format, such as the mbox format. (There are oth-
ers that you can use if you prefer. Once you have several
(or all) work messages in mbox format, merge them all
into a single file. Hint: See the mailbox module and
email package.

b) Headers. Most of the clues of spam lie in the e-mail head-
ers. (You might want to use the e-mail package or parse
them manually yourself.) Write code that answers ques-
tions such as:
– What e-mail client appears to have originated this

message? (Check out the X-Mailer header.)
– Is the message ID (Message-ID header) format valid?
– Are there domain name mismatches between the From,

Received, and perhaps Return-Path headers? What
about domain name and IP address mismatches? Is
there an X-Authentication-Warning header? If so,
what does it report?

c) Information Servers. Based on an IP address or domain,
servers such as WHOIS, SenderBase.org, etc., might
be able to help you identify the location where a piece of
bulk e-mail originated. Find one or more of these
services and build code to the find the country of origin,
and optionally the city, network owner name, contact
information, etc.

d) Keywords. Certain words keep popping up in spam. You
have no doubt seen them before, and in all of their varia-
tions, including using a number resembling a letter, capi-
talizing random letters, etc. Build a list of frequent words
that you have seen definitely tied to spam and quarantine
them. Extra Credit: Develop an algorithm or add key-
word variations to spot such trickery in messages.

e) Phishing. These spam messages attempt to disguise them-
selves as valid e-mail from major banking institutions or
well-known Internet Web sites. They contain links that
lure readers to Web sites in an attempt to harvest private
and extremely sensitive information such as login names,
passwords, and credit card numbers. These fakers do a

ptg7615500

154 Chapter 3 • Internet Client Programming

pretty good job of giving their fraudulent messages an
accurate look-and-feel. However, they cannot hide the
fact that the actual link that they direct users to does not
belong to the company they are masquerading as. Many
of them are obvious giveaways; for example, horrible-
looking domain names, raw IP addresses, and even IP
addresses in 32-bit integer format rather than in octets.
Develop code that can determine whether e-mail that
looks like official communication is real or bogus.

E-Mail Composition

The following set of exercises deal with composing e-mail messages by
using the e-mail package and specifically refers to the code we looked at in
email-examples.py.

3-29. Multipart Alternative. What does multipart alternative mean,
anyway? We took a quick look at it earlier in the make_mpa_msg()
function, but what does it really signify? How would the
behavior of make_mpa_msg() change if we removed
'alternative' when we instantiated the MIMEMultipart
class, that is, email = MIMEMultipart()?

3-30. Python 3. Port the email-examples.py script to Python 3 (or
create a hybrid that runs without modification under both
versions 2.x and 3.x).

3-31. Multiple attachments. In the section on composing e-mail, we
looked at the make_img_msg() function, which created a single
e-mail message made up of a single image. While that’s a
great start, it isn’t as useful in the real world. Create a more
generalized function called attachImgs(), attach_images(),
or whatever you want to call it, with which users can pass in
more than one image file. Take those files and make them
individual attachments of the entire e-mail message body
and return a single multipart message object.

3-32. Robustness. Improve the solution for Exercise 3-31 for
attachImgs() by making sure that users are passing in only
image files (and throwing exceptions if not). In other words,
check the filename to ensure that the extension matches .png,
.jpg, .gif, .tif, etc. Extra Credit: Support file introspection to
take files with any, incorrect, or no extension and determine
what type they really are. To help you get started, check out
the Wikipedia page at http://en.wikipedia.org/wiki/File_format.

http://en.wikipedia.org/wiki/File_format

ptg7615500

3.6 Exercises 155

3-33. Robustness, Networking. Further enhance the attachImgs()
function so that in addition to local files, users can pass in a
URL to an online picture such as http://docs.python.org/
_static/py.png.

3-34. Spreadsheets. Create a function called attachSheets() that
attaches one or more spreadsheet files to a multipart e-mail
message. Support the most common formats such as .csv,
.xls, .xlsx, .ods, .uof/.uos, etc.). You can use attachImgs() as
a model; however, instead of using email.mime.image.MIMEImage,
you’ll be using email.mime.base.MIMEBase as well as need to
specify an appropriate MIME type (for example, 'application/
vnd.ms-excel'). Also don’t forget the Content-Disposition
header.

3-35. Documents. Similar to Exercise 3-34, create a function called
attachDocs() that attaches document files to a multipart
e-mail message. Support common formats, such as .doc,
.docx, .odt, .rtf, .pdf, .txt, .uof/.uot, etc.

3-36. Multiple Attachment Types. Let’s broaden the scope defined by
your solutions to Exercise 3-35. Create a new, more general-
ized function called attachFiles(), which takes any type of
attachment. You are welcome to merge any of the code from
the solutions for any of these exercises.

Miscellaneous

A list of various Internet protocols, including the three highlighted in this
chapter, can be found at http://networksorcery.com/enp/topic/ipsuite.htm. A
list of specific Internet protocols supported by Python can be found at
http://docs. python.org/library/internet.

3-37. Developing Alternate Internet Clients. Now that you have seen
four examples of how Python can help you to develop Internet
clients, choose another protocol with client support in a
Python Standard Library module and write a client applica-
tion for it.

3-38. *Developing New Internet Clients. Much more difficult: find an
uncommon or upcoming protocol without Python support
and implement it. Be serious enough that you will consider
writing and submitting a PEP to have your module included
in the standard library distribution of a future Python release.

http://docs.python.org/_static/py.png
http://docs.python.org/_static/py.png
http://networksorcery.com/enp/topic/ipsuite.htm
http://docs.python.org/library/internet

ptg7615500

156

CHAPTER

Multithreaded Programming

> With Python you can start a thread, but you can’t stop it.
> Sorry. You’ll have to wait until it reaches the end of execution.

So, just the same as [comp.lang.python], then?
—Cliff Wells, Steve Holden

(and Timothy Delaney), February 2002

In this chapter...

• Introduction/Motivation
• Threads and Processes
• Threads and Python
• The thread Module
• The threading Module
• Comparing Single vs. Multithreaded Execution
• Multithreading in Practice
• Producer-Consumer Problem and the Queue/queue Module
• Alternative Considerations to Threads
• Related Modules

ptg7615500

4.1 Introduction/Motivation 157

n this section, we will explore the different ways by which you can
achieve more parallelism in your code. We will begin by differentiat-
ing between processes and threads in the first few of sections of this

chapter. We will then introduce the notion of multithreaded programming
and present some multithreaded programming features found in Python.
(Those of you already familiar with multithreaded programming can skip
directly to Section 4.3.5.) The final sections of this chapter present some
examples of how to use the threading and Queue modules to accomplish
multithreaded programming with Python.

4.1 Introduction/Motivation
Before the advent of multithreaded (MT) programming, the execution of
computer programs consisted of a single sequence of steps that were exe-
cuted in synchronous order by the host’s CPU. This style of execution was
the norm whether the task itself required the sequential ordering of steps
or if the entire program was actually an aggregation of multiple subtasks.
What if these subtasks were independent, having no causal relationship
(meaning that results of subtasks do not affect other subtask outcomes)? Is
it not logical, then, to want to run these independent tasks all at the same
time? Such parallel processing could significantly improve the perfor-
mance of the overall task. This is what MT programming is all about.

MT programming is ideal for programming tasks that are asynchronous
in nature, require multiple concurrent activities, and where the processing
of each activity might be nondeterministic, that is, random and unpredictable.
Such programming tasks can be organized or partitioned into multiple
streams of execution wherein each has a specific task to accomplish.
Depending on the application, these subtasks might calculate intermediate
results that could be merged into a final piece of output.

While CPU-bound tasks might be fairly straightforward to divide into
subtasks and executed sequentially or in a multithreaded manner, the task
of managing a single-threaded process with multiple external sources of
input is not as trivial. To achieve such a programming task without multi-
threading, a sequential program must use one or more timers and imple-
ment a multiplexing scheme.

A sequential program will need to sample each I/O terminal channel to
check for user input; however, it is important that the program does not
block when reading the I/O terminal channel, because the arrival of user
input is nondeterministic, and blocking would prevent processing of other
I/O channels. The sequential program must use non-blocked I/O or
blocked I/O with a timer (so that blocking is only temporary).

I

ptg7615500

158 Chapter 4 • Multithreaded Programming

Because the sequential program is a single thread of execution, it must
juggle the multiple tasks that it needs to perform, making sure that it does
not spend too much time on any one task, and it must ensure that user
response time is appropriately distributed. The use of a sequential pro-
gram for this type of task often results in a complicated flow of control
that is difficult to understand and maintain.

Using an MT program with a shared data structure such as a Queue
(a multithreaded queue data structure, discussed later in this chapter), this
programming task can be organized with a few threads that have specific
functions to perform:

• UserRequestThread: Responsible for reading client input,
perhaps from an I/O channel. A number of threads would be
created by the program, one for each current client, with
requests being entered into the queue.

• RequestProcessor: A thread that is responsible for retrieving
requests from the queue and processing them, providing
output for yet a third thread.

• ReplyThread: Responsible for taking output destined for the
user and either sending it back (if in a networked application)
or writing data to the local file system or database.

Organizing this programming task with multiple threads reduces the
complexity of the program and enables an implementation that is clean,
efficient, and well organized. The logic in each thread is typically less com-
plex because it has a specific job to do. For example, the UserRequestThread
simply reads input from a user and places the data into a queue for further
processing by another thread, etc. Each thread has its own job to do; you
merely have to design each type of thread to do one thing and do it well.
Use of threads for specific tasks is not unlike Henry Ford’s assembly line
model for manufacturing automobiles.

4.2 Threads and Processes

4.2.1 What Are Processes?
Computer programs are merely executables, binary (or otherwise), which
reside on disk. They do not take on a life of their own until loaded into
memory and invoked by the operating system. A process (sometimes called

ptg7615500

4.2 Threads and Processes 159

a heavyweight process) is a program in execution. Each process has its own
address space, memory, a data stack, and other auxiliary data to keep
track of execution. The operating system manages the execution of all pro-
cesses on the system, dividing the time fairly between all processes.
Processes can also fork or spawn new processes to perform other tasks, but
each new process has its own memory, data stack, etc., and cannot gener-
ally share information unless interprocess communication (IPC) is employed.

4.2.2 What Are Threads?

Threads (sometimes called lightweight processes) are similar to processes
except that they all execute within the same process, and thus all share the
same context. They can be thought of as “mini-processes” running in par-
allel within a main process or “main thread.”

A thread has a beginning, an execution sequence, and a conclusion. It has
an instruction pointer that keeps track of where within its context it is cur-
rently running. It can be preempted (interrupted) and temporarily put on
hold (also known as sleeping) while other threads are running—this is called
yielding.

Multiple threads within a process share the same data space with the
main thread and can therefore share information or communicate with
one another more easily than if they were separate processes. Threads are
generally executed in a concurrent fashion, and it is this parallelism and
data sharing that enable the coordination of multiple tasks. Naturally, it is
impossible to run truly in a concurrent manner in a single CPU system, so
threads are scheduled in such a way that they run for a little bit, then yield
to other threads (going to the proverbial back of the line to await more
CPU time again). Throughout the execution of the entire process, each
thread performs its own, separate tasks, and communicates the results
with other threads as necessary.

Of course, such sharing is not without its dangers. If two or more
threads access the same piece of data, inconsistent results can arise because
of the ordering of data access. This is commonly known as a race condition.
Fortunately, most thread libraries come with some sort of synchronization
primitives that allow the thread manager to control execution and access.

Another caveat is that threads cannot be given equal and fair execution
time. This is because some functions block until they have completed. If
not written specifically to take threads into account, this skews the amount
of CPU time in favor of such greedy functions.

ptg7615500

160 Chapter 4 • Multithreaded Programming

4.3 Threads and Python
In this section, we discuss how to use threads in Python. This includes the
limitations of threads due to the global interpreter lock and a quick demo
script.

4.3.1 Global Interpreter Lock

Execution of Python code is controlled by the Python Virtual Machine (a.k.a.
the interpreter main loop). Python was designed in such a way that only one
thread of control may be executing in this main loop, similar to how multi-
ple processes in a system share a single CPU. Many programs can be in
memory, but only one is live on the CPU at any given moment. Likewise,
although multiple threads can run within the Python interpreter, only one
thread is being executed by the interpreter at any given time.

Access to the Python Virtual Machine is controlled by the global inter-
preter lock (GIL). This lock is what ensures that exactly one thread is run-
ning. The Python Virtual Machine executes in the following manner in an
MT environment:

1. Set the GIL
2. Switch in a thread to run
3. Execute either of the following:

a. For a specified number of bytecode instructions, or
b. If the thread voluntarily yields control (can be accomplished

time.sleep(0))
4. Put the thread back to sleep (switch out thread)
5. Unlock the GIL
6. Do it all over again (lather, rinse, repeat)

When a call is made to external code—that is, any C/C++ extension
built-in function—the GIL will be locked until it has completed (because
there are no Python bytecodes to count as the interval). Extension pro-
grammers do have the ability to unlock the GIL, however, so as the Python
developer, you shouldn’t have to worry about your Python code locking
up in those situations.

As an example, for any Python I/O-oriented routines (which invoke
built-in operating system C code), the GIL is released before the I/O call is
made, allowing other threads to run while the I/O is being performed.
Code that doesn’t have much I/O will tend to keep the processor (and GIL)

ptg7615500

4.3 Threads and Python 161

for the full interval a thread is allowed before it yields. In other words,
I/O-bound Python programs stand a much better chance of being able to
take advantage of a multithreaded environment than CPU-bound code.

Those of you who are interested in the source code, the interpreter main
loop, and the GIL can take a look at the Python/ceval.c file.

4.3.2 Exiting Threads

When a thread completes execution of the function it was created for, it
exits. Threads can also quit by calling an exit function such as
thread.exit(), or any of the standard ways of exiting a Python process
such as sys.exit() or raising the SystemExit exception. You cannot, how-
ever, go and “kill” a thread.

We will discuss in detail the two Python modules related to threads in the
next section, but of the two, the thread module is the one we do not recom-
mend. There are many reasons for this, but an obvious one is that when the
main thread exits, all other threads die without cleanup. The other module,
threading, ensures that the whole process stays alive until all “important”
child threads have exited. (For a clarification of what important means, read
the upcoming Core Tip, “Avoid using the thread module.”)

Main threads should always be good managers, though, and perform the
task of knowing what needs to be executed by individual threads, what data
or arguments each of the spawned threads requires, when they complete
execution, and what results they provide. In so doing, those main threads
can collate the individual results into a final, meaningful conclusion.

4.3.3 Accessing Threads from Python

Python supports multithreaded programming, depending on the operating
system on which it’s running. It is supported on most Unix-based platforms,
such as Linux, Solaris, Mac OS X, *BSD, as well as Windows-based PCs.
Python uses POSIX-compliant threads, or pthreads, as they are commonly
known.

By default, threads are enabled when building Python from source
(since Python 2.0) or the Win32 installed binary. To determine whether
threads are available for your interpreter, simply attempt to import the
thread module from the interactive interpreter, as shown here (no errors
occur when threads are available):

>>> import thread
>>>

ptg7615500

162 Chapter 4 • Multithreaded Programming

If your Python interpreter was not compiled with threads enabled, the
module import fails:

>>> import thread
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named thread

In such cases, you might need to recompile your Python interpreter to
get access to threads. This usually involves invoking the configure script
with the --with-thread option. Check the README file for your distribution
to obtain specific instructions on how to compile Python with threads for
your system.

4.3.4 Life Without Threads

For our first set of examples, we are going to use the time.sleep() func-
tion to show how threads work. time.sleep() takes a floating point argu-
ment and “sleeps” for the given number of seconds, meaning that
execution is temporarily halted for the amount of time specified.

Let’s create two time loops: one that sleeps for 4 seconds (loop0()), and
one that sleeps for 2 seconds (loop1()), respectively. (We use the names
“loop0” and “loop1” as a hint that we will eventually have a sequence of
loops.) If we were to execute loop0() and loop1() sequentially in a one-
process or single-threaded program, as onethr.py does in Example 4-1, the
total execution time would be at least 6 seconds. There might or might not
be a 1-second gap between the starting of loop0() and loop1() as well as
other execution overhead which can cause the overall time to be bumped
to 7 seconds.

Example 4-1 Loops Executed by a Single Thread (onethr.py)

This script executes two loops consecutively in a single-threaded program. One
loop must complete before the other can begin. The total elapsed time is the sum
of times taken by each loop.

1 #!/usr/bin/env python
2
3 from time import sleep, ctime
4
5 def loop0():
6 print 'start loop 0 at:', ctime()
7 sleep(4)

ptg7615500

4.3 Threads and Python 163

We can verify this by executing onethr.py, which renders the following
output:

$ onethr.py
starting at: Sun Aug 13 05:03:34 2006
start loop 0 at: Sun Aug 13 05:03:34 2006
loop 0 done at: Sun Aug 13 05:03:38 2006
start loop 1 at: Sun Aug 13 05:03:38 2006
loop 1 done at: Sun Aug 13 05:03:40 2006
all DONE at: Sun Aug 13 05:03:40 2006

Now, assume that rather than sleeping, loop0() and loop1() were sepa-
rate functions that performed individual and independent computations,
all working to arrive at a common solution. Wouldn’t it be useful to have
them run in parallel to cut down on the overall running time? That is the
premise behind MT programming that we now introduce.

4.3.5 Python Threading Modules

Python provides several modules to support MT programming, including
the thread, threading, and Queue modules. Programmers can us the thread
and threading modules to create and manage threads. The thread module
provides basic thread and locking support; threading provides higher-level,
fully-featured thread management. With the Queue module, users can
create a queue data structure that can be shared across multiple threads.
We will take a look at these modules individually and present examples and
intermediate-sized applications.

8 print 'loop 0 done at:', ctime()
9
10 def loop1():
11 print 'start loop 1 at:', ctime()
12 sleep(2)
13 print 'loop 1 done at:', ctime()
14
15 def main():
16 print 'starting at:', ctime()
17 loop0()
18 loop1()
19 print 'all DONE at:', ctime()
20
21 if __name__ == '__main__':
22 main()

ptg7615500

164 Chapter 4 • Multithreaded Programming

CORE TIP: Avoid using the thread module

We recommend using the high-level threading module instead of the thread
module for many reasons. threading is more contemporary, has better thread
support, and some attributes in the thread module can conflict with those in the
threading module. Another reason is that the lower-level thread module has few
synchronization primitives (actually only one) while threading has many.

However, in the interest of learning Python and threading in general, we do
present some code that uses the thread module. We present these for learning
purposes only; hopefully they give you a much better insight as to why you
would want to avoid using thread. We will also show you how to use more
appropriate tools such as those available in the threading and Queue modules.

Another reason to avoid using thread is because there is no control of when
your process exits. When the main thread finishes, any other threads will also
die, without warning or proper cleanup. As mentioned earlier, at least threading
allows the important child threads to finish first before exiting.

Use of the thread module is recommended only for experts desiring lower-
level thread access. To emphasize this, it is renamed to _thread in Python 3.
Any multithreaded application you create should utilize threading and per-
haps other higher-level modules.

4.4 The thread Module
Let’s take a look at what the thread module has to offer. In addition to
being able to spawn threads, the thread module also provides a basic syn-
chronization data structure called a lock object (a.k.a. primitive lock, simple
lock, mutual exclusion lock, mutex, and binary semaphore). As we mentioned
earlier, such synchronization primitives go hand in hand with thread
management.

Table 4-1 lists the more commonly used thread functions and LockType
lock object methods.

3.x

ptg7615500

4.4 The thread Module 165

The key function of the thread module is start_new_thread(). It takes a
function (object) plus arguments and optionally, keyword arguments. A
new thread is spawned specifically to invoke the function.

Let’s take our onethr.py example and integrate threading into it. By
slightly changing the call to the loop*() functions, we now present mtsleepA.py
in Example 4-2:

Table 4-1 thread Module and Lock Objects

Function/Method Description

thread Module Functions

start_new_thread(function,
args, kwargs=None)

Spawns a new thread and executes function
with the given args and optional kwargs

allocate_lock() Allocates LockType lock object

exit() Instructs a thread to exit

LockType Lock Object Methods

acquire(wait=None) Attempts to acquire lock object

locked() Returns True if lock acquired, False
otherwise

release() Releases lock

Example 4-2 Using the thread Module (mtsleepA.py)

The same loops from onethr.py are executed, but this time using the simple
multithreaded mechanism provided by the thread module. The two loops are
executed concurrently (with the shorter one finishing first, obviously), and the
total elapsed time is only as long as the slowest thread rather than the total time for
each separately.

1 #!/usr/bin/env python
2
3 import thread
4 from time import sleep, ctime
5
6 def loop0():
7 print 'start loop 0 at:', ctime()

(Continued)

ptg7615500

166 Chapter 4 • Multithreaded Programming

start_new_thread() requires the first two arguments, so that is the rea-
son for passing in an empty tuple even if the executing function requires
no arguments.

Upon execution of this program, our output changes drastically. Rather
than taking a full 6 or 7 seconds, our script now runs in 4 seconds, the
length of time of our longest loop, plus any overhead.

$ mtsleepA.py
starting at: Sun Aug 13 05:04:50 2006
start loop 0 at: Sun Aug 13 05:04:50 2006
start loop 1 at: Sun Aug 13 05:04:50 2006
loop 1 done at: Sun Aug 13 05:04:52 2006
loop 0 done at: Sun Aug 13 05:04:54 2006
all DONE at: Sun Aug 13 05:04:56 2006

The pieces of code that sleep for 4 and 2 seconds now occur concur-
rently, contributing to the lower overall runtime. You can even see how
loop 1 finishes before loop 0.

The only other major change to our application is the addition of the
sleep(6) call. Why is this necessary? The reason is that if we did not stop
the main thread from continuing, it would proceed to the next statement,
displaying “all done” and exit, killing both threads running loop0() and
loop1().

We did not have any code that directed the main thread to wait for the
child threads to complete before continuing. This is what we mean by
threads requiring some sort of synchronization. In our case, we used
another sleep() call as our synchronization mechanism. We used a value

Example 4-2 Using the thread Module (mtsleepA.py) (Continued)

8 sleep(4)
9 print 'loop 0 done at:', ctime()
10
11 def loop1():
12 print 'start loop 1 at:', ctime()
13 sleep(2)
14 print 'loop 1 done at:', ctime()
15
16 def main():
17 print 'starting at:', ctime()
18 thread.start_new_thread(loop0, ())
19 thread.start_new_thread(loop1, ())
20 sleep(6)
21 print 'all DONE at:', ctime()
22
23 if __name__ == '__main__':
24 main()

ptg7615500

4.4 The thread Module 167

of 6 seconds because we know that both threads (which take 4 and 2 sec-
onds) should have completed by the time the main thread has counted to 6.

You are probably thinking that there should be a better way of manag-
ing threads than creating that extra delay of 6 seconds in the main
thread. Because of this delay, the overall runtime is no better than in our
single-threaded version. Using sleep() for thread synchronization as we
did is not reliable. What if our loops had independent and varying exe-
cution times? We could be exiting the main thread too early or too late.
This is where locks come in.

Making yet another update to our code to include locks as well as getting
rid of separate loop functions, we get mtsleepB.py, which is presented in
Example 4-3. Running it, we see that the output is similar to mtsleepA.py.
The only difference is that we did not have to wait the extra time for
mtsleepA.py to conclude. By using locks, we were able to exit as soon as
both threads had completed execution. This renders the following output:

$ mtsleepB.py
starting at: Sun Aug 13 16:34:41 2006
start loop 0 at: Sun Aug 13 16:34:41 2006
start loop 1 at: Sun Aug 13 16:34:41 2006
loop 1 done at: Sun Aug 13 16:34:43 2006
loop 0 done at: Sun Aug 13 16:34:45 2006
all DONE at: Sun Aug 13 16:34:45 2006

Example 4-3 Using thread and Locks (mtsleepB.py)

Rather than using a call to sleep() to hold up the main thread as in
mtsleepA.py, the use of locks makes more sense.

1 #!/usr/bin/env python
2
3 import thread
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 def loop(nloop, nsec, lock):
9 print 'start loop', nloop, 'at:', ctime()
10 sleep(nsec)
11 print 'loop', nloop, 'done at:', ctime()
12 lock.release()
13

(Continued)

ptg7615500

168 Chapter 4 • Multithreaded Programming

So how did we accomplish our task with locks? Let’s take a look at the
source code.

Line-by-Line Explanation

Lines 1–6
After the Unix startup line, we import the thread module and a few famil-
iar attributes of the time module. Rather than hardcoding separate func-
tions to count to 4 and 2 seconds, we use a single loop() function and
place these constants in a list, loops.

Lines 8–12
The loop() function acts as a proxy for the deleted loop*() functions from
our earlier examples. We had to make some cosmetic changes to loop() so
that it can now perform its duties using locks. The obvious changes are
that we need to be told which loop number we are as well as the sleep
duration. The last piece of new information is the lock itself. Each thread
will be allocated an acquired lock. When the sleep() time has concluded,
we release the corresponding lock, indicating to the main thread that this
thread has completed.

Example 4-3 Using thread and Locks (mtsleepB.py) (Continued)

14 def main():
15 print 'starting at:', ctime()
16 locks = []
17 nloops = range(len(loops))
18
19 for i in nloops:
20 lock = thread.allocate_lock()
21 lock.acquire()
22 locks.append(lock)
23
24 for i in nloops:
25 thread.start_new_thread(loop,
26 (i, loops[i], locks[i]))
27
28 for i in nloops:
29 while locks[i].locked(): pass
30
31 print 'all DONE at:', ctime()
32
33 if __name__ == '__main__':
34 main()

ptg7615500

4.5 The threading Module 169

Lines 14–34
The bulk of the work is done here in main(), using three separate for
loops. We first create a list of locks, which we obtain by using the
thread.allocate_lock() function and acquire (each lock) with the
acquire() method. Acquiring a lock has the effect of “locking the lock.”
Once it is locked, we add the lock to the lock list, locks. The next loop
actually spawns the threads, invoking the loop() function per thread, and
for each thread, provides it with the loop number, the sleep duration, and
the acquired lock for that thread. So why didn’t we start the threads in the
lock acquisition loop? There are two reasons. First, we wanted to synchro-
nize the threads, so that all the horses started out the gate around the same
time, and second, locks take a little bit of time to be acquired. If your
thread executes too fast, it is possible that it completes before the lock has
a chance to be acquired.

It is up to each thread to unlock its lock object when it has completed
execution. The final loop just sits and spins (pausing the main thread)
until both locks have been released before continuing execution. Because
we are checking each lock sequentially, we might be at the mercy of all the
slower loops if they are more toward the beginning of the set of loops. In
such cases, the majority of the wait time may be for the first loop(s). When
that lock is released, remaining locks may have already been unlocked
(meaning that corresponding threads have completed execution). The
result is that the main thread will fly through those lock checks without
pause. Finally, you should be well aware that the final pair of lines will
execute main() only if we are invoking this script directly.

As hinted in the earlier Core Note, we presented the thread module
only to introduce the reader to threaded programming. Your MT applica-
tion should use higher-level modules such as the threading module,
which we discuss in the next section.

4.5 The threading Module
We will now introduce the higher-level threading module, which gives
you not only a Thread class but also a wide variety of synchronization
mechanisms to use to your heart’s content. Table 4-2 presents a list of all
the objects available in the threading module.

ptg7615500

170 Chapter 4 • Multithreaded Programming

In this section, we will examine how to use the Thread class to imple-
ment threading. Because we have already covered the basics of locking,
we will not cover the locking primitives here. The Thread() class also con-
tains a form of synchronization, so explicit use of locking primitives is not
necessary.

Table 4-2 threading Module Objects

Object Description

Thread Object that represents a single thread of execution

Lock Primitive lock object (same lock as in thread module)

RLock Re-entrant lock object provides ability for a single thread
to (re)acquire an already-held lock (recursive locking)

Condition Condition variable object causes one thread to wait until
a certain “condition” has been satisfied by another
thread, such as changing of state or of some data value

Event General version of condition variables, whereby any
number of threads are waiting for some event to occur
and all will awaken when the event happens

Semaphore Provides a “counter” of finite resources shared between
threads; block when none are available

BoundedSemaphore Similar to a Semaphore but ensures that it never exceeds
its initial value

Timer Similar to Thread, except that it waits for an allotted
period of time before running

Barriera Creates a “barrier,” at which a specified number of
threads must all arrive before they’re all allowed to
continue

a. New in Python 3.2.3.2

ptg7615500

4.5 The threading Module 171

CORE TIP: Daemon threads

Another reason to avoid using the thread module is that it does not support the
concept of daemon (or daemonic) threads. When the main thread exits, all child
threads will be killed, regardless of whether they are doing work. The concept of
daemon threads comes into play here if you do not desire this behavior.

Support for daemon threads is available in the threading module, and here is
how they work: a daemon is typically a server that waits for client requests to
service. If there is no client work to be done, the daemon sits idle. If you set the
daemon flag for a thread, you are basically saying that it is non-critical, and it is
okay for the process to exit without waiting for it to finish. As you have seen in
Chapter 2, “Network Programming,” server threads run in an infinite loop and do
not exit in normal situations.

If your main thread is ready to exit and you do not care to wait for the child
threads to finish, then set their daemon flags. A value of true denotes a thread
is not important or more likely, not doing anything but waiting for a client.

To set a thread as daemonic, make this assignment: thread.daemon = True before
you start the thread. (The old-style way of calling thread.setDaemon(True) is
deprecated.) The same is true for checking on a thread’s daemonic status; just
check that value (versus calling thread.isDaemon()). A new child thread inher-
its its daemonic flag from its parent. The entire Python program (read as: the
main thread) will stay alive until all non-daemonic threads have exited—in
other words, when no active non-daemonic threads are left.

4.5.1 The Thread Class

The Thread class of the threading module is your primary executive
object. It has a variety of functions not available to the thread module.
Table 4-3 presents a list of attributes and methods.

ptg7615500

172 Chapter 4 • Multithreaded Programming

Table 4-3 Thread Object Attributes and Methods

Attribute Description

Thread object data attributes

name The name of a thread.

ident The identifier of a thread.

daemon Boolean flag indicating whether a thread is
daemonic.

Thread object methods

__init__(group=None,
target=None, name=None,
args=(), kwargs={},
verbose=None,
daemon=None)c

Instantiate a Thread object, taking target callable
and any args or kwargs. A name or group can also
be passed but the latter is unimplemented. A
verbose flag is also accepted. Any daemon value
sets the thread.daemon attribute/flag.

start() Begin thread execution.

run() Method defining thread functionality (usually
overridden by application writer in a subclass).

join(timeout=None) Suspend until the started thread terminates; blocks
unless timeout (in seconds) is given.

getName()a Return name of thread.

setName(name)a Set name of thread.

isAlive/is_alive()b Boolean flag indicating whether thread is still
running.

isDaemon()c Return True if thread daemonic, False otherwise.

setDaemon(daemonic)c Set the daemon flag to the given Boolean daemonic
value (must be called before thread start().

a. Deprecated by setting (or getting) thread.name attribute or passed in during instantiation.
b. CamelCase names deprecated and replaced starting in Python 2.6.
c. is/setDaemon() deprecated by setting thread.daemon attribute; thread.daemon can

also be set during instantiation via the optional daemon value—new in Python 3.3.

ptg7615500

4.5 The threading Module 173

There are a variety of ways by which you can create threads using the
Thread class. We cover three of them here, all quite similar. Pick the one
you feel most comfortable with, not to mention the most appropriate for
your application and future scalability (we like the final choice the best):

• Create Thread instance, passing in function
• Create Thread instance, passing in callable class instance
• Subclass Thread and create subclass instance

You’ll discover that you will pick either the first or third option. The lat-
ter is chosen when a more object-oriented interface is desired and the for-
mer, otherwise. The second, honestly, is a bit more awkward and slightly
harder to read, as you’ll discover.

Create Thread Instance, Passing in Function

In our first example, we will just instantiate Thread, passing in our func-
tion (and its arguments) in a manner similar to our previous examples.
This function is what will be executed when we direct the thread to begin
execution. Taking our mtsleepB.py script from Example 4-3 and tweaking
it by adding the use of Thread objects, we have mtsleepC.py, as shown in
Example 4-4.

Example 4-4 Using the threading Module (mtsleepC.py)

The Thread class from the threading module has a join() method that lets the
main thread wait for thread completion.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 def loop(nloop, nsec):
9 print 'start loop', nloop, 'at:', ctime()
10 sleep(nsec)
11 print 'loop', nloop, 'done at:', ctime()
12
13 def main():
14 print 'starting at:', ctime()
15 threads = []

(Continued)

ptg7615500

174 Chapter 4 • Multithreaded Programming

When we run the script in Example 4-4, we see output similar to that of
its predecessors:

$ mtsleepC.py
starting at: Sun Aug 13 18:16:38 2006
start loop 0 at: Sun Aug 13 18:16:38 2006
start loop 1 at: Sun Aug 13 18:16:38 2006
loop 1 done at: Sun Aug 13 18:16:40 2006
loop 0 done at: Sun Aug 13 18:16:42 2006
all DONE at: Sun Aug 13 18:16:42 2006

So what did change? Gone are the locks that we had to implement when
using the thread module. Instead, we create a set of Thread objects. When
each Thread is instantiated, we dutifully pass in the function (target) and
arguments (args) and receive a Thread instance in return. The biggest dif-
ference between instantiating Thread (calling Thread()) and invoking
thread.start_new_thread() is that the new thread does not begin execu-
tion right away. This is a useful synchronization feature, especially when
you don’t want the threads to start immediately.

Once all the threads have been allocated, we let them go off to the races
by invoking each thread’s start() method, but not a moment before that.
And rather than having to manage a set of locks (allocating, acquiring,
releasing, checking lock state, etc.), we simply call the join() method for
each thread. join() will wait until a thread terminates, or, if provided, a
timeout occurs. Use of join() appears much cleaner than an infinite loop
that waits for locks to be released (which is why these locks are sometimes
known as spin locks).

Example 4-4 Using the threading Module (mtsleepC.py) (Continued)

16 nloops = range(len(loops))
17
18 for i in nloops:
19 t = threading.Thread(target=loop,
20 args=(i, loops[i]))
21 threads.append(t)
22
23 for i in nloops: # start threads
24 threads[i].start()
25
26 for i in nloops: # wait for all
27 threads[i].join() # threads to finish
28
29 print 'all DONE at:', ctime()
30
31 if __name__ == '__main__':
32 main()

ptg7615500

4.5 The threading Module 175

One other important aspect of join() is that it does not need to be
called at all. Once threads are started, they will execute until their given
function completes, at which point, they will exit. If your main thread has
things to do other than wait for threads to complete (such as other process-
ing or waiting for new client requests), it should do so. join() is useful
only when you want to wait for thread completion.

Create Thread Instance, Passing in Callable Class Instance

A similar offshoot to passing in a function when creating a thread is hav-
ing a callable class and passing in an instance for execution—this is the
more object-oriented approach to MT programming. Such a callable class
embodies an execution environment that is much more flexible than a
function or choosing from a set of functions. You now have the power of
a class object behind you, as opposed to a single function or a list/tuple of
functions.

Adding our new class ThreadFunc to the code and making other slight
modifications to mtsleepC.py, we get mtsleepD.py, shown in Example 4-5.

Example 4-5 Using Callable Classes (mtsleepD.py)

In this example, we pass in a callable class (instance) as opposed to just a
function. It presents more of an object-oriented approach than mtsleepC.py.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = [4,2]
7
8 class ThreadFunc(object):
9
10 def __init__(self, func, args, name=''):
11 self.name = name
12 self.func = func
13 self.args = args
14
15 def __call__(self):
16 self.func(*self.args)
17

(Continued)

ptg7615500

176 Chapter 4 • Multithreaded Programming

When we run mtsleepD.py, we get the expected output:
$ mtsleepD.py
starting at: Sun Aug 13 18:49:17 2006
start loop 0 at: Sun Aug 13 18:49:17 2006
start loop 1 at: Sun Aug 13 18:49:17 2006
loop 1 done at: Sun Aug 13 18:49:19 2006
loop 0 done at: Sun Aug 13 18:49:21 2006
all DONE at: Sun Aug 13 18:49:21 2006

So what are the changes this time? The addition of the ThreadFunc class
and a minor change to instantiate the Thread object, which also instanti-
ates ThreadFunc, our callable class. In effect, we have a double instantiation
going on here. Let’s take a closer look at our ThreadFunc class.

We want to make this class general enough to use with functions other
than our loop() function, so we added some new infrastructure, such as
having this class hold the arguments for the function, the function itself,
and also a function name string. The constructor __init__() just sets all
the values.

When the Thread code calls our ThreadFunc object because a new thread
is created, it will invoke the __call__() special method. Because we
already have our set of arguments, we do not need to pass it to the
Thread() constructor and can call the function directly.

Example 4-5 Using Callable classes (mtsleepD.py) (Continued)

18 def loop(nloop, nsec):
19 print 'start loop', nloop, 'at:', ctime()
20 sleep(nsec)
21 print 'loop', nloop, 'done at:', ctime()
22
23 def main():
24 print 'starting at:', ctime()
25 threads = []
26 nloops = range(len(loops))
27
28 for i in nloops: # create all threads
29 t = threading.Thread(
30 target=ThreadFunc(loop, (i, loops[i]),
31 loop.__name__))
32 threads.append(t)
33
34 for i in nloops: # start all threads
35 threads[i].start()
36
37 for i in nloops: # wait for completion
38 threads[i].join()
39
40 print 'all DONE at:', ctime()
41
42 if __name__ == '__main__':
43 main()

ptg7615500

4.5 The threading Module 177

Subclass Thread and Create Subclass Instance

The final introductory example involves subclassing Thread(), which turns
out to be extremely similar to creating a callable class as in the previous
example. Subclassing is a bit easier to read when you are creating
your threads (lines 29–30). We will present the code for mtsleepE.py in
Example 4-6 as well as the output obtained from its execution, and leave it
as an exercise for you to compare mtsleepE.py to mtsleepD.py.

Example 4-6 Subclassing Thread (mtsleepE.py)

Rather than instantiating the Thread class, we subclass it. This gives us more
flexibility in customizing our threading objects and simplifies the thread
creation call.

1 #!/usr/bin/env python
2
3 import threading
4 from time import sleep, ctime
5
6 loops = (4, 2)
7
8 class MyThread(threading.Thread):
9 def __init__(self, func, args, name=''):
10 threading.Thread.__init__(self)
11 self.name = name
12 self.func = func
13 self.args = args
14
15 def run(self):
16 self.func(*self.args)
17
18 def loop(nloop, nsec):
19 print 'start loop', nloop, 'at:', ctime()
20 sleep(nsec)
21 print 'loop', nloop, 'done at:', ctime()
22
23 def main():
24 print 'starting at:', ctime()
25 threads = []
26 nloops = range(len(loops))
27
28 for i in nloops:
29 t = MyThread(loop, (i, loops[i]),
30 loop.__name__)
31 threads.append(t)
32

(Continued)

ptg7615500

178 Chapter 4 • Multithreaded Programming

Here is the output for mtsleepE.py. Again, it’s just as we expected:
$ mtsleepE.py
starting at: Sun Aug 13 19:14:26 2006
start loop 0 at: Sun Aug 13 19:14:26 2006
start loop 1 at: Sun Aug 13 19:14:26 2006
loop 1 done at: Sun Aug 13 19:14:28 2006
loop 0 done at: Sun Aug 13 19:14:30 2006
all DONE at: Sun Aug 13 19:14:30 2006

While you compare the source between the mtsleep4 and mtsleep5
modules, we want to point out the most significant changes: 1) our MyThread
subclass constructor must first invoke the base class constructor (line 9),
and 2) the former special method __call__() must be called run() in the
subclass.

We now modify our MyThread class with some diagnostic output and
store it in a separate module called myThread (look ahead to Example 4-7)
and import this class for the upcoming examples. Rather than simply call-
ing our functions, we also save the result to instance attribute self.res,
and create a new method to retrieve that value, getResult().

Example 4-6 Subclassing Thread (mtsleepE.py) (Continued)

33 for i in nloops:
34 threads[i].start()
35
36 for i in nloops:
37 threads[i].join()
38
39 print 'all DONE at:', ctime()'
40
41 if __name__ == '__main__':
42 main()

Example 4-7 MyThread Subclass of Thread (myThread.py)

To generalize our subclass of Thread from mtsleepE.py, we move the subclass to
a separate module and add a getResult() method for callables that produce
return values.

1 #!/usr/bin/env python
2
3 import threading
4 from time import ctime
5

ptg7615500

4.5 The threading Module 179

4.5.2 Other Threading Module Functions

In addition to the various synchronization and threading objects, the Threading
module also has some supporting functions, as detailed in Table 4-4.

6 class MyThread(threading.Thread):
7 def __init__(self, func, args, name=''):
8 threading.Thread.__init__(self)
9 self.name = name
10 self.func = func
11 self.args = args
12
13 def getResult(self):
14 return self.res
15
16 def run(self):
17 print 'starting', self.name, 'at:', \
18 ctime()
19 self.res = self.func(*self.args)
20 print self.name, 'finished at:', \
21 ctime()

Table 4-4 threading Module Functions

Function Description

activeCount/
active_count()a Number of currently active Thread objects

currentThread()/
current_threada

Returns the current Thread object

enumerate() Returns list of all currently active Threads

settrace(func)b Sets a trace function for all threads

setprofile(func)b Sets a profile function for all threads

stack_size(size=0)c Returns stack size of newly created threads;
optional size can be set for subsequently created
threads

a. CamelCase names deprecated and replaced starting in Python 2.6.
b. New in Python 2.3.
c. An alias to thread.stack_size(); (both) new in Python 2.5.

ptg7615500

180 Chapter 4 • Multithreaded Programming

4.6 Comparing Single vs. Multithreaded
Execution

The mtfacfib.py script, presented in Example 4-8 compares execution of
the recursive Fibonacci, factorial, and summation functions. This script
runs all three functions in a single-threaded manner. It then performs the
same task by using threads to illustrate one of the advantages of having
a threading environment.

Example 4-8 Fibonacci, Factorial, Summation (mtfacfib.py)

In this MT application, we execute three separate recursive functions—first in a
single-threaded fashion, followed by the alternative with multiple threads.

1 #!/usr/bin/env python
2
3 from myThread import MyThread
4 from time import ctime, sleep
5
6 def fib(x):
7 sleep(0.005)
8 if x < 2: return 1
9 return (fib(x-2) + fib(x-1))
10
11 def fac(x):
12 sleep(0.1)
13 if x < 2: return 1
14 return (x * fac(x-1))
15
16 def sum(x):
17 sleep(0.1)
18 if x < 2: return 1
19 return (x + sum(x-1))
20
21 funcs = [fib, fac, sum]
22 n = 12
23
24 def main():
25 nfuncs = range(len(funcs))
26
27 print '*** SINGLE THREAD'
28 for i in nfuncs:
29 print 'starting', funcs[i].__name__, 'at:', \
30 ctime()
31 print funcs[i](n)
32 print funcs[i].__name__, 'finished at:', \
33 ctime()
34
35 print '\n*** MULTIPLE THREADS'
36 threads = []

ptg7615500

4.6 Comparing Single vs. Multithreaded Execution 181

Running in single-threaded mode simply involves calling the functions
one at a time and displaying the corresponding results right after the func-
tion call.

When running in multithreaded mode, we do not display the result
right away. Because we want to keep our MyThread class as general as pos-
sible (being able to execute callables that do and do not produce output),
we wait until the end to call the getResult() method to finally show you
the return values of each function call.

Because these functions execute so quickly (well, maybe except for the
Fibonacci function), you will notice that we had to add calls to sleep() to
each function to slow things down so that we can see how threading can
improve performance, if indeed the actual work had varying execution
times—you certainly wouldn’t pad your work with calls to sleep(). Any-
way, here is the output:

$ mtfacfib.py
*** SINGLE THREAD
starting fib at: Wed Nov 16 18:52:20 2011
233
fib finished at: Wed Nov 16 18:52:24 2011
starting fac at: Wed Nov 16 18:52:24 2011
479001600
fac finished at: Wed Nov 16 18:52:26 2011
starting sum at: Wed Nov 16 18:52:26 2011
78
sum finished at: Wed Nov 16 18:52:27 2011

*** MULTIPLE THREADS
starting fib at: Wed Nov 16 18:52:27 2011
starting fac at: Wed Nov 16 18:52:27 2011
starting sum at: Wed Nov 16 18:52:27 2011

37 for i in nfuncs:
38 t = MyThread(funcs[i], (n,),
39 funcs[i].__name__)
40 threads.append(t)
41
42 for i in nfuncs:
43 threads[i].start()
44
45 for i in nfuncs:
46 threads[i].join()
47 print threads[i].getResult()
48
49 print 'all DONE'
50
51 if __name__ == '__main__':
52 main()

ptg7615500

182 Chapter 4 • Multithreaded Programming

fac finished at: Wed Nov 16 18:52:28 2011
sum finished at: Wed Nov 16 18:52:28 2011
fib finished at: Wed Nov 16 18:52:31 2011
233
479001600
78
all DONE

4.7 Multithreading in Practice
So far, none of the simplistic sample snippets we’ve seen so far represent
code that you’d write in practice. They don’t really do anything useful
beyond demonstrating threads and the different ways that you can create
them—the way we’ve started them up and wait for them to finish are all
identical, and they all just sleep, too.

We also mentioned earlier in Section 4.3.1 that due to the fact that the
Python Virtual Machine is single-threaded (the GIL), greater concurrency
in Python is only possible when threading is applied to an I/O-bound
application (versus CPU-bound applications, which only do round-robin),
so let’s look at an example of this, and for a further exercise, try to port it to
Python 3 to give you a sense of what that process entails.

4.7.1 Book Rankings Example

The bookrank.py script shown in Example 4-9 is very staightforward. It
goes to the one of my favorite online retailers, Amazon, and asks for the
current rankings of books written by yours truly. In our sample code,
you’ll see a function, getRanking(), that uses a regular expression to pull
out and return the current ranking plus showRanking(), which displays the
result to the user.

Note that, according to their Conditions of Use guidelines, “Amazon
grants you a limited license to access and make personal use of this site and not to
download (other than page caching) or modify it, or any portion of it, except with
express written consent of Amazon.” For our application, all we’re doing is
looking at the current book rankings for a specific book and then throwing
everything away; we’re not even caching the page.

Example 4-9 is our first (but nearly-final) attempt at bookrank.py, which
is a non-threaded version.

ptg7615500

4.7 Multithreading in Practice 183

Line-by-Line Explanation

Lines 1–7
These are the startup and import lines. We’ll use the atexit.register()
function to tell us when the script is over (you’ll see why later). We’ll also
use the regular expression re.compile() function for the pattern that
matches a book’s ranking on Amazon’s product pages. Then, we save the

Example 4-9 Book Rankings “Screenscraper” (bookrank.py)

This script makes calls to download book ranking information via separate
threads.

1 #!/usr/bin/env python
2
3 from atexit import register
4 from re import compile
5 from threading import Thread
6 from time import ctime
7 from urllib2 import urlopen as uopen
8
9 REGEX = compile('#([\d,]+) in Books ')
10 AMZN = 'http://amazon.com/dp/'
11 ISBNs = {
12 '0132269937': 'Core Python Programming',
13 '0132356139': 'Python Web Development with Django',
14 '0137143419': 'Python Fundamentals',
15 }
16
17 def getRanking(isbn):
18 page = uopen('%s%s' % (AMZN, isbn)) # or str.format()
19 data = page.read()
20 page.close()
21 return REGEX.findall(data)[0]
22
23 def _showRanking(isbn):
24 print '- %r ranked %s' % (
25 ISBNs[isbn], getRanking(isbn))
26
27 def _main():
28 print 'At', ctime(), 'on Amazon...'
29 for isbn in ISBNs:
30 _showRanking(isbn)
31
32 @register
33 def _atexit():
34 print 'all DONE at:', ctime()
35
36 if __name__ == '__main__':
37 main()

ptg7615500

184 Chapter 4 • Multithreaded Programming

threading.Thread import for future improvement (coming up a bit later),
time.ctime() for the current timestamp string, and urllib2.urlopen() for
accessing each link.

Lines 9–15
We use three constants in this script: REGEX, the regular expression object
(compiled from the regex pattern that matches a book’s ranking); AMZN, the
base Amazon product link—all we need to complete each link is a book’s
International Standard Book Number (ISBN), which serves as a book’s ID,
differentiating one written work from all others. There are two standards:
the ISBN-10 ten-character value and its successor, the ISBN-13 thirteen-
character ISBN. Currently, Amazon’s systems understand both ISBN types, so
we’ll just use ISBN-10 because they’re shorter. These are stored in the
ISBNs dictionary along with the corresponding book titles.

Lines 17–21
The purpose of getRanking() is to take an ISBN, create the final URL with
which to communicate to Amazon’s servers, and then call urllib2.urlopen()
on it. We used the string format operator to put together the URL (on line 18)
but if you’re using version 2.6 and newer, you can also try the str.format()
method, for example, '{0}{1}'.format(AMZN,isbn).

Once you have the full URL, call urllib2.urlopen()—we shortened it to
uopen()—and expect the file-like object back once the Web server has been
contacted. Then the read() call is issued to download the entire Web page,
and “file” is closed. If the regex is as precise as we have planned, there
should only be exactly one match, so we grab it from the generated list
(any additional would be dropped) and return it back to the caller.

Lines 23–25
The _showRanking() function is just a short snippet of code that takes an
ISBN, looks up the title of the book it represents, calls getRanking() to get
its current ranking on Amazon’s Web site, and then outputs both of these
values to the user. The leading single-underscore notation indicates that
this is a special function only to be used by code within this module and
should not be imported by any other application using this as a library or
utility module.

ptg7615500

4.7 Multithreading in Practice 185

Lines 27–30
_main() is also a special function, only executed if this module is run
directly from the command-line (and not imported for use by another
module). It shows the start and end times (to let users know how long it
took to run the entire script) and calls _showRanking() for each ISBN to lookup
and display each book’s current ranking on Amazon.

Lines 32–37
These lines present something completely different. What is atexit.register()?
It’s a function (used in a decorator role here) that registers an exit function
with the Python interpreter, meaning it’s requesting a special function be
called just before the script quits. (Instead of the decorator, you could have
also done register (_atexit()).

Why are we using it here? Well, right now, it’s definitely not needed.
The print statement could very well go at the end of _main() in lines 27–31,
but that’s not a really great place for it. Plus this is functionality that you
might really want to use in a real production application at some point.
We assume that you know what lines 36–37 are about, so onto the output:

$ python bookrank.py
At Wed Mar 30 22:11:19 2011 PDT on Amazon...
- 'Core Python Programming' ranked 87,118
- 'Python Fundamentals' ranked 851,816
- 'Python Web Development with Django' ranked 184,735
all DONE at: Wed Mar 30 22:11:25 2011

If you’re wondering, we’ve separated the process of retrieving (getRanking())
and displaying (_showRanking() and _main()) the data in case you wish to
do something other than dumping the results out to the user via the termi-
nal. In practice, you might need to send this data back via a Web template,
store it in a database, text it to a mobile phone, etc. If you put all of this
code into a single function, it makes it harder to reuse and/or repurpose.

Also, if Amazon changes the layout of their product pages, you might
need to modify the regular expression “screenscraper” to continue to be
able to extract the data from the product page. By the way, using a regex
(or even plain old string processing) for this simple example is fine, but
you might need a more powerful markup parser, such as HTMLParser
from the standard library or third-party tools like BeautifulSoup, html5lib,
or lxml. (We demonstrate a few of these in Chapter 9, “Web Clients and
Servers.”)

ptg7615500

186 Chapter 4 • Multithreaded Programming

Add threading

Okay, you don’t have to tell me that this is still a silly single-threaded pro-
gram. We’re going to change our application to use threads instead. It is an
I/O-bound application, so this is a good candidate to do so. To simplify
things, we won’t use any of the classes and object-oriented programming;
instead, we’ll use threading.Thread directly, so you can think of this more
as a derivative of mtsleepC.py than any of the succeeding examples. We’ll
just spawn the threads and start them up immediately.

Take your application and modify the _showRanking(isbn) call to the
following:

Thread(target=_showRanking, args=(isbn,)).start().

That’s it! Now you have your final version of bookrank.py and can see
that the application (typically) runs faster because of the added concur-
rency. But, your still only as fast as the slowest response.

$ python bookrank.py
At Thu Mar 31 10:11:32 2011 on Amazon...
- 'Python Fundamentals' ranked 869,010
- 'Core Python Programming' ranked 36,481
- 'Python Web Development with Django' ranked 219,228
all DONE at: Thu Mar 31 10:11:35 2011

As you can see from the output, instead of taking six seconds as our
single-threaded version, our threaded version only takes three. Also note
that the output is in “by completion” order, which is variable, versus the
single-threaded display. With the non-threaded version, the order is
always by key, but now the queries all happen in parallel with the output
coming as each thread completes its work.

In the earlier mtsleepX.py examples, we used Thread.join() on all the
threads to block execution until each thread exits. This effectively prevents
the main thread from continuing until all threads are done, so the print
statement of “all DONE at” is called at the correct time.

In those examples, it’s not necessary to join() all the threads because
none of them are daemon threads. The main thread is not going to exit the
script until all the spawned threads have completed anyway. Because of
this reasoning, we’ve dropped all the join()s in mtsleepF.py. However,
realize that if we displayed “all done” from the same spot, it would be
incorrect.

The main thread would have displayed “all done” before the threads
have completed, so we can’t have that print call above in _main(). There
are only 2 places we can put this print: after line 37 when _main() returns
(the very final line executed of our script), or use atexit.register() to

ptg7615500

4.7 Multithreading in Practice 187

register an exit function. Because the latter is something we haven’t dis-
cussed before and might be something useful to you later on, we thought
this would be a good place to introduce it to you. This is also one interface
that remains constant between Python 2 and 3, our upcoming challenge.

Porting to Python 3

The next thing we want is a working Python 3 version of this script. As
projects and applications continue down the migration path, this is some-
thing with which you need to become familiar, anyway. Fortunately, there
are few tools to help you, one of them being the 2to3 tool. There are gener-
ally two ways of using it:

$ 2to3 foo.py # only output diff
$ 2to3 -w foo.py # overwrites w/3.x code

In the first command, the 2to3 tool just displays the differences between
the version 2.x original script and its generated 3.x equivalent. The -w flag
instructs 2to3 to overwrite the original script with the newly minted 3.x
version while renaming the 2.x version to foo.py.bak.

Let’s run 2to3 on bookrank.py, writing over the existing file. It not only
spits out the differences, it also saves the new version, as we just
described:

$ 2to3 -w bookrank.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
--- bookrank.py (original)
+++ bookrank.py (refactored)
@@ -4,7 +4,7 @@
 from re import compile
 from threading import Thread
 from time import ctime
-from urllib2 import urlopen as uopen
+from urllib.request import urlopen as uopen

 REGEX = compile('#([\d,]+) in Books ')
 AMZN = 'http://amazon.com/dp/'
@@ -21,17 +21,17 @@
 return REGEX.findall(data)[0]

 def _showRanking(isbn):
- print '- %r ranked %s' % (
- ISBNs[isbn], getRanking(isbn))
+ print('- %r ranked %s' % (
+ ISBNs[isbn], getRanking(isbn)))

3.x

ptg7615500

188 Chapter 4 • Multithreaded Programming

 def _main():
- print 'At', ctime(), 'on Amazon...'
+ print('At', ctime(), 'on Amazon...')
 for isbn in ISBNs:
 Thread(target=_showRanking,
args=(isbn,)).start()#_showRanking(isbn)

 @register
 def _atexit():
- print 'all DONE at:', ctime()
+ print('all DONE at:', ctime())

 if __name__ == '__main__':
 _main()
RefactoringTool: Files that were modified:
RefactoringTool: bookrank.py

The following step is optional for readers, but we renamed our files to
bookrank.py and bookrank3.py by using these POSIX commands (Windows-
based PC users should use the ren command):

$ mv bookrank.py bookrank3.py
$ mv bookrank.py.bak bookrank.py

If you try to run our new next-generation script, it’s probably wishful
thinking that it’s a perfect translation and that you’re done with your
work. Something bad happened, and you’ll get the following exception in
each thread (this output is for just one thread as they’re all the same):

$ python3 bookrank3.py
Exception in thread Thread-1:
Traceback (most recent call last):
 File "/Library/Frameworks/Python.framework/Versions/
 3.2/lib/python3.2/threading.py", line 736, in
 _bootstrap_inner
 self.run()
 File "/Library/Frameworks/Python.framework/Versions/
 3.2/lib/python3.2/threading.py", line 689, in run
 self._target(*self._args, **self._kwargs)
 File "bookrank3.py", line 25, in _showRanking
 ISBNs[isbn], getRanking(isbn)))
 File "bookrank3.py", line 21, in getRanking
 return REGEX.findall(data)[0]
TypeError: can't use a string pattern on a bytes-like object
 :

Darn it! Apparently the problem is that the regular expression is a (Uni-
code) string, whereas the data that comes back from urlopen() file-like
object’s read() method is an ASCII/bytes string. The fix here is to compile
a bytes object instead of a text string. Therefore, change line 9 so that
re.compile() is compiling a bytes string (by adding the bytes string. To

ptg7615500

4.7 Multithreading in Practice 189

do this, add the bytes string designation b just before the opening quote,
as shown here:

REGEX = compile(b'#([\d,]+) in Books ')

Now let’s try it again:
$ python3 bookrank3.py
At Sun Apr 3 00:45:46 2011 on Amazon...
- 'Core Python Programming' ranked b'108,796'
- 'Python Web Development with Django' ranked b'268,660'
- 'Python Fundamentals' ranked b'969,149'
all DONE at: Sun Apr 3 00:45:49 2011

Aargh! What’s wrong now? Well, it’s a little bit better (no errors), but the
output looks weird. The ranking values grabbed by the regular expres-
sions, when passed to str() show the b and quotes. Your first instinct
might be to try ugly string slicing:

>>> x = b'xxx'
>>> repr(x)
"b'xxx'"
>>> str(x)
"b'xxx'"
>>> str(x)[2:-1]
'xxx'

However, it’s just more appropriate to convert it to a real (Unicode
string, perhaps using UTF-8:

>>> str(x, 'utf-8')
'xxx'

To do that in our script, make a similar change to line 53 so that it now
reads as:

return str(REGEX.findall(data)[0], 'utf-8')

Now, the output of our Python 3 script matches that of our Python 2 script:
$ python3 bookrank3.py
At Sun Apr 3 00:47:31 2011 on Amazon...
- 'Python Fundamentals' ranked 969,149
- 'Python Web Development with Django' ranked 268,660
- 'Core Python Programming' ranked 108,796
all DONE at: Sun Apr 3 00:47:34 2011

In general, you’ll find that porting from version 2.x to version 3.x fol-
lows a similar pattern: you ensure that all your unit and integration tests
pass, knock down all the basics using 2to3 (and other tools), and then
clean up the aftermath by getting the code to run and pass the same tests.
We’ll try this exercise again with our next example which demonstrates
the use of synchronization with threads.

ptg7615500

190 Chapter 4 • Multithreaded Programming

4.7.2 Synchronization Primitives

In the main part of this chapter, we looked at basic threading concepts and
how to utilize threading in Python applications. However, we neglected to
mention one very important aspect of threaded programming: synchroniza-
tion. Often times in threaded code, you will have certain functions or
blocks in which you don’t (or shouldn’t) want more than one thread exe-
cuting. Usually these involve modifying a database, updating a file, or
anything similar that might cause a race condition, which, if you recall
from earlier in the chapter, is when different code paths or behaviors are
exhibited or inconsistent data was rendered if one thread ran before
another one and vice versa. (You can read more about race conditions on
the Wikipedia page at http://en.wikipedia.org/wiki/Race_condition.)

Such cases require synchronization. Synchronization is used when any
number of threads can come up to one of these critical sections of code
(http://en.wikipedia.org/wiki/Critical_section), but only one is allowed
through at any given time. The programmer makes these determinations
and chooses the appropriate synchronization primitives, or thread control
mechanisms to perform the synchronization. There are different types of
process synchronization (see http://en.wikipedia.org/wiki/Synchronization_
(computer_ science)) and Python supports several types, giving you enough
choices to select the best one to get the job done.

We introduced them all to you earlier at the beginning of this section, so
here we’d like to demonstrate a couple of sample scripts that use two types
of synchronization primitives: locks/mutexes, and semaphores. A lock is
the simplest and lowest-level of all these mechanisms; while semaphores
are for situations in which multiple threads are contending for a finite
resource. Locks are easier to explain, so we’ll start there, and then discuss
semaphores.

4.7.3 Locking Example

Locks have two states: locked and unlocked (surprise, surprise). They sup-
port only two functions: acquire and release. These actions mean exactly
what you think.

As multiple threads vie for a lock, the first thread to acquire one is per-
mitted to go in and execute code in the critical section. All other threads
coming along are blocked until the first thread wraps up, exits the critical
section, and releases the lock. At this moment, any of the other waiting
threads can acquire the lock and enter the critical section. Note that there

http://en.wikipedia.org/wiki/Race_condition
http://en.wikipedia.org/wiki/Critical_section
http://en.wikipedia.org/wiki/Synchronization_(computer_science)
http://en.wikipedia.org/wiki/Synchronization_(computer_science)

ptg7615500

4.7 Multithreading in Practice 191

is no ordering (first come, first served) for the blocked threads; the selec-
tion of the “winning” thread is not deterministic and can vary between
different implementations of Python.

Let’s see why locks are necessary. mtsleepF.py is an application that
spawns a random number of threads, each of which outputs when it has
completed. Take a look at the core chunk of (Python 2) source here:

from atexit import register
from random import randrange
from threading import Thread, currentThread
from time import sleep, ctime

class CleanOutputSet(set):
 def __str__(self):
 return ', '.join(x for x in self)

loops = (randrange(2,5) for x in xrange(randrange(3,7)))
remaining = CleanOutputSet()

def loop(nsec):
 myname = currentThread().name
 remaining.add(myname)
 print '[%s] Started %s' % (ctime(), myname)
 sleep(nsec)
 remaining.remove(myname)
 print '[%s] Completed %s (%d secs)' % (
 ctime(), myname, nsec)
 print ' (remaining: %s)' % (remaining or 'NONE')

def _main():
 for pause in loops:
 Thread(target=loop, args=(pause,)).start()

@register
def _atexit():
 print 'all DONE at:', ctime()

We’ll have a longer line-by-line explanation once we’ve finalized our
code with locking, but basically what mtsleepF.py does is expand on our
earlier examples. Like bookrank.py, we simplify the code a bit by skipping
object-oriented programming, drop the list of thread objects and thread
join()s, and (re)use atexit.register() (for all the same reasons as
bookrank.py).

Also as a minor change to the earlier mtsleepX.py examples, instead of
hardcoding a pair of loops/threads sleeping for 4 and 2 seconds, respec-
tively, we wanted to mix it up a little by randomly creating between 3 and
6 threads, each of which can sleep anywhere between 2 and 4 seconds.

ptg7615500

192 Chapter 4 • Multithreaded Programming

One of the new features that stands out is the use of a set to hold the
names of the remaining threads still running. The reason why we’re sub-
classing the set object instead of using it directly is because we just want to
demonstrate another use case, altering the default printable string repre-
sentation of a set.

When you display a set, you get output such as set([X, Y, Z,...]). The
issue is that the users of our application don’t (and shouldn’t) need to
know anything about sets or that we’re using them. We just want to dis-
play something like X, Y, Z, ..., instead; thus the reason why we derived
from set and implemented its __str__() method.

With this change, and if you’re lucky, the output will be all nice and
lined up properly:

$ python mtsleepF.py
[Sat Apr 2 11:37:26 2011] Started Thread-1
[Sat Apr 2 11:37:26 2011] Started Thread-2
[Sat Apr 2 11:37:26 2011] Started Thread-3
[Sat Apr 2 11:37:29 2011] Completed Thread-2 (3 secs)
 (remaining: Thread-3, Thread-1)
[Sat Apr 2 11:37:30 2011] Completed Thread-1 (4 secs)
 (remaining: Thread-3)
[Sat Apr 2 11:37:30 2011] Completed Thread-3 (4 secs)
 (remaining: NONE)
all DONE at: Sat Apr 2 11:37:30 2011

However, if you’re unlucky, you might get strange output such as this
pair of example executions:

$ python mtsleepF.py
[Sat Apr 2 11:37:09 2011] Started Thread-1
 [Sat Apr 2 11:37:09 2011] Started Thread-2
[Sat Apr 2 11:37:09 2011] Started Thread-3
[Sat Apr 2 11:37:12 2011] Completed Thread-1 (3 secs)
 [Sat Apr 2 11:37:12 2011] Completed Thread-2 (3 secs)
 (remaining: Thread-3)
 (remaining: Thread-3)
[Sat Apr 2 11:37:12 2011] Completed Thread-3 (3 secs)
 (remaining: NONE)
all DONE at: Sat Apr 2 11:37:12 2011

$ python mtsleepF.py
[Sat Apr 2 11:37:56 2011] Started Thread-1
[Sat Apr 2 11:37:56 2011] Started Thread-2
 [Sat Apr 2 11:37:56 2011] Started Thread-3
[Sat Apr 2 11:37:56 2011] Started Thread-4

[Sat Apr 2 11:37:58 2011] Completed Thread-2 (2 secs)
 [Sat Apr 2 11:37:58 2011] Completed Thread-4 (2 secs)
 (remaining: Thread-3, Thread-1)
 (remaining: Thread-3, Thread-1)

ptg7615500

4.7 Multithreading in Practice 193

[Sat Apr 2 11:38:00 2011] Completed Thread-1 (4 secs)
 (remaining: Thread-3)
[Sat Apr 2 11:38:00 2011] Completed Thread-3 (4 secs)
 (remaining: NONE)
all DONE at: Sat Apr 2 11:38:00 2011

What’s wrong? Well, for one thing, the output might appear partially
garbled (because multiple threads might be executing I/O in parallel). You
can see some examples of preceding code in which the output is inter-
leaved, too. Another problem identified is when you have two threads
modifying the same variable (the set containing the names of the remain-
ing threads).

Both the I/O and access to the same data structure are part of critical sec-
tions; therefore, we need locks to prevent more than one thread from
entering them at the same time. To add locking, you need to add a line of
code to import the Lock (or RLock) object and create a lock object, so add/
modify your code to contain these lines in the right places:

from threading import Thread, Lock, currentThread
lock = Lock()

Now you mut use your lock. The following code highlights the acquire()
and release() calls that we should insert into our loop() function:

def loop(nsec):
 myname = currentThread().name
 lock.acquire()
 remaining.add(myname)
 print '[%s] Started %s' % (ctime(), myname)
 lock.release()
 sleep(nsec)
 lock.acquire()
 remaining.remove(myname)
 print '[%s] Completed %s (%d secs)' % (
 ctime(), myname, nsec)
 print ' (remaining: %s)' % (remaining or 'NONE')
 lock.release()

Once the changes are made, you should no longer get strange output:
$ python mtsleepF.py
[Sun Apr 3 23:16:59 2011] Started Thread-1
[Sun Apr 3 23:16:59 2011] Started Thread-2
[Sun Apr 3 23:16:59 2011] Started Thread-3
[Sun Apr 3 23:16:59 2011] Started Thread-4
[Sun Apr 3 23:17:01 2011] Completed Thread-3 (2 secs)
 (remaining: Thread-4, Thread-2, Thread-1)
[Sun Apr 3 23:17:01 2011] Completed Thread-4 (2 secs)
 (remaining: Thread-2, Thread-1)

ptg7615500

194 Chapter 4 • Multithreaded Programming

[Sun Apr 3 23:17:02 2011] Completed Thread-1 (3 secs)
 (remaining: Thread-2)
[Sun Apr 3 23:17:03 2011] Completed Thread-2 (4 secs)
 (remaining: NONE)
all DONE at: Sun Apr 3 23:17:03 2011

The modified (and final) version of mtsleepF.py is shown in Example 4-10.

Example 4-10 Locks and More Randomness (mtsleepF.py)

In this example, we demonstrate the use of locks and other threading tools.

1 #!/usr/bin/env python
2
3 from atexit import register
4 from random import randrange
5 from threading import Thread, Lock, currentThread
6 from time import sleep, ctime
7
8 class CleanOutputSet(set):
9 def __str__(self):
10 return ', '.join(x for x in self)
11
12 lock = Lock()
13 loops = (randrange(2,5) for x in xrange(randrange(3,7)))
14 remaining = CleanOutputSet()
15
16 def loop(nsec):
17 myname = currentThread().name
18 lock.acquire()
19 remaining.add(myname)
20 print '[%s] Started %s' % (ctime(), myname)
21 lock.release()
22 sleep(nsec)
23 lock.acquire()
24 remaining.remove(myname)
25 print '[%s] Completed %s (%d secs)' % (
26 ctime(), myname, nsec)
27 print ' (remaining: %s)' % (remaining or 'NONE')
28 lock.release()
29
30 def _main():
31 for pause in loops:
32 Thread(target=loop, args=(pause,)).start()
33
34 @register
35 def _atexit():
36 print 'all DONE at:', ctime()
37
38 if __name__ == '__main__':
39 main()

ptg7615500

4.7 Multithreading in Practice 195

Line-by-Line Explanation

Lines 1–6
These are the usual startup and import lines. Be aware that thread-
ing.currentThread() is renamed to threading.current_thread() starting
in version 2.6 but with the older name remaining intact for backward
compatibility.

Lines 8–10
This is the set subclass we described earlier. It contains an implementation
of __str__() to change the output from the default to a comma-delimited
string of its elements.

Lines 12–14
Our global variables consist of the lock, an instance of our modified set
from above, and a random number of threads (between three and six),
each of which will pause or sleep for between two and four seconds.

Lines 16–28
The loop() function saves the name of the current thread executing it, then
acquires a lock so that the addition of that name to the remaining set and
an output indicating the thread has started is atomic (where no other
thread can enter this critical section). After releasing the lock, this thread
sleeps for the predetermined random number of seconds, then re-acquires
the lock in order to do its final output before releasing it.

Lines 30–39
The _main() function is only executed if this script was not imported for
use elsewhere. Its job is to spawn and execute each of the threads. As men-
tioned before, we use atexit.register() to register the _atexit() func-
tion that the interpreter can execute before exiting.

As an alternative to maintaining your own set of currently running
threads, you might consider using threading.enumerate(), which returns
a list of all threads that are still running (including daemon threads, but
not those which haven’t started yet). We didn’t use it for our example here
because it gives us two extra threads that we need to remove to keep our
output short: the current thread (because it hasn’t completed yet) as well
as the main thread (not necessary to show this either).

2.6

ptg7615500

196 Chapter 4 • Multithreaded Programming

Also don’t forget that you can also use the str.format() method instead
of the string format operator if you’re using Python 2.6 or newer (includ-
ing version 3.x). In other words, this print statement

 print '[%s] Started %s' % (ctime(), myname)

 can be replaced by this one in 2.6+
 print '[{0}] Started {1}'.format(ctime(), myname)

or this call to the print() function in version 3.x:
 print('[{0}] Started {1}'.format(ctime(), myname))

If you just want a count of currently running threads, you can use
threading.activeCount() (renamed to active_count() starting in version
2.6), instead.

Using Context Management

Another option for those of you using Python 2.5 and newer is to have nei-
ther the lock acquire() nor release() calls at all, simplifying your code.
When using the with statement, the context manager for each object is
responsible for calling acquire() before entering the suite and release()
when the block has completed execution.

The threading module objects Lock, RLock, Condition, Semaphore, and
BoundedSemaphore, all have context managers, meaning they can be used
with the with statement. By using with, you can further simplify loop() to:

from __future__ import with_statement # 2.5 only
def loop(nsec):
 myname = currentThread().name
 with lock:
 remaining.add(myname)
 print '[%s] Started %s' % (ctime(), myname)
 sleep(nsec)
 with lock:
 remaining.remove(myname)
 print '[%s] Completed %s (%d secs)' % (
 ctime(), myname, nsec)
 print ' (remaining: %s)' % (
 remaining or 'NONE',)

Porting to Python 3

Now let’s do a seemingly easy port to Python 3.x by running the 2to3 tool
on the preceding script (this output is truncated because we saw a full
diff dump earlier):

2.6-2.7

3.x

2.5

3.x

ptg7615500

4.7 Multithreading in Practice 197

$ 2to3 -w mtsleepF.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
 :
RefactoringTool: Files that were modified:
RefactoringTool: mtsleepF.py

After renaming mtsleepF.py to mtsleepF3.py and mtsleep.py.bak to
mtsleepF.py, we discover, much to our pleasant surprise, that this is one
script that ported perfectly, with no issues:

$ python3 mtsleepF3.py
[Sun Apr 3 23:29:39 2011] Started Thread-1
[Sun Apr 3 23:29:39 2011] Started Thread-2
[Sun Apr 3 23:29:39 2011] Started Thread-3
[Sun Apr 3 23:29:41 2011] Completed Thread-3 (2 secs)
 (remaining: Thread-2, Thread-1)
[Sun Apr 3 23:29:42 2011] Completed Thread-2 (3 secs)
 (remaining: Thread-1)
[Sun Apr 3 23:29:43 2011] Completed Thread-1 (4 secs)
 (remaining: NONE)
all DONE at: Sun Apr 3 23:29:43 2011

Now let’s take our knowledge of locks, introduce semaphores, and look
at an example that uses both.

4.7.4 Semaphore Example

As stated earlier, locks are pretty simple to understand and implement. It’s
also fairly easy to decide when you should need them. However, if the sit-
uation is more complex, you might need a more powerful synchronization
primitive, instead. For applications with finite resources, using sema-
phores might be a better bet.

Semaphores are some of the oldest synchronization primitives out
there. They’re basically counters that decrement when a resource is being
consumed (and increment again when the resource is released). You can
think of semaphores representing their resources as either available or
unavailable. The action of consuming a resource and decrementing the
counter is traditionally called P() (from the Dutch word probeer/proberen)
but is also known as wait, try, acquire, pend, or procure. Conversely, when a
thread is done with a resource, it needs to return it back to the pool. To do
this, the action used is named “V()” (from the Dutch word verhogen/
verhoog) but also known as signal, increment, release, post, vacate. Python
simplifies all the naming and uses the same function/method names as

ptg7615500

198 Chapter 4 • Multithreaded Programming

locks: acquire and release. Semaphores are more flexible than locks
because you can have multiple threads, each using one of the instances of
the finite resource.

For our example, we’re going to simulate an oversimplified candy vend-
ing machine as an example. This particular machine has only five slots
available to hold inventory (candy bars). If all slots are taken, no more
candy can be added to the machine, and similarly, if there are no more of
one particular type of candy bar, consumers wishing to purchase that
product are out-of-luck. We can track these finite resources (candy slots)
by using a semaphore.

Example 4-11 shows the source code (candy.py).

Example 4-11 Candy Vending Machine and Semaphores (candy.py)

This script uses locks and semaphores to simulate a candy vending machine.

1 #!/usr/bin/env python
2
3 from atexit import register
4 from random import randrange
5 from threading import BoundedSemaphore, Lock, Thread
6 from time import sleep, ctime
7
8 lock = Lock()
9 MAX = 5
10 candytray = BoundedSemaphore(MAX)
11
12 def refill():
13 lock.acquire()
14 print 'Refilling candy...',
15 try:
16 candytray.release()
17 except ValueError:
18 print 'full, skipping'
19 else:
20 print 'OK'
21 lock.release()
22
23 def buy():
24 lock.acquire()
25 print 'Buying candy...',
26 if candytray.acquire(False):
27 print 'OK'
28 else:
29 print 'empty, skipping'
30 lock.release()
31

ptg7615500

4.7 Multithreading in Practice 199

Line-by-Line Explanation

Lines 1–6
The startup and import lines are quite similar to examples earlier in this
chapter. The only thing new is the semaphore. The threading module
comes with two semaphore classes, Semaphore and BoundedSemaphore. As
you know, semaphores are really just counters; they start off with some
fixed number of a finite resource.

This counter decrements when one unit of this is allocated, and when
that unit is returned to the pool, the counter increments. The additional
feature you get with a BoundedSemaphore is that the counter can never
increment beyond its initial value; in other words, it prevents the aberrant
use case where a semaphore is released more times than it’s acquired.

Lines 8–10
The global variables in this script are the lock, a constant representing the
maximum number of items that can be inventoried, and the tray of candy.

32 def producer(loops):
33 for i in xrange(loops):
34 refill()
35 sleep(randrange(3))
36
37 def consumer(loops):
38 for i in xrange(loops):
39 buy()
40 sleep(randrange(3))
41
42 def _main():
43 print 'starting at:', ctime()
44 nloops = randrange(2, 6)
45 print 'THE CANDY MACHINE (full with %d bars)!' % MAX
46 Thread(target=consumer, args=(randrange(
47 nloops, nloops+MAX+2),)).start() # buyer
48 Thread(target=producer, args=(nloops,)).start() #vndr
49
50 @register
51 def _atexit():
52 print 'all DONE at:', ctime()
53
54 if __name__ == '__main__':
55 _main()

ptg7615500

200 Chapter 4 • Multithreaded Programming

Lines 12–21
The refill() function is performed when the owner of the fictitious vend-
ing machines comes to add one more item to inventory. The entire routine
represents a critical section; this is why acquiring the lock is the only way
to execute all lines. The code outputs its action to the user as well as warns
when someone has exceeded the maximum inventory (lines 17–18).

Lines 23–30
buy() is the converse of refill(); it allows a consumer to acquire one unit
of inventory. The conditional (line 26) detects when all finite resources
have been consumed already. The counter can never go below zero, so this
call would normally block until the counter is incremented again. By pass-
ing the nonblocking flag as False, this instructs the call to not block but to
return a False if it would've blocked, indicating no more resources.

Lines 32–40
The producer() and consumer() functions merely loop and make corre-
sponding calls to refill() and buy(), pausing momentarily between calls.

Lines 42–55
The remainder of the code contains the call to _main() if the script was exe-
cuted from the command-line, the registration of the exit function, and
finally, _main(), which seeds the newly created pair of threads represent-
ing the producer and consumer of the candy inventory.

The additional math in the creation of the consumer/buyer is to ran-
domly suggest positive bias where a customer might actually consume
more candy bars than the vendor/producer puts in the machine (other-
wise, the code would never enter the situation in which the consumer
attempts to buy a candy bar from an empty machine).

Running the script results in output similar to the following:
$ python candy.py
starting at: Mon Apr 4 00:56:02 2011
THE CANDY MACHINE (full with 5 bars)!
Buying candy... OK
Refilling candy... OK
Refilling candy... full, skipping
Buying candy... OK
Buying candy... OK
Refilling candy... OK
Buying candy... OK
Buying candy... OK
Buying candy... OK
all DONE at: Mon Apr 4 00:56:08 2011

ptg7615500

4.7 Multithreading in Practice 201

CORE TIP: Debugging might involve intervention

At some point, you might need to debug a script that uses semaphores, but to do
this, you might need to know exactly what value is in the semaphore’s counter at
any given time. In one of the exercises at the end of the chapter, you will imple-
ment such a solution to candy.py, perhaps calling it candydebug.py, and give it the
ability to display the counter’s value. To do this, you’ll need to look at the source
code for threading.py (and probably in both the Python 2 and Python 3
versions).

You’ll discover that the threading module’s synchronization primitives are
not class names even though they use CamelCase capitalization to look like a
class. In fact, they’re really just one-line functions that instantiate the objects
you’re expecting. There are two problems to consider: the first one is that you
can’t subclass them (because they’re functions); the second problem is that the
variable name changed between version 2.x and 3.x.

The entire issue could be avoided if the object gives you clean/easy access to a
counter, which it doesn’t. You can directly access the counter’s value because
it’s just an attribute of the class, as we just mentioned, the variable name
changed from self.__value, meaning self._Semaphore__value, in Python 2
to self._value in Python 3.

For developers, the cleanest application programming interface (API) (at least
in our opinion) is to derive from threading._BoundedSemaphore class and
implement an __len__() method but use the correct counter value we just dis-
cussed if you plan to support this on both version 2.x and version 3.x.

Porting to Python 3

Similar to mtsleepF.py, candy.py is another example of how the 2to3 tool is
sufficient to generate a working Python 3 version, which we have renamed to
candy3.py. We’ll leave this as an exercise for the reader to confirm.

Summary

We’ve demonstrated only a couple of the synchronization primitives that
come with the threading module. There are plenty more for you to
explore. However, keep in mind that that’s still only what they are: “prim-
itives.” There’s nothing wrong with using them to build your own classes
and data structures that are thread-safe. The Python Standard Library
comes with one, the Queue object.

3.x

ptg7615500

202 Chapter 4 • Multithreaded Programming

4.8 Producer-Consumer Problem and the
Queue/queue Module

The final example illustrates the producer-consumer scenario in which a
producer of goods or services creates goods and places it in a data struc-
ture such as a queue. The amount of time between producing goods is non-
deterministic, as is the consumer consuming the goods produced by the
producer.

We use the Queue module (Python 2.x; renamed to queue in version 3.x)
to provide an interthread communication mechanism that allows threads
to share data with each other. In particular, we create a queue into which
the producer (thread) places new goods and the consumer (thread) con-
sumes them. Table 4-5 itemizes the various attributes that can be found in
this module.

Table 4-5 Common Queue/queue Module Attributes

Attribute Description

Queue/queue Module Classes

Queue(maxsize=0) Creates a FIFO queue of given maxsize where
inserts block until there is more room, or (if
omitted), unbounded

LifoQueue(maxsize=0) Creates a LIFO queue of given maxsize where
inserts block until there is more room, or (if
omitted), unbounded

PriorityQueue(maxsize=0) Creates a priority queue of given maxsize where
inserts block until there is more room, or (if
omitted), unbounded

Queue/queue Exceptions

Empty Raised when a get*() method called for an
empty queue

Full Raised when a put*() method called for a full
queue

3.x

ptg7615500

4.8 Producer-Consumer Problem and the Queue/queue Module 203

We’ll use Example 4-12 (prodcons.py), to demonstrate producer-consumer
Queue/queue. The following is the output from one execution of this script:

$ prodcons.py
starting writer at: Sun Jun 18 20:27:07 2006
producing object for Q... size now 1
starting reader at: Sun Jun 18 20:27:07 2006
consumed object from Q... size now 0
producing object for Q... size now 1
consumed object from Q... size now 0
producing object for Q... size now 1
producing object for Q... size now 2
producing object for Q... size now 3
consumed object from Q... size now 2
consumed object from Q... size now 1
writer finished at: Sun Jun 18 20:27:17 2006
consumed object from Q... size now 0
reader finished at: Sun Jun 18 20:27:25 2006
all DONE

Attribute Description

Queue/queue Object Methods

qsize() Returns queue size (approximate, whereas
queue may be getting updated by other threads)

empty() Returns True if queue empty, False otherwise

full() Returns True if queue full, False otherwise

put(item, block=True,
timeout=None)

Puts item in queue; if block True (the default) and
timeout is None, blocks until room is available; if
timeout is positive, blocks at most timeout sec-
onds or if block False, raises the Empty exception

put_nowait(item) Same as put(item, False)

get(block=True,
timeout=None)

Gets item from queue, if block given (not 0), block
until an item is available

get_nowait() Same as get(False)

task_done() Used to indicate work on an enqueued item
completed, used with join() below

join() Blocks until all items in queue have been processed
and signaled by a call to task_done() above

ptg7615500

204 Chapter 4 • Multithreaded Programming

Example 4-12 Producer-Consumer Problem (prodcons.py)

This implementation of the Producer–Consumer problem uses Queue objects
and a random number of goods produced (and consumed). The producer and
consumer are individually—and concurrently—executing threads.

1 #!/usr/bin/env python
2
3 from random import randint
4 from time import sleep
5 from Queue import Queue
6 from myThread import MyThread
7
8 def writeQ(queue):
9 print 'producing object for Q...',
10 queue.put('xxx', 1)
11 print "size now", queue.qsize()
12
13 def readQ(queue):
14 val = queue.get(1)
15 print 'consumed object from Q... size now', \
16 queue.qsize()
17
18 def writer(queue, loops):
19 for i in range(loops):
20 writeQ(queue)
21 sleep(randint(1, 3))
22
23 def reader(queue, loops):
24 for i in range(loops):
25 readQ(queue)
26 sleep(randint(2, 5))
27
28 funcs = [writer, reader]
29 nfuncs = range(len(funcs))
30
31 def main():
32 nloops = randint(2, 5)
33 q = Queue(32)
34
35 threads = []
36 for i in nfuncs:
37 t = MyThread(funcs[i], (q, nloops),
38 funcs[i].__name__)
39 threads.append(t)
40
41 for i in nfuncs:
42 threads[i].start()
43
44 for i in nfuncs:
45 threads[i].join()
46
47 print 'all DONE'
48
49 if __name__ == '__main__':
50 main()

ptg7615500

4.8 Producer-Consumer Problem and the Queue/queue Module 205

As you can see, the producer and consumer do not necessarily alternate
in execution. (Thank goodness for random numbers!) Seriously, though,
real life is generally random and non-deterministic.

Line-by-Line Explanation

Lines 1–6
In this module, we use the Queue.Queue object as well as our thread class
myThread.MyThread, seen earlier. We use random.randint() to make pro-
duction and consumption somewhat varied. (Note that random.randint()
works just like random.randrange() but is inclusive of the upper/end
value).

Lines 8–16
The writeQ() and readQ() functions each have a specific purpose: to place
an object in the queue—we are using the string 'xxx', for example—and
to consume a queued object, respectively. Notice that we are producing
one object and reading one object each time.

Lines 18–26
The writer() is going to run as a single thread whose sole purpose is to
produce an item for the queue, wait for a bit, and then do it again, up to the
specified number of times, chosen randomly per script execution. The
reader() will do likewise, with the exception of consuming an item, of
course.

You will notice that the random number of seconds that the writer
sleeps is in general shorter than the amount of time the reader sleeps. This
is to discourage the reader from trying to take items from an empty queue.
By giving the writer a shorter time period of waiting, it is more likely that
there will already be an object for the reader to consume by the time their
turn rolls around again.

Lines 28–29
These are just setup lines to set the total number of threads that are to be
spawned and executed.

ptg7615500

206 Chapter 4 • Multithreaded Programming

Lines 31–47
Finally, we have our main() function, which should look quite similar to
the main() in all of the other scripts in this chapter. We create the appropri-
ate threads and send them on their way, finishing up when both threads
have concluded execution.

We infer from this example that a program that has multiple tasks to
perform can be organized to use separate threads for each of the tasks.
This can result in a much cleaner program design than a single-threaded
program that attempts to do all of the tasks.

In this chapter, we illustrated how a single-threaded process can limit
an application’s performance. In particular, programs with independent,
non-deterministic, and non-causal tasks that execute sequentially can be
improved by division into separate tasks executed by individual threads.
Not all applications will benefit from multithreading due to overhead and
the fact that the Python interpreter is a single-threaded application, but
now you are more cognizant of Python’s threading capabilities and can
use this tool to your advantage when appropriate.

4.9 Alternative Considerations to Threads
Before you rush off and do some threading, let’s do a quick recap: thread-
ing in general is a good thing. However, because of the restrictions of the
GIL in Python, threading is more appropriate for I/O-bound applications
(I/O releases the GIL, allowing for more concurrency) than for CPU-bound
applications. In the latter case, to achieve greater parallelism, you’ll need
processes that can be executed by other cores or CPUs.

Without going into too much detail here (some of these topics have
already been covered in the “Execution Environment” chapter of Core
Python Programming or Core Python Language Fundamentals), when looking
at multiple threads or processes, the primary alternatives to the threading
module include:

4.9.1 The subprocess Module

dard files (stdin, stdout, stderr). It was introduced to Python in version 2.4.

This is the primary alternative when desiring to spawn processes, whether
to purely execute stuff or to communicate with another process via the stan-2.4

ptg7615500

4.9 Alternative Considerations to Threads 207

4.9.2 The multiprocessing Module

This module, added in Python 2.6, lets you spawn processes for multiple
cores or CPUs but with an interface very similar to that of the threading
module; it also contains various mechanisms to pass data between pro-
cesses that are cooperating on shared work.

4.9.3 The concurrent.futures Module

This is a new high-level library that operates only at a “job” level, which
means that you no longer have to fuss with synchronization, or managing
threads or processes. you just specify a thread or process pool with a cer-
tain number of “workers,” submit jobs, and collate the results. It’s new in
Python 3.2, but a port for Python 2.6+ is available at http://code.google.
com/p/pythonfutures.

What would bookrank3.py look like with this change? Assuming every-
thing else stays the same, here’s the new import and modified _main()
function:

from concurrent.futures import ThreadPoolExecutor
 . . .
def _main():
 print('At', ctime(), 'on Amazon...')
 with ThreadPoolExecutor(3) as executor:
 for isbn in ISBNs:
 executor.submit(_showRanking, isbn)
 print('all DONE at:', ctime())

The argument given to concurrent.futures.ThreadPoolExecutor is the
thread pool size, and our application is looking for the rankings of three
books. Of course, this is an I/O-bound application for which threads are
more useful. For a CPU-bound application, we would use concurrent.
futures.ProcessPoolExecutor, instead.

Once we have an executor (whether threads or processes), which is
responsible for dispatching the jobs and collating the results, we can call
its submit() method to execute what we would have had to spawn a thread
to run previously.

 If we do a “full” port to Python 3 by replacing the string format operator
with the str.format() method, making liberal use of the with statement, and
using the executor’s map() method, we can actually delete _showRanking()
and roll its functionality into _main(). In Example 4-13, you’ll find our final
bookrank3CF.py script.

2.6

3.2

http://code.google.com/p/pythonfutures
http://code.google.com/p/pythonfutures

ptg7615500

208 Chapter 4 • Multithreaded Programming

Line-by-Line Explanation

Lines 1–14
Outside of the new import statement, everything in the first half of this
script is identical to the bookrank3.py file we looked at earlier in this chapter.

Lines 16–18
The new getRanking() uses the with statement and str.format(). You can
make the same change to bookrank.py because both features are available
in version 2.6+ (they are not unique to version 3.x).

Lines 20–26
In the previous code example, we used executor.submit() to spawn the
jobs. Here, we tweak this slightly by using executor.map() because it

Example 4-13 Higher-Level Job Management (bookrank3CF.py)

Our friend, the book rank screenscraper, but this time using
concurrent.futures.

1 #!/usr/bin/env python
2
3 from concurrent.futures import ThreadPoolExecutor
4 from re import compile
5 from time import ctime
6 from urllib.request import urlopen as uopen
7
8 REGEX = compile(b'#([\d,]+) in Books ')
9 AMZN = 'http://amazon.com/dp/'
10 ISBNs = {
11 '0132269937': 'Core Python Programming',
12 '0132356139': 'Python Web Development with Django',
13 '0137143419': 'Python Fundamentals',
14 }
15
16 def getRanking(isbn):
17 with uopen('{0}{1}'.format(AMZN, isbn)) as page:
18 return str(REGEX.findall(page.read())[0], 'utf-8')
19
20 def _main():
21 print('At', ctime(), 'on Amazon...')
22 with ThreadPoolExecutor(3) as executor:
23 for isbn, ranking in zip(
24 ISBNs, executor.map(getRanking, ISBNs)):
25 print('- %r ranked %s' % (ISBNs[isbn], ranking)
26 print('all DONE at:', ctime())
27
28 if __name__ == '__main__':
29 main()

ptg7615500

4.10 Related Modules 209

allows us to absorb the functionality from _showRanking(), letting us remove
it entirely from our code.

The output is nearly identical to what we’ve seen earlier:
$ python3 bookrank3CF.py
At Wed Apr 6 00:21:50 2011 on Amazon...
- 'Core Python Programming' ranked 43,992
- 'Python Fundamentals' ranked 1,018,454
- 'Python Web Development with Django' ranked 502,566
all DONE at: Wed Apr 6 00:21:55 2011

You can read more about the concurrent.futures module origins at the
link below.

• http://docs.python.org/dev/py3k/library/concurrent.futures.html

• http://code.google.com/p/pythonfutures/

• http://www.python.org/dev/peps/pep-3148/

A summary of these options and other threading-related modules and
packages can be found in the next section.

4.10 Related Modules
Table 4-6 lists some of the modules that you can use when programming
multithreaded applications.

Table 4-6 Threading-Related Standard Library Modules

Module Description

threada Basic, lower-level thread module

threading Higher-level threading and synchronization objects

multiprocessingb Spawn/use subprocesses with a “threading” interface

subprocessc Skip threads altogether and execute processes
instead

Queue Synchronized FIFO queue for multiple threads

mutexd Mutual exclusion objects

(Continued)

http://docs.python.org/dev/py3k/library/concurrent.futures.html
http://code.google.com/p/pythonfutures/
http://www.python.org/dev/peps/pep-3148/

ptg7615500

210 Chapter 4 • Multithreaded Programming

4.11 Exercises

4-1. Processes versus Threads. What are the differences between
processes and threads?

4-2. Python Threads. Which type of multithreaded application will
tend to fare better in Python, I/O-bound or CPU-bound?

4-3. Threads. Do you think anything significant happens if you
have multiple threads on a multiple CPU system? How do
you think multiple threads run on these systems?

4-4. Threads and Files.
a) Create a function that obtains a byte value and a filename

(as parameters or user input) and displays the number of
times that byte appears in the file.

b) Suppose now that the input file is extremely large. Multi-
ple readers in a file is acceptable, so modify your solution
to create multiple threads that count in different parts of
the file such that each thread is responsible for a certain
part of the file. Collate the data from each thread and pro-
vide the correct total. Use the timeit module to time both
the single- threaded new multithreaded solutions and
say something about the difference in performance, if
any.

4-5. Threads, Files, and Regular Expressions. You have a very large
mailbox file—if you don’t have one, put all of your e-mail mes-
sages together into a single text file. Your job is to take

Table 4-6 Threading-Related Standard Library Modules (Continued)

Module Description

concurrent.futurese High-level library for asynchronous execution

SocketServer Create/manage threaded TCP or UDP servers

a. Renamed to _thread in Python 3.0.
b. New in Python 2.6.
c. New in Python 2.4.
d. Deprecated in Python 2.6 and removed in version 3.0.
e. New in Python 3.2 (but available outside the standard library for version 2.6+).

ptg7615500

4.11 Exercises 211

the regular expressions you designed earlier in this book that
recognize e-mail addresses and Web site URLs and use them
to convert all e-mail addresses and URLs in this large file
into live links so that when the new file is saved as an .html
(or .htm) file, it will show up in a Web browser as live and
clickable. Use threads to segregate the conversion process
across the large text file and collate the results into a single
new .html file. Test the results on your Web browser to
ensure the links are indeed working.

4-6. Threads and Networking. Your solution to the chat service
application in the previous chapter required you to use
heavyweight threads or processes as part of your solution.
Convert your solution to be multithreaded.

4-7. *Threads and Web Programming. The Crawler application in
Chapter 10, “Web Programming: CGI and WSGI,” is a single-
threaded application that downloads Web pages. It would
benefit from MT programming. Update crawl.py (you could
call it mtcrawl.py) such that independent threads are used to
download pages. Be sure to use some kind of locking mecha-
nism to prevent conflicting access to the links queue.

4-8. Thread Pools. Instead of a producer thread and a consumer
thread, change the code for prodcons.py, in Example 4-12 so
that you have any number of consumer threads (a thread pool)
which can process or consume more than one item from the
Queue at any given moment.

4-9. Files. Create a set of threads to count how many lines there
are in a set of (presumably large) text files. You can choose
the number of threads to use. Compare the performance
against a single-threaded version of this code. Hint: Review
the exercises at the end of the Chapter 9, in Core Python
Programming or Core Python Language Fundamentals.

4-10. Concurrent Processing. Take your solution to Exercise 4-9 and
adopt it to a task of your selection, for example, processing a
set of e-mail messages, downloading Web pages, processing
RSS or Atom feeds, enhancing message processing as part of
a chat server, solving a puzzle, etc.

4-11. Synchronization Primitives. Investigate each of the synchroni-
zation primitives in the threading module. Describe what
they do, what they might be useful for, and create working
code examples for each.

ptg7615500

212 Chapter 4 • Multithreaded Programming

The next couple of exercises deal with the candy.py script featured in
Example 4-11.

4-12. Porting to Python 3. Take the candy.py script and run the 2to3
tool on it to create a Python 3 version called candy3.py.

4-13. The threading module. Add debugging to the script. Specifi-
cally, for applications that use semaphores (whose initial
value is going to be greater than 1), you might need to know
exactly the counter’s value at any given time. Create a varia-
tion of candy.py, perhaps calling it candydebug.py, and give it
the ability to display the counter’s value. You will need to
look at the threading.py source code, as alluded to earlier in
the CORE TIP sidebar. Once you’re done with the modifica-
tions, you can alter its output to look something like the
following:
$ python candydebug.py
starting at: Mon Apr 4 00:24:28 2011
THE CANDY MACHINE (full with 5 bars)!
Buying candy... inventory: 4
Refilling candy... inventory: 5
Refilling candy... full, skipping
Buying candy... inventory: 4
Buying candy... inventory: 3
Refilling candy... inventory: 4
Buying candy... inventory: 3
Buying candy... inventory: 2
Buying candy... inventory: 1
Buying candy... inventory: 0
Buying candy... empty, skipping
all DONE at: Mon Apr 4 00:24:36 2011

ptg7615500

213

CHAPTER

GUI Programming

GUI stuff is supposed to be hard. It builds character.
—Jim Ahlstrom, May 1995

(verbally at Python Workshop)

In this chapter...

• Introduction
• Tkinter and Python Programming
• Tkinter Examples
• A Brief Tour of Other GUIs
• Related Modules and Other GUIs

ptg7615500

214 Chapter 5 • GUI Programming

n this chapter, we will give you a brief introduction to the subject of
graphical user interface (GUI) programming. If you are somewhat
new to this area or want to learn more about it, or if you want to see

how it is done in Python, then this chapter is for you. We cannot show you
everything about GUI application development in this one chapter, but we
will give you a very solid introduction to it. The primary GUI toolkit we
will be using is Tk, Python’s default GUI. We’ll access Tk from its Python
interface called Tkinter (short for “Tk interface”).

Tk is not the latest and greatest, nor does it have the most robust set of
GUI building blocks, but it is fairly simple to use, and with it, you can
build GUIs that run on most platforms. We will present several simple and
intermediate examples using Tkinter, followed by a few examples using
other toolkits. Once you have completed this chapter, you will have the
skills to build more complex applications and/or move to a more modern
toolkit. Python has bindings or adapters to most of the current major tool-
kits, including commercial systems.

5.1 Introduction
Before getting started with GUI programming, we first discuss Tkinter as
Python’s default UI toolkit. We begin by looking at installation because
Tkinter is not always on by default (especially when building Python
yourself). This is followed by a quick review of client/server architecture,
which is covered in Chapter 2, “Network Programming,” but has rele-
vance here.

5.1.1 What Are Tcl, Tk, and Tkinter?

Tkinter is Python’s default GUI library. It is based on the Tk toolkit, origi-
nally designed for the Tool Command Language (Tcl). Due to Tk’s popu-
larity, it has been ported to a variety of other scripting languages,
including Perl (Perl/Tk), Ruby (Ruby/Tk), and Python (Tkinter). The com-
bination of Tk’s GUI development portability and flexibility along with the
simplicity of a scripting language integrated with the power of systems
language gives you the tools to rapidly design and implement a wide variety
of commercial-quality GUI applications.

If you are new to GUI programming, you will be pleasantly surprised at
how easy it is. You will also find that Python, along with Tkinter, provides
a fast and exciting way to build applications that are fun (and perhaps

I

ptg7615500

5.1 Introduction 215

useful) and that would have taken much longer if you had to program
directly in C/C++ with the native windowing system’s libraries. Once you
have designed the application and the look and feel that goes along with
your program, you will use basic building blocks known as widgets to
piece together the desired components, and finally, to attach functionality
to “make it real.”

If you are an old hand at using Tk, either with Tcl or Perl, you will find
Python a refreshing way to program GUIs. On top of that, it provides an
even faster rapid prototyping system for building them. Remember that
you also have Python’s system accessibility, networking functionality,
XML, numerical and visual processing, database access, and all the other
standard library and third-party extension modules.

Once you get Tkinter up on your system, it will take less than 15 min-
utes to get your first GUI application running.

5.1.2 Getting Tkinter Installed and Working

Tkinter is not necessarily turned on by default on your system. You can
determine whether Tkinter is available for your Python interpreter by
attempting to import the Tkinter module (in Python 1 and 2; renamed to
tkinter in Python 3). If Tkinter is available, then no errors occur, as dem-
onstrated in the following:

>>> import Tkinter
>>>

If your Python interpreter was not compiled with Tkinter enabled, the
module import fails:

>>> import Tkinter
Traceback (innermost last):

File "<stdin>", line 1, in ?
File "/usr/lib/pythonX.Y/lib-tk/Tkinter.py", line 8, in ?

import _tkinter # If this fails your Python may not
be configured for Tk
ImportError: No module named _tkinter

You might need to recompile your Python interpreter to gain access to
Tkinter. This usually involves editing the Modules/Setup file and then
enabling all the correct settings to compile your Python interpreter with
hooks to Tkinter, or choosing to have Tk installed on your system. Check
the README file for your Python distribution for specific instructions for com-
piling Tkinter on your system. After compiling the interpreter, be sure that
you start the new Python interpreter otherwise, it will act just like your old
one without Tkinter (and in fact, it is your old one).

3.x

ptg7615500

216 Chapter 5 • GUI Programming

5.1.3 Client/Server Architecture—Take Two

In Chapter 2, we introduced the concept of client/server computing. A win-
dowing system is another example of a software server. These run on a com-
puter with an attached display, such as a monitor. There are clients,
too—programs that require a windowing environment in which to execute,
also known as GUI applications. Such applications cannot run without a
windows system.

The architecture becomes even more interesting when networking
comes into play. Usually when a GUI application is executed, it displays to
the computer that it started on (via the windowing server), but it is possi-
ble in some networked windowing environments, such as the X Window
system on Unix, to choose another computer’s window server to which the
application displays. Thus, you can be running a GUI program on one
computer, but display it on another.

5.2 Tkinter and Python Programming
In this section, we’ll introduce GUI programming in general then focus on
how to use Tkinter and its components to build GUIs in Python.

5.2.1 The Tkinter Module: Adding Tk to your

Applications

So what do you need to do to have Tkinter as part of your application?
First, it is not necessary to have an application already. You can create a
pure GUI if you want, but it probably isn’t too useful without some under-
lying software that does something interesting.

There are basically five main steps that are required to get your GUI up
and running:

1. Import the Tkinter module (or from Tkinter import *).
2. Create a top-level windowing object that contains your entire

GUI application.
3. Build all your GUI components (and functionality) on top

(or within) of your top-level windowing object.
4. Connect these GUI components to the underlying application code.
5. Enter the main event loop.

The first step is trivial: all GUIs that use Tkinter must import the
Tkinter module. Getting access to Tkinter is the first step (see Section 5.1.2).

ptg7615500

5.2 Tkinter and Python Programming 217

5.2.2 Introduction to GUI Programming

Before going to the examples, we will give you a brief introduction to GUI
application development. This will provide you with some of the general
background you need to move forward.

Setting up a GUI application is similar to how an artist produces a
painting. Conventionally, there is a single canvas onto which the artist
must put all the work. Here’s how it works: you start with a clean slate, a
“top-level” windowing object on which you build the rest of your compo-
nents. Think of it as a foundation to a house or the easel for an artist. In
other words, you have to pour the concrete or set up your easel before put-
ting together the actual structure or canvas on top of it. In Tkinter, this
foundation is known as the top-level window object.

Windows and Widgets

In GUI programming, a top-level root windowing object contains all of the
little windowing objects that will be part of your complete GUI applica-
tion. These can be text labels, buttons, list boxes, etc. These individual little
GUI components are known as widgets. So when we say create a top-level
window, we just mean that you need a place where you put all your wid-
gets. In Python, this would typically look like this line:

top = Tkinter.Tk() # or just Tk() with "from Tkinter import *"

The object returned by Tkinter.Tk() is usually referred to as the root
window; hence, the reason why some applications use root rather than top
to indicate as such. Top-level windows are those that show up stand-alone
as part of your application. You can have more than one top-level window
for your GUI, but only one of them should be your root window. You can
choose to completely design all your widgets first, and then add the real
functionality, or do a little of this and a little of that along the way. (This
means mixing and matching steps 3 and 4 from our list.)

Widgets can be stand-alone or be containers. If a widget contains other
widgets, it is considered the parent of those widgets. Accordingly, if a wid-
get is contained in another widget, it’s considered a child of the parent, the
parent being the next immediate enclosing container widget.

Usually, widgets have some associated behaviors, such as when a but-
ton is pressed, or text is filled into a text field. These types of user behav-
iors are called events, and the GUI’s response to such events are known as
callbacks.

ptg7615500

218 Chapter 5 • GUI Programming

Event-Driven Processing

Events can include the actual button press (and release), mouse move-
ment, hitting the Return or Enter key, etc. The entire system of events that
occurs from the beginning until the end of a GUI application is what
drives it. This is known as event-driven processing.

One example of an event with a callback is a simple mouse move. Sup-
pose that the mouse pointer is sitting somewhere on top of your GUI
application. If you move the mouse to another part of your application,
something has to cause the movement of the mouse to be replicated by the
cursor on your screen so that it looks as if it is moving according to the
motion of your hand. These are mouse move events that the system must
process portray your cursor moving across the window. When you release
the mouse, there are no more events to process, so everything just remains
idle on the screen again.

The event-driven processing nature of GUIs fits right in with client/
server architecture. When you start a GUI application, it must perform
some setup procedures to prepare for the core execution, just as how a net-
work server must allocate a socket and bind it to a local address. The GUI
application must establish all the GUI components, then draw (a.k.a. ren-
der or paint) them to the screen. This is the responsibility of the geometry
manager (more about this in a moment). When the geometry manager has
completed arranging all of the widgets, including the top-level window,
GUI applications enter their server-like infinite loop. This loop runs for-
ever waiting for GUI events, processing them, and then going to wait for
more events to process.

Geometry Managers

Tk has three geometry managers that help with positioning your widgetset.
The original one was called the Placer. It was very straightforward: you
provide the size of the widgets and locations to place them; the manager
then places them for you. The problem is that you have to do this with all
the widgets, burdening the developer with coding that should otherwise
take place automatically.

The second geometry manager, and the main one that you will use, is
the Packer, named appropriately because it packs widgets into the correct
places (namely the containing parent widgets, based on your instruction),
and for every succeeding widget, it looks for any remaining “real estate”
into which to pack the next one. The process is similar to how you would
pack elements into a suitcase when traveling.

ptg7615500

5.2 Tkinter and Python Programming 219

A third geometry manager is the Grid. You use the Grid to specify GUI
widget placement, based on grid coordinates. The Grid will render each
object in the GUI in their grid position. For this chapter, we will stick with
the Packer.

Once the Packer has determined the sizes and alignments of all your
widgets, it will then place them on the screen for you.

When all the widgets are in place, we instruct the application to enter
the aforementioned infinite main loop. In Tkinter, the code that does this is:

Tkinter.mainloop()

This is normally the last piece of sequential code your program runs.
When the main loop is entered, the GUI takes over execution from there.
All other actions are handled via callbacks, even exiting your application.
When you select the File menu and then click the Exit menu option or
close the window directly, a callback must be invoked to end your GUI
application.

5.2.3 Top-Level Window: Tkinter.Tk()

We mentioned earlier that all main widgets are built on the top-level win-
dow object. This object is created by the Tk class in Tkinter and is instantiated
as follows:

>>> import Tkinter
>>> top = Tkinter.Tk()

Within this window, you place individual widgets or multiple-component
pieces together to form your GUI. So what kinds of widgets are there? We
will now introduce the Tk widgets.

5.2.4 Tk Widgets

At the time of this writing, there were 18 types of widgets in Tk. We describe
these widgets in Table 5-1. The newest of the widgets are LabelFrame,
PanedWindow, and Spinbox, all three of which were added in Python 2.3 (via
Tk 8.4).

2.3

ptg7615500

220 Chapter 5 • GUI Programming

Table 5-1 Tk Widgets

Widget Description

Button Similar to a Label but provides additional functionality for
mouse-overs, presses, and releases, as well as keyboard
activity/events

Canvas Provides ability to draw shapes (lines, ovals, polygons,
rectangles); can contain images or bitmaps

Checkbutton Set of boxes, of which any number can be “checked”
(similar to HTML checkbox input)

Entry Single-line text field with which to collect keyboard input
(similar to HTML text input)

Frame Pure container for other widgets

Label Used to contain text or images

LabelFrame Combo of a label and a frame but with extra label attributes

Listbox Presents the user with a list of choices from which to choose

Menu Actual list of choices “hanging” from a Menubutton from
which the user can choose

Menubutton Provides infrastructure to contain menus (pulldown,
cascading, etc.)

Message Similar to a Label, but displays multiline text

PanedWindow A container widget with which you can control other
widgets placed within it

Radiobutton Set of buttons, of which only one can be “pressed” (similar
to HTML radio input)

Scale Linear “slider” widget providing an exact value at current
setting; with defined starting and ending values

Scrollbar Provides scrolling functionality to supporting widgets, for
example, Text, Canvas, Listbox, and Entry

Spinbox Combination of an entry with a button letting you adjust its
value

ptg7615500

5.3 Tkinter Examples 221

We won’t go over the Tk widgets in detail as there is plenty of good doc-
umentation available for you to read, either from the Tkinter topics page at
the main Python Web site or the abundant number of Tcl/Tk printed and
online resources (some of which are available in Appendix B, “Reference
Tables”). However, we will present several simple examples to help you
get started.

CORE NOTE: Default arguments are your friend

GUI development really takes advantage of default arguments in Python
because there are numerous default actions in Tkinter widgets. Unless you
know every single option available to you for every single widget that you are
using, it’s best to start out by setting only the parameters that you are aware of
and letting the system handle the rest. These defaults were chosen carefully. If
you do not provide these values, do not worry about your applications appear-
ing odd on the screen. They were created with an optimized set of default argu-
ments as a general rule, and only when you know how to exactly customize
your widgets should you use values other than the default.

5.3 Tkinter Examples
Now we’ll look at our first GUI scripts, each introducing another widget
and perhaps showing a different way of using a widget that we’ve looked
at before. Very basic examples lead to more intermediate ones, which have
more relevance to coding GUIs in practice.

5.3.1 Label Widget

In Example 5-1, we present tkhello1.py, which is the Tkinter version of
“Hello World!” In particular, it shows you how a Tkinter application is set
up and highlights the Label widget.

Widget Description

Text Multiline text field with which to collect (or display) text
from user (similar to HTML textarea)

Toplevel Similar to a Frame, but provides a separate window container

ptg7615500

222 Chapter 5 • GUI Programming

In the first line, we create our top-level window. That is followed by our
Label widget, which contains the all-too-famous string. We instruct the
Packer to manage and display our widget, and then finally call mainloop()
to run our GUI application. Figure 5-1 shows what you will see when you
run this GUI application.

5.3.2 The Button Widget

The next example (tkhello2.py) is pretty much the same as the first. How-
ever, instead of a simple text label, we will create a button. Example 5-2
presents the source code.

Example 5-1 Label Widget Demo (tkhello1.py)

Our first Tkinter example is—well, what else could it be but “Hello World!”? In
particular, we introduce our first widget: the Label.

1 #!/usr/bin/env python
2
3 import Tkinter
4
5 top = Tkinter.Tk()
6 label = Tkinter.Label(top, text='Hello World!')
7 label.pack()
8 Tkinter.mainloop()

Example 5-2 Button Widget Demo (tkhello2.py)

This example is exactly the same as tkhello1.py, except that rather than using a
Label widget, we create a Button widget.

1 #!/usr/bin/env python
2
3 import Tkinter
4
5 top = Tkinter.Tk()
6 quit = Tkinter.Button(top, text='Hello World!',
7 command=top.quit)
8 quit.pack()
9 Tkinter.mainloop()

Unix (twm) Windows

Figure 5-1 The Tkinter Label widget.

ptg7615500

5.3 Tkinter Examples 223

The first few lines are identical. Things differ only when we create the
Button widget. Our button has one additional parameter, the Tkinter.quit()
method. This installs a callback to our button so that if it is pressed (and
released), the entire application will exit. The final two lines are the usual
pack() and invocation of the mainloop(). This simple button application is
shown in Figure 5-2.

5.3.3 The Label and Button Widgets

In Example 5-3, we combine tkhello1.py and tkhello2.py into tkhello3.py, a
script that has both a label and a button. In addition, we are providing
more parameters now than before when we were comfortable using all of
the default arguments that are automatically set for us.

Example 5-3 Label and Button Widget Demo (tkhello3.py)

This example features both a Label and a Button widget. Rather than
primarily using default arguments when creating the widget, we are able
to specify additional parameters now that we know more about Button
widgets and how to configure them.

1 #!/usr/bin/env python
2
3 import Tkinter
4 top = Tkinter.Tk()
5
6 hello = Tkinter.Label(top, text='Hello World!')
7 hello.pack()
8
9 quit = Tkinter.Button(top, text='QUIT',
10 command=top.quit, bg='red', fg='white')
11 quit.pack(fill=Tkinter.X, expand=1)
12
13 Tkinter.mainloop()

WindowsUnix

Figure 5-2 The Tkinter Label widget.

ptg7615500

224 Chapter 5 • GUI Programming

Besides additional parameters for the widgets, we also see some argu-
ments for the Packer. The fill parameter tells it to let the QUIT button take
up the rest of the horizontal real estate, and the expand parameter directs
it to visually fill out the entire horizontal landscape, stretching the button
to the left and right sides of the window.

As you can see in Figure 5-3, without any other instructions to the
Packer, the widgets are placed vertically (on top of each other). Horizontal
placement requires creating a new Frame object with which to add the
buttons. That frame will take the place of the parent object as a single
child object (see the buttons in the listdir.py module, [Example 5-6] in
Section 5.3.6).

5.3.4 Label, Button, and Scale Widgets

Our final trivial example, tkhello4.py, involves the addition of a Scale
widget. In particular, the Scale is used to interact with the Label widget.
The Scale slider is a tool that controls the size of the text font in the Label
widget. The greater the slider position, the larger the font, and vice versa.
The code for tkhello4.py is presented in Example 5-4.

Example 5-4 Label, Button, and Scale Demonstration (tkhello4.py)

Our final introductory widget example introduces the Scale widget and
highlights how widgets can “communicate” with each other by using callbacks
(such as resize()). The text in the Label widget is affected by actions taken on
the Scale widget.

1 #!/usr/bin/env python
2
3 from Tkinter import *
4

WindowsUnix

Figure 5-3 Tkinter Label widget, together.

ptg7615500

5.3 Tkinter Examples 225

New features of this script include a resize() callback function (lines 5–7),
which is attached to the Scale. This is the code that is activated when the
slider on the Scale is moved, resizing the size of the text in the Label.

We also define the size (250 × 150) of the top-level window (line 10). The
final difference between this script and the first three is that we import the
attributes from the Tkinter module into our namespace by using from
Tkinter import *. Although this is not recommended because it “pol-
lutes” your namespace, we do it here mainly because this application
involves a great number of references to Tkinter attributes. This would
require the use of their fully qualified names for each and every attribute
access. By using the undesired shortcut, we are able to access attributes
with less typing and have code that is easier to read, at some cost.

As you can see in Figure 5-4, both the slider mechanism as well as the
current set value show up in the main part of the window. The figure also
shows the state of the GUI after the user moves the scale/slider to a
value of 36. Notice in the code that the initial setting for the scale when the
application starts is 12 (line 18).

5 def resize(ev=None):
6 label.config(font='Helvetica -%d bold' % \
7 scale.get())
8
9 top = Tk()
10 top.geometry('250x150')
11
12 label = Label(top, text='Hello World!',
13 font='Helvetica -12 bold')
14 label.pack(fill=Y, expand=1)
15
16 scale = Scale(top, from_=10, to=40,
17 orient=HORIZONTAL, command=resize)
18 scale.set(12)
19 scale.pack(fill=X, expand=1)
20
21 quit = Button(top, text='QUIT',
22 command=top.quit, activeforeground='white',
23 activebackground='red')
24 quit.pack()
25
26 mainloop()

ptg7615500

226 Chapter 5 • GUI Programming

5.3.5 Partial Function Application Example

Before looking at a longer GUI application, we want to review the Partial
Function Application (PFA), as introduced in Core Python Programming or
Core Python Language Fundamentals.

PFAs were added to Python in version 2.5 and are one piece in a series
of significant improvements in functional programming. Using PFAs, you
can cache function parameters by effectively “freezing” those predeter-
mined arguments, and then at runtime, when you have the remaining
arguments you need, you can thaw them out, send in the final arguments,
and have that function called with all parameters.

Best of all, PFAs are not limited to just functions. They will work with
any “callable,” which is any object that has a functional interface, just by
using parentheses, including, classes, methods, or callable instances. The
use of PFAs fits perfectly into a situation for which there are many callables
and many of the calls feature the same arguments over and over again.

GUI programming makes a great use case, because there is good proba-
bility that you want some consistency in GUI widget look-and-feel, and

Windows

Unix

Figure 5-4 Tkinter Label, Button, and Scale widgets.

2.5

ptg7615500

5.3 Tkinter Examples 227

this consistency comes about when the same parameters are used to create
similar objects. We are now going to present an application in which mul-
tiple buttons will have the same foreground and background colors. It
would be a waste of typing to give the same arguments to the same instan-
tiators every time we wanted a slightly different button: the foreground
and background colors are the same, but the text is slightly different.

We are going to use traffic road signs as our example, with our applica-
tion attempting to create textual versions of road signs by dividing them
up into various categories of sign types, such as critical, warning, or infor-
mational (just like logging levels). The sign type determines the color
scheme when they are created. For example, critical signs have the text in
bright red with a white background; warning signs are in black text on a
goldenrod background; and informational or regulatory signs feature
black text on a white background. We have the “Do Not Enter” and
“Wrong Way” signs, which are both critical, plus “Merging Traffic” and
“Railroad Crossing,” both of which are warnings. Finally, we have the reg-
ulatory “Speed Limit” and “One Way” signs.

The application in Example 5-5 creates the signs, which are just buttons.
When users press the buttons, they display the corresponding Tk dialog
in a pop-up window, critical/error, warning, or informational. It is not too
exciting, but how the buttons are built is.

Example 5-5 Road Signs PFA GUI Application (pfaGUI2.py)

Create road signs with the appropriate foreground and background colors,
based on sign type. Use PFAs to help “templatize” common GUI parameters.

1 #!/usr/bin/env python
2
3 from functools import partial as pto
4 from Tkinter import Tk, Button, X
5 from tkMessageBox import showinfo, showwarning, showerror
6
7 WARN = 'warn'
8 CRIT = 'crit'
9 REGU = 'regu'
10
11 SIGNS = {
12 'do not enter': CRIT,

(Continued)

ptg7615500

228 Chapter 5 • GUI Programming

When you execute this application, you will see a GUI that will look
something like Figure 5-5.

Example 5-5 Road Signs PFA GUI Application (pfaGUI2.py) (Continued)

13 'railroad crossing': WARN,
14 '55\nspeed limit': REGU,
15 'wrong way': CRIT,
16 'merging traffic': WARN,
17 'one way': REGU,
18 }
19
20 critCB = lambda: showerror('Error', 'Error Button Pressed!')
21 warnCB = lambda: showwarning('Warning',
22 'Warning Button Pressed!')
23 infoCB = lambda: showinfo('Info', 'Info Button Pressed!')
24
25 top = Tk()
26 top.title('Road Signs')
27 Button(top, text='QUIT', command=top.quit,
28 bg='red', fg='white').pack()
29
30 MyButton = pto(Button, top)
31 CritButton = pto(MyButton, command=critCB, bg='white', fg='red')
32 WarnButton = pto(MyButton, command=warnCB, bg='goldenrod1')
33 ReguButton = pto(MyButton, command=infoCB, bg='white')
34
35 for eachSign in SIGNS:
36 signType = SIGNS[eachSign]
37 cmd = '%sButton(text=%r%s).pack(fill=X, expand=True)' % (
38 signType.title(), eachSign,
39 '.upper()' if signType == CRIT else '.title()')
40 eval(cmd)
41
42 top.mainloop()

Figure 5-5 The Road signs PFA GUI application on XDarwin in Mac OS X.

ptg7615500

5.3 Tkinter Examples 229

Line-by-Line Explanation

Lines 1–18
We begin our application by importing functools.partial(), a few Tkinter
attributes, and the Tk dialogs (lines 1–5). Next, we define some signs along
with their categories (lines 7–18).

Lines 20–28
The Tk dialogs are assigned as button callbacks, which we will use for
each button created (lines 20–23). We then launch Tk, set the title, and create
a QUIT button (lines 25–28).

Lines 30–33
These lines represent our PFA magic. We use two levels of PFA. The first
templatizes the Button class and the root window top. This means that
every time we call MyButton, it will call Button (Tkinter.Button() creates
a button.) with top as its first argument. We have frozen this into MyButton.

The second level of PFA is where we use our first one, MyButton, and
templatize that. We create separate button types for each of our sign cate-
gories. When users create a critical button CritButton (by calling it, for
example, CritButton()), it will then call MyButton along with the appro-
priate button callback and background and foreground colors, which
means calling Button with top, callback, and colors. You can see how it
unwinds and goes down the layers until at the very bottom, it has the call
that you would have originally had to make if this feature did not exist
yet. We repeat with WarnButton and ReguButton.

Lines 35–42
With the setup completed, we look at our list of signs and create them. We
put together a string that Python can evaluate, consisting of the correct but-
ton name, pass in the button label as the text argument, and pack() it. If it is
a critical sign, then we capitalize the button text; otherwise, we titlecase it.
This last bit is done in line 39, demonstrating another feature introduced in
Python 2.5, the ternary/conditional operator. Each button is instantiated
with eval(), resulting in what is shown in Figure 5-5. Finally, we start the
GUI by entering the main event loop.

You can easily replace the use of the ternary operator with the old “and/
or” syntax if running with version 2.4 or older, but functools.partial() is
a more difficult feature to replicate, so we recommend you use version 2.5
or newer with this example application.

2.5

ptg7615500

230 Chapter 5 • GUI Programming

5.3.6 Intermediate Tkinter Example

We conclude this section with a larger script, listdir.py, which is pre-
sented in Example 5-6. This application is a directory tree traversal tool. It
starts in the current directory and provides a file listing. Double-clicking any
other directory in the list causes the tool to change to the new directory as well
as replace the original file listing with the files from the new directory.

Example 5-6 File System Traversal GUI (listdir.py)

This slightly more advanced GUI expands on the use of widgets, adding
listboxes, text entry fields, and scrollbars to our repertoire. There are also a good
number of callbacks such as mouse clicks, key presses, and scrollbar action.

1 #!/usr/bin/env python
2
3 import os
4 from time import sleep
5 from Tkinter import *
6
7 class DirList(object):
8
9 def __init__(self, initdir=None):
10 self.top = Tk()
11 self.label = Label(self.top,
12 text='Directory Lister v1.1')
13 self.label.pack()
14
15 self.cwd = StringVar(self.top)
16
17 self.dirl = Label(self.top, fg='blue',
18 font=('Helvetica', 12, 'bold'))
19 self.dirl.pack()
20
21 self.dirfm = Frame(self.top)
22 self.dirsb = Scrollbar(self.dirfm)
23 self.dirsb.pack(side=RIGHT, fill=Y)
24 self.dirs = Listbox(self.dirfm, height=15,
25 width=50, yscrollcommand=self.dirsb.set)
26 self.dirs.bind('<Double-1>', self.setDirAndGo)
27 self.dirsb.config(command=self.dirs.yview)
28 self.dirs.pack(side=LEFT, fill=BOTH)
29 self.dirfm.pack()
30
31 self.dirn = Entry(self.top, width=50,
32 textvariable=self.cwd)
33 self.dirn.bind('<Return>', self.doLS)
34 self.dirn.pack()
35
36 self.bfm = Frame(self.top)
37 self.clr = Button(self.bfm, text='Clear',
38 command=self.clrDir,
39 activeforeground='white',
40 activebackground='blue')

ptg7615500

5.3 Tkinter Examples 231

41 self.ls = Button(self.bfm,
42 text='List Directory',
43 command=self.doLS,
44 activeforeground='white',
45 activebackground='green')
46 self.quit = Button(self.bfm, text='Quit',
47 command=self.top.quit,
48 activeforeground='white',
49 activebackground='red')
50 self.clr.pack(side=LEFT)
51 self.ls.pack(side=LEFT)
52 self.quit.pack(side=LEFT)
53 self.bfm.pack()
54
55 if initdir:
56 self.cwd.set(os.curdir)
57 self.doLS()
58
59 def clrDir(self, ev=None):
60 self.cwd.set('')
61
62 def setDirAndGo(self, ev=None):
63 self.last = self.cwd.get()
64 self.dirs.config(selectbackground='red')
65 check = self.dirs.get(self.dirs.curselection())
66 if not check:
67 check = os.curdir
68 self.cwd.set(check)
69 self.doLS()
70
71 def doLS(self, ev=None):
72 error = ''
73 tdir = self.cwd.get()
74 if not tdir: tdir = os.curdir
75
76 if not os.path.exists(tdir):
77 error = tdir + ': no such file'
78 elif not os.path.isdir(tdir):
79 error = tdir + ': not a directory'
80
81 if error:
82 self.cwd.set(error)
83 self.top.update()
84 sleep(2)
85 if not (hasattr(self, 'last') \
86 and self.last):
87 self.last = os.curdir
88 self.cwd.set(self.last)
89 self.dirs.config(\
90 selectbackground='LightSkyBlue')
91 self.top.update()
92 return
93

(Continued)

ptg7615500

232 Chapter 5 • GUI Programming

In Figure 5-6, we present what this GUI looks like on a Windows-based
PC. The POSIX UI screenshot of this application is shown in Figure 5-7.

Line-by-Line Explanation

Lines 1–5
These first few lines contain the usual Unix startup line and importation of
the os module, the time.sleep() function, and all attributes of the Tkinter
module.

Lines 9–13
These lines define the constructor for the DirList class, an object that
represents our application. The first Label we create contains the main title
of the application and the version number.

Lines 15–19
We declare a Tk variable named cwd to hold the name of the directory we
are on—we will see where this comes in handy later. Another Label is
created to display the name of the current directory.

Example 5-6 File System Traversal GUI (listdir.py) (Continued)

94 self.cwd.set(\
95 'FETCHING DIRECTORY CONTENTS...')
96 self.top.update()
97 dirlist = os.listdir(tdir)
98 dirlist.sort()
99 os.chdir(tdir)
100 self.dirl.config(text=os.getcwd())
101 self.dirs.delete(0, END)
102 self.dirs.insert(END, os.curdir)
103 self.dirs.insert(END, os.pardir)
104 for eachFile in dirlist:
105 self.dirs.insert(END, eachFile)
106 self.cwd.set(os.curdir)
107 self.dirs.config(\
108 selectbackground='LightSkyBlue')
109
110 def main():
111 d = DirList(os.curdir)
112 mainloop()
113
114 if __name__ == '__main__':
115 main()

ptg7615500

5.3 Tkinter Examples 233

Lines 21–29
This section defines the core part of our GUI, the Listbox dirs, which con-
tain the list of files of the directory that is being listed. A Scrollbar is
employed to allow the user to move through a listing if the number of files
exceeds the size of the Listbox. Both of these widgets are contained in a
Frame widget. Listbox entries have a callback (setDirAndGo) tied to them
by using the Listbox bind() method.

Binding means to tie a keystroke, mouse action, or some other event to a
callback to be executed when such an event is generated by the user.
setDirAndGo() will be called if any item in the Listbox is double-clicked.
The Scrollbar is tied to the Listbox by calling the Scrollbar.config()
method.

Windows

Figure 5-6 Our List directory GUI application as it appears in Windows.

ptg7615500

234 Chapter 5 • GUI Programming

Lines 31–34
We then create a text Entry field for the user to enter the name of the
directory he wants to traverse and see its files listed in the Listbox. We add
a Return or Enter key binding to this text entry field so that the user can
press Return as an alternative to clicking a button. The same applies for
the mouse binding we saw earlier in the Listbox. When the user double-
clicks a Listbox item, it has the same effect as entering the directory name
manually into the text Entry field and then clicking the Go button.

Lines 36–53
We then define a Button frame (bfm) to hold our three buttons: a “clear”
button (clr), a “go” button (ls), and a “quit” button (quit). Each button
has its own configuration and callbacks, if pressed.

Lines 55–57
The final part of the constructor initializes the GUI program, starting with
the current working directory.

Unix

Figure 5-7 The List directory GUI application as it appears in Unix.

ptg7615500

5.3 Tkinter Examples 235

Lines 59–60
The clrDir() method clears the cwd Tk string variable, which contains the
current active directory. This variable is used to keep track of what direc-
tory we are in and, more important, helps keep track of the previous direc-
tory in case errors arise. You will notice the ev variables in the callback
functions with a default value of None. Any such values would be passed
in by the windowing system. They might or might not be used in your
callback.

Lines 62–69
The setDirAndGo() method sets the directory to which to traverse and
issues the call to the method that makes it all happen, doLS().

Lines 71–108
doLS() is, by far, the key to this entire GUI application. It performs all the
safety checks (e.g., is the destination a directory and does it exist?). If there
is an error, the last directory is reset to be the current directory. If all goes
well, it calls os.listdir() to get the actual set of files and replaces the
listing in the Listbox. While the background work is going on to pull in
the information from the new directory, the highlighted blue bar becomes
bright red. When the new directory has been installed, it reverts to blue.

Lines 110–115
The last pieces of code in listdir.py represent the main part of the code.
main() is executed only if this script is invoked directly; when main() runs,
it creates the GUI application, and then calls mainloop() to start the GUI,
which is passed control of the application.

We leave all other aspects of the application as an exercise for you to
undertake, recommending that it is easier to view the entire application as
a combination of a set of widgets and functionality. If you see the individ-
ual pieces clearly, then the entire script will not appear as daunting.

We hope that we have given you a good introduction to GUI program-
ming with Python and Tkinter. Remember that the best way to become
familiar with Tkinter programming is by practicing and stealing a few
examples! The Python distribution comes with a large number of demon-
stration applications that you can study.

If you download the source code, you will find Tkinter demonstration
code in Lib/lib-tk, Lib/idlelib, and Demo/tkinter. If you have installed
the Win32 version of Python and C:\Python2x, then you can get access
to the demonstration code in Lib\lib-tk and Lib\idlelib. The latter

ptg7615500

236 Chapter 5 • GUI Programming

directory contains the most significant sample Tkinter application: the
IDLE IDE itself. For further reference, there are several books on Tk pro-
gramming, one specifically on Tkinter.

5.4 A Brief Tour of Other GUIs
We hope to eventually develop an independent chapter on general GUI
development that makes use of the abundant number of graphical toolkits
that exist under Python, but alas, that is for the future. As a proxy, we
would like to present a single, simple GUI application written by using
four of the more popular toolkits: Tix (Tk Interface eXtensions), Pmw
(Python MegaWidgets Tkinter extension), wxPython (Python binding to
wxWidgets), and PyGTK (Python binding to GTK+). The final example
demonstrates how to use Tile/Ttk—in both Python 2 and 3. You can find
links to more information and/or download these toolkits in the reference
section at the end of this chapter.

The Tix module is already available in the Python Standard Library.
You must download the others, which are third party. Since Pmw is just an
extension to Tkinter, it is the easiest to install (just extract it into your site pack-
ages). wxPython and PyGTK involve the download of more than one file and
building (unless you opt for the Win32 versions for which binaries are usu-
ally available). Once the toolkits are installed and verified, we can begin.
Rather than just sticking with the widgets we’ve already seen in this chap-
ter, we’d like to introduce a few more complex widgets for these examples.

In addition to the Label and Button widgets, we would like to introduce
the Control or SpinButton and ComboBox. The Control widget is a combina-
tion of a text widget that contains a value which is “controlled” or “spun
up or down” by a set of arrow buttons close by. The ComboBox is usually a
text widget and a pulldown menu of options where the currently active or
selected item in the list is displayed in the text widget.

Our application is fairly basic: pairs of animals are being moved
around, and the number of total animals can range from a pair to a maxi-
mum of a dozen. The Control is used to keep track of the total number,
while the ComboBox is a menu containing the various types of animals that can
be selected. In Figure 5-8, each image shows the state of the GUI application
immediately after launching. Note that the default number of animals is
two, and no animal type has been selected yet.

Things are different once we start to play around with the application,
as evidenced in Figure 5-9, which shows some of the elements after we
have modified them in the Tix application.

ptg7615500

5.4 A Brief Tour of Other GUIs 237

You can view the code for all four versions of our GUI in Examples 5-7
through 5-10. Example 5-11, which uses Tile/Ttk (the code is supported in
Python 2 and 3) supersedes these first four examples. You will note that
although relatively similar, each one differs in its own special way. Also,
we use the.pyw extension to suppress DOS command or terminal window
pop-ups.

Tix

wxPythonPmw

PyGTK

Figure 5-8 Application using various GUIs under Win32.

Tix

Figure 5-9 The Tix GUI modified version of our application.

ptg7615500

238 Chapter 5 • GUI Programming

5.4.1 Tk Interface eXtensions (Tix)

We start with Example 5-7, which uses the Tix module. Tix is an extension
library for Tcl/Tk that adds many new widgets, image types, and other
commands that keep Tk a viable GUI development toolkit. Let’s take a
look at how to use Tix with Python.

Line-by-Line Explanation

Lines 1–7
This is all the setup code, module imports, and basic GUI infrastructure.
Line 7 asserts that the Tix module is available to the application.

Lines 8–27
These lines create all the widgets: Label (lines 9–11), Control (lines 13–16),
ComboBox (lines 18–21), and quit Button (lines 23–25). The constructors and

Example 5-7 Tix GUI Demo (animalTix.pyw)

Our first example uses the Tix module. Tix comes with Python!

1 #!/usr/bin/env python
2
3 from Tkinter import Label, Button, END
4 from Tix import Tk, Control, ComboBox
5
6 top = Tk()
7 top.tk.eval('package require Tix')
8
9 lb = Label(top,
10 text='Animals (in pairs; min: pair, max: dozen)')
11 lb.pack()
12
13 ct = Control(top, label='Number:',
14 integer=True, max=12, min=2, value=2, step=2)
15 ct.label.config(font='Helvetica -14 bold')
16 ct.pack()
17
18 cb = ComboBox(top, label='Type:', editable=True)
19 for animal in ('dog', 'cat', 'hamster', 'python'):
20 cb.insert(END, animal)
21 cb.pack()
22
23 qb = Button(top, text='QUIT',
24 command=top.quit, bg='red', fg='white')
25 qb.pack()
26
27 top.mainloop()

ptg7615500

5.4 A Brief Tour of Other GUIs 239

arguments for the widgets are fairly self-explanatory and do not require
elaboration. Finally, we enter the main GUI event loop in line 27.

5.4.2 Python MegaWidgets (PMW)

Next we take a look at Python MegaWidgets (shown in Example 5-8). This
module was created to address the aging Tkinter. It basically helps to
extend its longevity by adding more modern widgets to the GUI palette.

The Pmw example is so similar to our Tix example that we leave line-by-
line analysis to the reader. The line of code that differs the most is the con-
structor for the control widget, the Pmw Counter. It provides for entry val-
idation. Instead of specifying the smallest and largest possible values as
keyword arguments to the widget constructor, Pmw uses a “validator” to
ensure that the values do not fall outside our accepted range.

Example 5-8 Pmw GUI Demo (animalPmw.pyw)

Our second example uses the Python MegaWidgets package.

1 #!/usr/bin/env python
2
3 from Tkinter import Button, END, Label, W
4 from Pmw import initialise, ComboBox, Counter
5
6 top = initialise()
7
8 lb = Label(top,
9 text='Animals (in pairs; min: pair, max: dozen)')
10 lb.pack()
11
12 ct = Counter(top, labelpos=W, label_text='Number:',
13 datatype='integer', entryfield_value=2,
14 increment=2, entryfield_validate={'validator':
15 'integer', 'min': 2, 'max': 12})
16 ct.pack()
17
18 cb = ComboBox(top, labelpos=W, label_text='Type:')
19 for animal in ('dog', 'cat', 'hamster', 'python'):
20 cb.insert(end, animal)
21 cb.pack()
22
23 qb = Button(top, text='QUIT',
24 command=top.quit, bg='red', fg='white')
25 qb.pack()
26
27 top.mainloop()

ptg7615500

240 Chapter 5 • GUI Programming

Tix and Pmw are extensions to Tk and Tkinter, respectively, but now we
are going to leave the Tk world behind and change gears to look at com-
pletely different toolkits: wxWidgets and GTK+. You will notice that the
number of lines of code starts to increase as we start programming in a
more object-oriented way with these more modern and robust GUI toolkits.

5.4.3 wxWidgets and wxPython

wxWidgets (formerly known as wxWindows) is a cross-platform toolkit
that you can use to build graphical user applications. It is implemented by
using C++ and is available on a wide range of platforms to which wxWid-
gets defines a consistent and common applications programming interface
(API). The best part of all is that wxWidgets uses the native GUI on each
platform, so your program will have the same look-and-feel as all the
other applications on your desktop. Another feature is that you are not
restricted to developing wxWidgets applications in C++; there are inter-
faces to both Python and Perl. Example 5-9 shows our animal application
using wxPython.

Example 5-9 wxPython GUI Demo (animalWx.pyw)

Our third example uses wxPython (and wxWidgets). Note that we have placed
all of our widgets inside a “sizer” for organization. Also, take note of the more
object-oriented nature of this application.

1 #!/usr/bin/env python
2
3 import wx
4
5 class MyFrame(wx.Frame):
6 def __init__(self, parent=None, id=-1, title=''):
7 wx.Frame.__init__(self, parent, id, title,
8 size=(200, 140))
9 top = wx.Panel(self)
10 sizer = wx.BoxSizer(wx.VERTICAL)
11 font = wx.Font(9, wx.SWISS, wx.NORMAL, wx.BOLD)
12 lb = wx.StaticText(top, -1,
13 'Animals (in pairs; min: pair, max: dozen)')
14 sizer.Add(lb)
15
16 c1 = wx.StaticText(top, -1, 'Number:')
17 c1.SetFont(font)
18 ct = wx.SpinCtrl(top, -1, '2', min=2, max=12)

ptg7615500

5.4 A Brief Tour of Other GUIs 241

Line-by-Line Explanation

Lines 5–37
Here we instantiate a Frame class (lines 5–8), of which the sole member is
the constructor. This method’s only purpose in life is to create our widgets.
Inside the frame, we have a Panel. Inside the panel we use a BoxSizer to
contain and layout all of our widgets (lines 10, 36), which consist of a
Label (lines 12–14), SpinCtrl (lines 16–20), ComboBox (lines 22–27), and quit
Button (lines 29–34).

We have to manually add Labels to the SpinCtrl and ComboBox widgets
because they apparently do not come with them. Once we have them all,
we add them to the sizer, set the sizer to our panel, and lay everything out.
On line 10, you will note that the sizer is vertically oriented, meaning that
our widgets will be placed top to bottom.

19 sizer.Add(c1)
20 sizer.Add(ct)
21
22 c2 = wx.StaticText(top, -1, 'Type:')
23 c2.SetFont(font)
24 cb = wx.ComboBox(top, -1, '',
25 choices=('dog', 'cat', 'hamster','python'))
26 sizer.Add(c2)
27 sizer.Add(cb)
28
29 qb = wx.Button(top, -1, "QUIT")
30 qb.SetBackgroundColour('red')
31 qb.SetForegroundColour('white')
32 self.Bind(wx.EVT_BUTTON,
33 lambda e: self.Close(True), qb)
34 sizer.Add(qb)
35
36 top.SetSizer(sizer)
37 self.Layout()
38
39 class MyApp(wx.App):
40 def OnInit(self):
41 frame = MyFrame(title="wxWidgets")
42 frame.Show(True)
43 self.SetTopWindow(frame)
44 return True
45
46 def main():
47 pp = MyApp()
48 app.MainLoop()
49
50 if __name__ == '__main__':
51 main()

ptg7615500

242 Chapter 5 • GUI Programming

One weakness of the SpinCtrl widget is that it does not support “step”
functionality. With the other three examples, we are able to click an arrow
selector which increments or decrements by units of two, but that is not
possible with this widget.

Lines 39–51
Our application class instantiates the Frame object we just designed, renders it
to the screen, and sets it as the top-most window of our application. Finally,
the setup lines just instantiate our GUI application and start it running.

5.4.4 GTK+ and PyGTK

Finally, we have the PyGTK version, which is quite similar to the wxPython
GUI (See Example 5-10). The biggest difference is that we use only one
class, and it seems more tedious to set the foreground and background
colors of objects, buttons in particular.

Example 5-10 PyGTK GUI Demo (animalGtk.pyw)

Our final example uses PyGTK (and GTK+). Like the wxPython example, this
one also uses a class for our application. It is interesting to note how similar
yet different all of our GUI applications are. This is not surprising and allows
programmers to switch between toolkits with relative ease.

1 #!/usr/bin/env python
2
3 import pygtk
4 pygtk.require('2.0')
5 import gtk
6 import pango
7
8 class GTKapp(object):
9 def __init__(self):
10 top = gtk.Window(gtk.WINDOW_TOPLEVEL)
11 top.connect("delete_event", gtk.main_quit)
12 top.connect("destroy", gtk.main_quit)
13 box = gtk.VBox(False, 0)
14 lb = gtk.Label(
15 'Animals (in pairs; min: pair, max: dozen)')
16 box.pack_start(lb)
17
18 sb = gtk.HBox(False, 0)
19 adj = gtk.Adjustment(2, 2, 12, 2, 4, 0)

ptg7615500

5.4 A Brief Tour of Other GUIs 243

Line-by-Line Explanation

Lines 1–6
We import three different modules and packages, PyGTK, GTK, and Pango,
a library for layout and rendering of text, specifically for I18N purposes.
We need it here because it represents the core of text and font handling for
GTK+ (version 2.x).

Lines 8–50
The GTKapp class represents all the widgets of our application. The topmost
window is created (with handlers for closing it via the window manager),
and a vertically oriented sizer (VBox) is created to hold our primary widgets.
This is exactly what we did in the wxPython GUI.

20 sl = gtk.Label('Number:')
21 sl.modify_font(
22 pango.FontDescription("Arial Bold 10"))
23 sb.pack_start(sl)
24 ct = gtk.SpinButton(adj, 0, 0)
25 sb.pack_start(ct)
26 box.pack_start(sb)
27
28 cb = gtk.HBox(False, 0)
29 c2 = gtk.Label('Type:')
30 cb.pack_start(c2)
31 ce = gtk.combo_box_entry_new_text()
32 for animal in ('dog', 'cat','hamster', 'python'):
33 ce.append_text(animal)
34 cb.pack_start(ce)
35 box.pack_start(cb)
36
37 qb = gtk.Button("")
38 red = gtk.gdk.color_parse('red')
39 sty = qb.get_style()
40 for st in (gtk.STATE_NORMAL,
41 gtk.STATE_PRELIGHT, gtk.STATE_ACTIVE):
42 sty.bg[st] = red
43 qb.set_style(sty)
44 ql = qb.child
45 ql.set_markup('QUIT')
46 qb.connect_object("clicked",
47 gtk.Widget.destroy, top)
48 box.pack_start(qb)
49 top.add(box)
50 top.show_all()
51
52 if __name__ == '__main__':
53 animal = GTKapp()
54 gtk.main()

ptg7615500

244 Chapter 5 • GUI Programming

However, wanting the static labels for the SpinButton and ComboBoxEntry
to be next to them (unlike above them for the wxPython example), we
create little horizontally-oriented boxes to contain the label-widget pairs
(lines 18–35) and placed those HBoxes into the all-encompassing VBox.

After creating the quit Button and adding the VBox to our topmost win-
dow, we render everything on screen. You will notice that we create the
button with an empty label at first. We do this so that a Label (child) object
will be created as part of the button. Then on lines 44–45, we get access to
the label and set the text with white font color.

The reason we do this is because if you set the style foreground, for
instance, in the loop and auxiliary code on lines 40–43, the foreground
only affects the button’s foreground and not the label—for example, if you
set the foreground style to white and highlight the button (by pressing the
Tab key until it is “selected”) you will see that the inside dotted box identi-
fying the selected widget is white, but the label text would still be black if
you did not alter it such as we did with the markup on line 45.

Lines 52–54
Here, we create our application and enter the main event loop.

5.4.5 Tile/Ttk

Since its inception, the Tk library has established a solid reputation as a
flexible and simple library and toolkit with which to build GUI tools.
However, after its first decade, a perception grew among the current user
base as well as new developers that without new features, major changes,
and upgrades, it became perceived as being dated and not keeping up
with more current toolkits such as wxWidgets and GTK+.

Tix attempts to address this by providing new widgets, image types,
and new commands to extend Tk. Some of its core widgets even used
native UI code, giving them a more similar look and feel to other applica-
tions on the same windowing system. However, this effort merely extended
Tk’s capabilities.

In the mid-2000s, a more radical approach was proposed: the Tile wid-
get set, which is a reimplementation of most of Tk’s core widgets while
adding several new ones. Not only is native code more prevalent, but Tile
comes with a themeing engine.

Themed widget sets and the ability to easily create, import, and export
themes give developers (and users) much more control over the visual
appearance of applications and lends to a more seamless integration with

ptg7615500

5.4 A Brief Tour of Other GUIs 245

the operating system and the windowing system that runs on it. This
aspect of Tile was compelling enough to cause it to be integrated with the
Tk core in version 8.5 as Ttk. Rather than being a replacement, the Ttk wid-
get set is provided as an adjunct to the original core Tk widget set.

Tile/Ttk made its debut in Python 2.7 and 3.1. To use Ttk, the Python
version you’re using needs to have access to either Tk 8.5 as a minimum;
recent but older versions will also work, as long as Tile is installed. In
Python 2.7+, Tile/Ttk is made available via the ttk module; while in 3.1+, it
has been absorbed under the tkinter umbrella, so you would import
tkinter.ttk.

In Examples 5-11 and 5-12, you’ll find Python 2 and 3 versions of our
animalTtk.pyw and animalTtk3.pyw applications. Whether using Python 2
or 3, a UI application screen similar to that found in Figure 5-10 will be
what you’ll get upon execution.

Example 5-11 Tile/Ttk GUI Demo (animalTtk.pyw)

A demonstration application using the Tile toolkit (named Ttk when integrated
into Tk 8.5).

1 #!/usr/bin/env python
2
3 from Tkinter import Tk, Spinbox
4 from ttk import Style, Label, Button, Combobox
5
6 top = Tk()
7 Style().configure("TButton",
8 foreground='white', background='red')
9
10 Label(top,
11 text='Animals (in pairs; min: pair, '
12 'max: dozen)').pack()
13 Label(top, text='Number:').pack()
14
15 Spinbox(top, from_=2, to=12,
16 increment=2, font='Helvetica -14 bold').pack()
17
18 Label(top, text='Type:').pack()
19
20 Combobox(top, values=('dog',
21 'cat', 'hamster', 'python')).pack()
22
23 Button(top, text='QUIT',
24 command=top.quit, style="TButton").pack()
25
26 top.mainloop()

2.7

3.1

ptg7615500

246 Chapter 5 • GUI Programming

Example 5-12 Tile/Ttk Python 3 GUI Demo (animalTtk3.pyw)

A Python 3 demonstration using the Tile toolkit (named Ttk when integrated
into Tk 8.5).

1 #!/usr/bin/env python3
2
3 from tkinter import Tk, Spinbox
4 from tkinter.ttk import Style, Label, Button, Combobox
5
6 top = Tk()
7 Style().configure("TButton",
8 foreground='white', background='red')
9
10 Label(top,
11 text='Animals (in pairs; min: pair, '
12 'max: dozen)').pack()
13 Label(top, text='Number:').pack()
14
15 Spinbox(top, from_=2, to=12,
16 increment=2, font='Helvetica -14 bold').pack()
17
18 Label(top, text='Type:').pack()
19
20 Combobox(top, values=('dog',
21 'cat', 'hamster', 'python')).pack()
22
23 Button(top, text='QUIT',
24 command=top.quit, style="TButton").pack()
25
26 top.mainloop()

Figure 5-10 The animal UI in Tile/Ttk.

ptg7615500

5.5 Related Modules and Other GUIs 247

Line-by-Line Explanation

Lines 1–4
The Tk core widgets received three new widgets in Tk 8.4. One of them
was the Spinbox, which we’ll be using in this application. (The other two
are LabelFrame and PanedWindow.) All others used here are Tile/Ttk wid-
gets: Label, Button, and Combobox, plus the Style class, which helps with
the widget themeing.

Lines 6–8
These lines just initiate the root window as well as a Style object, which
contains the themed elements for widgets that choose to use it. It helps
define a common look and feel to your widgets. Although it seems like a
waste to use it just for our quit button, you cannot specify individual fore-
ground and background colors directly for buttons. This forces you to pro-
gram in a more disciplined way. The minor inconvenience in this trivial
example will prove a more useful habit in practice.

Lines 10–26
The majority of the rest of the code defines (and packs) the entire widgetset,
which matches pretty much what you’ve seen in this application using the
other UIs introduced in this chapter: a Label defining the application, a
Label and Spinbox combo that controls the numeric range of possible val-
ues (and increment), a Label and Combobox pair letting users select an ani-
mal, and a quit Button. We end by entering the GUI mainloop.

This line-by-line explanation is identical to that of its Python 3 sibling
shown in Example 5-12, with the only changes being in imports: Tkinter is
renamed to tkinter in Python 3, and the ttk module becomes a submodule
of tkinter.

5.5 Related Modules and Other GUIs
There are other GUI development systems that can be used with Python.
We present the appropriate modules along with their corresponding win-
dow systems in Table 5-2.

ptg7615500

248 Chapter 5 • GUI Programming

Table 5-2 GUI Systems Available for Python

GUI Library Description

Tk-Related Modules

Tkinter/tkintera TK INTERface: Python’s default GUI toolkit
http://wiki.python.org/moin/TkInter

Pmw Python MegaWidgets (Tkinter extension)
http://pmw.sf.net

Tix Tk Interface eXtension (Tk extension)
http://tix.sf.net

Tile/Ttk Tile/Ttk themed widget set
http://tktable.sf.net

TkZinc (Zinc) Extended Tk canvas type (Tk extension)
http://www.tkzinc.org

EasyGUI (easygui) Very simple, non-event-driven GUIs (Tkinter extension)
http://ferg.org/easygui

TIDE + (IDE Studio) Tix Integrated Development Environment (including
IDE Studio, a Tix-enhanced version of the standard
IDLE IDE) http://starship.python.net/crew/mike

wxWidgets-Related Modules

wxPython Python binding to wxWidgets, a cross-platform GUI
framework (formerly known as wxWindows)
http://wxpython.org

Boa Constructor Python IDE and wxPython GUI builder
http://boa-constructor.sf.net

PythonCard wxPython-based desktop application GUI construction
kit (inspired by HyperCard)
http://pythoncard.sf.net

wxGlade another wxPython GUI designer (inspired by Glade, the
GTK+/GNOME GUI builder)
http://wxglade.sf.net

GTK+/GNOME-Related Modules

PyGTK Python wrapper for the GIMP Toolkit (GTK+) library
http://pygtk.org

http://wiki.python.org/moin/TkInter
http://pmw.sf.net
http://tix.sf.net
http://tktable.sf.net
http://www.tkzinc.org
http://ferg.org/easygui
http://starship.python.net/crew/mike
http://wxpython.org
http://boa-constructor.sf.net
http://pythoncard.sf.net
http://wxglade.sf.net
http://pygtk.org

ptg7615500

5.5 Related Modules and Other GUIs 249

GUI Library Description

GTK+/GNOME-Related Modules

GNOME-Python Python binding to GNOME desktop and development
libraries
http://gnome.org/start/unstable/bindings
http://download.gnome.org/sources/gnome-python

Glade A GUI builder for GTK+ and GNOME
http://glade.gnome.org

PyGUI (GUI) Cross-platform “Pythonic” GUI API (built on Cocoa
[Mac OS X] and GTK+ [POSIX/X11 and Win32])
http://www.cosc.canterbury.ac.nz/~greg/python_gui

Qt/KDE-Related Modules

PyQt Python binding for the Qt GUI/XML/SQL C++ toolkit
from Trolltech (partially open source [dual-license])
http://riverbankcomputing.co.uk/pyqt

PyKDE Python binding for the KDE desktop environment
http://riverbankcomputing.co.uk/pykde

eric Python IDE written in PyQt using QScintilla editor widget
http://die-offenbachs.de/detlev/eric3
http://ericide.python-hosting.com/

PyQtGPL Qt (Win32 Cygwin port), Sip, QScintilla, PyQt bundle
http://pythonqt.vanrietpaap.nl

Other Open-Source GUI Toolkits

FXPy Python binding to FOX toolkit (http://fox-toolkit.org)
http://fxpy.sf.net

pyFLTK (fltk) Python binding to FLTK toolkit (http://fltk.org)
http://pyfltk.sf.net

PyOpenGL
(OpenGL)

Python binding to OpenGL (http://opengl.org)
http://pyopengl.sf.net

Commercial

win32ui Microsoft MFC (via Python for Windows Extensions)
http://starship.python.net/crew/mhammond/win32

swing Sun Microsystems Java/Swing (via Jython)
http://jython.org

a. Tkinter for Python 2 and tkinter for Python 3.

http://gnome.org/start/unstable/bindings
http://download.gnome.org/sources/gnome-python
http://glade.gnome.org
http://www.cosc.canterbury.ac.nz/~greg/python_gui
http://riverbankcomputing.co.uk/pyqt
http://riverbankcomputing.co.uk/pykde
http://die-offenbachs.de/detlev/eric3
http://ericide.python-hosting.com/
http://pythonqt.vanrietpaap.nl
http://fox-toolkit.org
http://fxpy.sf.net
http://fltk.org
http://pyfltk.sf.net
http://opengl.org
http://pyopengl.sf.net
http://starship.python.net/crew/mhammond/win32
http://jython.org

ptg7615500

250 Chapter 5 • GUI Programming

You can find out more about all GUIs related to Python from the general
GUI Programming page on the Python wiki at http://wiki.python.org/moin/
GuiProgramming.

5.6 Exercises

5-1. Client/Server Architecture. Describe the roles of a windows (or
windowing) server and a windows client.

5-2. Object-Oriented Programming. Describe the relationship
between child and parent widgets.

5-3. Label Widgets. Update the tkhello1.py script to display your
own message instead of “Hello World!”

5-4. Label and Button Widgets. Update the tkhello3.py script so
that there are three new buttons in addition to the QUIT but-
ton. Pressing any of the three buttons will result in changing
the text label so that it will then contain the text of the Button
(widget) that was pressed. Hint: You will need three separate
handlers or customize one handler with arguments preset
(still three function objects).

5-5. Label, Button, and Radiobutton Widgets. Modify your solu-
tion to Exercise 5-4 so that there are three Radiobuttons pre-
senting the choices of text for the Label. There are two
buttons: the QUIT button and an Update button. When the
Update button is pressed, the text label will then be changed
to contain the text of the selected Radiobutton. If no Radiobutton
has been checked, the Label will remain unchanged.

5-6. Label, Button, and Entry Widgets. Modify your solution to
Exercise 5-5 so that the three Radiobuttons are replaced by a
single Entry text field widget with a default value of “Hello
World!” (to reflect the initial string in the Label). The Entry
field can be edited by the user with a new text string for the
Label, which will be updated if the Update button is pressed.

5-7. Label and Entry Widgets and Python I/O. Create a GUI appli-
cation that provides an Entry field in which the user can pro-
vide the name of a text file. Open the file and read it,
displaying its contents in a Label.

http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming

ptg7615500

5.6 Exercises 251

Extra Credit (Menus): Replace the Entry widget with a menu
that has a File Open option that pops up a window to allow
the user to specify the file to read. Also add an Exit or Quit
option to the menu to augment the QUIT button.

5-8. Simple Text Editor. Use your solution to the previous problem
to create a simple text editor. A file can be created from scratch
or read and displayed into a Text widget that can be edited
by the user. When the user quits the application (either by
using the QUIT button or the Quit/Exit menu option), the
user is prompted whether to save the changes or quit with-
out saving.
Extra Credit: Interface your script to a spellchecker and add a
button or menu option to spellcheck the file. The words that
are misspelled should be highlighted by using a different
foreground or background color in the Text widget.

5-9. Multithreaded Chat Applications. The chat programs from the
earlier chapters need completion. Create a fully-functional,
multithreaded chat server. A GUI is not really necessary for
the server unless you want to create one as a front-end to its
configuration, for example, port number, name, connection
to a name server, etc. Create a multithreaded chat client that
has separate threads to monitor user input (and sends the
message to the server for broadcast) and another thread to
accept incoming messages to display to the user. The client
front-end GUI should have two portions of the chat window:
a larger section with multiple lines to hold all the dialog, and
a smaller text entry field to accept input from the user.

5-10. Using Other GUIs. The example GUI applications using the
various toolkits are very similar; however, they are not the
same. Although it is impossible to make them all look exactly
alike, tweak them so that they are more consistent than they
are now.

5-11. Using GUI Builders. GUI builders help you to create GUI
applications faster by auto-generating the boilerplate code
for you so that all you have to do is “the hard stuff.” Down-
load a GUI builder tool and implement the animal GUI by
just dragging the widgets from the corresponding palette.
Hook it up with callbacks so that they behave just like the
sample applications we looked at in this chapter.

ptg7615500

252 Chapter 5 • GUI Programming

What GUI builders are out there? For wxWidgets, see Python-
Card, wxGlade, XRCed, wxFormBuilder, or even Boa Con-
structor (no longer maintained), and for GTK+, there’s Glade
(plus its friend GtkBuilder). For more tools like these, check
out the “GUI Design Tools and IDEs” section of the GUI tools
wiki page at http://wiki.python.org/moin/GuiProgramming.

http://wiki.python.org/moin/GuiProgramming

ptg7615500

253

CHAPTER

Database Programming

Did you really name your son Robert');
DROP TABLE Students;-- ?

—Randall Munroe, XKCD, October 2007

In this chapter...

• Introduction
• The Python DB-API
• ORMs
• Non-Relational Databases
• Related References

ptg7615500

254 Chapter 6 • Database Programming

n this chapter, we discuss how to communicate with databases by
using Python. Files or simplistic persistent storage can meet the needs
of smaller applications, but larger server or high-data-volume applica-

tions might require a full-fledged database system, instead. Thus, we cover
both relational and non-relational databases as well as Object-Relational
Mappers (ORMs).

6.1 Introduction
This opening section will discuss the need for databases, present the Struc-
tured Query Language (SQL), and introduce readers to Python’s database
application programming interface (API).

6.1.1 Persistent Storage

In any application, there is a need for persistent storage. Generally, there
are three basic storage mechanisms: files, a database system, or some sort
of hybrid, such as an API that sits on top of one of those existing systems,
an ORM, file manager, spreadsheet, configuration file, etc.

In the Files chapter of Core Python Language Fundamentals or Core Python
Programming, we discussed persistent storage using both plain file access
as well as a Python and database manager (DBM), which is an old Unix
persistent storage mechanism, overlay on top of files, that is, *dbm, dbhash/
bsddb files, shelve (combination of pickle and DBM), and using their
dictionary-like object interface.

This chapter will focus on using databases for the times when files or
creating your own data storage system does not suffice for larger projects.
In such cases, you will have many decisions to make. Thus, the goal of this
chapter is to introduce you to the basics and show you as many of your
options as possible (and how to work with them from within Python) so
that you can make the right decision. We start off with SQL and relational
databases first, because they are still the prevailing form of persistent storage.

6.1.2 Basic Database Operations and SQL

Before we dig into databases and how to use them with Python, we want
to present a quick introduction (or review if you have some experience) to
some elementary database concepts and SQL.

I

ptg7615500

6.1 Introduction 255

Underlying Storage

Databases usually have a fundamental persistent storage that uses the file
system, that is, normal operating system files, special operating system
files, and even raw disk partitions.

User Interface

Most database systems provide a command-line tool with which to issue
SQL commands or queries. There are also some GUI tools that use the
command-line clients or the database client library, affording users a much
more comfortable interface.

Databases

A relational database management system (RDBMS) can usually manage
multiple databases, such as sales, marketing, customer support, etc., all on
the same server (if the RDBMS is server-based; simpler systems are usually
not). In the examples we will look at in this chapter, MySQL demonstrates a
server-based RDBMS because there is a server process running continu-
ously, waiting for commands; neither SQLite nor Gadfly have running
servers.

Components

The table is the storage abstraction for databases. Each row of data will
have fields that correspond to database columns. The set of table defini-
tions of columns and data types per table all put together define the data-
base schema.

Databases are created and dropped. The same is true for tables. Adding
new rows to a database is called inserting; changing existing rows in a
table is called updating; and removing existing rows in a table is called
deleting. These actions are usually referred to as database commands or
operations. Requesting rows from a database with optional criteria is called
querying.

When you query a database, you can fetch all of the results (rows) at
once, or just iterate slowly over each resulting row. Some databases use the
concept of a cursor for issuing SQL commands, queries, and grabbing
results, either all at once or one row at a time.

ptg7615500

256 Chapter 6 • Database Programming

SQL

Database commands and queries are given to a database via SQL. Not all
databases use SQL, but the majority of relational databases do. Following
are some examples of SQL commands. Note that most databases are con-
figured to be case-insensitive, especially database commands. The accepted
style is to use CAPS for database keywords. Most command-line programs
require a trailing semicolon (;) to terminate a SQL statement.

Creating a Database
CREATE DATABASE test;
GRANT ALL ON test.* to user(s);

The first line creates a database named “test,” and assuming that you
are a database administrator, the second line can be used to grant permis-
sions to specific users (or all of them) so that they can perform the database
operations that follow.

Using a Database
USE test;

If you logged into a database system without choosing which database
you want to use, this simple statement allows you to specify one with
which to perform database operations.

Dropping a Database
DROP DATABASE test;

This simple statement removes all the tables and data from the database
and deletes it from the system.

Creating a Table
CREATE TABLE users (login VARCHAR(8), userid INT, projid INT);

This statement creates a new table with a string column login and a pair
of integer fields, userid and projid.

Dropping a Table
DROP TABLE users;

This simple statement drops a database table, along with all its data.

ptg7615500

6.1 Introduction 257

Inserting a Row
INSERT INTO users VALUES('leanna', 2111, 1);

You can insert a new row in a database by using the INSERT statement.
You specify the table and the values that go into each field. For our exam-
ple, the string 'leanna' goes into the login field, and 2111 and 1 to userid
and projid, respectively.

Updating a Row
UPDATE users SET projid=4 WHERE projid=2;
UPDATE users SET projid=1 WHERE userid=311;

To change existing table rows, you use the UPDATE statement. Use SET
for the columns that are changing and provide any criteria for determin-
ing which rows should change. In the first example, all users with a “proj-
ect ID” (or projid) of 2 will be moved to project #4. In the second example,
we take one user (with a UID of 311) and move him to project #1.

Deleting a Row
DELETE FROM users WHERE projid=%d;
DELETE FROM users;

To delete a table row, use the DELETE FROM command, specify the table
from which you want to delete rows, and any optional criteria. Without it,
as in the second example, all rows will be deleted.

Now that you are up to speed on basic database concepts, it should
make following the rest of the chapter and its examples much easier. If you
need additional help, there are plenty of database tutorial books available
that can do the trick.

6.1.3 Databases and Python

We are going to cover the Python database API and look at how to access
relational databases from Python—either directly through a database inter-
face, or via an ORM—and how you can accomplish the same task but
without necessarily having to give explicit commands in SQL.

ptg7615500

258 Chapter 6 • Database Programming

Topics such as database principles, concurrency, schema, atomicity,
integrity, recovery, proper complex left JOINs, triggers, query optimiza-
tion, transactions, stored procedures, etc., are all beyond the scope of this
text, and we will not be discussing them in this chapter other than direct
use from a Python application. Rather, we will present how to store and
retrieve data to and from RDBMSs while playing within a Python frame-
work. You can then decide which is best for your current project or appli-
cation and be able to study sample code that can get you started instantly.
The goal is to get you on top of things as quickly as possible if you need to
integrate your Python application with some sort of database system.

We are also breaking out of our mode of covering only the “batteries
included” features of the Python Standard Library. While our original goal
was to play only in that arena, it has become clear that being able to work
with databases is really a core component of everyday application devel-
opment in the Python world.

As a software engineer, you can probably only make it so far in your
career without having to learn something about databases: how to use one
(command-line and/or GUI interfaces), how to extract data by using the
SQL, perhaps how to add or update information in a database, etc. If
Python is your programming tool, then a lot of the hard work has already
been done for you as you add database access to your Python universe. We
first describe what the Python database API, or DB-API is, then give exam-
ples of database interfaces that conform to this standard.

We will show some examples using popular open-source RDBMSs.
However, we will not include discussions of open-source versus commer-
cial products. Adapting to those other RDBMS systems should be fairly
straightforward. A special mention will be given to Aaron Watters’s Gadfly
database, a simple RDBMS written completely in Python.

The way to access a database from Python is via an adapter. An adapter
is a Python module with which you can interface to a relational database’s
client library, usually in C. It is recommended that all Python adapters
conform to the API of the Python database special interest group (DB-
SIG). This is the first major topic of this chapter.

Figure 6-1 illustrates the layers involved in writing a Python database
application, with and without an ORM. The figure demonstrates that the
DB-API is your interface to the C libraries of the database client.

ptg7615500

6.2 The Python DB-API 259

6.2 The Python DB-API
Where can one find the interfaces necessary to talk to a database? Simple.
Just go to the database topics section at the main Python Web site. There
you will find links to the full and current DB-API (version 2.0), existing
database modules, documentation, the special interest group, etc. Since its
inception, the DB-API has been moved into PEP 249. (This PEP supersedes
the old DB-API 1.0 specification, which is PEP 248.) What is the DB-API?

The API is a specification that states a set of required objects and data-
base access mechanisms to provide consistent access across the various
database adapters and underlying database systems. Like most community-
based efforts, the API was driven by strong need.

In the “old days,” we had a scenario of many databases and many peo-
ple implementing their own database adapters. It was a wheel that was
being reinvented over and over again. These databases and adapters were
implemented at different times by different people without any consis-
tency of functionality. Unfortunately, this meant that application code
using such interfaces also had to be customized to which database module
they chose to use, and any changes to that interface also meant updates
were needed in the application code.

SIG for Python database connectivity was formed, and eventually, an
API was born: the DB-API version 1.0. The API provides for a consistent
interface to a variety of relational databases, and porting code between dif-
ferent databases is much simpler, usually only requiring tweaking several
lines of code. You will see an example of this later on in this chapter.

RDBMS client library

Python DB adapter

Python application
(embedded SQL)

RDBMS client library

Application
(embedded SQL)

RDBMS client library

Python ORM

Python DB adapter

Python application
(little or no SQL)

Relational database (RDBMS)

Figure 6-1 Multitiered communication between application and database. The first box is
generally a C/C++ program, whereas DB-API-compliant adapters let you program applications
in Python. ORMs can simplify an application by handling all of the database-specific details.

ptg7615500

260 Chapter 6 • Database Programming

6.2.1 Module Attributes

The DB-API specification mandates that the features and attributes listed
below must be supplied. A DB-API-compliant module must define the
global attributes as shown in Table 6-1.

Data Attributes

apilevel
This string (not float) indicates the highest version of the DB-API with
which the module is compliant, for example, 1.0, 2.0, etc. If absent, 1.0
should be assumed as the default value.

threadsafety
This an integer that can take the following possible values:

• 0: Not threadsafe, so threads should not share the module at
all

• 1: Minimally threadsafe: threads can share the module but
not connections

• 2: Moderately threadsafe: threads can share the module and
connections but not cursors

• 3: Fully threadsafe: threads can share the module,
connections, and cursors

Table 6-1 DB-API Module Attributes

Attribute Description

apilevel The version of the DB-API with which an adapter is
compliant

threadsafety Level of thread safety of this module

paramstyle SQL statement parameter style of this module

connect() Connect() function

(Various exceptions) (SeeTable 6-4)

ptg7615500

6.2 The Python DB-API 261

If a resource is shared, a synchronization primitive such as a spin lock or
semaphore is required for atomic-locking purposes. Disk files and global
variables are not reliable for this purpose and can interfere with standard
mutex operation. See the threading module or go back to Chapter 4,
“Multithreaded Programming,” for more information on how to use a lock.

paramstyle
The API supports a variety of ways to indicate how parameters should be
integrated into an SQL statement that is eventually sent to the server for
execution. This argument is just a string that specifies the form of string
substitution you will use when building rows for a query or command
(see Table 6-2).

Function Attribute(s)

connect() Function access to the database is made available through
Connection objects. A compliant module must implement a connect()
function, which creates and returns a Connection object. Table 6-3 shows
the arguments to connect().

Table 6-2 paramstyle Database Parameter Styles

Parameter Style Description Example

numeric Numeric positional style WHERE name=:1

named Named style WHERE name=:name

pyformat Python dictionary printf()
format conversion

WHERE name=%(name)s

qmark Question mark style WHERE name=?

format ANSI C printf() format
conversion

WHERE name=%s

ptg7615500

262 Chapter 6 • Database Programming

You can pass in database connection information as a string with multi-
ple parameters (DSN) or individual parameters passed as positional argu-
ments (if you know the exact order), or more likely, keyword arguments.
Here is an example of using connect() from PEP 249:

connect(dsn='myhost:MYDB',user='guido',password='234$')

The use of DSN versus individual parameters is based primarily on the
system to which you are connecting. For example, if you are using an API
like Open Database Connectivity (ODBC) or Java DataBase Connectivity
(JDBC), you would likely be using a DSN, whereas if you are working
directly with a database, then you are more likely to issue separate login
parameters. Another reason for this is that most database adapters have
not implemented support for DSN. The following are some examples of
non-DSN connect() calls. Note that not all adapters have implemented
the specification exactly, e.g., MySQLdb uses db instead of database.

• MySQLdb.connect(host='dbserv', db='inv', user='smith')

• PgSQL.connect(database='sales')

• psycopg.connect(database='template1', user='pgsql')

• gadfly.dbapi20.connect('csrDB', '/usr/local/database')

• sqlite3.connect('marketing/test')

Table 6-3 connect() Function Attributes

Parameter Description

user Username

password Password

host Hostname

database Database name

dsn Data source name

ptg7615500

6.2 The Python DB-API 263

Exceptions

Exceptions that should also be included in the compliant module as
globals are shown in Table 6-4.

6.2.2 Connection Objects

Connections are how your application communicates with the database.
They represent the fundamental mechanism by which commands are sent
to the server and results returned. Once a connection has been established
(or a pool of connections), you create cursors to send requests to and
receive replies from the database.

Connection Object Methods

Connection objects are not required to have any data attributes but should
define the methods shown in Table 6-5.

Table 6-4 DB-API Exception Classes

Exception Description

Warning Root warning exception class

Error Root error exception class

InterfaceError Database interface (not database) error

DatabaseError Database error

 DataError Problems with the processed data

OperationalError Error during database operation execution

IntegrityError Database relational integrity error

InternalError Error that occurs within the database

ProgrammingError SQL command failed

NotSupportedError Unsupported operation occurred

ptg7615500

264 Chapter 6 • Database Programming

When close() is used, the same connection cannot be used again with-
out running into an exception.

The commit() method is irrelevant if the database does not support
transactions or if it has an auto-commit feature that has been enabled. You
can implement separate methods to turn auto-commit off or on if you
wish. Since this method is required as part of the API, databases that do
not support transactions should just implement “pass” for this method.

Like commit(), rollback() only makes sense if transactions are sup-
ported in the database. After execution, rollback() should leave the data-
base in the same state as it was when the transaction began. According to
PEP 249, “Closing a connection without committing the changes first will cause
an implicit rollback to be performed.”

If the RDBMS does not support cursors, cursor() should still return an
object that faithfully emulates or imitates a real cursor object. These are
just the minimum requirements. Each individual adapter developer can
always add special attributes specifically for their interface or database.

It is also recommended but not required for adapter writers to make all
database module exceptions (see earlier) available via a connection. If not,
then it is assumed that Connection objects will throw the corresponding
module-level exception. Once you have completed using your connection
and cursors are closed, you should commit() any operations and close()
your connection.

Table 6-5 Connection Object Methods

Method Name Description

close() Close database connection

commit() Commit current transaction

rollback() Cancel current transaction

cursor() Create (and return) a cursor or cursor-like object
using this connection

errorhandler(cxn, cur,
errcls, errval)

Serves as a handler for given connection cursor

ptg7615500

6.2 The Python DB-API 265

6.2.3 Cursor Objects

Once you have a connection, you can begin communicating with the data-
base. As we mentioned earlier in the introductory section, a cursor lets a
user issue database commands and retrieve rows resulting from queries.
A Python DB-API cursor object functions as a cursor for you, even if cur-
sors are not supported in the database. In this case, if you are creating a
database adapter, you must implement cursor objects so that they act like
cursors. This keeps your Python code consistent when you switch between
database systems that support or do not support cursors.

Once you have created a cursor, you can execute a query or command
(or multiple queries and commands) and retrieve one or more rows from the
results set. Table 6-6 presents Cursor object data attributes and methods.

Table 6-6 Cursor Object Attributes

Object Attribute Description

arraysize Number of rows to fetch at a time with
fetchmany(); default is 1

connection Connection that created this cursor (optional)

description Returns cursor activity (7-item tuples): (name,
type_code, display_size, internal_ size,
precision, scale, null_ok); only name and
type_code are required

lastrowid Row ID of last modified row (optional; if row
IDs not supported, default to None)

rowcount Number of rows that the last execute*()
produced or affected

callproc(func[, args]) Call a stored procedure

close() Close cursor

execute(op[, args]) Execute a database query or command

executemany(op, args) Like execute() and map() combined; prepare
and execute a database query or command over
given arguments

(Continued)

ptg7615500

266 Chapter 6 • Database Programming

The most critical attributes of cursor objects are the execute*() and the
fetch*() methods; all service requests to the database are performed by
these. The arraysize data attribute is useful in setting a default size for
fetchmany(). Of course, closing the cursor is a good thing, and if your
database supports stored procedures, then you will be using callproc().

6.2.4 Type Objects and Constructors

Oftentimes, the interface between two different systems are the most
fragile. This is seen when converting Python objects to C types and vice
versa. Similarly, there is also a fine line between Python objects and native
database objects. As a programmer writing to Python’s DB-API, the
parameters you send to a database are given as strings, but the database

Table 6-6 Cursor Object Attributes (Continued)

Object Attribute Description

fetchone() Fetch next row of query result

fetchmany ([size=
cursor.arraysize])

Fetch next size rows of query result

fetchall() Fetch all (remaining) rows of a query result

__iter__() Create iterator object from this cursor (optional;
also see next())

messages List of messages (set of tuples) received from
the database for cursor execution (optional)

next() Used by iterator to fetch next row of query
result (optional; like fetchone(), also see
__iter__())

nextset() Move to next results set (if supported)

rownumber Index of cursor (by row, 0-based) in current
result set (optional)

setinputsizes(sizes) Set maximum input size allowed (required but
implementation optional)

setoutputsize(size[,col]) Set maximum buffer size for large column
fetches (required but implementation optional)

ptg7615500

6.2 The Python DB-API 267

might need to convert it to a variety of different, supported data types that
are correct for any particular query.

For example, should the Python string be converted to a VARCHAR, a
TEXT, a BLOB, or a raw BINARY object, or perhaps a DATE or TIME
object if that is what the string is supposed to be? Care must be taken to
provide database input in the expected format; therefore, another require-
ment of the DB-API is to create constructors that build special objects that
can easily be converted to the appropriate database objects. Table 6-7
describes classes that can be used for this purpose. SQL NULL values are
mapped to and from Python’s NULL object, None.

Table 6-7 Type Objects and Constructors

Type Object Description

Date(yr,mo,dy) Object for a date value

Time(hr,min,sec) Object for a time value

Timestamp
(yr,mo,dy,hr,min,sec)

Object for a timestamp value

DateFromTicks(ticks) Date object, given in number of seconds since
the epoch

TimeFromTicks(ticks) Time object, given in number of seconds since
the epoch

TimestampFromTicks(ticks) Timestamp object, given in number of seconds
since the epoch

Binary(string) Object for a binary (long) string value

STRING Object describing string-based columns, for
example, VARCHAR

BINARY Object describing (long) binary columns, for
example, RAW, BLOB

NUMBER Object describing numeric columns

DATETIME Object describing date/time columns

ROWID Object describing “row ID” columns

ptg7615500

268 Chapter 6 • Database Programming

Changes to API Between Versions

Several important changes were made when the DB-API was revised from
version 1.0 (1996) to 2.0 (1999):

• The required dbi module was removed from the API.

• Type objects were updated.

• New attributes were added to provide better database
bindings.

• callproc() semantics and the return value of execute() were
redefined.

• Conversion to class-based exceptions.

Since version 2.0 was published, some of the additional, optional DB-
API extensions that you just read about were added in 2002. There have
been no other significant changes to the API since it was published. Con-
tinuing discussions of the API occur on the DB-SIG mailing list. Among
the topics brought up over the last five years include the possibilities
for the next version of the DB-API, tentatively named DB-API 3.0.
These include the following:

• Better return value for nextset() when there is a new
result set.

• Switch from float to Decimal.

• Improved flexibility and support for parameter styles.

• Prepared statements or statement caching.

• Refine the transaction model.

• State the role of API with respect to portability.

• Add unit testing.

If you have strong feelings about the API or its future, feel free to partic-
ipate and join in the discussion. Here are some references that you might
find handy.

• http://python.org/topics/database

• http://linuxjournal.com/article/2605 (outdated but historical)

• http://wiki.python.org/moin/DbApi3

http://python.org/topics/database
http://linuxjournal.com/article/2605
http://wiki.python.org/moin/DbApi3

ptg7615500

6.2 The Python DB-API 269

6.2.5 Relational Databases

So, you are now ready to go, but you probably have one burning question:
“which interfaces to database systems are available to me in Python?”
That inquiry is similar to, “which platforms is Python available for?” The
answer is, “Pretty much all of them.” Following is a broad (but not exhaus-
tive) list of interfaces:

Commercial RDBMSs
• IBM Informix

• Sybase

• Oracle

• Microsoft SQL Server

• IBM DB2

• SAP

• Embarcadero Interbase

• Ingres

Open-Source RDBMSs
• MySQL

• PostgreSQL

• SQLite

• Gadfly

Database APIs
• JDBC
• ODBC

Non-Relational Databases
• MongoDB

• Redis

• Cassandra

• SimpleDB

ptg7615500

270 Chapter 6 • Database Programming

• Tokyo Cabinet

• CouchDB

• Bigtable (via Google App Engine Datastore API)

To find an updated (but not necessarily the most recent) list of what
databases are supported, go to the following Web site:

http://wiki.python.org/moin/DatabaseInterfaces

6.2.6 Databases and Python: Adapters

For each of the databases supported, there exists one or more adapters that
let you connect to the target database system from Python. Some data-
bases, such as Sybase, SAP, Oracle, and SQLServer, have more than one
adapter available. The best thing to do is to determine which ones best fit
your needs. Your questions for each candidate might include: how good is
its performance, how useful is its documentation and/or Web site, whether
it has an active community or not, what is the overall quality and stability
of the driver, etc. You have to keep in mind that most adapters provide just
the basic necessities to get you connected to the database. It is the extras that
you might be looking for. Keep in mind that you are responsible for
higher-level code like threading and thread management as well as man-
agement of database connection pools, etc.

If you are squeamish and want less hands-on interaction—for example,
if you prefer to do as little SQL or database administration as possible—then
you might want to consider ORMs, which are covered later in this chapter.

Let’s now look at some examples of how to use an adapter module to
communicate with a relational database. The real secret is in setting up the
connection. Once you have this and use the DB-API objects, attributes, and
object methods, your core code should be pretty much the same, regard-
less of which adapter and RDBMS you use.

6.2.7 Examples of Using Database Adapters

First, let’s look at a some sample code, from creating a database to creating
a table and using it. We present examples that use MySQL, PostgreSQL,
and SQLite.

http://wiki.python.org/moin/DatabaseInterfaces

ptg7615500

6.2 The Python DB-API 271

MySQL

We will use MySQL as the example here, along with the most well-known
MySQL Python adapter: MySQLdb, a.k.a. MySQL-python—we’ll discuss the
other MySQL adapter, MySQL Connector/Python, when our conversation
turns to Python 3. In the various bits of code that follow, we’ll also expose
you (deliberately) to examples of error situations so that you have an idea
of what to expect, and for which you might want to create handlers.

We first log in as an administrator to create a database and grant per-
missions, then log back in as a normal client, as shown here:

>>> import MySQLdb
>>> cxn = MySQLdb.connect(user='root')
>>> cxn.query('DROP DATABASE test')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
_mysql_exceptions.OperationalError: (1008, "Can't drop, database
'test'; database doesn't exist")
>>> cxn.query('CREATE DATABASE test')
>>> cxn.query("GRANT ALL ON test.* to ''@'localhost'")
>>> cxn.commit()
>>> cxn.close()

In the preceding code, we did not use a cursor. Some adapters have
Connection objects, which can execute SQL queries with the query()
method, but not all. We recommend you either not use it or check your
adapter to ensure that it is available.

The commit() was optional for us because auto-commit is turned on by
default in MySQL. We then connect back to the new database as a regular
user, create a table, and then perform the usual queries and commands by
using SQL to get our job done via Python. This time we use cursors and
their execute() method.

The next set of interactions shows us creating a table. An attempt to create
it again (without first dropping it) results in an error:

>>> cxn = MySQLdb.connect(db='test')
>>> cur = cxn.cursor()
>>> cur.execute('CREATE TABLE users(login VARCHAR(8), userid INT)')
0L

Now we will insert a few rows into the database and query them out:
>>> cur.execute("INSERT INTO users VALUES('john', 7000)")
1L
>>> cur.execute("INSERT INTO users VALUES('jane', 7001)")
1L
>>> cur.execute("INSERT INTO users VALUES('bob', 7200)")
1L

ptg7615500

272 Chapter 6 • Database Programming

>>> cur.execute("SELECT * FROM users WHERE login LIKE 'j%'")
2L
>>> for data in cur.fetchall():
... print '%s\t%s' % data
...
john 7000
jane 7001

The last bit features updating the table, either by updating or deleting
rows:

>>> cur.execute("UPDATE users SET userid=7100 WHERE userid=7001")
1L
>>> cur.execute("SELECT * FROM users")
3L
>>> for data in cur.fetchall():
... print '%s\t%s' % data
...
john 7000
jane 7100
bob 7200
>>> cur.execute('DELETE FROM users WHERE login="bob"')
1L
>>> cur.execute('DROP TABLE users')
0L
>>> cur.close()
>>> cxn.commit()
>>> cxn.close()

MySQL is one of the most popular open-source databases in the world,
and it is no surprise that a Python adapter is available for it.

PostgreSQL

Another popular open-source database is PostgreSQL. Unlike MySQL,
there are no less than three Python adapters available for Postgres: psycopg,
PyPgSQL, and PyGreSQL. A fourth, PoPy, is now defunct, having contributed
its project to combine with that of PyGreSQL in 2003. Each of the three
remaining adapters has its own characteristics, strengths, and weaknesses,
so it would be a good idea to practice due diligence to determine which is
right for you.

Note that while we demonstrate the use of each of these, PyPgSQL has
not been actively developed since 2006, whereas PyGreSQL released its
most recent version (4.0) in 2009. This inactivity clearly leaves psycopg as
the sole leader of the PostgreSQL adapters, and this will be the final ver-
sion of this book featuring examples of those adapters. psycopg is on its
second version, meaning that even though our examples use the version 1
psycopg module, when you download it today, you’ll be using psycopg2,
instead.

ptg7615500

6.2 The Python DB-API 273

The good news is that the interfaces are similar enough that you can cre-
ate an application that, for example, measures the performance between
all three (if that is a metric that is important to you). The following pres-
ents the setup code to get a Connection object for each adapter.

psycopg
>>> import psycopg
>>> cxn = psycopg.connect(user='pgsql')

PyPgSQL
>>> from pyPgSQL import PgSQL
>>> cxn = PgSQL.connect(user='pgsql')

PyGreSQL
>>> import pgdb
>>> cxn = pgdb.connect(user='pgsql')

Here is some generic code that will work for all three adapters:
>>> cur = cxn.cursor()
>>> cur.execute('SELECT * FROM pg_database')
>>> rows = cur.fetchall()
>>> for i in rows:
... print i
>>> cur.close()
>>> cxn.commit()
>>> cxn.close()

Finally, you can see how the output from each adapter is slightly differ-
ent from one another.

PyPgSQL
sales
template1
template0

psycopg
('sales', 1, 0, 0, 1, 17140, '140626', '3221366099', '', None, None)
('template1', 1, 0, 1, 1, 17140, '462', '462', '', None, '{pgsql=C*T*/
pgsql}')
('template0', 1, 0, 1, 0, 17140, '462', '462', '', None, '{pgsql=C*T*/
pgsql}')

PyGreSQL
['sales', 1, 0, False, True, 17140L, '140626', '3221366099', '', None,
None]

ptg7615500

274 Chapter 6 • Database Programming

['template1', 1, 0, True, True, 17140L, '462', '462', '', None,
'{pgsql=C*T*/pgsql}']
['template0', 1, 0, True, False, 17140L, '462', '462', '', None,
'{pgsql=C*T*/pgsql}']

SQLite

For extremely simple applications, using files for persistent storage usu-
ally suffices, but the most complex and data-driven applications demand a
full relational database. SQLite targets the intermediate systems, and
indeed is a hybrid of the two. It is extremely lightweight and fast, plus it is
serverless and requires little or no administration.

SQLite has experienced a rapid growth in popularity, and it is available
on many platforms. With the introduction of the pysqlite database adapter
in Python 2.5 as the sqlite3 module, this marks the first time that the
Python Standard Library has featured a database adapter in any release.

It was bundled with Python not because it was favored over other data-
bases and adapters, but because it is simple, uses files (or memory) as its
back-end store like the DBM modules do, does not require a server, and
does not have licensing issues. It is simply an alternative to other similar
persistent storage solutions included with Python but which happens to
have a SQL interface.

Having a module like this in the standard library allows you to develop
rapidly in Python by using SQLite, and then migrate to a more powerful
RDBMS such as MySQL, PostgreSQL, Oracle, or SQL Server for produc-
tion purposes, if this is your intention. If you don't need all that horse-
power, sqlite3 is a great solution.

Although the database adapter is now provided in the standard library,
you still have to download the actual database software yourself. How-
ever, once you have installed it, all you need to do is start up Python (and
import the adapter) to gain immediate access:

>>> import sqlite3
>>> cxn = sqlite3.connect('sqlite_test/test')
>>> cur = cxn.cursor()
>>> cur.execute('CREATE TABLE users(login VARCHAR(8),
 userid INTEGER)')
>>> cur.execute('INSERT INTO users VALUES("john", 100)')
>>> cur.execute('INSERT INTO users VALUES("jane", 110)')
>>> cur.execute('SELECT * FROM users')
>>> for eachUser in cur.fetchall():
... print eachUser
...
(u'john', 100)
(u'jane', 110)

2.5

ptg7615500

6.2 The Python DB-API 275

>>> cur.execute('DROP TABLE users')
<sqlite3.Cursor object at 0x3d4320>
>>> cur.close()
>>> cxn.commit()
>>> cxn.close()

Okay, enough of the small examples. Next, we look at an application
similar to our earlier example with MySQL, but which does a few more
things:

• Creates a database (if necessary)

• Creates a table

• Inserts rows into the table

• Updates rows in the table

• Deletes rows from the table

• Drops the table

For this example, we will use two other open-source databases. SQLite
has become quite popular of late. It is very small, lightweight, and
extremely fast for all of the most common database functions. Another
database involved in this example is Gadfly, a mostly SQL-compliant
RDBMS written entirely in Python. (Some of the key data structures have a
C module available, but Gadfly can run without it [slower, of course].)

Some notes before we get to the code. Both SQLite and Gadfly require
that you specify the location to store database files (MySQL has a default
area and does not require this information). The most current incarnation of
Gadfly is not yet fully DB-API 2.0 compliant, and as a result, it is missing some
functionality, most notably the cursor attribute, rowcount, in our example.

6.2.8 A Database Adapter Example Application

In the example that follows, we demonstrate how to use Python to access a
database. For the sake of variety and exposing you to as much code as pos-
sible, we added support for three different database systems: Gadfly,
SQLite, and MySQL. To mix things up even further, we’re first going to
dump out the entire Python 2.x source, without a line-by-line explanation.

The application works in exactly the same ways as described via the
bullet points in the previous subsection. You should be able to understand
its functionality without a full explanation—just start with the main()
function at the bottom. (To keep things simple, for a full system such as

ptg7615500

276 Chapter 6 • Database Programming

MySQL that has a server, we will just login as the root user, although it’s
discouraged to do this for a production application.) Here’s the source
code for this application, which is called ushuffle_db.py:

#!/usr/bin/env python

import os
from random import randrange as rand

COLSIZ = 10
FIELDS = ('login', 'userid', 'projid')
RDBMSs = {'s': 'sqlite', 'm': 'mysql', 'g': 'gadfly'}
DBNAME = 'test'
DBUSER = 'root'
DB_EXC = None
NAMELEN = 16

tformat = lambda s: str(s).title().ljust(COLSIZ)
cformat = lambda s: s.upper().ljust(COLSIZ)

def setup():
 return RDBMSs[raw_input('''
Choose a database system:

(M)ySQL
(G)adfly
(S)QLite

Enter choice: ''').strip().lower()[0]]

def connect(db):
 global DB_EXC
 dbDir = '%s_%s' % (db, DBNAME)

 if db == 'sqlite':
 try:
 import sqlite3
 except ImportError:
 try:
 from pysqlite2 import dbapi2 as sqlite3
 except ImportError:
 return None

 DB_EXC = sqlite3
 if not os.path.isdir(dbDir):
 os.mkdir(dbDir)
 cxn = sqlite3.connect(os.path.join(dbDir, DBNAME))

 elif db == 'mysql':
 try:
 import MySQLdb
 import _mysql_exceptions as DB_EXC

ptg7615500

6.2 The Python DB-API 277

 except ImportError:
 return None

 try:
 cxn = MySQLdb.connect(db=DBNAME)
 except DB_EXC.OperationalError:
 try:
 cxn = MySQLdb.connect(user=DBUSER)
 cxn.query('CREATE DATABASE %s' % DBNAME)
 cxn.commit()
 cxn.close()
 cxn = MySQLdb.connect(db=DBNAME)
 except DB_EXC.OperationalError:
 return None

 elif db == 'gadfly':
 try:
 from gadfly import gadfly
 DB_EXC = gadfly
 except ImportError:
 return None

 try:
 cxn = gadfly(DBNAME, dbDir)
 except IOError:
 cxn = gadfly()
 if not os.path.isdir(dbDir):
 os.mkdir(dbDir)
 cxn.startup(DBNAME, dbDir)
 else:
 return None
 return cxn

def create(cur):
 try:
 cur.execute('''
 CREATE TABLE users (
 login VARCHAR(%d),
 userid INTEGER,
 projid INTEGER)
 ''' % NAMELEN)
 except DB_EXC.OperationalError:
 drop(cur)
 create(cur)

drop = lambda cur: cur.execute('DROP TABLE users')

NAMES = (
 ('aaron', 8312), ('angela', 7603), ('dave', 7306),
 ('davina',7902), ('elliot', 7911), ('ernie', 7410),
 ('jess', 7912), ('jim', 7512), ('larry', 7311),
 ('leslie', 7808), ('melissa', 8602), ('pat', 7711),

ptg7615500

278 Chapter 6 • Database Programming

 ('serena', 7003), ('stan', 7607), ('faye', 6812),
 ('amy', 7209), ('mona', 7404), ('jennifer', 7608),
)

def randName():
 pick = set(NAMES)
 while pick:
 yield pick.pop()

def insert(cur, db):
 if db == 'sqlite':
 cur.executemany("INSERT INTO users VALUES(?, ?, ?)",
 [(who, uid, rand(1,5)) for who, uid in randName()])
 elif db == 'gadfly':
 for who, uid in randName():
 cur.execute("INSERT INTO users VALUES(?, ?, ?)",
 (who, uid, rand(1,5)))
 elif db == 'mysql':
 cur.executemany("INSERT INTO users VALUES(%s, %s, %s)",
 [(who, uid, rand(1,5)) for who, uid in randName()])

getRC = lambda cur: cur.rowcount if hasattr(cur, 'rowcount') else -1

def update(cur):
 fr = rand(1,5)
 to = rand(1,5)
 cur.execute(
 "UPDATE users SET projid=%d WHERE projid=%d" % (to, fr))
 return fr, to, getRC(cur)

def delete(cur):
 rm = rand(1,5)
 cur.execute('DELETE FROM users WHERE projid=%d' % rm)
 return rm, getRC(cur)

def dbDump(cur):
 cur.execute('SELECT * FROM users')
 print '\n%s' % ''.join(map(cformat, FIELDS))
 for data in cur.fetchall():
 print ''.join(map(tformat, data))

def main():
 db = setup()
 print '*** Connect to %r database' % db
 cxn = connect(db)
 if not cxn:
 print 'ERROR: %r not supported or unreachable, exiting' % db
 return
 cur = cxn.cursor()

 print '\n*** Create users table (drop old one if appl.)'
 create(cur)

ptg7615500

6.2 The Python DB-API 279

 print '\n*** Insert names into table'
 insert(cur, db)
 dbDump(cur)

 print '\n*** Move users to a random group'
 fr, to, num = update(cur)
 print '\t(%d users moved) from (%d) to (%d)' % (num, fr, to)
 dbDump(cur)

 print '\n*** Randomly delete group'
 rm, num = delete(cur)
 print '\t(group #%d; %d users removed)' % (rm, num)
 dbDump(cur)

 print '\n*** Drop users table'
 drop(cur)
 print '\n*** Close cxns'
 cur.close()
 cxn.commit()
 cxn.close()

if __name__ == '__main__':
 main()

Trust me, this application runs. It’s available for download from this
book’s Web site if you really want to try it out. However, before we execute
it here in the book, there’s one more matter to take care of. No, we’re not
going to give you the line-by-line explanation yet.

Don’t worry, the line-by-line is coming up, but we wanted to use this
example for another purpose: to demonstrate another example of porting
to Python 3 and how it’s possible to build scripts that will run under both
Python 2 and 3 with a single source .py file and without the need for con-
version using tools like 2to3 or 3to2. After the port, we’ll officially make it
Example 6-1. Furthermore, we’ll use and reuse the attributes from this
example in the examples for the remainder of the chapter, porting it to use
ORMs as well as non-relational databases.

Porting to Python 3

A handful of porting recommendations are provided in the best practices
chapter of Core Python Language Fundamentals, but we wanted to share
some specific tips here and implement them by using ushuffle_db.py.

One of the big porting differences between Python 2 and 3 is print, which
is a statement in Python 2 but a built-in function (BIF) in Python 3. Instead
of using either, you can proxy for both by using the distutils.log.warn()
function—at least you could at the time of this writing. It’s identical in

3.x

ptg7615500

280 Chapter 6 • Database Programming

Python 2 and 3; thus, it doesn’t require any changes. To keep the code from
getting confusing, we rename this function to printf() in our application,
in homage to the print/print()-equivalent in C/C++. Also see the related
exercise at the end of this chapter.

The second tip is for the Python 2 BIF raw_input(). It changes its name
to input() in Python 3. This is further complicated by the fact that there is
also an input() function in Python 2 that is a security hazard and removed
from the language. In other words, raw_input() replaces and is renamed
to input() in Python 3. To continue honoring C/C++, we call this function
scanf() in our application.

The next tip is to remind you of the changes in the syntax for handling
exceptions. This subject is covered in detail in the Errors and Exceptions
chapter of Core Python Language Fundamentals and Core Python Program-
ming. You can read more about the update there, but for now, the funda-
mental change that you need to know about is this:

Old: except Exception, instance
New: except Exception as instance

However, this only matters if you save the instance because you’re inter-
ested in the cause of the exception. If it doesn’t matter or you’re not intend-
ing to use it, just leave it out. There’s nothing wrong with just: except
Exception.

That syntax does not change between Python 2 and 3. In earlier editions
of this book, we used except Exception, e. For this edition, we’ve removed
the “, e” altogether rather than changing it to “as e” to make porting eas-
ier.

Finally, the last change we’re going to do is tied specifically to our exam-
ple, whereas those other changes are general porting suggestions. At the
time of this writing, the main C-based MySQL-Python adapter, better
known by its package name, MySQLdb, has not yet been ported to Python 3.
However, there is another MySQL adapter, and it’s called MySQL Connec-
tor/Python and has a package name of mysql.connector.

MySQL Connector/Python implements the MySQL client protocol in
pure Python, so neither MySQL libraries nor compilation are necessary,
and best of all, there is a port to Python 3. Why is this a big deal? It gives
Python 3 users access to MySQL databases, that’s all!

ptg7615500

6.2 The Python DB-API 281

Making all of these changes and additions to ushuffle_db.py, we arrive
at what I’d like to refer to as the “universal” version of the application,
ushuffle_dbU.py, which you can see in Example 6-1.

Example 6-1 Database Adapter Example (ushuffle_dbU.py)

This script performs some basic operations by using a variety of databases
(MySQL, SQLite, Gadfly). It runs under Python 2 and 3 without any code
changes, and components will be (re)used in future sections of this chapter.

1 #!/usr/bin/env python
2
3 from distutils.log import warn as printf
4 import os
5 from random import randrange as rand
6
7 if isinstance(__builtins__, dict) and 'raw_input' in __builtins__:
8 scanf = raw_input
9 elif hasattr(__builtins__, 'raw_input'):
10 scanf = raw_input
11 else:
12 scanf = input
13
14 COLSIZ = 10
15 FIELDS = ('login', 'userid', 'projid')
16 RDBMSs = {'s': 'sqlite', 'm': 'mysql', 'g': 'gadfly'}
17 DBNAME = 'test'
18 DBUSER = 'root'
19 DB_EXC = None
20 NAMELEN = 16
21
22 tformat = lambda s: str(s).title().ljust(COLSIZ)
23 cformat = lambda s: s.upper().ljust(COLSIZ)
24
25 def setup():
26 return RDBMSs[raw_input('''
27 Choose a database system:
28
29 (M)ySQL
30 (G)adfly
31 (S)QLite
32
33 Enter choice: ''').strip().lower()[0]]
34
35 def connect(db, DBNAME):
36 global DB_EXC
37 dbDir = '%s_%s' % (db, DBNAME)
38

(Continued)

ptg7615500

282 Chapter 6 • Database Programming

Example 6-1 Database Adapter Example (ushuffle_dbU.py) (Continued)

39 if db == 'sqlite':
40 try:
41 import sqlite3
42 except ImportError:
43 try:
44 from pysqlite2 import dbapi2 as sqlite3
45 except ImportError:
46 return None
47
48 DB_EXC = sqlite3
49 if not os.path.isdir(dbDir):
50 os.mkdir(dbDir)
51 cxn = sqlite.connect(os.path.join(dbDir, DBNAME))
52
53 elif db == 'mysql':
54 try:
55 import MySQLdb
56 import _mysql_exceptions as DB_EXC
57
58 try:
59 cxn = MySQLdb.connect(db=DBNAME)
60 except DB_EXC.OperationalError:
61 try:
62 cxn = MySQLdb.connect(user=DBUSER)
63 cxn.query('CREATE DATABASE %s' % DBNAME)
64 cxn.commit()
65 cxn.close()
66 cxn = MySQLdb.connect(db=DBNAME)
67 except DB_EXC.OperationalError:
68 return None
69 except ImportError:
70 try:
71 import mysql.connector
72 import mysql.connector.errors as DB_EXC
73 try:
74 cxn = mysql.connector.Connect(**{
75 'database': DBNAME,
76 'user': DBUSER,
77 })
78 except DB_EXC.InterfaceError:
79 return None
80 except ImportError:
81 return None
82
83 elif db == 'gadfly':
84 try:
85 from gadfly import gadfly
86 DB_EXC = gadfly
87 except ImportError:
88 return None
89

ptg7615500

6.2 The Python DB-API 283

90 try:
91 cxn = gadfly(DBNAME, dbDir)
92 except IOError:
93 cxn = gadfly()
94 if not os.path.isdir(dbDir):
95 os.mkdir(dbDir)
96 cxn.startup(DBNAME, dbDir)
97 else:
98 return None
99 return cxn
100
101 def create(cur):
102 try:
103 cur.execute('''
104 CREATE TABLE users (
105 login VARCHAR(%d),
106 userid INTEGER,
107 projid INTEGER)
108 ''' % NAMELEN)
109 except DB_EXC.OperationalError, e:
110 drop(cur)
111 create(cur)
112
113 drop = lambda cur: cur.execute('DROP TABLE users')
114
115 NAMES = (
116 ('aaron', 8312), ('angela', 7603), ('dave', 7306),
117 ('davina',7902), ('elliot', 7911), ('ernie', 7410),
118 ('jess', 7912), ('jim', 7512), ('larry', 7311),
119 ('leslie', 7808), ('melissa', 8602), ('pat', 7711),
120 ('serena', 7003), ('stan', 7607), ('faye', 6812),
121 ('amy', 7209), ('mona', 7404), ('jennifer', 7608),
122)
123
124 def randName():
125 pick = set(NAMES)
126 while pick:
127 yield pick.pop()
128
129 def insert(cur, db):
130 if db == 'sqlite':
131 cur.executemany("INSERT INTO users VALUES(?, ?, ?)",
132 [(who, uid, rand(1,5)) for who, uid in randName()])
133 elif db == 'gadfly':
134 for who, uid in randName():
135 cur.execute("INSERT INTO users VALUES(?, ?, ?)",
136 (who, uid, rand(1,5)))
137 elif db == 'mysql':
138 cur.executemany("INSERT INTO users VALUES(%s, %s, %s)",
139 [(who, uid, rand(1,5)) for who, uid in randName()])
140
141 getRC = lambda cur: cur.rowcount if hasattr(cur,

'rowcount') else -1
142

(Continued)

ptg7615500

284 Chapter 6 • Database Programming

Example 6-1 Database Adapter Example (ushuffle_dbU.py) (Continued)

143 def update(cur):
144 fr = rand(1,5)
145 to = rand(1,5)
146 cur.execute(
147 "UPDATE users SET projid=%d WHERE projid=%d" % (to, fr))
148 return fr, to, getRC(cur)
149
150 def delete(cur):
151 rm = rand(1,5)
152 cur.execute('DELETE FROM users WHERE projid=%d' % rm)
153 return rm, getRC(cur)
154
155 def dbDump(cur):
156 cur.execute('SELECT * FROM users')
157 printf('\n%s' % ''.join(map(cformat, FIELDS)))
158 for data in cur.fetchall():
159 printf(''.join(map(tformat, data)))
160
161 def main():
162 db = setup()
163 printf('*** Connect to %r database' % db)
164 cxn = connect(db)
165 if not cxn:
166 printf('ERROR: %r not supported or unreachable, exit' % db)
167 return
168 cur = cxn.cursor()
169
170 printf('\n*** Creating users table')
171 create(cur)
172
173 printf('\n*** Inserting names into table')
174 insert(cur, db)
175 dbDump(cur)
176
177 printf('\n*** Randomly moving folks')
178 fr, to, num = update(cur)
179 printf('\t(%d users moved) from (%d) to (%d)' % (num, fr, to))
180 dbDump(cur)
181
182 printf('\n*** Randomly choosing group')
183 rm, num = delete(cur)
184 printf('\t(group #%d; %d users removed)' % (rm, num))
185 dbDump(cur)
186
187 printf('\n*** Dropping users table')
188 drop(cur)
189 printf('\n*** Close cxns')
190 cur.close()
191 cxn.commit()
192 cxn.close()
193
194 if __name__ == '__main__':
195 main()

ptg7615500

6.2 The Python DB-API 285

Line-by-Line Explanation

Lines 1–32
The first part of this script imports the necessary modules, creates some
global constants (the column size for display and the set of databases we are
supporting), and features the tformat(), cformat(), and setup() functions.

After the import statements, you’ll find some curious code (lines 7–12)
that finds the right function to which to alias from scanf(), our designated
command-line user input function. The elif and else are simpler to
explain: we’re checking to see if raw_input() exists as a BIF. If it does,
we’re in Python (1 or) 2 and should use that. Otherwise, we’re in Python 3
and should use its new name, input().

The other bit of complexity is the if statement. __builtins__ is only a
module in your application. In an imported module, __builtins__ is a
dict. The conditional basically says that if we were imported, check if
‘raw_input’ is a name in this dictionary; otherwise, it’s a module, so drop
down to the elif and else. Hope that makes sense!

With regard to the tformat() and cformat() functions, the former is the
format string for showing the titles; for instance, “tformat” means “title-
case formatter.” It’s just a cheap way to take names from the database,
which can be all lowercase (such as what we have), first letter capped cor-
rectly, all CAPS, etc., and make all the names uniform. The latter function’s
name stands for “CAPS formatter.” All it does is take each column name
and turn it into a header by calling the str.upper() method.

Both formatters left-justify their output and limit it to ten characters in
width because it’s not expected the data will exceed that—our sample data
certainly doesn’t, so if you want to use your own, change COLSIZ to what-
ever works for your data. It was simpler to write these as lambdas rather
than traditional functions although you can certainly do that, as well.

One can argue that this is probably a lot of effort to do this when all
scanf() will do is prompt the user in setup() to select the RDBMS to use
for any particular execution of this script (or derivatives in the remainder
of the chapter). However, the point is to show you some code that you
might be able to use elsewhere. We haven’t claimed that this is a script
you’d use in production have we?

We already have the user output function—as mentioned earlier, we’re
using distutils.log.warn() in place of print for Python 2 and print() for
Python 3. In our application, we import it (line 3) as printf().

Most of the constants are fairly self-explanatory. One exception is
DB_EXC, which stands for DataBase EXCeption. This variable will eventually

ptg7615500

286 Chapter 6 • Database Programming

be assigned the database exception module for the specific database sys-
tem with which users choose to use to run this application. In other
words, for users who choose MySQL, DB_EXC will be _mysql_exceptions,
etc. If we built this application in a more object-oriented way, we would
have a class in which this would simply be an instance attribute, such as
self.db_exc_module.

Lines 35–99
The guts of consistent database access happen here in the connect()
function. At the beginning of each section (“section” here refers to each
database’s if clause), we attempt to load the corresponding database mod-
ules. If a suitable one is not found, None is returned to indicate that the
database system is not supported.

Once a connection is made, all of other code is database and adapter
independent and should work across all connections. (The only exception
in our script is insert().) In all three subsections of this set of code, you
will notice that a valid connection should be passed back as cxn.

If SQLite is chosen, we attempt to load a database adapter. We first try
to load the standard library’s sqlite3 module (Python 2.5+). If that fails,
we look for the third-party pysqlite2 package. This is to support version
2.4.x and older systems with the pysqlite adapter installed. If either is
found, we then check to ensure that the directory exists, because the data-
base is file based. (You can also choose to create an in-memory database by
substituting :memory: as the filename.) When the connect() call is made to
SQLite, it will either use one that already exists or make a new one using
that path if one does not exist.

MySQL uses a default area for its database files and does not require
this to come from the user. The most popular MySQL adapter is the
MySQLdb package, so we try to import this first. Like SQLite, there is a “plan
B,” the mysql.connector package—a good choice because it’s compatible
with both Python 2 and 3. If neither is found, MySQL isn’t supported and
None is returned.

The last database supported by our application is Gadfly. (At the time of
this writing, this database is mostly, but not fully, DB-API-compliant, and
you will see this in this application.) It uses a startup mechanism similar to
that of SQLite: it starts up with the directory where the database files
should be. If it is there, fine, but if not, you have to take a roundabout way
to start up a new database. (Why this is, we are not sure. We believe that
the startup() functionality should be merged into that of the construc-
tor gadfly.gadfly().)

ptg7615500

6.2 The Python DB-API 287

Lines 101–113
The create() function creates a new users table in our database. If there is
an error, it is almost always because the table already exists. If this is the
case, drop the table and re-create it by recursively calling this function
again. This code is dangerous in that if the re-creation of the table still fails,
you will have infinite recursion until your application runs out of memory.
You will fix this problem in one of the exercises at the end of the chapter.

The table is dropped from the database with the one-liner drop(), writ-
ten as a lambda.

Lines 115–127
The next blocks of code feature a constant set of NAMES and user IDs, fol-
lowed by the generator randName(). NAMES is a tuple that must be converted
to a set for use in randName() because we alter it in the generator, remov-
ing one name at a time until the names are exhausted. Because this is
destructive behavior and is used often in the application, it’s best to set
NAMES as the canonical source and just copy its contents to another data
structure to be destroyed each time the generator is used.

Lines 129–139
The insert() function is the only other place where database-dependent
code lives. This is because each database is slightly different in one way or
another. For example, both the adapters for SQLite and MySQL are DB-
API-compliant, so both of their cursor objects have an executemany() func-
tion, whereas Gadfly does not, so rows must be inserted one at a time.

Another quirk is that both SQLite and Gadfly use the qmark parameter
style, whereas MySQL uses format. Because of this, the format strings are
different. If you look carefully, however, you will see that the arguments
themselves are created in a very similar fashion.

What the code does is this: for each name-userID pair, it assigns that
individual to a project group (given by its project ID or projid). The proj-
ect ID is chosen randomly out of four different groups (randrange(1,5)).

Line 141
This single line represents a conditional expression (read as: Python ter-
nary operator) that returns the rowcount of the last operation (in terms of
rows altered), or if the cursor object does not support this attribute (mean-
ing it is not DB-API–compliant), it returns –1.

ptg7615500

288 Chapter 6 • Database Programming

Conditional expressions were added in Python 2.5, so if you are using
version 2.4.x or older, you will need to convert it back to the “old-style”
way of doing it:

getRC = lambda cur: (hasattr(cur, 'rowcount') \
 and [cur.rowcount] or [-1])[0]

If you are confused by this line of code, don’t worry about it. Check the
FAQ to see why this is, and get a taste of why conditional expressions
were finally added to Python in version 2.5. If you are able to figure it out,
then you have developed a solid understanding of Python objects and
their Boolean values.

Lines 143–153
The update() and delete() functions randomly choose folks from one
group. If the operation is update, move them from their current group to
another (also randomly chosen); if it is delete, remove them altogether.

Lines 155–159
The dbDump() function pulls all rows from the database, formats them for
printing, and displays them to the user. The displayed output requires the
assistance of the cformat() (to display the column headers) and tformat()
(to format each user row).

First, you should see that the data was extracted after the SELECT by
the fetchall() method. So as we iterate each user, take the three col-
umns (login, userid, projid) and pass them to tformat() via map() to con-
vert them to strings (if they are not already), format them as titlecase, and
then format the complete string to be COLSIZ columns, left-justified (right-
hand space padding).

Lines 161–195
The director of this movie is main(). It makes individual calls to each func-
tion described above that defines how this script works (assuming that it
does not exit due to either not finding a database adapter or not being able
to obtain a connection [lines 164–166]). The bulk of it should be fairly self-
explanatory, given the proximity of the output statements. The last bits
wrap up the cursor and connection.

2.5

ptg7615500

6.3 ORMs 289

6.3 ORMs
As seen in the previous section, a variety of different database systems are
available today, and most of them have Python interfaces with which you
can harness their power. The only drawback to those systems is the need
to know SQL. If you are a programmer who feels more comfortable with
manipulating Python objects instead of SQL queries, yet still want to use a
relational database as your data back-end, then you would probably prefer
to use ORMs.

6.3.1 Think Objects, Not SQL

Creators of these systems have abstracted away much of the pure SQL
layer and implemented objects in Python that you can manipulate to
accomplish the same tasks without having to generate the required lines
of SQL. Some systems allow for more flexibility if you do have to slip in a
few lines of SQL, but for the most part, you can avoid almost all the gen-
eral SQL required.

Database tables are magically converted to Python classes with columns
and features as attributes, and methods responsible for database opera-
tions. Setting up your application to an ORM is somewhat similar to that
of a standard database adapter. Because of the amount of work that ORMs
perform on your behalf, some things are actually more complex or require
more lines of code than using an adapter directly. Hopefully, the gains you
achieve in productivity make up for a little bit of extra work.

6.3.2 Python and ORMs

The most well-known Python ORMs today are SQLAlchemy (http://sqlal-
chemy.org) and SQLObject (http://sqlobject.org). We will give you exam-
ples of both because the systems are somewhat disparate due to different
philosophies, but once you figure these out, moving on to other ORMs is
much simpler.

Some other Python ORMs include Storm, PyDO/PyDO2, PDO, Dejavu,
PDO, Durus, QLime, and ForgetSQL. Larger Web-based systems can also
have their own ORM component such as WebWare MiddleKit and

http://sqlalchemy.org
http://sqlalchemy.org
http://sqlobject.org

ptg7615500

290 Chapter 6 • Database Programming

Django’s Database API. Be advised that “well-known” does not mean best
for your application. Although these others were not included in our discus-
sion, that does not mean that they would not be right for your application.

Setup and Installation

Because neither SQLAlchemy nor SQLObject are in the standard library,
you’ll need to download and install them on your own. (Usually this is
easily taken care of with the easy_install or pip tools.)

At the time of this writing, all of the software packages described in this
chapter are available in Python 2; only SQLAlchemy, SQLite, and the
MySQL Connector/Python adapter are available in Python 3. The sqlite3
package is part of the standard library for Python 2.5+ and 3.x, so you
don’t need to do anything unless you’re using version 2.4 and older.

If you’re starting on a computer with only Python 3 installed, you’ll
need to get Distribute (which includes easy_install) first. You’ll need a
Web browser (or the curl command if you have it) and to download the
installation file (available at http://python-distribute.org/distribute_setup.py),
and then get SQLAlchemy with easy_install. Here is what this entire
process might look like on a Windows-based PC:

C:\WINDOWS\Temp>C:\Python32\python distribute_setup.py
Extracting in c:\docume~1\wesley\locals~1\temp\tmp8mcddr
Now working in c:\docume~1\wesley\locals~1\temp\tmp8mcddr\distribute-
0.6.21
Installing Distribute
warning: no files found matching 'Makefile' under directory 'docs'
warning: no files found matching 'indexsidebar.html' under directory
'docs'
creating build
creating build\src
 :
Installing easy_install-3.2.exe script to C:\python32\Scripts

Installed c:\python32\lib\site-packages\distribute-0.6.21-py3.2.egg
Processing dependencies for distribute==0.6.21
Finished processing dependencies for distribute==0.6.21
After install bootstrap.
Creating C:\python32\Lib\site-packages\setuptools-0.6c11-py3.2.egg-info
Creating C:\python32\Lib\site-packages\setuptools.pth

2.5, 3.x

http://python-distribute.org/distribute_setup.py

ptg7615500

6.3 ORMs 291

C:\WINDOWS\Temp>
C:\WINDOWS\Temp>C:\Python32\Scripts\easy_install sqlalchemy
Searching for sqlalchemy
Reading http://pypi.python.org/simple/sqlalchemy/
Reading http://www.sqlalchemy.org
Best match: SQLAlchemy 0.7.2
Downloading http://pypi.python.org/packages/source/S/SQLAlchemy/
SQLAlchemy-0.7.2.tar.gz#md5=b84a26ae2e5de6f518d7069b29bf8f72
 :
Adding sqlalchemy 0.7.2 to easy-install.pth file
Installed c:\python32\lib\site-packages\sqlalchemy-0.7.2-py3.2.egg
Processing dependencies for sqlalchemy
Finished processing dependencies for sqlalchemy

6.3.3 Employee Role Database Example

We will port our user shuffle application ushuffle_db.py to both SQLAl-
chemy and SQLObject. MySQL will be the back-end database server for
both. You will note that we implement these as classes because there is
more of an object feel to using ORMs, as opposed to using raw SQL in a
database adapter. Both examples import the set of NAMES and the random
name chooser from ushuffle_db.py. This is to avoid copying and pasting
the same code everywhere as code reuse is a good thing.

6.3.4 SQLAlchemy

We start with SQLAlchemy because its interface is somewhat closer to
SQL than SQLObject’s. SQLObject is simpler, more Pythonic, and faster,
whereas SQLAlchemy abstracts really well to the object world and also
gives you more flexibility in issuing raw SQL, if you have to.

Examples 6-2 and 6-3 illustrate that the ports of our user shuffle exam-
ples using both these ORMs are very similar in terms of setup, access, and
overall number of lines of code. Both also borrow the same set of func-
tions and constants from ushuffle_db{,U}.py.

ptg7615500

292 Chapter 6 • Database Programming

Example 6-2 SQLAlchemy ORM Example (ushuffle_sad.py)

This user shuffle Python 2.x and 3.x-compatible application features the
SQLAlchemy ORM paired up with MySQL or SQLite databases as back-ends.

1 #!/usr/bin/env python
2
3 from distutils.log import warn as printf
4 from os.path import dirname
5 from random import randrange as rand
6 from sqlalchemy import Column, Integer, String, create_engine, exc, orm
7 from sqlalchemy.ext.declarative import declarative_base
8 from ushuffle_dbU import DBNAME, NAMELEN, randName,

FIELDS, tformat, cformat, setup
9
10 DSNs = {
11 'mysql': 'mysql://root@localhost/%s' % DBNAME,
12 'sqlite': 'sqlite:///:memory:',
13 }
14
15 Base = declarative_base()
16 class Users(Base):
17 __tablename__ = 'users'
18 login = Column(String(NAMELEN))
19 userid = Column(Integer, primary_key=True)
20 projid = Column(Integer)
21 def __str__(self):
22 return ''.join(map(tformat,
23 (self.login, self.userid, self.projid)))
24
25 class SQLAlchemyTest(object):
26 def __init__(self, dsn):
27 try:
28 eng = create_engine(dsn)
29 except ImportError:
30 raise RuntimeError()
31
32 try:
33 eng.connect()
34 except exc.OperationalError:
35 eng = create_engine(dirname(dsn))
36 eng.execute('CREATE DATABASE %s' % DBNAME).close()
37 eng = create_engine(dsn)
38
39 Session = orm.sessionmaker(bind=eng)
40 self.ses = Session()
41 self.users = Users.__table__
42 self.eng = self.users.metadata.bind = eng
43

ptg7615500

6.3 ORMs 293

44 def insert(self):
45 self.ses.add_all(
46 Users(login=who, userid=userid, projid=rand(1,5)) \
47 for who, userid in randName()
48)
49 self.ses.commit()
50
51 def update(self):
52 fr = rand(1,5)
53 to = rand(1,5)
54 i = -1
55 users = self.ses.query(
56 Users).filter_by(projid=fr).all()
57 for i, user in enumerate(users):
58 user.projid = to
59 self.ses.commit()
60 return fr, to, i+1
61
62 def delete(self):
63 rm = rand(1,5)
64 i = -1
65 users = self.ses.query(
66 Users).filter_by(projid=rm).all()
67 for i, user in enumerate(users):
68 self.ses.delete(user)
69 self.ses.commit()
70 return rm, i+1
71
72 def dbDump(self):
73 printf('\n%s' % ''.join(map(cformat, FIELDS)))
74 users = self.ses.query(Users).all()
75 for user in users:
76 printf(user)
77 self.ses.commit()
78
79 def __getattr__(self, attr): # use for drop/create
80 return getattr(self.users, attr)
81
82 def finish(self):
83 self.ses.connection().close()
84
85 def main():
86 printf('*** Connect to %r database' % DBNAME)
87 db = setup()
88 if db not in DSNs:
89 printf('\nERROR: %r not supported, exit' % db)
90 return
91
92 try:
93 orm = SQLAlchemyTest(DSNs[db])
94 except RuntimeError:
95 printf('\nERROR: %r not supported, exit' % db)
96 return
97

(Continued)

ptg7615500

294 Chapter 6 • Database Programming

Line-by-Line Explanation

Lines 1–13
As expected, we begin with module imports and constants. We follow the
suggested style guideline of importing Python Standard Library modules
first (distutils, os.path, random), followed by third-party or external
modules (sqlalchemy), and finally, local modules to our application
(ushuffle_dbU), which in our case is providing the majority of the con-
stants and utility functions.

The other constant contains the Database Source Names (DSNs), which
you can think of as database connection URIs. In previous editions of this
book, this application only supported MySQL, so we’re happy to be able
to add SQLite to the mix. In the ushuffle_dbU.py application seen earlier,
we used the file system with SQLite. Here we’ll use the in-memory version
(line 12).

Example 6-2 SQLAlchemy ORM Example (ushuffle_sad.py) (Continued)

98 printf('\n*** Create users table (drop old one if appl.)')
99 orm.drop(checkfirst=True)
100 orm.create()
101
102 printf('\n*** Insert names into table')
103 orm.insert()
104 orm.dbDump()
105
106 printf('\n*** Move users to a random group')
107 fr, to, num = orm.update()
108 printf('\t(%d users moved) from (%d) to (%d)' % (num, fr, to))
109 orm.dbDump()
110
111 printf('\n*** Randomly delete group')
112 rm, num = orm.delete()
113 printf('\t(group #%d; %d users removed)' % (rm, num))
114 orm.dbDump()
115
116 printf('\n*** Drop users table')
117 orm.drop()
118 printf('\n*** Close cxns')
119 orm.finish()
120
121 if __name__ == '__main__':
122 main()

ptg7615500

6.3 ORMs 295

CORE NOTE: Active Record pattern

Active Record is a software design pattern (http://en.wikipedia.org/wiki/Active_
record_pattern) that ties manipulation of objects to equivalent actions on a data-
base. ORM objects essentially represent database rows such that when an object is
created, a row representing its data is written to the database automatically. When
an object is updated, so is the corresponding row. Similarly, when an object is
removed, its row in the database is deleted.

In the beginning, SQLAlchemy didn’t have an Active Record flavored declara-
tive layer to make working with the ORM less complex. Instead, it followed the
“Data Mapper” pattern in which objects do not have the ability to modify the
database itself; rather, they come with actions that the user can call upon to
make those changes happen. Yes, an ORM can substitute for having to issue
raw SQL, but developers are still responsible for explicitly making the equiva-
lent database operations to persist additions, updates, and deletions.

A desire for an Active Record-like interface spawned the creation of projects
like ActiveMapper and TurboEntity. Eventually, both were replaced by Elixir
(http://elixir.ematia.de), which became the most popular declarative layer for
SQLAlchemy. Some developers find it Rails-like in nature, whereas others find
it overly simplistic, abstracting away too much functionality.

However, SQLAlchemy eventually came up with its own declarative layer
which also adheres to the Active Record pattern. It’s fairly lightweight, simple,
and gets the job done, so we’ll use it in our example because it’s is more beginner-
friendly. However, if you do find it too lightweight, you can still use the
__table__ object for more traditional access.

Lines 15–23
The next code block represents the use of SQLAlchemy’s declarative layer.
Its use defines objects that, as manipulated, will result in the equivalent
database operation. As mentioned in the preceding Core Note, it might
not be as feature-rich as the third-party tools, but it suffices for our simple
example here.

To use it, you must import sqlalchemy.ext.declarative_base (line 7)
and use it to make a Base class (line 15) from which you derive your data
subclasses (line 16).

http://en.wikipedia.org/wiki/Active_record_pattern
http://en.wikipedia.org/wiki/Active_record_pattern
http://elixir.ematia.de

ptg7615500

296 Chapter 6 • Database Programming

The next part of the class definition contains the __tablename__ attri-
bute, which is the database table name to which it is mapped. Alterna-
tively, you can define a lower-level sqlalchemy.Table object explicitly, in
which case you would alias to __table__, instead. In this application, we’re
taking a hybrid approach, mostly using the objects for row access, but we’ve
saved off the table (line 41) for table-level actions (create and drop).

After that are the “column” attributes; check the docs for all allowed
data types. Finally, we have an __str__() method definition which returns
a human-readable string representation of a row of data. Because this out-
put is customized (with the help of the tformat() function), we don’t rec-
ommend this in practice. If you wanted to reuse this code in another
application, that’s made more difficult because you might wish the output
to be formatted differently. More likely, you’ll subclass this one and mod-
ify the child class __str__() method, instead. SQLAlchemy does support
table inheritance.

Lines 25–42
The class initializer, like ushuffle_dbU.connect(), does everything it can
to ensure that there is a database available, and then saves a connection to
it. First, it attempts to use the DSN to create an engine to the database. An
engine is the main database manager. For debugging purposes, you might
wish to see the ORM-generated SQL. To do that, just set the echo parame-
ter, e.g., create_engine('sqlite:///:memory:', echo=True).

Engine creation failure (lines 29–30) means that SQLAlchemy isn’t able
to support the chosen database, usually an ImportError, because it cannot
find an installed adapter. In this case, we fail back to the setup() function
to inform the user.

Assuming that an engine was successfully created, the next step is to try
a database connection. A failure usually means that the database itself (or
its server) is reachable, but in this case, the database you want to use to
store your data does not exist, so we attempt to create it here and retry the
connection (lines 34–37). Notice that we were sneaky in using os.path.
dirname() to strip off the database name and leave the rest of the DSN
intact so that the connection works (line 35).

This is the only place you will see raw SQL (line 36) because this type of
activity is typically an operational task, not application-oriented. All other
database operations happen under the table (pun not originally intended)
via object manipulation or by calling a database table method via delega-
tion (more on this a bit later in lines 44–70).

ptg7615500

6.3 ORMs 297

The last section of code (lines 39–42) creates a session object to manage
individual transaction-flavored objects involving one or more database
operations that all must be committed for the data to be written. We then
save the session object plus the user’s table and engine as instance attri-
butes. The additional binding of the engine to the table’s metadata (line 42)
means to bind all operations on this table to the given engine. (You can
bind to other engines or connections.)

Lines 44–70
These next three methods represent the core database functionality of row
insertion (lines 44–49), update (lines 51–60), and deletion (lines 62–70).
Insertion employs a session.add_all() method, which takes an iterable
and builds up a set of insert operations. At the end, you can decide
whether to issue a commit as we did (line 49) or a rollback.

Both update() and delete() feature a session query and use the
query.filter_by() method for lookup. Updating randomly chooses mem-
bers from one product group (fr) and moves them to another project by
changing those IDs to another value (to). The counter (i) tracks the row-
count of how many users were affected. Deleting involves randomly
choosing a theoretical company project by ID (rm) that was cancelled, and
because of which, employees laid-off. Both commit via the session object
once the operations are carried out.

Note that there are equivalent query object update() and delete()
methods that we aren’t using in our application. They reduce the amount
of code necessary as they operate in bulk and return the rowcount. Porting
ushuffle_sad.py to using these methods is an exercise at the end of the
chapter.

Here are some of the more commonly-used query methods:
• filter_by() Extract values with specific column values as

keyword parameters.

• filter() Similar to filter_by() but more flexible as you
provide an expression, instead. For example:
query.filter_by(userid=1) is the same as
query.filter(Users.userid==1).

• order_by() Analogous to the SQL ORDER BY directive. The
default is ascending. You’ll need to import sqlalchemy.desc()
for descending sort.

• limit() Analogous to the SQL LIMIT directive.

ptg7615500

298 Chapter 6 • Database Programming

• offset() Analogous to the SQL OFFSET directive.

• all() Return all objects that match the query.

• one() Return only one (the next) object that matches
the query.

• first() Return the first object that matches the query.

• join() Create a SQL JOIN given the desired JOIN criteria.

• update() Bulk update rows.

• delete() Bulk delete rows.

Most of these methods result in another Query object and can thus be
chained together, for example, query.order_by(desc(Users.userid)).
limit(5).offset(5).

If you wish to use LIMIT and OFFSET, the more Pythonic way is to take your
query object and apply a slice to it, for example, query.order_by (User.userid)
[10:20] for the second group of ten users with the oldest user IDs.

To see Query methods, read the documentation at http://www. sqlalchemy.
org/docs/orm/query.html#sqlalchemy.orm.query.Query. JOINs are a large
topic on their own, so there is additional and more specific information at
http://www.sqlalchemy.org/docs/orm/tutorial.html#ormtutorial-joins. You’ll
get a chance to play with some of these methods in the chapter exercises.

So far, we’ve only discussed querying, thus row-level operations. What
about table create and drop actions? Shouldn’t there be functions that look
like the following?

def drop(self):
 self.users.drop()

Here we made a decision to use delegation again (as introduced in the
object-oriented programming chapter in Core Python Language Fundamentals
or Core Python Programming). Delegation is where missing attributes in an
instance are required from another object in our instance (self.users)
which has it; for example, wherever you see __getattr__(), self.users.
create(), self.users.drop(), etc. (lines 79–80, 98–99, 116), think delegation.

Lines 72–77
The responsibility of displaying proper output to the screen belongs to the
dbDump() method. It extracts the rows from the database and pretty-prints
the data just like its equivalent in ushuffle_dbU.py. In fact, they are
nearly identical.

http://www.sqlalchemy.org/docs/orm/tutorial.html#ormtutorial-joins
http://www.sqlalchemy.org/docs/orm/query.html#sqlalchemy.orm.query.Query
http://www.sqlalchemy.org/docs/orm/query.html#sqlalchemy.orm.query.Query

ptg7615500

6.3 ORMs 299

Lines 79–83
We just discussed delegation, and using __getattr__() lets us deliberately
avoid creating drop() and create() methods because it would just respec-
tively call the table’s drop() or create() methods, anyway. There is no
added functionality, so why create yet another function to have to main-
tain? We would like to remind you that __getattr__() is only called when-
ever an attribute lookup fails. (This is as opposed to __getattribute__(),
which is called, regardless.)

If we call orm.drop() and find no such method, getattr(orm, 'drop') is
invoked. When that happens, __getattr__() is called and delegates the
attribute name to self.users. The interpreter will find that self.users has
a drop attribute and pass that method call to it: self. users.drop().

The last method is finish(), which does the final cleanup of closing the
connection. Yes, we could have written this as a lambda but chose not to in
case cleaning up of cursors and connections, etc. requires more than a single
statement.

Lines 85–122
The main() function drives our application. It creates a SQLAlchemyTest
object and uses that for all database operations. The script is the same
as that of our original application, ushuffle_dbU.py. You will notice that
the database parameter db is optional and does not serve any purpose
here in ushuffle_sad.py or the upcoming SQLObject version, ushuffle_
so.py. This is a placeholder for you to add support for other RDBMSs
in these applications (see the exercises at the end of the chapter).

Upon running this script, you might get output that looks like this on a
Windows-based PC:

C:\>python ushuffle_sad.py
*** Connect to 'test' database

Choose a database system:

(M)ySQL
(G)adfly
(S)QLite

Enter choice: s

*** Create users table (drop old one if appl.)

ptg7615500

300 Chapter 6 • Database Programming

*** Insert names into table

LOGIN USERID PROJID
Faye 6812 2
Serena 7003 4
Amy 7209 2
Dave 7306 3
Larry 7311 2
Mona 7404 2
Ernie 7410 1
Jim 7512 2
Angela 7603 1
Stan 7607 2
Jennifer 7608 4
Pat 7711 2
Leslie 7808 3
Davina 7902 3
Elliot 7911 4
Jess 7912 2
Aaron 8312 3
Melissa 8602 1

*** Move users to a random group
 (3 users moved) from (1) to (3)

LOGIN USERID PROJID
Faye 6812 2
Serena 7003 4
Amy 7209 2
Dave 7306 3
Larry 7311 2
Mona 7404 2
Ernie 7410 3
Jim 7512 2
Angela 7603 3
Stan 7607 2
Jennifer 7608 4
Pat 7711 2
Leslie 7808 3
Davina 7902 3
Elliot 7911 4
Jess 7912 2
Aaron 8312 3
Melissa 8602 3

*** Randomly delete group
 (group #3; 7 users removed)

LOGIN USERID PROJID
Faye 6812 2
Serena 7003 4
Amy 7209 2

ptg7615500

6.3 ORMs 301

Larry 7311 2
Mona 7404 2
Jim 7512 2
Stan 7607 2
Jennifer 7608 4
Pat 7711 2
Elliot 7911 4
Jess 7912 2

*** Drop users table

*** Close cxns
C:\>

Explicit/“Classical” ORM Access

We mentioned early on that we chose to use the declarative layer in SQL-
Alchemy for our example. However, we feel it’s also educational to look at
the more “explicit” form of ushuffle_sad.py (User shuffle SQLAlchemy
declarative), which we’ll name as ushuffle_sae.py (User shuffle SQLAl-
chemy explicit). You’ll notice that they look extremely similar to each
other.

A line-by-line explanation isn’t provided due to its similarity with
ushuffle_sad.py, but it can be downloaded from http://corepython.com.
The point is to both preserve this from previous editions as well as to let
you compare explicit versus declarative. SQLAlchemy has matured since
the book’s previous edition, so we wanted to bring it up-to-date, as well.
Here is ushuffle_sae.py:

#!/usr/bin/env python

from distutils.log import warn as printf
from os.path import dirname
from random import randrange as rand
from sqlalchemy import Column, Integer, String, create_engine,
 exc, orm, MetaData, Table
from sqlalchemy.ext.declarative import declarative_base
from ushuffle_dbU import DBNAME, NAMELEN, randName, FIELDS,
 tformat, cformat, setup

DSNs = {
 'mysql': 'mysql://root@localhost/%s' % DBNAME,
 'sqlite': 'sqlite:///:memory:',
}

class SQLAlchemyTest(object):
 def __init__(self, dsn):
 try:
 eng = create_engine(dsn)

http://corepython.com

ptg7615500

302 Chapter 6 • Database Programming

 except ImportError, e:
 raise RuntimeError()

 try:
 cxn = eng.connect()
 except exc.OperationalError:
 try:
 eng = create_engine(dirname(dsn))
 eng.execute('CREATE DATABASE %s' % DBNAME).close()
 eng = create_engine(dsn)
 cxn = eng.connect()
 except exc.OperationalError:
 raise RuntimeError()

 metadata = MetaData()
 self.eng = metadata.bind = eng
 try:
 users = Table('users', metadata, autoload=True)
 except exc.NoSuchTableError:
 users = Table('users', metadata,
 Column('login', String(NAMELEN)),
 Column('userid', Integer),
 Column('projid', Integer),
)

 self.cxn = cxn
 self.users = users

 def insert(self):
 d = [dict(zip(FIELDS, [who, uid, rand(1,5)])) \
 for who, uid in randName()]
 return self.users.insert().execute(*d).rowcount

 def update(self):
 users = self.users
 fr = rand(1,5)
 to = rand(1,5)
 return (fr, to,
 users.update(users.c.projid==fr).execute(
 projid=to).rowcount)

 def delete(self):
 users = self.users
 rm = rand(1,5)
 return (rm,
 users.delete(users.c.projid==rm).execute().rowcount)

 def dbDump(self):
 printf('\n%s' % ''.join(map(cformat, FIELDS)))
 users = self.users.select().execute()

ptg7615500

6.3 ORMs 303

 for user in users.fetchall():
 printf(''.join(map(tformat, (user.login,
 user.userid, user.projid))))

 def __getattr__(self, attr):
 return getattr(self.users, attr)

 def finish(self):
 self.cxn.close()

def main():
 printf('*** Connect to %r database' % DBNAME)
 db = setup()
 if db not in DSNs:
 printf('\nERROR: %r not supported, exit' % db)
 return

 try:
 orm = SQLAlchemyTest(DSNs[db])
 except RuntimeError:
 printf('\nERROR: %r not supported, exit' % db)
 return

 printf('\n*** Create users table (drop old one if appl.)')
 orm.drop(checkfirst=True)
 orm.create()

 printf('\n*** Insert names into table')
 orm.insert()
 orm.dbDump()

 printf('\n*** Move users to a random group')
 fr, to, num = orm.update()
 printf('\t(%d users moved) from (%d) to (%d)' % (num, fr, to))
 orm.dbDump()

 printf('\n*** Randomly delete group')
 rm, num = orm.delete()
 printf('\t(group #%d; %d users removed)' % (rm, num))
 orm.dbDump()

 printf('\n*** Drop users table')
 orm.drop()
 printf('\n*** Close cxns')
 orm.finish()

if __name__ == '__main__':
 main()

ptg7615500

304 Chapter 6 • Database Programming

The noticeable major differences between ushuffle_sad.py and
ushuffle_sae.py are:

• Creates a Table object instead of declarative Base object

• Our election not to use Sessions; instead performing
individual units of work, auto-commit, non-transactional, etc.

• Uses the Table object for all database interaction rather than
Session Querys

To show sessions and explicit operations are not tied together, you’ll get
an exercise to roll Sessions into ushuffle_sae.py. Now that you’ve learned
SQLAlchemy, let’s move onto SQLObject and see a similar tool.

SQLObject

SQLObject was Python’s first major ORM. In fact, it’s a decade old! Ian
Bicking, its creator, released the first alpha version to the world in October
2002. (SQLAlchemy didn’t come along until February 2006.) At the time of
this writing, SQLObject is only available for Python 2.

As we mentioned earlier, SQLObject is more object-flavored (some feel
more Pythonic) and implemented the Active Record pattern for implicit
object-to-database access early on but doesn’t give you as much freedom
to use raw SQL for more ad hoc or customized queries. Many users claim
that it is easy to learn SQLAlchemy, but we’ll let you be the judge. Take a
look at ushuffle_so.py in Example 6-3, which is our port of ushuffle_
dbU.py and ushuffle_sad.py to SQLObject.

Example 6-3 SQLObject ORM Example (ushuffle_so.py)

This user shuffle Python 2.x and 3.x-compatible application features the
SQLObject ORM paired up with MySQL or SQLite databases as back-ends.

1 #!/usr/bin/env python
2
3 from distutils.log import warn as printf
4 from os.path import dirname
5 from random import randrange as rand
6 from sqlobject import *
7 from ushuffle_dbU import DBNAME, NAMELEN, randName, FIELDS,

tformat, cformat, setup
8

ptg7615500

6.3 ORMs 305

9 DSNs = {
10 'mysql': 'mysql://root@localhost/%s' % DBNAME,
11 'sqlite': 'sqlite:///:memory:',
12 }
13
14 class Users(SQLObject):
15 login = StringCol(length=NAMELEN)
16 userid = IntCol()
17 projid = IntCol()
18 def __str__(self):
19 return ''.join(map(tformat,
20 (self.login, self.userid, self.projid)))
21
22 class SQLObjectTest(object):
23 def __init__(self, dsn):
24 try:
25 cxn = connectionForURI(dsn)
26 except ImportError:
27 raise RuntimeError()
28 try:
29 cxn.releaseConnection(cxn.getConnection())
30 except dberrors.OperationalError:
31 cxn = connectionForURI(dirname(dsn))
32 cxn.query("CREATE DATABASE %s" % dbName)
33 cxn = connectionForURI(dsn)
34 self.cxn = sqlhub.processConnection = cxn
35
36 def insert(self):
37 for who, userid in randName():
38 Users(login=who, userid=userid, projid=rand(1,5))
39
40 def update(self):
41 fr = rand(1,5)
42 to = rand(1,5)
43 i = -1
44 users = Users.selectBy(projid=fr)
45 for i, user in enumerate(users):
46 user.projid = to
47 return fr, to, i+1
48
49 def delete(self):
50 rm = rand(1,5)
51 users = Users.selectBy(projid=rm)
52 i = -1
53 for i, user in enumerate(users):
54 user.destroySelf()
55 return rm, i+1
56
57 def dbDump(self):
58 printf('\n%s' % ''.join(map(cformat, FIELDS)))
59 for user in Users.select():
60 printf(user)
61
62 def finish(self):
63 self.cxn.close()
64

(Continued)

ptg7615500

306 Chapter 6 • Database Programming

Line-by-Line Explanation

Lines 1–12
The imports and constant declarations for this module are practically
identical to those of ushuffle_sad.py, except that we are using SQLObject
instead of SQLAlchemy.

Lines 14–20
The Users table extends the SQLObject.SQLObject class. We define the same
columns as before and also provide an __str__() for display output.

Example 6-3 SQLObject ORM Example (ushuffle_so.py) (Continued)

65 def main():
66 printf('*** Connect to %r database' % DBNAME)
67 db = setup()
68 if db not in DSNs:
69 printf('\nERROR: %r not supported, exit' % db)
70 return
71
72 try:
73 orm = SQLObjectTest(DSNs[db])
74 except RuntimeError:
75 printf('\nERROR: %r not supported, exit' % db)
76 return
77
78 printf('\n*** Create users table (drop old one if appl.)')
79 Users.dropTable(True)
80 Users.createTable()
81
82 printf('\n*** Insert names into table')
83 orm.insert()
84 orm.dbDump()
85
86 printf('\n*** Move users to a random group')
87 fr, to, num = orm.update()
88 printf('\t(%d users moved) from (%d) to (%d)' % (num, fr, to))
89 orm.dbDump()
90
91 printf('\n*** Randomly delete group')
92 rm, num = orm.delete()
93 printf('\t(group #%d; %d users removed)' % (rm, num))
94 orm.dbDump()
95
96 printf('\n*** Drop users table')
97 Users.dropTable()
98 printf('\n*** Close cxns')
99 orm.finish()
100
101 if __name__ == '__main__':
102 main()

ptg7615500

6.3 ORMs 307

Lines 22–34
The constructor for our class does everything it can to ensure that there is
a database available and returns a connection to it, just like our SQLAl-
chemy example. Similarly, this is the only place you will see real SQL. The
code works as described in the following, which bails on all errors:

• Try to establish a connection to an existing table (line 29); if it
works, we are done. It has to dodge exceptions like an
RDBMS adapter being available and the server online, and
then beyond that, the existence of the database.

• Otherwise, create the table; if so, we are done (lines 31–33).

• Once successful, we save the connection object in self.cxn.

Lines 36–55
The database operations happen in these lines. We have Insert (lines 36–38),
Update (lines 40–47), and Delete (lines 49–55). These are analogous to
the SQLAlchemy equivalents.

CORE TIP (HACKER’S CORNER): Reducing insert() down to one

(long) line of Python

We can reduce the code from the insert() method into a more obfuscated
“one-liner:”

[Users(**dict(zip(FIELDS, (who, userid, rand(1,5))))) \
 for who, userid in randName()]

We’re not in the business to encourage code that damages readability or executes
code explicitly by using a list comprehension; however, the existing solution
does have one flaw: it requires you to create new objects by explicitly naming
the columns as keyword arguments. By using FIELDS, you don’t need to know
the column names and wouldn’t need to fix as much code if those column names
changed, especially if FIELDS was in some configuration (not application) module.

Lines 57–63
This block starts with the same (and expected) dbDump() method, which
pulls the rows from the database and displays things nicely to the screen.
The finish() method (lines 62–63) closes the connection. We could not
use delegation for table drop as we did for the SQLAlchemy example
because the would-be delegated method for it is called dropTable(), not
drop().

ptg7615500

308 Chapter 6 • Database Programming

Lines 65–102
This is the main() function again. It works just like the one in
ushuffle_sad.py. Also, the db argument and DSNs constant are building
blocks for you to add support for other RDBMSs in these applications (see
the exercises at the end of the chapter).

Here is what your output might look like if you run ushuffle_so.py
(which is going to be nearly identical to the output from the ushuffle_
dbU.py and ushuffle_sa?.py scripts):

$ python ushuffle_so.py
*** Connect to 'test' database

Choose a database system:

(M)ySQL
(G)adfly
(S)QLite

Enter choice: s

*** Create users table (drop old one if appl.)

*** Insert names into table

LOGIN USERID PROJID
Jess 7912 2
Ernie 7410 1
Melissa 8602 1
Serena 7003 1
Angela 7603 1
Aaron 8312 4
Elliot 7911 3
Jennifer 7608 1
Leslie 7808 4
Mona 7404 4
Larry 7311 1
Davina 7902 3
Stan 7607 4
Jim 7512 2
Pat 7711 1
Amy 7209 2
Faye 6812 1
Dave 7306 4

*** Move users to a random group
 (5 users moved) from (4) to (2)

LOGIN USERID PROJID
Jess 7912 2
Ernie 7410 1

ptg7615500

6.4 Non-Relational Databases 309

Melissa 8602 1
Serena 7003 1
Angela 7603 1
Aaron 8312 2
Elliot 7911 3
Jennifer 7608 1
Leslie 7808 2
Mona 7404 2
Larry 7311 1
Davina 7902 3
Stan 7607 2
Jim 7512 2
Pat 7711 1
Amy 7209 2
Faye 6812 1
Dave 7306 2

*** Randomly delete group
 (group #3; 2 users removed)

LOGIN USERID PROJID
Jess 7912 2
Ernie 7410 1
Melissa 8602 1
Serena 7003 1
Angela 7603 1
Aaron 8312 2
Jennifer 7608 1
Leslie 7808 2
Mona 7404 2
Larry 7311 1
Stan 7607 2
Jim 7512 2
Pat 7711 1
Amy 7209 2
Faye 6812 1
Dave 7306 2

*** Drop users table

*** Close cxns
$

6.4 Non-Relational Databases
At the beginning of this chapter, we introduced you to SQL and looked at
relational databases. We then showed you how to get data to and from
those types of systems and presented a short lesson in porting to Python 3,
as well. Those sections were followed by sections on ORMs and how they

ptg7615500

310 Chapter 6 • Database Programming

let users avoid SQL by taking on more of an “object” approach, instead.
However, under the hood, both SQLAlchemy and SQLObject generate
SQL on your behalf. In the final section of this chapter, we’ll stay on
objects but move away from relational databases.

6.4.1 Introduction to NoSQL

Recent trends in Web and social services have led to the generation of data
in amounts and/or rates greater than relational databases can handle.
Think Facebook or Twitter scale data generation. Developers of Facebook
games or applications that handle Twitter stream data, for example, might
have applications that need to write to persistent storage at a rate of mil-
lions of rows or objects per hour. This scalability issue has led to the creation,
explosive growth, and deployment of non-relational or NoSQL databases.

There are plenty of options available here, but they’re not all the same.
In the non-relational (or non-rel for short) category alone, there are object
databases, key-value stores, document stores (or datastores), graph data-
bases, tabular databases, columnar/extensible record/wide-column databases,
multivalue databases, etc. At the end of the chapter, we’ll provide some
links to help you with your NoSQL research. At the time of this writing,
one of the more popular document store non-rel databases is MongoDB.

6.4.2 MongoDB

MongoDB has experienced a recent boost in popularity. Besides users,
documentation, community, and professional support, it has its own regu-
lar set of conferences—another sign of adoption. The main Web site claims
a variety of marquee users, including Craigslist, Shutterfly, foursquare,
bit.ly, SourceForge, etc. See http://www.mongodb.org/display/DOCS/
Production+Deployments for these and more. Regardless of its user base,
we feel that MongoDB is a good choice to introduce readers to NoSQL and
document datastores. For those who are curious, MongoDB’s document
storage system is written in C++.

If you were to compare document stores (MongoDB, CouchDB, Riak,
Amazon SimpleDB) in general to other non-rel databases, they fit some-
where between simple key-value stores, such as Redis, Voldemort, Ama-
zon Dynamo, etc., and column-stores, such as Cassandra, Google Bigtable,
and HBase. They’re somewhat like schemaless derivatives of relational

http://www.mongodb.org/display/DOCS/Production+Deployments
http://www.mongodb.org/display/DOCS/Production+Deployments

ptg7615500

6.4 Non-Relational Databases 311

databases, simpler and less constrained than columnar-based storage but
more flexible than plain key-value stores. They generally store their data
as JavaScript Object Notation (JSON) objects, which allows for data types,
such as strings, numbers, lists, as well as for nesting.

Some of the MongoDB (and NoSQL) terminology is also different from
those of relational database systems. For example, instead of thinking
about rows and columns, you might have to consider documents and col-
lections, instead. To better wrap your head around the change in terms,
you can take a quick look at the SQL-to-Mongo Mapping Chart at http://
www.mongodb.org/display/DOCS/SQL+to+Mongo+Mapping+Chart

MongoDB in particular stores its JSON payloads (documents)—think a
single Python dictionary—in a binary-encoded serialization, commonly
known as BSON format. However, regardless of its storage mechanism,
the main idea is that to developers, it looks like JSON, which in turn
looks like Python dictionaries, which brings us to where we want to be.
MongoDB is popular enough to have adapters available for most plat-
forms, including Python.

6.4.3 PyMongo: MongoDB and Python

Although there are a variety of MongoDB drivers for Python, the most for-
mal of them is PyMongo. The others are either more lightweight adapters
or are special-purpose. You can perform a search on mongo at the Cheese-
shop (http://pypi.python.org) to see all MongoDB-related Python pack-
ages. You can try any of them, as you prefer, but our example in this
chapter uses PyMongo.

Another benefit of the pymongo package is that it has been ported to
Python 3. Given the techniques already used earlier in this chapter, we
will only present one Python application that runs on both Python 2 and 3,
and depending on which interpreter you use to execute the script, it in
turn will utilize the appropriately-installed version of pymongo.

We won’t spend much time on installation as that is primarily beyond
the scope of this book; however, we can point you to mongodb.org to
download MongoDB and let you know that you can use easy_install or
pip to install PyMongo and/or PyMongo3. (Note: I didn’t have any prob-
lems getting pymongo3 on my Mac, but the install process choked in
Windows.) Whichever one you install (or both), it’ll look the same from
your code: import pymongo.

http://www.mongodb.org/display/DOCS/SQL+to+Mongo+Mapping+Chart
http://www.mongodb.org/display/DOCS/SQL+to+Mongo+Mapping+Chart
http://pypi.python.org

ptg7615500

312 Chapter 6 • Database Programming

To confirm that you have MongoDB installed and working correctly,
check out the QuickStart guide at http://www.mongodb.org/display/
DOCS/Quickstart and similarly, to confirm the same for PyMongo, ensure
that you can import the pymongo package. To get a feel for using MongoDB
with Python, run through the PyMongo tutorial at http://api.mongodb.
org/python/current/tutorial.html.

What we’re going to do here is port our existing user shuffle
(ushuffle_*.py) application that we’ve been looking at throughout this
chapter to use MongoDB as its persistent storage. You’ll notice that the fla-
vor of the application is similar to that of SQLAlchemy and SQLObject,
but it is even less substantial in that there isn’t as much overhead with
MongoDB as there is a typical relational database system such as MySQL.
Example 6-4 presents the Python 2 and 3-compatible ushuffle_mongo.py,
followed by the line-by-line explanation.

Example 6-4 MongoDB Example (ushuffle_mongo.py)

Our user shuffle Python 2.x and 3.x-compatible MongoDB and PyMongo
application.

1 #!/usr/bin/env python
2
3 from distutils.log import warn as printf
4 from random import randrange as rand
5 from pymongo import Connection, errors
6 from ushuffle_dbU import DBNAME, randName, FIELDS, tformat, cformat
7
8 COLLECTION = 'users'
9
10 class MongoTest(object):
11 def __init__(self):
12 try:
13 cxn = Connection()
14 except errors.AutoReconnect:
15 raise RuntimeError()
16 self.db = cxn[DBNAME]
17 self.users = self.db[COLLECTION]
18
19 def insert(self):
20 self.users.insert(
21 dict(login=who, userid=uid, projid=rand(1,5)) \
22 for who, uid in randName())
23
24 def update(self):
25 fr = rand(1,5)
26 to = rand(1,5)
27 i = -1
28 for i, user in enumerate(self.users.find({'projid': fr})):

http://www.mongodb.org/display/DOCS/Quickstart
http://www.mongodb.org/display/DOCS/Quickstart
http://api.mongodb.org/python/current/tutorial.html
http://api.mongodb.org/python/current/tutorial.html

ptg7615500

6.4 Non-Relational Databases 313

29 self.users.update(user,
30 {'$set': {'projid': to}})
31 return fr, to, i+1
32
33 def delete(self):
34 rm = rand(1,5)
35 i = -1
36 for i, user in enumerate(self.users.find({'projid': rm})):
37 self.users.remove(user)
38 return rm, i+1
39
40 def dbDump(self):
41 printf('\n%s' % ''.join(map(cformat, FIELDS)))
42 for user in self.users.find():
43 printf(''.join(map(tformat,
44 (user[k] for k in FIELDS))))
45
46 def finish(self):
47 self.db.connection.disconnect()
48
49 def main():
50 printf('*** Connect to %r database' % DBNAME)
51 try:
52 mongo = MongoTest()
53 except RuntimeError:
54 printf('\nERROR: MongoDB server unreachable, exit')
55 return
56
57 printf('\n*** Insert names into table')
58 mongo.insert()
59 mongo.dbDump()
60
61 printf('\n*** Move users to a random group')
62 fr, to, num = mongo.update()
63 printf('\t(%d users moved) from (%d) to (%d)' % (num, fr, to))
64 mongo.dbDump()
65
66 printf('\n*** Randomly delete group')
67 rm, num = mongo.delete()
68 printf('\t(group #%d; %d users removed)' % (rm, num))
69 mongo.dbDump()
70
71 printf('\n*** Drop users table')
72 mongo.db.drop_collection(COLLECTION)
73 printf('\n*** Close cxns')
74 mongo.finish()
75
76 if __name__ == '__main__':
77 main()

ptg7615500

314 Chapter 6 • Database Programming

Line-by-Line Explanation

Lines 1–8
The main import line is to bring in PyMongo’s Connection object and the
package’s exceptions (errors). Everything else you’ve seen earlier in this
chapter. Like the ORM examples, we yet again borrow most constants and
common functions from our earlier ushuffle_dbU.py application. The last
statement sets our collection (“table”) name.

Lines 10–17
The first part of the initializer for our MongoTest class creates a connection,
raising an exception if the server cannot be reached (lines 12–15). The next
two lines are very easy to skip over because they look like mere assign-
ments, but under the hood, these create a database or reuse an existing one
(line 16) and create or reuse an existing “users” collection, which you can
sort of consider as analogous to a database table.

Tables have defined columns then rows for each record, whereas collec-
tions don’t have any schema requirements; they have individual docu-
ments for each record. You will notice the conspicuous absence of a “data
model” class definition in this part of the code. Each record defines itself,
so to speak—whatever record you save is what goes into the collection.

Lines 19–22
The insert() method adds values to a MongoDB collection. A collection is
made up of documents. You can think of a document as a single record in
the form of a Python dictionary. We create one by using the dict() factory
function of those for each record, and all are streamed to the collection’s
insert() method via a generator expression.

Lines 24–31
The update() method works in the same manner as earlier in the chapter.
The difference is the collection’s update() method which, gives developers
more options than a typical database system. Here, (lines 29–30) we use
the MongoDB $set directive, which updates an existing value explicitly.

Each MongoDB directive represents a modifier operation that is both
highly-efficient, useful, and convenient to the developer when updating
existing values. In addition to $set, there are also operations for incre-
menting a field by a value, removing a field (key-value pair), appending
and removing values to/from an array, etc.

Working backward somewhat, before the update, however, we first
need to query for all the users in the system (line 28) to find those with a

ptg7615500

6.4 Non-Relational Databases 315

project ID (projid) that matches the group we want to update. To do this,
you use the collection find() method and pass in the criteria. This takes
the place of a SQL SELECT statement.

It’s also possible to use the Collection.update() method to modify mul-
tiple documents; you would just need to set the multi flag to True. The
only bad news with this is that it currently doesn’t return the total number
of documents modified.

For more complex queries than just the single criteria for our simple
script, check the corresponding page in the official documentation at http://
www.mongodb.org/display/DOCS/Advanced+Queries.

Lines 33–38
The delete() method reuses the same query as for update(). Once we
have all the users that match the query, we remove() them one at a time
(lines 36–37) and return the results. If you don’t care about the total num-
ber of documents removed, then you can simply make a single call to
self.users.remove(), which deletes all documents from a collection.

Lines 40–44
The query performed in dbDump() has no criteria (line 42), so all users in
the collection are returned, followed by the data, string-formatted and dis-
played to the user (lines 43–44).

Lines 46–47
The final method defined and called during application execution discon-
nects from the MongoDB server.

Lines 49–77
The main() driver function is self-documenting and following the exact
same script as the previous applications seen in this chapter: connect to
database server and do preparation work; insert users into the collection
(“table”) and dump database contents; move users from one project to
another (and dump contents); remove an entire group (and dump con-
tents); drop the entire collection; and then finally, disconnect.

While this closes our look at non-relational databases for Python, it
should only be the beginning for you. As mentioned at the beginning of
this section, there are plenty of NoSQL options to look at, and you’ll need
to investigate and perhaps prototype each to determine which among
them might be the right tool for the job. In the next section, we give vari-
ous additional references for you to read further.

http://www.mongodb.org/display/DOCS/Advanced+Queries
http://www.mongodb.org/display/DOCS/Advanced+Queries

ptg7615500

316 Chapter 6 • Database Programming

6.4.4 Summary

We hope that we have provided you with a good introduction to using
relational databases with Python. When your application’s needs go
beyond those offered by plain files, or specialized files, such as DBM, pick-
led, etc., you have many options. There are a good number of RDBMSs out
there, not to mention one completely implemented in Python, freeing you
from having to install, maintain, or administer a real database system.

In the following section, you will find information on many of the
Python adapters plus database and ORM systems. Furthermore, the com-
munity has been augmented with non-relational databases now to help
out in those situations when relational databases don’t scale to the level
that your application needs.

We also suggest checking out the DB-SIG pages as well as the Web
pages and mailing lists of all systems of interest. Like all other areas of
software development, Python makes things easy to learn and simple to
experiment with.

6.5 Related References
Table 6-8 lists most of the common databases available, along with work-
ing Python modules and packages that serve as adapters to those database
systems. Note that not all adapters are DB-API-compliant.

Table 6-8 Database-Related Modules/Packages and Web sites

Name Online Reference

Relational Databases

Gadfly gadfly.sf.net

MySQL mysql.com or mysql.org

MySQLdb a.k.a.
MySQL-python

sf.net/projects/mysql-python

MySQL Connector/
Python

launchpad.net/myconnpy

ptg7615500

6.5 Related References 317

Name Online Reference

Relational Databases

PostgreSQL postgresql.org

psycopg initd.org/psycopg

PyPgSQL pypgsql.sf.net

PyGreSQL pygresql.org

SQLite sqlite.org

pysqlite trac.edgewall.org/wiki/PySqlite

sqlite3a docs.python.org/library/sqlite3

APSW code.google.com/p/apsw

MaxDB (SAP) maxdb.sap.com

sdb.dbapi maxdb.sap.com/doc/7_7/46/
702811f2042d87e10000000a1553f6/content.htm

sdb.sql maxdb.sap.com/doc/7_7/46/
71b2a816ae0284e10000000a1553f6/content.htm

sapdb sapdb.org/sapdbPython.html

Firebird (InterBase) firebirdsql.org

KInterbasDB firebirdsql.org/en/python-driver

SQL Server microsoft.com/sql

pymssql code.google.com/p/pymssql (requires FreeTDS
[freetds.org])

adodbapi adodbapi.sf.net

Sybase sybase.com

sybase www.object-craft.com.au/projects/sybase

Oracle oracle.com

(Continued)

2.5

www.object-craft.com.au/projects/sybase

ptg7615500

318 Chapter 6 • Database Programming

In addition to the database-related modules/packages, the following are
yet more online references that you can consider:

Table 6-8 Database-Related Modules/Packages and Web sites (Continued)

Name Online Reference

cx_Oracle cx-oracle.sf.net

DCOracle2 zope.org/Members/matt/dco2
(older, for Oracle8 only)

Ingres ingres.com

Ingres DBI community.actian.com/wiki/
Ingres_Python_Development_Center

ingmod www.informatik.uni-rostock.de/~hme/software/

NoSQL Document Datastores

MongoDB mongodb.org

PyMongo pypi.python.org/pypi/pymongo
Docs at api.mongodb.org/python/current

PyMongo3 pypi.python.org/pypi/pymongo3

Other adapters api.mongodb.org/python/current/tools.html

CouchDB couchdb.apache.org

couchdb-python code.google.com/p/couchdb-python
Docs at packages.python.org/CouchDB

ORMs

SQLObject sqlobject.org

SQLObject2 sqlobject.org/2

SQLAlchemy sqlalchemy.org

Storm storm.canonical.com

PyDO/PyDO2 skunkweb.sf.net/pydo.html

a. pysqlite added to Python 2.5 as sqlite3 module.

www.informatik.uni-rostock.de/~hme/software/

ptg7615500

6.6 Exercises 319

Python and Databases

• wiki.python.org/moin/DatabaseProgramming

• wiki.python.org/moin/DatabaseInterfaces

Database Formats, Structures, and Development Patterns

• en.wikipedia.org/wiki/DSN

• www.martinfowler.com/eaaCatalog/dataMapper.html

• en.wikipedia.org/wiki/Active_record_pattern

• blog.mongodb.org/post/114440717/bson

Non-relational Databases

• en.wikipedia.org/wiki/Nosql

• nosql-database.org/

• www.mongodb.org/display/DOCS/MongoDB,+CouchDB,
+MySQL+Compare+Grid

6.6 Exercises

Databases

6-1. Database API. What is the Python DB-API? Is it a good thing?
Why (or why not)?

6-2. Database API. Describe the differences between the database
module parameter styles (see the paramstyle module attribute).

6-3. Cursor Objects. What are the differences between the cursor
execute*() methods?

6-4. Cursor Objects. What are the differences between the cursor
fetch*() methods?

6-5. Database Adapters. Research your RDBMS and its Python
module. Is it DB-API compliant? What additional features
are available for that module that are extras not required by
the API?

6-6. Type Objects. Study using Type objects for your database and
DB-API adapter, and then write a small script that uses at
least one of those objects.

www.martinfowler.com/eaaCatalog/dataMapper.html
www.mongodb.org/display/DOCS/MongoDB,+CouchDB,+MySQL+Compare+Grid
www.mongodb.org/display/DOCS/MongoDB,+CouchDB,+MySQL+Compare+Grid

ptg7615500

320 Chapter 6 • Database Programming

6-7. Refactoring. In the ushuffle_dbU.create() function, a table
that already exists is dropped and re-created by recursively
calling create() again. This is dangerous, because if re-
creation of the table fails (again), you will then have infinite
recursion. Fix this problem by creating a more practical solution
that does not involve copying the create query (cur.execute())
again in the exception handler. Extra Credit: Try to recreate
the table a maximum of three times before returning failure
back to the caller.

6-8. Database and HTML. Take any existing database table, and
use your Web programming knowledge to create a handler
that outputs the contents of that table as HTML for browsers.

6-9. Web Programming and Databases. Take our user shuffle exam-
ple (ushuffle_db.py) and create a Web interface for it.

6-10. GUI Programming and Databases. Take our user shuffle exam-
ple (ushuffle_db.py) and throw a GUI for it.

6-11. Stock Portfolio Class. Create an application that manages the
stock portfolios for multiple users. Use a relational database
as the back-end and provide a Web-based user interface. You
can use the stock database class from the object-oriented
programming chapter of Core Python Language Fundamentals
or Core Python Programming.

6-12. Debugging & Refactoring. The update() and remove() func-
tions each have a minor flaw: update() might move users
from one group into the same group. Change the random
destination group to be different from the group from which
the user is moving. Similarly, remove() might try to remove
people from a group that has no members (because they
don’t exist or were moved up with update()).

ORMs

6-13. Stock Portfolio Class. Create an alternative solution to the
Stock Portfolio (Exercise 6-11) by using an ORM instead of
direct to an RDBMS.

6-14. Debugging and Refactoring. Port your solutions to Exercise 6-13
to both the SQLAlchemy and SQLObject examples.

6-15. Supporting Different RDBMSs. Take either the SQLAlchemy
(ushuffle_sad.py) or SQLObject (ushuffle_so.py) applica-
tion, which currently support MySQL and SQLite, and add
yet another relational database of your choice.

ptg7615500

6.6 Exercises 321

For the next four exercises, focus on the ushuffle_dbU.py script, which fea-
tures some code near the top (lines 7–12) that determines which function
should be used to get user input from the command-line.

6-16. Importing and Python. Review that code again. Why do we
need to check if __builtins__ is a dict versus a module?

6-17. Porting to Python 3. Using distutils.log.warn() is not a per-
fect substitute for print/print(). Prove it. Provide code snip-
pets to show where warn() is not compatible with print().

6-18. Porting to Python 3. Some users believe that they can use
print() in Python 2 just like in Python 3. Prove them wrong.
Hint: From Guido himself: print(x, y)

6-19. Python Language. Assume that you want to use print() in
Python 3 but distutils.log.warn() in Python 2, and you
want to use the printf() name. What’s wrong with the code
below?
from distutils.log import warn
if hasattr(__builtins__, 'print'):
 printf = print
else:
 printf = warn

6-20. Exceptions. When establishing our connection to the server
using our designated database name in ushuffle_sad.py, a
failure (exc.OperationalError) indicated that our table did
not exist, so we had to back up and create the database first
before retrying the database connection. However, this is
not the only source of errors: if using MySQL and the server
itself is down, the same exception is also thrown. In this
situation, execution of CREATE DATABASE will fail, as well.
Add another handler to take care of this situation, raising
RuntimeError back to the code attempting to create an
instance.

6-21. SQLAlchemy. Augment the ushuffle_sad.dbDump() function
by adding a new default parameter named newest5 which
defaults to False. If True is passed in, rather than displaying
all users, reverse sort the list by order of Users.userid and
show only the top five representing the newest employees.
Make this special call in main() right after the call to
orm.insert() and orm.dbDump().
a) Use the Query limit() and offset() methods.
b) Use the Python slicing syntax, instead.

ptg7615500

322 Chapter 6 • Database Programming

The updated output would look something like this:
. . .
Jess 7912 4
Aaron 8312 3
Melissa 8602 2

*** Top 5 newest employees

LOGIN USERID PROJID
Melissa 8602 2
Aaron 8312 3
Jess 7912 4
Elliot 7911 3
Davina 7902 3

*** Move users to a random group
 (4 users moved) from (3) to (1)

LOGIN USERID PROJID
Faye 6812 4
Serena 7003 2
Amy 7209 1
. . .

6-22. SQLAlchemy. Change ushuffle_sad.update() to use the
Query update() method, dropping down to 5 lines of code.
Use the timeit module to show whether it’s faster than the
original.

6-23. SQLAlchemy. Same as Exercise 6-22 but for ushuffle_
sad.delete(), use the Query delete() method.

6-24. SQLAlchemy. In the explicitly non-declarative version of
ushuffle_sad.py, ushuffle_sae.py, we removed the use of
the declarative layer as well as sessions. While using an
Active Record model is more optional, the concept of
Sessions isn’t a bad idea at all. Change all of the code that
performs database operations in ushuffle_sae.py so that
they all use/share a Session object, as in the declarative
ushuffle_sad.py.

6-25. Django Data Models. Take the Users data model class, as
implemented in our SQLAlchemy or SQLObject examples,
and create the equivalent by using the Django ORM. You
might want to read ahead to Chapter 11, “Web Frameworks:
Django.”

6-26. Storm ORM. Port the ushuffle_s*.py application to the
Storm ORM.

ptg7615500

6.6 Exercises 323

Non-Relational (NoSQL) Databases

6-27. NoSQL. What are some of reasons why non-relational data-
bases have become popular? What do they offer over tradi-
tional relational databases?

6-28. NoSQL. There are at least four different types of non-
relational databases. Categorize each of the major types
and name the most well-known projects in each category.
Note the specific ones that have at least one Python adapter.

6-29. CouchDB. CouchDB is another document datastore that’s
often compared to MongoDB. Review some of the online
comparisons in the final section of this chapter, and then
download and install CouchDB. Morph ushuffle_mongo.py
into a CouchDB-compatible ushuffle_couch.py.

ptg7615500

324

CHAPTER

*Programming
Microsoft Office

Whatever you have to do, there is always a limiting factor that
determines how quickly and well you get it done. Your job is to study the
task and identify the limiting factor or constraint within it. You must
then focus all of your energies on alleviating that single choke point.

—Brian Tracy, March 2001
(from Eat That Frog, 2001, Berrett-Koehler)

In this chapter...

• Introduction
• COM Client Programming with Python
• Introductory Examples
• Intermediate Examples
• Related Modules/Packages

Note that the examples in this chapter require a Windows operating system;
they will not work on Apple computers running Microsoft Office for Mac.

ptg7615500

7.1 Introduction 325

his chapter represents a departure from most other sections of this
book, meaning that instead of focusing on developing networked,
GUI, Web, or command-line-based applications, we’ll be using

Python for something completely different: controlling proprietary soft-
ware, specifically Microsoft Office applications, via Component Object
Model (COM) client programming.

7.1 Introduction
Like it or not, we developers live in a world in which we will interact with
Windows-based PCs. It might be intermittent or something you have to
deal with on a daily basis, but regardless of how much exposure you face,
the power of Python can be used to make our lives easier.

In this chapter, we will explore COM client programming by using
Python to control and communicate with Microsoft Office applications
such as Word, Excel, PowerPoint, and Outlook. COM is a service through
which PC applications can interact with each other. Specifically, well-
known applications such as those in the Office suite provide COM ser-
vices, and COM client programs can be written to drive these applications.

Traditionally, COM clients are written in Microsoft Visual Basic (VB)/
Visual Basic for Applications (VBA) or (Visual) C++, two very powerful
but very different tools. For COM programming, Python is often viewed
as a viable substitute because it is more powerful than VB, and it is more
expressive and less time-consuming than developing in C++.

IronPython, .NET, and VSTO are all newer tools that help you to write
applications that communicate with Office tools, as well, but if you look
under the hood, you’ll find COM, so the material in this chapter still
applies, even if you’re using some of these more advanced tools.

This chapter is designed for both COM developers who want to learn
how they can apply Python in their world, and also for Python program-
mers who need to learn how to create COM clients to automate tasks such
as generating Excel spreadsheets, creating form letters as Word docu-
ments, building slide presentations by using PowerPoint, sending e-mail
via Outlook, etc. We will not be discussing the principles or concepts of
COM, waxing philosophically on such thoughts as “Why COM?” Nor
will we be learning about COM+, ATL, IDL, MFC, DCOM, ADO, .NET,
IronPython, VSTO, etc.

Instead, we will immerse you in COM client programming by learning
how to use Python to communicate with Office applications.

T

ptg7615500

326 Chapter 7 • *Programming Microsoft Office

7.2 COM Client Programming with Python
One of the most useful things that you can do in an everyday business
environment is to integrate support for Windows applications. Being able
to read data from and write data to such applications can often be very
handy. Your department might not be running in a Windows environ-
ment, but chances are, your management and other project teams are. Mark
Hammond’s Windows Extensions for Python allows programmers to
interact with Windows applications in their native environment.

The Windows programming universe is expansive; most of it available
from the Windows Extensions for Python package. This bundle includes
the Windows applications programming interface (API), spawning pro-
cesses, Microsoft Foundation Classes (MFC) Graphical User Interface
(GUI) development, Windows multithreaded programming, services,
remote access, pipes, server-side COM programming, and events. For the
remainder of the chapter, we are going to focus on one part of the Windows
universe: COM client programming.

7.2.1 Client-Side COM Programming

We can use COM (or its marketing name, ActiveX), to communicate with
tools such as Outlook and Excel. For programmers, the pleasure comes
with being able to ‘‘control” a native Office application directly from their
Python code.

Specifically, when discussing the use of a COM object, for example,
launching of an application and allowing code to access methods and data
of that application, this is referred to as COM client-side programming.
Server-side COM programming is the implementation of a COM object for
clients to access.

CORE NOTE: Python and Microsoft COM (client-side) programming

Python on the Windows 32-bit platform contains connectivity to COM, a
Microsoft interfacing technology that allows objects to talk to one another, thus
facilitating higher-level applications to talk to one another, without any lan-
guage or format dependence. We will see in this section how the combination
of Python and COM (client programming) presents a unique opportunity to
create scripts that can communicate directly with Microsoft Office applications
such as Word, Excel, PowerPoint, and Outlook.

ptg7615500

7.2 COM Client Programming with Python 327

7.2.2 Getting Started

The prerequisites to this section include using a PC (or other system con-
taining a virtual machine) that is running a 32-bit or 64-bit version of Win-
dows. You also must have .NET 2.0 (at least) installed as well as both
Python and the Python Extensions for Windows. (You can get the exten-
sions from http://pywin32.sf.net.) Finally, you must have one or more
Microsoft applications available with which to try the examples. You can
develop from the command-line or with the PythonWin IDE that comes
with the Extensions distribution.

I must confess that I’m neither a COM expert or a Microsoft software
developer, however I am skilled enough to show you how to use Python
to control Office applications. Naturally our examples can be vastly
improved. We solicit you to drop us a line and send us any comments,
suggestions, or improvements that you would consider for the general
audience.

The rest of the chapter is made up of demonstration applications to get
you started in programming each of the major Office applications; it then
concludes with several intermediate examples. Before we show you exam-
ples, we want to point out that client-side COM applications all follow
similar steps in execution. The typical way in which you would interact
with these applications is something like this:

1. Launch application
2. Add appropriate document to work on (or load an existing

one)
3. Make application visible (if desired)
4. Perform all desired work on document
5. Save or discard document
6. Quit

Enough talking; let’s take a look at some code. In the following section
are a series of scripts that each control a different Microsoft application.
All import the win32com.client module as well as a couple of Tk modules
to control the launch (and completion) of each application. Also, as we did
in Chapter 5, “GUI Programming,” we used the .pyw file extension to sup-
press the unneeded DOS command window.

http://pywin32.sf.net

ptg7615500

328 Chapter 7 • *Programming Microsoft Office

7.3 Introductory Examples
In this section, we will take a look at basic examples that will get you started
developing with four major Office applications: Excel, Word, PowerPoint,
and Outlook.

7.3.1 Excel

Our first example is a demonstration using Excel. Of the entire Office
suite, we find Excel to be the most programmable. It is quite useful to pass
data to Excel so that you can both take advantage of the spreadsheet’s fea-
tures as well as view data in a nice, printable format. It is also useful to be
able to read data from a spreadsheet and process it with the power of a
real programming language such as Python. We will present a more com-
plex example at the end of this section, but we have to start somewhere, so
let’s start with Example 7-1.

Example 7-1 Excel Example (excel.pyw)

This script launches Excel and writes data to spreadsheet cells.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep
5 from tkMessageBox import showwarning
6 import win32com.client as win32
7
8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = range(3, 8)
10
11 def excel():
12 app = 'Excel'
13 xl = win32.gencache.EnsureDispatch('%s.Application' % app)
14 ss = xl.Workbooks.Add()
15 sh = ss.ActiveSheet
16 xl.Visible = True
17 sleep(1)
18
19 sh.Cells(1,1).Value = 'Python-to-%s Demo' % app
20 sleep(1)
21 for i in RANGE:
22 sh.Cells(i,1).Value = 'Line %d' % i
23 sleep(1)
24 sh.Cells(i+2,1).Value = "Th-th-th-that's all folks!"
25

ptg7615500

7.3 Introductory Examples 329

Line-by-Line Explanation

Lines 1–6, 31
We import Tkinter and tkMessageBox only to use the showwarning message
box upon termination of the demonstration. We withdraw() the Tk top-
level window to suppress it (line 31) before bringing up the dialog box
(line 26). If you do not initialize the top level beforehand, one will auto-
matically be created for you; it won’t be withdrawn and will be an annoy-
ance on screen.

Lines 11–17
After the code starts (or “dispatches”) Excel, we add a workbook (a spread-
sheet that contains sheets to which the data is written; these sheets are
organized as tabs in the workbook), and then grab a handle to the active
sheet (the sheet that is displayed). Do not get all worked up about the ter-
minology, which can be confusing mostly because a spreadsheet contains
sheets.

CORE NOTE: Static and dynamic dispatch

On line 13, we use what is known as static dispatch. Before starting up the script,
we ran the Makepy utility from PythonWin. (Start the IDE, select Tools, COM
Makepy utility, and then choose the appropriate application object library.)
This utility creates and caches the objects that are needed for the application.
Without this preparatory work, the objects and attributes will need to be built
during runtime; this is known as dynamic dispatch. If you want to run dynami-
cally, then use the regular Dispatch() function:

xl = win32com.client.Dispatch('%s.Application' % app)

26 warn(app)
27 ss.Close(False)
28 xl.Application.Quit()
29
30 if __name__=='__main__':
31 Tk().withdraw()
32 excel()

ptg7615500

330 Chapter 7 • *Programming Microsoft Office

The Visible flag must be set to True to make the application visible on
your desktop; pause so that you can see each step in the demonstration
(line 16).

Lines 19–24
In the application portion of the script, we write out the title of our demon-
stration to the first (upper-left) cell, (A1) or (1, 1). We then skip a row and
write “Line N” where N is numbered from 3 to 7, pausing 1 second in
between each row so that you can see our updates happening live. (The
cell updates would occur too quickly without the delay. This is the reason
for all the sleep() calls throughout the script.)

Lines 26–32
A warning dialog box appears after the demonstration, stating that you
can quit once you have observed the output. The spreadsheet is closed
without saving, ss.Close([SaveChanges=]False), and the application
exits. Finally, the “main” part of the script initializes Tk and runs the core
part of the application.

Running this script results in an Excel application window, which should
look similar to Figure 7-1.

Figure 7-1 The Python-to-Excel demonstration script (excel.pyw).

ptg7615500

7.3 Introductory Examples 331

7.3.2 Word

The next demonstration involves Word. Using Word for documents is not
as applicable to the programming world because there is not much data
involved. However, you could consider using Word for generating form
letters. In Example 7-2, we create a document by writing one line of text
after another.

The Word example follows pretty much the same script as the Excel
example. The only difference is that instead of writing in cells, we insert
the strings into the text “range” of our document and move the cursor for-
ward after each write. We also must manually provide the line termination
characters, carriage RETURN followed by NEWLINE (\r\n).

Example 7-2 Word Example (word.pyw)

This script launches Word and writes data to the document.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep
5 from tkMessageBox import showwarning
6 import win32com.client as win32
7
8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = range(3, 8)
10
11 def word():
12 app = 'Word'
13 word = win32.gencache.EnsureDispatch('%s.Application' % app)
14 doc = word.Documents.Add()
15 word.Visible = True
16 sleep(1)
17
18 rng = doc.Range(0,0)
19 rng.InsertAfter('Python-to-%s Test\r\n\r\n' % app)
20 sleep(1)
21 for i in RANGE:
22 rng.InsertAfter('Line %d\r\n' % i)
23 sleep(1)
24 rng.InsertAfter("\r\nTh-th-th-that's all folks!\r\n")
25
26 warn(app)
27 doc.Close(False)
28 word.Application.Quit()
29
30 if __name__=='__main__':
31 Tk().withdraw()
32 word()

ptg7615500

332 Chapter 7 • *Programming Microsoft Office

When you run this script, the resulting screen might look like Figure 7-2.

7.3.3 PowerPoint

Applying PowerPoint in an application might not seem commonplace, but
you could consider using it when you are rushed to make a presentation.
You can create your bullet points in a text file on the plane, and then upon
arrival at the hotel that evening, use a script that parses the file and auto-
generates a set of slides. You can further enhance those slides by adding in
a background, animation, etc., all of which are possible through the COM
interface. Another use case would be if you had to auto-generate or modify
new or existing presentations. You can create a COM script controlled via a
shell script to create and tweak each presentation. Okay, enough speculation;
let’s take a look at Example 7-3 to see our PowerPoint example in action.

Figure 7-2 The Python-to-Word demonstration script (word.pyw).

ptg7615500

7.3 Introductory Examples 333

Again, you will notice similarities to both the preceding Excel and Word
demonstrations. Where PowerPoint differs is in the objects to which you
write data. Instead of a single active sheet or document, PowerPoint is
somewhat trickier because with a presentation, you have multiple slides,
and each slide can have a different layout. (Recent versions of PowerPoint
have 30 different layouts!) The actions you can perform on a slide depend
on which layout you have chosen.

In our example, we just use a title and text layout (line 17) and fill in the
main title (lines 19–20), Shape[0] or Shape(1)—Python sequences begin at

Example 7-3 PowerPoint Example (ppoint.pyw)

This script launches PowerPoint and writes data to the “shapes” on a slide.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep
5 from tkMessageBox import showwarning
6 import win32com.client as win32
7
8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = range(3, 8)
10
11 def ppoint():
12 app = 'PowerPoint'
13 ppoint = win32.gencache.EnsureDispatch('%s.Application' % app)
14 pres = ppoint.Presentations.Add()
15 ppoint.Visible = True
16
17 s1 = pres.Slides.Add(1, win32.constants.ppLayoutText)
18 sleep(1)
19 s1a = s1.Shapes[0].TextFrame.TextRange
20 s1a.Text = 'Python-to-%s Demo' % app
21 sleep(1)
22 s1b = s1.Shapes[1].TextFrame.TextRange
23 for i in RANGE:
24 s1b.InsertAfter("Line %d\r\n" % i)
25 sleep(1)
26 s1b.InsertAfter("\r\nTh-th-th-that's all folks!")
27
28 warn(app)
29 pres.Close()
30 ppoint.Quit()
31
32 if __name__=='__main__':
33 Tk().withdraw()
34 ppoint()

ptg7615500

334 Chapter 7 • *Programming Microsoft Office

index 0 while Microsoft software starts at 1—and the text portion (lines
22–26), Shape[1] or Shape(2). To figure out which constant to use, you will
need a list of all those that are available to you. For example, ppLayoutText
is defined as a constant with a value of 2 (integer), ppLayoutTitle is 1, etc.
You can find the constants in most Microsoft VB/Office programming
books or online by just searching on the names. Alternatively, you can just
use the integer constants without having to name them via win32.constants.

The PowerPoint screenshot is shown in Figure 7-3.

7.3.4 Outlook

Finally, we present an Outlook demonstration, which uses even more con-
stants than PowerPoint. As a fairly common and versatile tool, use of Out-
look in an application makes sense, like it does for Excel. There are always
e-mail addresses, messages, and other data that can be easily manipulated
in a Python program. Example 7-4 is an Outlook example that does a little
bit more than our previous examples.

Figure 7-3 The Python-to-PowerPoint demonstration script (ppoint.pyw).

ptg7615500

7.3 Introductory Examples 335

In this example, we use Outlook to send an e-mail to ourselves. To make
the demonstration work, you need to turn off your network access so that
you do not really send the message, and thus are able to view it in your
Outbox folder (and delete it after viewing, if you like). After launching
Outlook, we create a new mail message and fill out the various fields such
as recipient, subject, and body (lines 15–21). We then call the send()
method (line 22) to spool the message to the Outbox where it will be moved
to “Sent Mail” once the message has actually been transmitted to the mail
server.

Example 7-4 Outlook Example (olook.pyw)

This script launches Outlook, creates a new message, sends it, and lets you view
it by opening and displaying both the Outbox and the message itself.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep
5 from tkMessageBox import showwarning
6 import win32com.client as win32
7
8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = range(3, 8)
10
11 def outlook():
12 app = 'Outlook'
13 olook = win32.gencache.EnsureDispatch('%s.Application' % app)
14
15 mail = olook.CreateItem(win32.constants.olMailItem)
16 recip = mail.Recipients.Add('you@127.0.0.1')
17 subj = mail.Subject = 'Python-to-%s Demo' % app
18 body = ["Line %d" % i for i in RANGE]
19 body.insert(0, '%s\r\n' % subj)
20 body.append("\r\nTh-th-th-that's all folks!")
21 mail.Body = '\r\n'.join(body)
22 mail.Send()
23
24 ns = olook.GetNamespace("MAPI")
25 obox = ns.GetDefaultFolder(win32.constants.olFolderOutbox)
26 obox.Display()
27 obox.Items.Item(1).Display()
28
29 warn(app)
30 olook.Quit()
31
32 if __name__=='__main__':
33 Tk().withdraw()
34 outlook()

ptg7615500

336 Chapter 7 • *Programming Microsoft Office

Like PowerPoint, there are many constants available; olMailItem (with a
constant value of 0) is the one used for e-mail messages. Other popular
Outlook items include olAppointmentItem (1), olContactItem (2), and
olTaskItem (3). Of course, there are more, so you will need to find a VB/
Office programming book or search for the constants and their values
online.

In the next section (lines 24–27), we use another constant, olFolder-
Outbox (4), to open the Outbox folder and bring it up for display. We find
the most recent item (hopefully the one we just created) and display it, as
well. Other popular folders include: olFolderInbox (6), olFolderCalen-
dar (9), olFolderContacts (10), olFolderDrafts (16), olFolderSentMail
(5), and olFolderTasks (13). If you use dynamic dispatch, you will likely
have to use the numeric values instead of the constants’ names (see the
previous Core Note).

Figure 7-4 shows a screen capture of just the message window.

Before we get this far, however, from its history we know that Outlook
has been vulnerable to all kinds of attacks, so Microsoft has built in some

Figure 7-4 The Python-to-Outlook demonstration script (olook.pyw).

ptg7615500

7.3 Introductory Examples 337

protection that restricts access to your address book and the ability to send
mail on your behalf. When attempting to access your Outlook data, the
screen shown in Figure 7-5 pops up, in which you must explicitly give per-
mission to an outside program.

Then, when you are trying to send a message from an external program,
a warning dialog appears, as shown in Figure 7-6; you must wait until the
timer expires before you are allowed to select Yes.

Once you pass all the security checks, everything else should work
smoothly. There is software available to help get you around these checks
but they have to be downloaded and installed separately.

On this book’s Web site at http://corepython.com, you will find an alter-
native script that combines these four smaller ones into a single applica-
tion that lets users choose which of these demonstrations to run.

Figure 7-5 Outlook address book access warning.

Figure 7-6 Outlook e-mail transmission warning.

http://corepython.com

ptg7615500

338 Chapter 7 • *Programming Microsoft Office

7.4 Intermediate Examples
The examples we’ve looked at so far in this chapter are to get you started
with using Python to control Microsoft Office products. Now let’s look at
several real-world useful applications, some of which I’ve used regularly
for work.

7.4.1 Excel

In this example, we’re going to combine the material from this chapter
with that of Chapter 13, “Web Services.” In this chapter, we feature a script
stock.py as Example 13-1, that uses the Yahoo! Finance service and asks
for stock quote data. Example 7-5 shows how we can merge the stock
quote example with our Excel demonstration script; we will end up with an
application that can download stock quotes from the Net and insert them
directly into Excel, without having to create or use CSV files as a medium.

Example 7-5 Stock Quote and Excel Example (estock.pyw)

This script downloads stock quotes from Yahoo! and writes the data to Excel.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk
4 from time import sleep, ctime
5 from tkMessageBox import showwarning
6 from urllib import urlopen
7 import win32com.client as win32
8
9 warn = lambda app: showwarning(app, 'Exit?')
10 RANGE = range(3, 8)
11 TICKS = ('YHOO', 'GOOG', 'EBAY', 'AMZN')
12 COLS = ('TICKER', 'PRICE', 'CHG', '%AGE')
13 URL = 'http://quote.yahoo.com/d/quotes.csv?s=%s&f=sl1c1p2'
14
15 def excel():
16 app = 'Excel'
17 xl = win32.gencache.EnsureDispatch('%s.Application' % app)
18 ss = xl.Workbooks.Add()
19 sh = ss.ActiveSheet
20 xl.Visible = True
21 sleep(1)
22
23 sh.Cells(1, 1).Value = 'Python-to-%s Stock Quote Demo' % app
24 sleep(1)
25 sh.Cells(3, 1).Value = 'Prices quoted as of: %s' % ctime()
26 sleep(1)
27 for i in range(4):
28 sh.Cells(5, i+1).Value = COLS[i]

ptg7615500

7.4 Intermediate Examples 339

Line-by-Line Explanation

Lines 1–13
Looking ahead in Chapter 13, we will explore a simple script that fetches
stock quotes from the Yahoo! Finance service. In this chapter, we take the
core component from that script and integrate it into an example that takes
the data and imports it into an Excel spreadsheet.

Lines 15–32
The first part of the core function launches Excel (lines 17–21), as seen ear-
lier. The title and timestamp are then written to cells (lines 23–29), along
with the column headings, which are then styled as bold (line 30). The
remaining cells are dedicated to writing the actual stock quote data, start-
ing in row 6 (line 32).

Lines 34–43
We open the URL as before (line 34), but instead of just writing the data to
standard output, we fill in the spreadsheet cells, one column of data at a
time, and one company per row (lines 35–42).

Lines 45–51
The remaining lines of our script mirror code that we have seen before.

29 sleep(1)
30 sh.Range(sh.Cells(5, 1), sh.Cells(5, 4)).Font.Bold = True
31 sleep(1)
32 row = 6
33
34 u = urlopen(URL % ','.join(TICKS))
35 for data in u:
36 tick, price, chg, per = data.split(',')
37 sh.Cells(row, 1).Value = eval(tick)
38 sh.Cells(row, 2).Value = ('%.2f' % round(float(price), 2))
39 sh.Cells(row, 3).Value = chg
40 sh.Cells(row, 4).Value = eval(per.rstrip())
41 row += 1
42 sleep(1)
43 u.close()
44
45 warn(app)
46 ss.Close(False)
47 xl.Application.Quit()
48
49 if __name__=='__main__':
50 Tk().withdraw()
51 excel()

ptg7615500

340 Chapter 7 • *Programming Microsoft Office

Figure 7-7 shows a window with real data after executing our script.

Note that the data columns lose the original formatting of the numeric
strings because Excel stores them as numbers, using the default cell for-
mat. We lose the formatting of the numbers to two places after the decimal
point; for example, “34.2” is displayed, even though Python passed in
“34.20.” For the “change from previous close column,” we lose not only
the decimal places but also the plus sign (+) that indicates a positive
change in value. (Compare the output in Excel to the output from the
original text version, which you can see in Example 13-1 [stock.py], in
Chapter 13. These problems will be addressed by an exercise at the end of
this chapter.)

7.4.2 Outlook

At first, we wanted to give readers examples of Outlook scripts that
manipulate your address book or that send and receive e-mail. However,
given all the security issues with Outlook, we decided to avoid those cate-
gories, yet still give you a very useful example.

Figure 7-7 The Python-to-Excel stock quote demonstration script (estock.pyw).

ptg7615500

7.4 Intermediate Examples 341

Those of us who work daily on the command-line building applications
are used to certain text editors to help us do our work. Without getting
into any religious wars, these tools include Emacs, vi (or its modern
replacement vim or gVim), and others. For users of these tools, editing an
e-mail reply in an Outlook dialog window may not exactly be their cup of
tea. In comes Python to the rescue.

This script, inspired by John Klassa’s original 2001 creation, is very sim-
ple: when you reply to an e-mail message in Outlook, it launches your edi-
tor of choice, brings in the content of the e-mail reply that is currently in
the crude-editing dialog window, lets you edit the rest of the message to
your heart’s desire in your favorite editor, and then when exiting, replaces
the dialog window content with the text you just edited. You only need to
click the Send button.

You can run the tool from the command-line. We’ve named it
outlook_edit.pyw. The .pyw extension is used to indicate the suppression
of the terminal, meaning the intention is to run a GUI application for
which user interaction isn’t necessary. Before we look at the code, let’s
describe how it works. When it’s started, you’ll see its simple user inter-
face, as shown in Figure 7-8.

As your going through your e-mail, there might be one to which you
want to respond, so you click the Reply button to bring up a pop-up win-
dow similar to that (except for the contents, of course) in Figure 7-9.

Now, rather than editing in this poor dialog window, you prefer to do so
in a different editor (your editor of choice) rather than taking what’s given to
you. Once you’ve set up one to use with outlook_edit.py, click the GUI’s
Edit button. We hardcoded it to be gVim 7.3 in this example, but there’s no
reason why you can’t use an environment variable or let the user specify this
on the command-line (see the related exercise at the end of the chapter).

For the figures in this section, we’re using Outlook 2003. When this ver-
sion of Outlook detects an outside script that is requesting access to it, it
displays the same warning dialog as that shown in Figure 7-5. Once you

Figure 7-8 The Outlook e-mail editor GUI control panel (outlook_edit.pyw).

ptg7615500

342 Chapter 7 • *Programming Microsoft Office

“opt-in,” a new gVim window pops open, including the contents of the
Outlook reply dialog box. An example of ours is shown in Figure 7-10.

At this point, you can add your reply, editing any other part of the mes-
sage as desired. We’ll just do a quick and friendly reply (Figure 7-11). Sav-
ing the file and quitting the editor results in that window closing and the
contents of your reply pushed back into the Outlook reply dialog box (see
Figure 7-12) that you didn’t want to deal with to begin with. The only
thing you need to do here is to click the Send button, and you’re done!

Now let’s take a look at the script itself, shown in Example 7-6. You will
see from the line-by-line description of the code that this script is broken
up into four main parts: hook into Outlook and grab the current item
being worked on; clean the text in the Outlook dialog and transfer it to a
temporary file; spawn the editor opened against the temporary text file;
and reading the contents of the edited text file and pushing it back into that
dialog window.

Figure 7-9 Standard Outlook reply dialog window.

ptg7615500

7.4 Intermediate Examples 343

Figure 7-10 Outlook dialog contents in a spawned gVim editor window.

Figure 7-11 An edited reply in the gVim editor window.

ptg7615500

344 Chapter 7 • *Programming Microsoft Office

Example 7-6 Outlook Editor Example (outlook_edit.pyw)

Why edit your Outlook new or reply messages in a dialog window?

1 #!/usr/bin/env python
2
3 from Tkinter import Tk, Frame, Label, Button, BOTH
4 import os
5 import tempfile
6 import win32com.client as win32
7
8 def edit():
9 olook = win32.Dispatch('Outlook.Application')
10 insp = olook.ActiveInspector()
11 if insp is None:
12 return
13 item = insp.CurrentItem
14 if item is None:
15 return
16
17 body = item.Body
18 tmpfd, tmpfn = tempfile.mkstemp()
19 f = os.fdopen(tmpfd, 'a')

Figure 7-12 Back to the Outlook dialog with our modified contents.

ptg7615500

7.4 Intermediate Examples 345

Line-by-Line Explanation

Lines 1–6
Although Tk does not play a huge role in any of the examples in this chapter,
it provides an execution shell with which to control the interface between
the user and the target Office application. Accordingly, we need a bunch of
Tk constants and widgets for this application. There are a bunch of operat-
ing system items that we need, so we import the os module (well, nt actu-
ally). tempfile is a Python module that we haven’t really discussed, but it
provides a variety of utilities and classes that developers can use to create
temporary files, filenames, and directories. Finally, we need our PC con-
nectivity to Office applications and their COM servers.

Lines 8–15
The only real PC COM client lines of code are here, obtaining a handle to
the running instance of Outlook, looking for the active dialog (should be a
olMailItem) that is being worked on. If it cannot do this inspection or find
the current item, the application quits quietly. You will know if this is the
case because control of the Edit button comes back immediately rather than
being grayed-out (if all went well and the editor window pops up).

20 f.write(body.encode(
21 'ascii', 'ignore').replace('\r\n', '\n'))
22 f.close()
23
24 #ed = r"d:\emacs-23.2\bin\emacsclientw.exe"
25 ed = r"c:\progra~1\vim\vim73\gvim.exe"
26 os.spawnv(os.P_WAIT, ed, [ed, tmpfn])
27
28 f = open(tmpfn, 'r')
29 body = f.read().replace('\n', '\r\n')
30 f.close()
31 os.unlink(tmpfn)
32 item.Body = body
33
34 if __name__=='__main__':
35 tk = Tk()
36 f = Frame(tk, borderwidth=2)
37 f.pack(fill=BOTH)
38 Label(f,
39 text="Outlook Edit Launcher v0.3").pack()
40 Button(f, text="Edit",
41 fg='blue', command=edit).pack(fill=BOTH)
42 Button(f, text="Quit",
43 fg='red', command=tk.quit).pack(fill=BOTH)
44 tk.mainloop()

ptg7615500

346 Chapter 7 • *Programming Microsoft Office

Note that we’re choosing to use dynamic dispatch here instead of static
(win32.Dispatch() vs. win32.gencache.EnsureDispatch()) because dynamic
usually has quicker startup, and we’re not using any of the cached con-
stant values in this script.

Lines 16–22
Once the current dialog (compose new or reply) window is identified, the
first thing we do in this section is to grab the text and write it to a tempo-
rary file. Admittedly, the handling of Unicode text and diacritic characters
is not good here; we’re filtering all non-ASCII characters out of the dialog
box. (One of the exercises at the end of the this chapter is to right this
wrong and tweak the script so it works correctly with Unicode.)

Originally, Unix-flavored editors did not like to deal with the carriage
RETURN-NEWLINE pair used as line termination characters in files created
on PCs, so another piece of processing that’s done pre- and post-editing is
to convert these to pure NEWLINEs before sending the file to the editor
and then add them back after editing is complete. Modern text-based edi-
tors handle \r\n more cleanly, so this isn’t as much of an issue as it was in
the past.

Lines 24–26
Here’s where a bit of magic happens: after setting our editor (on line 25,
where we specify the location of the vim binary on our system; Emacs
users will do something like line 24 which is commented out), we launch
the editor with the temporary filename as the argument (assuming that
the editor takes the target filename on the command-line as the first argu-
ment after the program name). This is done via the call to os.spawnv() on
line 26.

The P_WAIT flag is used to “pause” the main (parent) process until the
spawned (child) process has completed. In other words, we do want to
keep the Edit button grayed-out so that the user does not try to edit more
than one reply at a time. It sounds like a limitation, but it helps the user
focus and not have partially-edited replies all over the desktop.

To further expand on what else you can do with spawnv(), this flag
works on both POSIX and Windows systems just like P_NOWAIT (which
does the opposite—do not wait for the child to finish, running both pro-
cesses in parallel). The last two possible flags, P_OVERLAY and P_DETACH, are
only valid on Windows. P_OVERLAY causes the child to replace the parent
like the POSIX exec() call, and P_DETACH, like P_NOWAIT, starts the child
running in parallel with the parent, except it does so in the background,
“detached” from a keyboard or console.

ptg7615500

7.4 Intermediate Examples 347

One of the exercises at the end of this chapter is to make this part of the
code more flexible. As we hinted a bit earlier, you should be able to specify
your editor of choice here via the command-line or through the use of an
environment variable.

Lines 28–32
The next block of code opens the updated temporary file after the editor
has closed, takes its contents, deletes the temporary file, and replaces the
text in the dialog window. Note that we are merely sending this data back
to Outlook—it does not prevent Outlook from mucking with your mes-
sage; that is, there can be a variety of side effects, some of which include
adding your signature (again), removing NEWLINEs, etc.

Lines 34–44
The application is built around main() which uses Tk(inter) to draw up a
simple user interface with a single frame containing a Label with the
application description, plus a pair of buttons: Edit spawns an editor on
the active Outlook dialog window, and Quit terminates this application.

7.4.3 PowerPoint

Our final example of a more realistic application is one that Python users
have requested of me for many years now, and I’m happy to say that I’m
finally able to present it to the community. If you have ever seen me
deliver a presentation at a conference, you will likely have seen my ploy of
showing the audience a plain text version of my talk, perhaps to the shock
and horror of some of the attendees who have yet to hear me speak.

I then launch this script on that plain text file and let the power of
Python autogenerate a PowerPoint presentation, complete with style tem-
plate, and then start the slide show, much to the amazement of the audi-
ence. However, once you realize it’s only a small, easily-written Python
script, you might be less impressed but satisfied that you can do the same
thing too!

The way it works is this: the GUI comes up (see Figure 7-13a) prompt-
ing the user to enter the location of the text file. If the user types in a valid
location for the file, things progress, but if the file is not found or “DEMO”
is entered, a demonstration will start. If a filename is given but somehow
can’t be opened by the application, the DEMO string is installed into the text
entry along with the error stating that the file can’t be opened (Figure 7-13b).

ptg7615500

348 Chapter 7 • *Programming Microsoft Office

As shown in Figure 7-14, the next step is to connect to the existing
PowerPoint application that is running (or launch one if it isn’t and then
get a handle to it), create a title slide (based on the ALL CAPS slide title),
and then create any other slides based on contents of the plain text file for-
matted in a pseudo-Python syntax.

Figure 7-15 shows the script in mid-flight, creating the final slide of the
demonstration. When this screen was captured, the final line had not been
added to the slide yet (so it’s not a bug in the code).

Figure 7-13 Text-to-PowerPoint GUI control panel (txt2ppt.pyw).
(a) Filename entry field clear on start-up (b) DEMO if demo request or error otherwise.

(a) (b)

Figure 7-14 PowerPoint creating the title slide of the demo presentation.

ptg7615500

7.4 Intermediate Examples 349

Finally, the code adds one more auxiliary slide to tell the user the slide-
show is set to go (Figure 7-16) and gives a cute little countdown from three
to zero. (The screenshot was taken as the count had already started and
progressed down to two.) The slideshow is then started without any addi-
tional processing. Figure 7-17 depicts the plain look (black text on a white
background).

To show it works, now we apply a presentation template (Figure 7-18)
to give it the desired look and feel, and then you can drive it from here on out.

Figure 7-15 Creating the final slide of the demo presentation.

ptg7615500

350 Chapter 7 • *Programming Microsoft Office

Figure 7-16 Counting down to start the slideshow.

Figure 7-17 The slideshow has started, but no template has been applied (yet).

ptg7615500

7.4 Intermediate Examples 351

Example 7-7 presents the txt2ppt.pyw script, followed by the corre-
sponding code walkthrough.

Example 7-7 Text-to-PowerPoint converter (txt2ppt.pyw)

This script generates a PowerPoint presentation from a plain text file formatted like
Python code.

1 #!/usr/bin/env python
2
3 from Tkinter import Tk, Label, Entry, Button
4 from time import sleep
5 import win32com.client as win32
6
7 INDENT = ' '
8 DEMO = '''
9 PRESENTATION TITLE
10 optional subtitle
11

(Continued)

Figure 7-18 The finished PowerPoint slideshow after the template is applied.

ptg7615500

352 Chapter 7 • *Programming Microsoft Office

Example 7-7 Text-to-PowerPoint converter (txt2ppt.pyw) (Continued)

12 slide 1 title
13 slide 1 bullet 1
14 slide 1 bullet 2
15
16 slide 2 title
17 slide 2 bullet 1
18 slide 2 bullet 2
19 slide 2 bullet 2a
20 slide 2 bullet 2b
21 '''
22
23 def txt2ppt(lines):
24 ppoint = win32.gencache.EnsureDispatch(
25 'PowerPoint.Application')
26 pres = ppoint.Presentations.Add()
27 ppoint.Visible = True
28 sleep(2)
29 nslide = 1
30 for line in lines:
31 if not line:
32 continue
33 linedata = line.split(INDENT)
34 if len(linedata) == 1:
35 title = (line == line.upper())
36 if title:
37 stype = win32.constants.ppLayoutTitle
38 else:
39 stype = win32.constants.ppLayoutText
40
41 s = pres.Slides.Add(nslide, stype)
42 ppoint.ActiveWindow.View.GotoSlide(nslide)
43 s.Shapes[0].TextFrame.TextRange.Text = line.title()
44 body = s.Shapes[1].TextFrame.TextRange
45 nline = 1
46 nslide += 1
47 sleep((nslide<4) and 0.5 or 0.01)
48 else:
49 line = '%s\r\n' % line.lstrip()
50 body.InsertAfter(line)
51 para = body.Paragraphs(nline)
52 para.IndentLevel = len(linedata) - 1
53 nline += 1
54 sleep((nslide<4) and 0.25 or 0.01)
55
56 s = pres.Slides.Add(nslide,win32.constants.ppLayoutTitle)
57 ppoint.ActiveWindow.View.GotoSlide(nslide)
58 s.Shapes[0].TextFrame.TextRange.Text = "It's time for a slide-

show!".upper()
59 sleep(1.)
60 for i in range(3, 0, -1):
61 s.Shapes[1].TextFrame.TextRange.Text = str(i)
62 sleep(1.)
63

ptg7615500

7.4 Intermediate Examples 353

Line-by-Line Explanation

Lines 1–5
Surprisingly, there aren’t that many things to import. Python has almost
everything we need to solve this problem. Like the Outlook dialog editor,
we need to bring in some basic Tk functionality for a shell GUI application
to capture user input. Naturally, you can choose to do it via a command-
line interface, as well, but you have enough knowledge to do that on your
own. Sometimes it’s more convenient to have the tool sitting on your desk-
top waiting for you to use.

64 pres.SlideShowSettings.ShowType = win32.constants.ppShowType-
Speaker

65 ss = pres.SlideShowSettings.Run()
66 pres.ApplyTemplate(r'c:\Program Files\Microsoft

Office\Templates\Presentation Designs\Stream.pot')
67 s.Shapes[0].TextFrame.TextRange.Text = 'FINIS'
68 s.Shapes[1].TextFrame.TextRange.Text = ''
69
70 def _start(ev=None):
71 fn = en.get().strip()
72 try:
73 f = open(fn, 'U')
74 except IOError, e:
75 from cStringIO import StringIO
76 f = StringIO(DEMO)
77 en.delete(0, 'end')
78 if fn.lower() == 'demo':
79 en.insert(0, fn)
80 else:
81 import os
82 en.insert(0,
83 r"DEMO (can't open %s: %s)" % (
84 os.path.join(os.getcwd(), fn), str(e)))
85 en.update_idletasks()
86 txt2ppt(line.rstrip() for line in f)
87 f.close()
88
89 if __name__=='__main__':
90 tk = Tk()
91 lb = Label(tk, text='Enter file [or "DEMO"]:')
92 lb.pack()
93 en = Entry(tk)
94 en.bind('<Return>', _start)
95 en.pack()
96 en.focus_set()
97 quit = Button(tk, text='QUIT',
98 command=tk.quit, fg='white', bg='red')
99 quit.pack(fill='x', expand=True)
100 tk.mainloop()

ptg7615500

354 Chapter 7 • *Programming Microsoft Office

The use of the time.sleep() function is purely academic. We’re only
using it to slow down our application. You can choose to leave out all
those calls if you prefer. The reason why we’re using it here as well as our
Excel stock demonstration earlier is to slow things down a bit because the
code generally executes so quickly, people are skeptical that it even did
anything or that it was staged.

The last bit of course, is the lynchpin: the PC library.

Lines 7–21
These are a pair of general global variables that represent two values. The
first is the default indentation level of four spaces, much like the recom-
mended indentation for Python code per the PEP 8 style guide, only this
time, we’re defining the presentation bullet level. The other one is a dem-
onstration slide presentation in case you prefer to see a demonstration of
how the script works or as a backup in case the desired source text file can-
not be found by the script. This static string also serves as an example of
how you should structure your source text file. Once you’ve created a pre-
sentation, you won’t need to look at this again.

Lines 23–29
These first few lines of the main function, txt2ppt(), launch PowerPoint,
create a new presentation, make the PowerPoint application show up on
the desktop, pause for a few seconds, and then reset the slide count to one.

Lines 30–54
The txt2ppt() function takes one argument: all the lines of the source text
file that comprise the presentation. You can pretty much feed this function
any iterable with one or more lines, and a slide presentation will be created
for you. For the demonstration bullet points, we use cStringIO.StringIO
object to iterate through the text, and for a real file, we use a generator
expression for each line. Naturally, if you’re using Python 2.3 or older,
you’ll need to change the “genexp” to a list comprehension. True, it’s not as
great for memory, especially large source files, but what are you going do?

Back to the processor loop; we skip blank lines, then do a little bit of
magic by string splitting on the indentation. A look at this code snippet
will show you exactly what we’re doing:

>>> 'slide title'.split(' ')
['slide title']
>>> ' 1st level bullet'.split(' ')

ptg7615500

7.4 Intermediate Examples 355

['', '1st level bullet']
>>> ' 2nd level bullet'.split(' ')
['', '', '2nd level bullet']

When there is no indentation, meaning that splitting on the indentation
only leaves a single string, this means we’re starting a new slide and the
text is the slide title. If the length of this list is greater than one, this means
that we have at least one level of indentation and that this is continuing
material of a previous slide (and not the beginning of a new one). For the
former, this affirmative part of the if clause makes up lines 35 to 47. We’ll
focus on this block first, followed by the rest.

The next five lines (35–39) determine whether this is a title slide or a
standard text slide. This is where the ALL CAPS for a title slide comes in.
We just compare the contents to an all-capitalized version of it. If they
match, meaning the text is in CAPS, this means that this slide should use
the title layout, designated by the PC constant ppLayoutTitle. Otherwise,
this is a standard slide with a title and text body (ppLayoutText).

After we’ve determined the slide layout, the new slide is created on line
41, PowerPoint is directed (in line 42) to that slide (by making it the active
slide), and the title or main shape text is set to the content, using title case
(line 43). Note that Python starts counting at zero (Shape[0]), whereas
Microsoft likes to start counting at one (Shape(1))—either syntax is acceptable.

The remaining content to come will be part of Shape[1] (or Shape(2)),
and we call that the body (line 44); for a title slide it will be the subtitle,
and for a standard slide it’s going to be bulleted lines of text.

On the remaining lines in this clause (45–47), we mark that we’ve writ-
ten the first line on this slide, increment the counter tracking the total
number of slides in the presentation, and then pause so that the user can
see how the Python script was able to control PowerPoint’s execution.

Jumping over the wall to the else-clause, we move to the code that’s
executed for the remaining list on the same slide, filling in the second
shape or body of the slide. Because we have already used the indentation
to indicate where we are and the indentation level, we don’t need those
leading spaces any more, so we strip (str.lstrip()) them out, and then
insert the text into the body (lines 49–50).

The rest of the block indents the text to the correct bullet level (or no
indentation at all if it’s a title slide—setting an indentation level of zero has
no effect on the text), increments the linecount, and adds the minor pause
at the end to slow things down (lines 51–54).

ptg7615500

356 Chapter 7 • *Programming Microsoft Office

Lines 56–62
After all the main slides have been created, we add one more title slide at
the end, announcing that it’s time for a slideshow by changing the text
dynamically, counting down by seconds from three to zero.

Lines 64–68
The primary purpose of these lines is to start the slideshow. Actually only
the first two lines (64 and 65) do this. Line 66 applies the template. We do
this after the slideshow has started so that you can see it—it’s more
impressive that way. The last pair of lines in this block of code (67–68) reset
the “it’s time for a slideshow” slide and countdown used earlier.

Lines 70–100
The _start() function is only useful if we ran this script from the command-
line. We leave txt2ppt() as importable to be used elsewhere, but _start()
requires the GUI. Jumping down momentarily to lines 90–100, you can see
that we create a Tk GUI with a text entry field (with a label prompting the
user to enter a filename or “DEMO” to see the demonstration) and a Quit
button.

So _start() begins (on line 71) by extracting the contents of this entry
field and attempts to open this file (line 73; see the related exercise at the
end of the chapter). If the file is opened successfully, it skips the except
clause and calls txt2ppt() to process the file then closes it when complete
(lines 86–87).

If an exception is encountered, the handler checks to see if the demo
was selected (lines 77–79). If so, it reads the demonstration string into a
cStringIO.StringIO object (line 76) and passes that to txt2ppt(); other-
wise, it runs the demonstration anyway but inserts an error message in the
text field to inform the user why the failure occurred (lines 81–84).

7.4.4 Summary

Hopefully, by studying this chapter, you will have received a strong intro-
duction to COM client programming with Python. Although the COM
servers on the Microsoft Office applications are the most robust and full-
featured, the material you learned here will apply to other applications
with COM servers, or even OpenOffice, the open-source version of Star-
Office, another alternative to Microsoft Office.

ptg7615500

7.6 Exercises 357

Since the acquisition by Oracle of Sun Microsystems, the original corpo-
rate sponsor of StarOffice and OpenOffice, the successor to StarOffice has
been announced as Oracle Open Office, and those in the open-source com-
munity who feel that the status of OpenOffice has become jeopardized
have forked it as LibreOffice. Since they both come from the same code-
base, they share the same COM-style interface known as Universal Net-
work Objects (UNO). You can use the PyUNO module to drive OpenOffice
or LibreOffice applications to process documents, such as, writing PDF
files, converting from Microsoft Word to the OpenDocument text (ODT)
format, HTML, etc.

7.5 Related Modules/Packages

Python Extensions for Windows
 http://pywin32.sf.net

xlrd, xlwt (Python 3 versions available)
 http://www.lexicon.net/sjmachin/xlrd.htm
 http://pypi.python.org/pypi/xlwt
 http://pypi.python.org/pypi/xlrd

pyExcelerator
 http://sourceforge.net/projects/pyexcelerator/

PyUNO
 http://udk.openoffice.org/python/python-bridge.html

7.6 Exercises

7-1. Web Services. Take the Yahoo! stock quote example
(stock.py) and change the application to save the quote data
to a file instead of displaying it to the screen. Optional: You
can change the script so that users can choose to display the
quote data or save it to a file.

http://pywin32.sf.net
http://www.lexicon.net/sjmachin/xlrd.htm
http://pypi.python.org/pypi/xlwt
http://pypi.python.org/pypi/xlrd
http://sourceforge.net/projects/pyexcelerator/
http://udk.openoffice.org/python/python-bridge.html

ptg7615500

358 Chapter 7 • *Programming Microsoft Office

7-2. Excel and Web Pages. Create an application that will read data
from an Excel spreadsheet and map all of it to an equivalent
HTML table. (You can use the third-party HTMLgen module if
desired.)

7-3. Office Applications and Web Services. Interface to any existing
Web service, whether REST or URL-based, and write data to
an Excel spreadsheet, or format the data nicely into a Word
document. Format them properly for printing. Extra Credit:
Support both Excel and Word.

7-4. Outlook and Web Services. Similar to Exercise 7-3, do the same
thing, but put the data into a new e-mail message that you
send by using Outlook. Extra Credit: Do the same thing but
send the e-mail by using regular SMTP instead. (You might
want to refer to Chapter 3, “Internet Client Programming.”)

7-5. Slideshow Generation. In Exercises 7-15 through 7-24, you’ll
build new features into the slideshow generator we intro-
duced earlier in this chapter, txt2ppt.pyw. This exercise
prompts you to think about just the basics but with a non-
proprietary format. Implement a script with similar func-
tionality to txt2ppt.pyw, except instead of interfacing with
PowerPoint, your output should use an open-source stan-
dard such as HTML5. Take a look at projects such as Land-
Slide, DZSlides, and HTML5Wow for inspiration. You can
find others at http://en.wikipedia.org/wiki/Web-based_
slideshow. Create a plain-text specification format for your
users, document it, and let your users use this tool to pro-
duce something that they can use on stage.

7-6. Outlook, Databases, and Your Address Book. Write a program
that will extract the contents of an Outlook address book and
store the desired fields into a database. The database can be a
text file, DBM file, or even an RDBMS. (You might want to
refer to Chapter 6, “Database Programming.”) Extra Credit:
Do the reverse; read in contact information from a database
(or allow for direct user input) and create or update records
in Outlook.

7-7. Microsoft Outlook and E-mail. Develop a program that backs
up your e-mail by taking the contents of your Inbox and/or
other important folders and saves it in (as close to) regular
“mbox” format to disk.

http://en.wikipedia.org/wiki/Web-based_slideshow
http://en.wikipedia.org/wiki/Web-based_slideshow

ptg7615500

7.6 Exercises 359

7-8. Outlook Calendar. Write a simple script that creates new Out-
look appointments. Take at least the following as user input:
start date and time, appointment name or subject, and dura-
tion of appointment.

7-9. Outlook Calendar. Build an application that dumps the con-
tents of your appointments to a destination of your choice,
for example, to the screen, to a database, to Excel, etc. Extra
Credit: Do the same thing to your set of Outlook tasks.

7-10. Multithreading. Update the Excel version of the stock quote
download script (estock.pyw) so that the downloads of data
happen concurrently using multiple Python threads.
Optional: You might also try this exercise with Visual C++
threads using win32process.beginthreadex().

7-11. Excel Cell Formatting. In the spreadsheet version of the stock
quote download script (estock.pyw), we saw in Figure 7-7
how the stock price does not default to two places after the
decimal point, even if we pass in a string with the trailing
zero(s). When Excel converts it to a number, it uses the
default setting for the number format.
a) Change the numeric format to correctly go out to two

decimal places by changing the cell’s NumberFormat
attribute to 0.00.

b) We also saw that the “change from previous close” col-
umn loses the “+” character in addition to the decimal
point formatting. However, we discovered that making
the correction in part (a) to both columns only solves the
decimal place problem; the plus sign is automatically
dropped for any number. The solution here is to change
this column to be text instead of a number. You can do
this by changing the cell’s NumberFormat attribute to @.

c) By changing the cell’s numeric format to text, however,
we lose the right alignment that comes automatically
with numbers. In addition to your solution to part (b),
you must also now set the cell’s HorizontalAlignment
attribute to the PC Excel constant xlRight. After you
come up with the solutions to all three parts, your output
will now look more acceptable, as shown in Figure 7-19.

ptg7615500

360 Chapter 7 • *Programming Microsoft Office

7-12. Python 3. Example 7-8 shows the Python 3 version of our first
Excel example (excel3.pyw) along with the changes (in italics).
Given this solution, port all the other scripts in this chapter
to Python 3.

Example 7-8 Python 3 version of Excel Example (excel3.pyw)

Porting the original excel.pyw script is as simple as running the 2to3 tool.

1 #!/usr/bin/env python3
2
3 from time import sleep
4 from tkinter import Tk
5 from tkinter.messagebox import showwarning
6 import win32com.client as win32
7

Figure 7-19 Improving the Python-to-Excel stock quote script (estock.pyw).

ptg7615500

7.6 Exercises 361

The next pair of exercises pertain to Example 7-6 (outlook_edit.pyw).
7-13. Unicode Support. Fix the outlook_edit.pyw script so that it

works flawlessly with Unicode and diacritic characters. In
other words, do not strip these out. Instead, preserve them,
pass them to the editor, and accept them in messages after
editing so that they can be sent in e-mail messages.

7-14. Robustness. Make the script more flexible by allowing
the user to specify the editor she prefers to use from the
command-line. If one is not provided, the application should
fall back to an environment variable setting, or finally, bring
up one of the editors hardcoded as a last resort.

The next set of exercises pertain to Example 7-7 (txt2ppt.pyw).
7-15. Skip Comments. Modify your script to support comments: if

a line in the text file begins with an hash mark (‘#’, a.k.a.
pound sign, octothorpe, etc.), assume this line doesn’t exist
and move to the next one.

8 warn = lambda app: showwarning(app, 'Exit?')
9 RANGE = list(range(3, 8))
10
11 def excel():
12 app = 'Excel'
13 xl = win32.gencache.EnsureDispatch('%s.Application' % app)
14 ss = xl.Workbooks.Add()
15 sh = ss.ActiveSheet
16 xl.Visible = True
17 sleep(1)
18
19 sh.Cells(1,1).Value = 'Python-to-%s Demo' % app
20 sleep(1)
21 for i in RANGE:
22 sh.Cells(i,1).Value = 'Line %d' % i
23 sleep(1)
24 sh.Cells(i+2,1).Value = "Th-th-th-that's all folks!"
25
26 warn(app)
27 ss.Close(False)
28 xl.Application.Quit()
29
30 if __name__=='__main__':
31 Tk().withdraw()
32 excel()

ptg7615500

362 Chapter 7 • *Programming Microsoft Office

7-16. Improving Title Slide Designation. Come up with a better way
to signify a title slide. Using all capital letters is nice except
for certain situations in which title casing is not desired. For
example, if the user created a talk entitled, “Intro to TCP/IP”,
it will contain errors due to the capitalization of “to” and the
lowercase “cp” and “p” in “Tcp/Ip”:
>>> 'Intro to TCP/IP'.title()
'Intro To Tcp/Ip'

7-17. Side Effects. What happens in _start() if there is a text file
named “demo” in the current folder? Is this a bug or a fea-
ture? Can we improve this situation in any way? If so, code
it. If not, indicate why not.

7-18. Template Specification. Currently in the script, all presenta-
tions will apply the design template C:\Program
Files\Microsoft Office\Templates\Presentation
Designs\Stream.pot. That’s boring.
(a) Allow the user to choose from any of the other templates

in that folder or wherever your installation is.
(b) Allow the user to specify their own template (and

its location) from a new entry field in the GUI, the
command-line, or from an environment variable (your
choice). Extra Credit: Support all options here in the order
of precedence given, or give the user a pulldown in the
user interface for the default template options from
part (a).

7-19. Hyperlinking. A talk might feature links in the plain text file.
Make those links active from PowerPoint. Hint: You will
need to set the Hyperlink.Address as the URL to spawn a
browser to visit if a viewer clicks the link in the slide (see the
ActionSettings for a ppMouseClick). Extra Credit: Support
hyperlinks only on the URL text when the link isn’t the only
text on the same line; that is, set the active part of the link to
be just the URL and not any other text on that line.

7-20. Text Formatting. Add the ability to have bold, italics, and
monospaced (for example, Courier) text to presentation con-
tents by supporting some sort of lightweight markup format-
ting in source text files. We strongly recommend reST

ptg7615500

7.6 Exercises 363

(reStructuredText), Markdown, or similar, like Wiki-style
formatting, such as, ‘monospaced’, *bold*, _italic_, etc. For
more examples, see http://en.wikipedia.org/wiki/
Lightweight_markup_language.

7-21. Text Formatting. Add support for other formatting services,
such as underlining, shadowing, other fonts, text color, justi-
fication change (left, right, centered, etc.), font sizing, head-
ers and footers, or anything else that PowerPoint supports.

7-22. Images. One important feature we need to add to our applica-
tion is the ability to have slides with images. Let’s make the
problem easier by requiring you to only support slides with
a title and a single image (resized and centered on a presen-
tation slide). You’ll need to specify a customized syntax for
your users to embed image filenames with, for example,
:IMG:C:/py/talk/images/cover.png. Hints: So far, we’ve
only used the ppLayoutTitle or ppLayoutText slide layouts;
for this exercise, we recommend ppLayoutTitleOnly. Insert
images using Shapes.AddPicture() and resize them using
ScaleHeight() and ScaleWidth() along with data points pro-
vided by PageSetup.SlideHeight and PageSetup.SlideWidth
plus the image’s Height and Width attributes.

7-23. Different Layouts. Further extend your solution to Exercise 7-22
so that your script supports slides with multiple images or
slides with images and bulleted text. Mainly, this means
playing around with other layout styles.

7-24. Embedded Videos. Another advanced feature you can add is
the ability to embed YouTube video clips (or other Adobe
Flash applications) in presentations. Similar to Exercise 7-23,
you’ll need to define your own syntax to support this, for
example, :VID:http://youtube.com/v/Tj5UmH5TdfI. Hints:
We recommend the ppLayoutTitleOnly layout again here. In
addition, you’ll need to use Shapes.AddOLDObject() with a
type of 'ShockwaveFlash.ShockwaveFlash.10' or whatever
version your Flash player is.

http://en.wikipedia.org/wiki/Lightweight_markup_language
http://en.wikipedia.org/wiki/Lightweight_markup_language
http://youtube.com/v/Tj5UmH5TdfI

ptg7615500

364

CHAPTER

Extending Python

C is very efficient. Unfortunately, C gets that efficiency by
requiring you to do a lot of low-level management of resources.

With today’s machines as powerful as they are, this is usually a bad
tradeoff—it’s smarter to use a language that uses the machine’s

time less efficiently, but your time much more efficiently.
Thus, Python.

—Eric Raymond, October 1996

In this chapter...

• Introduction/Motivation
• Extending Python by Writing Extensions
• Related Topics

ptg7615500

8.1 Introduction/Motivation 365

n this chapter, we will discuss how to take code written externally
and integrate that functionality into the Python programming envi-
ronment. We will first present the motivation for why you do it, and

then take you through the step-by-step process of how to do it. We should
point out, though, that because extensions are primarily done in the C lan-
guage, all of the example code you will see in this section is pure C, as a
lowest common denominator. You can also use C++ if you want because
it’s a superset of C; if you’re building extensions on PCs by using Microsoft
Visual Studio, you will be using (Visual) C++.

8.1 Introduction/Motivation
In this opening section of the chapter, we’ll define what Python extensions
are, and then try to justify why you would (or wouldn’t) consider creating one.

8.1.1 What Are Extensions?

In general, any code that you write that can be integrated or imported into
another Python script can be considered an extension. This new code can
be written in pure Python or in a compiled language such as C and C++,
(or Java for Jython and C# or VisualBasic.NET for IronPython).

One great feature of Python is that its extensions interact with the inter-
preter in exactly the same way as the regular Python modules. Python was
designed so that the abstraction of module import hides the underlying
implementation details from the code that uses such extensions. Unless
the client programmer searches the file system, he simply wouldn’t be able
to tell whether a module is written in Python or in a compiled language.

CORE NOTE: Creating extensions on different platforms

We will note here that extensions are generally available in a development envi-
ronment in which you compile your own Python interpreter. There is a subtle
relationship between manual compilation versus obtaining the binaries. Although
compilation can be a bit trickier than just downloading and installing binaries,
you have the most flexibility in customizing the version of Python that you are
using. If you intend to create extensions, you should perform this task in a similar
environment.

I

ptg7615500

366 Chapter 8 • Extending Python

The examples in this chapter are built on a Unix-based system (which usually
comes with a compiler), but assuming you do have access to a C/C++ (or Java)
compiler and a Python development environment in C/C++ (or Java), the only
differences are in your compilation method. The actual code to make your
extensions usable in the Python world is the same on any platform.

If you are developing for Windows-based PCs, you’ll need Visual C++ “Devel-
oper Studio.” The Python distribution comes with project files for version 7.1,
but you can use older versions of VC++.

For more information on building extensions in general:
• C++ on PCs–http://docs.python.org/extending/windows

• Java/Jython–http://wiki.python.org/jython

• IronPython–http://ironpython.codeplex.com

Caution: Although moving binaries between different hosts of the same architec-
ture is generally a non-issue, sometimes slight differences in the compiler or
CPU will cause code not to work consistently.

8.1.2 Why You Want to Extend Python

Throughout the brief history of software engineering, programming lan-
guages have always been taken at face value. What you see is what you get;
it was impossible to add new functionality to an existing language. In
today’s programming environment, however, the ability to customize one’s
programming environment is now a desired feature; it also promotes code
reuse. Languages such as Tcl and Python are among the first languages to
provide the ability to extend the base language. So why would you want to
extend a language like Python, which is already feature-rich? There are
several good reasons:

• Added/extra (non-Python) functionality One reason for
extending Python is the need to have new functionality that is
not provided by the core part of the language. This can be
accomplished in either pure Python or as a compiled
extension, but there are certain things such as creating new
data types or embedding Python in an existing application
that must be compiled.

http://docs.python.org/extending/windows
http://wiki.python.org/jython
http://ironpython.codeplex.com

ptg7615500

8.1 Introduction/Motivation 367

• Bottleneck performance improvement It is well known that
interpreted languages do not perform as fast as compiled
languages because that translation must happen on the fly,
and during runtime. In general, moving a body of code into an
extension will improve overall performance. The problem is
that it is sometimes not advantageous if the cost is high in
terms of resources.

From the perspective of percentage, it is a wiser bet to do
some simple profiling of the code to identify what the
bottlenecks are, and move those pieces of code out to an
extension. The gain can be seen more quickly and without
expending as much in terms of resources.

• Keep proprietary source code private Another important
reason to create extensions is due to one side effect of having
a scripting language. For all the ease-of-use such languages
bring to the table, there really is no privacy as far as source
code is concerned because the executable is the source code.

Code that is moved out of Python and into a compiled
language helps keep proprietary code private because you
ship a binary object. Because these objects are compiled, they
are not as easily reverse-engineered; thus, the source remains
more private. This is key when it involves special algorithms,
encryption or software security, etc.

Another alternative to keeping code private is to ship pre-
compiled .pyc files only. It serves as a good middle ground
between releasing the actual source (.py files) and having to
migrate that code to extensions.

8.1.3 Why You Don’t Want to Extend Python

Before we get into how to write extensions, we want to warn you that you
might not want to do this, after all. You can consider this section a caveat
so that you don’t think there’s any false advertising going on here. Yes,
there are definitely benefits to writing extensions such as those just out-
lined, however there are some drawbacks too:

• You have to write C/C++ code.

ptg7615500

368 Chapter 8 • Extending Python

• You’ll need to understand how to pass data between Python
and C/C++.

• You need to manage references on your own.

• There are tools that accomplish the same thing—that is, they
generate and take advantage of the performance of C/C++
code without you writing any C/C++ at all. You’ll find some of
these tools at the end of this chapter.

Don’t say we didn’t warn you! Now you may proceed...

8.2 Extending Python by Writing
Extensions

Creating extensions for Python involves three main steps:

1. Creating application code
2. Wrapping code with boilerplates
3. Compilation and testing

In this section, we will break out and expose all three stages.

8.2.1 Creating Your Application Code

First, before any code becomes an extension, you need to create a stand-
alone “library.” In other words, create your code keeping in mind that it is
going to turn into a Python module. Design your functions and objects
with the vision that Python code will be communicating and sharing data
with your C code, and vice versa.

Next, create test code to bulletproof your software. You can even use the
Pythonic development method of designating your main() function in C as
the testing application so that if your code is compiled, linked, and loaded
into an executable (as opposed to just a shared object), the invocation of
such an executable will result in a regression test of your software library.
For our extension example that follows, this is exactly what we do.

The test case involves two C functions that we want to bring to the
world of Python programming. The first is the recursive factorial function,
fac(). The second, reverse(), is a simple string reverse algorithm, whose
main purpose is to reverse a string “in place,” that is, to return a string

ptg7615500

8.2 Extending Python by Writing Extensions 369

whose characters are all reversed from their original positions, all without
allocating a separate string to copy in reverse order. Because this involves
the use of pointers, we need to carefully design and debug our code before
bringing Python into the picture.

Our first version, Extest1.c, is presented in Example 8-1.

Example 8-1 Pure C Version of Library (Extest1.c)

This code represents our library of C functions, which we want to wrap so that
we can use it from within the Python interpreter. main() is our tester function.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int fac(int n)
6 {
7 if (n < 2) return(1); /* 0! == 1! == 1 */
8 return (n)*fac(n-1); /* n! == n*(n-1)! */
9 }
10
11 char *reverse(char *s)
12 {
13 register char t, /* tmp */
14 *p = s, /* fwd */
15 *q = (s + (strlen(s)-1)); /* bwd */
16
17 while (p < q) /* if p < q */
18 { /* swap & mv ptrs */
19 t = *p;
20 *p++ = *q;
21 *q-- = t;
22 }
23 return s;
24 }
25
26 int main()
27 {
28 char s[BUFSIZ];
29 printf("4! == %d\n", fac(4));
30 printf("8! == %d\n", fac(8));
31 printf("12! == %d\n", fac(12));
32 strcpy(s, "abcdef");
33 printf("reversing 'abcdef', we get '%s'\n", \
34 reverse(s));
35 strcpy(s, "madam");
36 printf("reversing 'madam', we get '%s'\n", \
37 reverse(s));
38 return 0;
39 }

ptg7615500

370 Chapter 8 • Extending Python

This code consists of a pair of functions, fac() and reverse(), which are
implementations of the functionality we just described. fac() takes a single
integer argument and recursively calculates the result, which is eventually
returned to the caller once it exits the outermost call.

The last piece of code is the required main() function. We use it to be
our tester, sending various arguments to fac() and reverse(). With this
function, we can determine whether our code actually works.

Now we should compile the code. For many versions of Unix with the
gcc compiler, we can use the following command:

$ gcc Extest1.c -o Extest
$

To run our program, we issue the following command and get the output:
$ Extest
4! == 24
8! == 40320
12! == 479001600
reversing 'abcdef', we get 'fedcba'
reversing 'madam', we get 'madam'
$

We stress again that you should try to complete your code as much as
possible, because you do not want to mix debugging of your library with
potential bugs when integrating with Python. In other words, keep the
debugging of your core code separate from the debugging of the integra-
tion. The closer you write your code to Python interfaces, the sooner your
code will be integrated and work correctly.

Each of our functions takes a single value and returns a single value. It’s
pretty cut and dried, so there shouldn’t be a problem integrating with
Python. Note that, so far, we have not seen any connection or relationship
with Python. We are simply creating a standard C or C++ application.

8.2.2 Wrapping Your Code in Boilerplate

The entire implementation of an extension primarily revolves around the
“wrapping” concept that should seem familiar to you: composite classes,
decorator functions, class delegation, etc. You should design your code in
such a way that there is a smooth transition between the world of Python
and your implementing language. This interfacing code is commonly
called boilerplate code because it is a necessity if your code is to talk to the
Python interpreter.

ptg7615500

8.2 Extending Python by Writing Extensions 371

There are four main pieces to the boilerplate software:

1. Include a Python header file
2. Add PyObject* Module_func() Python wrappers for each mod-

ule function
3. Add a PyMethodDef ModuleMethods[] array/table for each module

function
4. Add a void initModule() module initializer function

Including the Python Header File

The first thing you should do is to find your Python include files and
ensure that your compiler has access to that directory. On most Unix-
based systems, this would be either /usr/local/include/python2.x or
/usr/include/python2.x, where 2.x is your version of Python. If you
compiled and installed your Python interpreter, you should not have a
problem, because the system generally knows where your files are installed.

Add the inclusion of the Python.h header file to your source. The line
will look something like:

#include "Python.h"

That is the easy part. Now you have to add the rest of the boilerplate
software.

Add PyObject* Module_func() Python Wrappers for

Each Function

This part is the trickiest. For each function that you want accessible to the
Python environment, you will create a static PyObject* function with
the module name along with an underscore (_) prepended to it.

For example, we want fac() to be one of the functions available for
import from Python and we will use Extest as the name of our final mod-
ule, so we create a wrapper called Extest_fac(). In the client Python script,
there will be an import Extest and an Extest.fac() call somewhere (or
just fac() for from Extest import fac).

The job of the wrapper is to take Python values, convert them to C, and
then make a call to the appropriate function with what we want. When our
function has completed, and it is time to return to the world of Python; it is
also the job of this wrapper to take whatever return values we designate,
convert them to Python, and then perform the return, passing back any val-
ues as necessary.

ptg7615500

372 Chapter 8 • Extending Python

In the case of fac(), when the client program invokes Extest.fac(), our
wrapper will be called. We will accept a Python integer, convert it to a C
integer, call our C function fac(), and then obtain another integer result.
We then have to take that return value, convert it back to a Python integer,
and then return from the call. (keep in mind that you are writing the code
that will proxy for a def fac(n) declaration. When you are returning, it is
as if that imaginary Python fac() function is completing.)

So, you’re asking, how does this conversion take place? The answer is
with the PyArg_Parse*() functions when going from Python to C, and
Py_BuildValue() when returning from C to Python.

The PyArg_Parse*() functions are similar to the C sscanf() function. It
takes a stream of bytes, and then, according to some format string, parcels
them off to corresponding container variables, which, as expected, take
pointer addresses. They both return 1 on successful parsing, and 0 otherwise.

Py_BuildValue() works like sprintf(), taking a format string and con-
verting all arguments to a single returned object containing those values in
the formats that you requested.

You will find a summary of these functions in Table 8-1.

Table 8-1 Converting Data Between Python and C/C++

Function Description

Python to C

int
PyArg_ParseTuple()

Converts (a tuple of) arguments
passed from Python to C

int
PyArg_ParseTupleAndKeywords()

Same as PyArg_ParseTuple() but also
parses keyword arguments

C to Python

PyObject*
Py_BuildValue()

Converts C data values into a Python
return object, either a single object or
a single tuple of objects

ptg7615500

8.2 Extending Python by Writing Extensions 373

A set of conversion codes is used to convert data objects between C and
Python; they are given in Table 8-2.

Table 8-2 Pythona and C/C++ Conversion “Format Units”

Format Unit Python Type C/C++ Type

s, s# str/unicode, len() char*(, int)

z, z# str/unicode/None, len() char*/NULL(, int)

u, u# unicode, len() (Py_UNICODE*, int)

i int int

b int char

h int short

l int long

k int or long unsigned long

I int or long unsigned int

B int unsigned char

H int unsigned short

L long long long

K long unsigned long long

c str char

d float double

f float float

D complex Py_Complex*

O (any) PyObject*

S str PyStringObject

Nb (any) PyObject*

O& (any) (any)

a. These format codes are for Python 2 but have near equivalents in Python 3.
b. Like “O” except it does not increment object’s reference count.

ptg7615500

374 Chapter 8 • Extending Python

These conversion codes are the ones given in the respective format strings
that dictate how the values should be converted when moving between
both languages. Note that the conversion types are different for Java
because all data types are classes. Consult the Jython documentation to
obtain the corresponding Java types for Python objects. The same applies for
C# and VB.NET.

Here, we show you our completed Extest_fac() wrapper function:
static PyObject *
Extest_fac(PyObject *self, PyObject *args) {

 int res; // parse result
 int num; // arg for fac()
 PyObject* retval; // return value

 res = PyArg_ParseTuple(args, "i", &num);
 if (!res) { // TypeError
 return NULL;
 }
 res = fac(num);
 retval = (PyObject*)Py_BuildValue("i", res);
 return retval;
}

The first step is to parse the data received from Python. It should be a
regular integer, so we use the “i” conversion code to indicate as such. If the
value was indeed an integer, then it is stored in the num variable. Other-
wise, PyArg_ParseTuple() will return a NULL, in which case we also
return one. In our case, it will generate a TypeError exception that informs
the client user that we are expecting an integer.

We then call fac() with the value stored in num and put the result in
res, reusing that variable. Now we build our return object, a Python inte-
ger, again using a conversion code of “i.” Py_BuildValue() creates an inte-
ger Python object, which we then return. That’s all there is to it!

In fact, once you have created wrapper after wrapper, you tend to
shorten your code somewhat to avoid the extraneous use of variables. Try
to keep your code legible, though. We take our Extest_fac() function and
reduce it to its smaller version given here, using only one variable, num:

static PyObject *
Extest_fac(PyObject *self, PyObject *args) {
 int num;
 if (!PyArg_ParseTuple(args, "i", &num))
 return NULL;
 return (PyObject*)Py_BuildValue("i", fac(num));
}

ptg7615500

8.2 Extending Python by Writing Extensions 375

What about reverse()? Well, given you already know how to return a
single value, we are going to change our reverse() example somewhat,
returning two values instead of one. We will return a pair of strings as a
tuple; the first element being the string as passed in to us, and the second
being the newly reversed string.

To show you that there is some flexibility, we will call this function
Extest.doppel() to indicate that its behavior differs from reverse().
Wrapping our code into an Extest_doppel() function, we get:

static PyObject *
Extest_doppel(PyObject *self, PyObject *args) {
 char *orig_str;
 if (!PyArg_ParseTuple(args, "s", &orig_str)) return NULL;
 return (PyObject*)Py_BuildValue("ss", orig_str, \
 reverse(strdup(orig_str)));
}

As in Extest_fac(), we take a single input value, this time a string, and
store it into orig_str. Notice that we use the “s” conversion code now. We
then call strdup() to create a copy of the string. (Because we want to
return the original one, as well, we need a string to reverse, so the best can-
didate is just a copy of the string.) strdup() creates and returns a copy,
which we immediately dispatch to reverse(). We get back a reversed string.

As you can see, Py_BuildValue() puts together both strings using a
conversion string of ss. This creates a tuple of two strings: the original
string and the reversed one. End of story, right? Unfortunately, no.

We got caught by one of the perils of C programming: the memory leak
(when memory is allocated but not freed). Memory leaks are analogous to
borrowing books from the library but not returning them. You should always
release resources that you have acquired when you no longer require them.
How did we commit such a crime with our code (which looks innocent
enough)?

 When Py_BuildValue() puts together the Python object to return, it
makes copies of the data that has been passed to it. In our case here, that
would be a pair of strings. The problem is that we allocated the memory
for the second string, but we did not release that memory when we fin-
ished, leaking it. What we really want to do is to build the return object,
and then free the memory that we allocated in our wrapper. We have no
choice but to lengthen our code to:

static PyObject *
Extest_doppel(PyObject *self, PyObject *args) {
 char *orig_str; // original string
 char *dupe_str; // reversed string
 PyObject* retval;

ptg7615500

376 Chapter 8 • Extending Python

 if (!PyArg_ParseTuple(args, "s", &orig_str)) return NULL;
 retval = (PyObject*)Py_BuildValue("ss", orig_str, \
 dupe_str=reverse(strdup(orig_str)));
 free(dupe_str);
 return retval;
}

We introduce the dupe_str variable to point to the newly allocated
string and build the return object. Then we free() the memory allocated
and finally return back to the caller. Now we are done.

Adding PyMethodDef ModuleMethods[] Array/Table

for Each Module Function

Now that both of our wrappers are complete, we want to list them some-
where so that the Python interpreter knows how to import and access
them. This is the job of the ModuleMethods[] array.

It is made up of an array of arrays, with each individual array contain-
ing information about each function, terminated by a NULL array that
marks the end of the list. For our Extest module, we create the following
ExtestMethods[] array:

static PyMethodDef
ExtestMethods[] = {
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { NULL, NULL },
};

The Python-accessible names are given, followed by the corresponding
wrapping functions. The constant METH_VARARGS is given, indicating a set
of arguments in the form of a tuple. If we are using PyArg_ParseTuple
AndKeywords() with keyworded arguments, we would logically OR this
flag with the METH_KEYWORDS constant. Finally, a pair of NULLs properly
terminates our list of two functions.

Adding a void initModule() Module Initializer

Function

The final piece to our puzzle is the module initializer function. This code is
called when our module is imported for use by the interpreter. In this
code, we make one call to Py_InitModule() along with the module name
and the name of the ModuleMethods[] array so that the interpreter can
access our module functions. For our Extest module, our initExtest()
procedure looks like this:

ptg7615500

8.2 Extending Python by Writing Extensions 377

void initExtest() {
 Py_InitModule("Extest", ExtestMethods);

}

We are now done with all our wrapping. We add all this code to our
original code from Extest1.c and merge the results into a new file called
Extest2.c, concluding the development phase of our example.

Another approach to creating an extension would be to make your
wrapping code first, using stubs or test or dummy functions which will,
during the course of development, be replaced by the fully-functional
pieces of implemented code. This way, you can ensure that your interface
between Python and C is correct, and then use Python to test your C code.

8.2.3 Compilation

Now we are on to the compilation phase. To get your new wrapper Python
extension to build, you need to get it to compile with the Python library.
This task has been standardized (since version 2.0) across platforms to
make life a lot easier for extension writers. The distutils package is used to
build, install, and distribute modules, extensions, and packages. It came
about back in Python 2.0 and replaced the old version 1.x way of build-
ing extensions that used “makefiles.” Using distutils, we can follow this
easy recipe:

1. Create setup.py
2. Compile and link your code by running setup.py
3. Import your module from Python
4. Test the function

Creating setup.py

The next step is to create a setup.py file. The bulk of the work will be
done by the setup() function. All the lines of code that come before that
call are preparatory steps. For building extension modules, you need to cre-
ate an Extension instance per extension. Since we only have one, we only
need one Extension instance:

Extension('Extest', sources=['Extest2.c'])

The first argument is the (full) extension name, including any high-level
packages, if necessary. The name should be in full dotted-attribute nota-
tion. Ours is stand-alone, hence the name “Extest.” sources is a list of all
the source files. Again, we only have the one, Extest2.c.

2.0

ptg7615500

378 Chapter 8 • Extending Python

Now we are ready to call setup(). It takes a name argument for what it
is building and a list of the items to build. Because we are creating an
extension, we set it a list of extension modules to build as ext_modules.
The syntax will be like this:

setup('Extest', ext_modules=[...])
Because we only have one module, we combine the instantiation of our

extension module into our call to setup(), setting the module name as
“constant” MOD on the preceding line:

MOD = 'Extest'
setup(name=MOD, ext_modules=[
 Extension(MOD, sources=['Extest2.c'])])

There are many more options to setup(); in fact, they are too numerous
to list here. You can find out more about creating setup.py and calling
setup() in the official Python documentation that we refer to at the end of
this chapter. Example 8-2 shows the complete script that we are using for
our example.

Compile and Link Your Code by Running setup.py

Now that we have our setup.py file, we can build our extension by run-
ning it with the build directive, as we have done here on our Mac (your
output will differ based on the version of the operating system you are
running as well as the version of Python you are using):

$ python setup.py build
running build
running build_ext
building 'Extest' extension
creating build
creating build/temp.macosx-10.x-fat-2.x
gcc -fno-strict-aliasing -Wno-long-double -no-cpp-
precomp -mno-fused-madd -fno-common -dynamic -DNDEBUG -g

Example 8-2 The Build Script (setup.py)

This script compiles our extension into the build/lib.* subdirectory.

1 #!/usr/bin/env python
2
3 from distutils.core import setup, Extension
4
5 MOD = 'Extest'
6 setup(name=MOD, ext_modules=[
7 Extension(MOD, sources=['Extest2.c'])])

ptg7615500

8.2 Extending Python by Writing Extensions 379

-I/usr/include -I/usr/local/include -I/sw/include -I/
usr/local/include/python2.x -c Extest2.c -o build/temp.macosx-10.x-
fat-2.x/Extest2.o
creating build/lib.macosx-10.x-fat-2.x
gcc -g -bundle -undefined dynamic_lookup -L/usr/lib -L/
usr/local/lib -L/sw/lib -I/usr/include -I/usr/local/
include -I/sw/include build/temp.macosx-10.x-fat-2.x/Extest2.o -o
build/lib.macosx-10.x-fat-2.x/Extest.so

8.2.4 Importing and Testing

The final step is to go back into Python and use our new extension as if it
were written in pure Python.

Importing Your Module from Python

Your extension module will be created in the build/lib.* directory from
where you ran your setup.py script. You can either change to that direc-
tory to test your module or install it into your Python distribution with:

$ python setup.py install

If you do install it, you will get the following output:
running install
running build
running build_ext
running install_lib
copying build/lib.macosx-10.x-fat-2.x/Extest.so ->
/usr/local/lib/python2.x/site-packages

Now we can test our module from the interpreter:
>>> import Extest
>>> Extest.fac(5)
120
>>> Extest.fac(9)
362880
>>> Extest.doppel('abcdefgh')
('abcdefgh', 'hgfedcba')
>>> Extest.doppel("Madam, I'm Adam.")
("Madam, I'm Adam.", ".madA m'I ,madaM")

Adding a Test Function

The one last thing we want to do is to add a test function. In fact, we
already have one, in the form of the main() function. Be aware that it is
potentially dangerous to have a main() function in our code because
there should only be one main() in the system. We remove this danger by

ptg7615500

380 Chapter 8 • Extending Python

changing the name of our main() to test() and wrapping it, adding
Extest_test() and updating the ExtestMethods array so that they both
look like this:

static PyObject *
Extest_test(PyObject *self, PyObject *args) {
 test();
 return (PyObject*)Py_BuildValue("");
}
static PyMethodDef
ExtestMethods[] = {
 { "fac", Extest_fac, METH_VARARGS },
 { "doppel", Extest_doppel, METH_VARARGS },
 { "test", Extest_test, METH_VARARGS },
 { NULL, NULL },
};

The Extest_test() module function just runs test() and returns an
empty string, resulting in a Python value of None being returned to the
caller.

Now we can run the same test from Python:
>>> Extest.test()
4! == 24
8! == 40320
12! == 479001600
reversing 'abcdef', we get 'fedcba'
reversing 'madam', we get 'madam'
>>>

In Example 8-3, we present the final version of Extest2.c that was
used to generate the output we just saw.

Example 8-3 Python-Wrapped Version of C Library (Extest2.c)

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 int fac(int n)
6 {
7 if (n < 2) return(1);
8 return (n)*fac(n-1);
9 }
10
11 char *reverse(char *s)
12 {
13 register char t,
14 *p = s,
15 *q = (s + (strlen(s) - 1));
16

ptg7615500

8.2 Extending Python by Writing Extensions 381

17 while (s && (p < q))
18 {
19 t = *p;
20 *p++ = *q;
21 *q-- = t;
22 }
23 return s;
24 }
25
26 int test()
27 {
28 char s[BUFSIZ];
29 printf("4! == %d\n", fac(4));
30 printf("8! == %d\n", fac(8));
31 printf("12! == %d\n", fac(12));
32 strcpy(s, "abcdef");
33 printf("reversing 'abcdef', we get '%s'\n", \
34 reverse(s));
35 strcpy(s, "madam");
36 printf("reversing 'madam', we get '%s'\n", \
37 reverse(s));
38 return 0;
39 }
40
41 #include "Python.h"
42
43 static PyObject *
44 Extest_fac(PyObject *self, PyObject *args)
45 {
46 int num;
47 if (!PyArg_ParseTuple(args, "i", &num))
48 return NULL;
49 return (PyObject*)Py_BuildValue("i", fac(num));}
50 }
51
52 static PyObject *
53 Extest_doppel(PyObject *self, PyObject *args)
54 {
55 char *orig_str;
56 char *dupe_str;
57 PyObject* retval;
58
59 if (!PyArg_ParseTuple(args, "s", &orig_str))
60 return NULL;
61 retval = (PyObject*)Py_BuildValue("ss", orig_str, \
62 dupe_str=reverse(strdup(orig_str)));
63 free(dupe_str);
64 return retval;
65 }
66

(Continued)

ptg7615500

382 Chapter 8 • Extending Python

In this example, we chose to segregate our C code from our Python
code. It just kept things easier to read and is no problem with our short
example. In practice, these source files tend to get large, and some choose
to implement their wrappers completely in a different source file such as
ExtestWrappers.c or something of that nature.

8.2.5 Reference Counting

You might recall that Python uses reference counting as a means of keep-
ing track of objects and de-allocating objects no longer referenced, as part
of the garbage collection mechanism. When creating extensions, you must
pay extra special attention to how you manipulate Python objects, because
you must be mindful of whether you need to change the reference count
for such objects.

There are two types of references that you can have to an object, one of
which is an owned reference, meaning that the reference count to the object
is incremented by one to indicate your ownership. One situation for which
you would definitely have an owned reference is when you create a
Python object from scratch.

Example 8-3 Python-Wrapped Version of C Library (Extest2.c)
(Continued)

67 static PyObject *
68 Extest_test(PyObject *self, PyObject *args)
69 {
70 test();
71 return (PyObject*)Py_BuildValue("");
72 }
73
74 static PyMethodDef
75 ExtestMethods[] =
76 {
77 { "fac", Extest_fac, METH_VARARGS },
78 { "doppel", Extest_doppel, METH_VARARGS },
79 { "test", Extest_test, METH_VARARGS },
80 { NULL, NULL },
81 };
82
83 void initExtest()
84 {
85 Py_InitModule("Extest", ExtestMethods);
86 }

ptg7615500

8.2 Extending Python by Writing Extensions 383

When you are done with a Python object, you must dispose of your owner-
ship, either by decrementing the reference count, transferring your ownership
by passing it on, or storing the object. Failure to dispose of an owned refer-
ence creates a memory leak.

You can also have a borrowed reference to an object. Somewhat lower on
the responsibility ladder, this is when you are passed the reference of an
object, but otherwise do not manipulate the data in any way. Nor do you
have to worry about its reference count, as long as you do not hold on to
this reference after its reference count has decreased to zero. You might
convert your borrowed reference to an owned reference simply by incre-
menting an object’s reference count.

Python provides a pair of C macros which are used to change the refer-
ence count to a Python object. They are given in Table 8-3.

In our above Extest_test() function, we return None by building a
PyObject with an empty string; however, this can also be accomplished by
becoming an owner of the None object, PyNone, incrementing your reference
count to it, and returning it explicitly, as in the following alternative
piece of code:

static PyObject *
Extest_test(PyObject *self, PyObject *args) {
 test();
 Py_INCREF(Py_None);
 return PyNone;
}

Py_INCREF() and Py_DECREF() also have versions that check for NULL
objects. They are Py_XINCREF() and Py_XDECREF(), respectively.

We strongly urge that you consult the Python documentation regarding
extending and embedding Python for all the details with regard to reference
counting (see the documentation reference in Appendix C, “Python 3: The
Evolution of a Programming Language”).

Table 8-3 Macros for Performing Python Object Reference Counting

Function Description

Py_INCREF(obj) Increment the reference count to obj

Py_DECREF(obj) Decrement the reference count to obj

ptg7615500

384 Chapter 8 • Extending Python

8.2.6 Threading and the GIL

Extension writers must be aware that their code might be executed in a multi-
threaded Python environment. In Chapter 4, “Multithreaded Programming,”
in Section 4.3.1, we introduced the Python Virtual Machine (PVM) and the
Global Interpreter Lock (GIL), describing how only one thread of execution
can be running at any given time in the PVM and that the GIL is responsible
for keeping other threads from running. Furthermore, we indicated that
code calling external functions, such as in extension code, would keep the
GIL locked until the call returns.

We also hinted that there was a remedy, a way for the extension pro-
grammer to release the GIL, for example, before performing a system call.
This is accomplished by “blocking” your code off to where threads may
(and may not) run safely using another pair of C macros, Py_BEGIN_
ALLOW_THREADS and Py_END_ALLOW_THREADS. A block of code bounded by
these macros will permit other threads to run.

As with the reference counting macros, we urge that you consult the
documentation regarding extending and embedding Python as well as
the Python/C API reference manual.

8.3 Related Topics
In this final section of this chapter, we’ll look at various tools representing
alternatives to writing extensions (in any supported language). We’ll intro-
duce you to SWIG, Pyrex, Cython, psyco, and PyPy. We end the chapter
with a brief discussion about a related topic, Embedding Python.

8.3.1 The Simplified Wrapper and Interface

Generator

There is an external tool available called Simplified Wrapper and Interface
Generator (SWIG). It was written by David Beazley, who is also the author
of Python Essential Reference (Addison-Wesley, 2009). It is a software tool
that can take annotated C/C++ header files and generate wrapped code,
ready to compile for Python, Tcl, and Perl. Using SWIG frees you from
having to write the boilerplate code we’ve seen in this chapter. You only
need to worry about coding the solution part of your project in C/C++. All

ptg7615500

8.3 Related Topics 385

you have to do is create your files in the SWIG format, and it will do the
background work on your behalf. You can find out more information
about SWIG from its main Web site:

http://swig.org
http://en.wikipedia.org/wiki/SWIG

8.3.2 Pyrex

One obvious weakness of creating C/C++ extensions (raw or with SWIG) is
that you have to write C/C++ (surprise, surprise), with all of its strengths,
and, more importantly, its pitfalls. Pyrex gives you practically all of the
gains of writing extensions but none of the headache. Pyrex is a new lan-
guage created specifically for writing Python extensions. It is a hybrid of C
and Python, leaning much more toward Python; in fact, the Pyrex Web site
goes as far as saying that “Pyrex is Python with C data types.” You only need
to write code in the Pyrex syntax and run the Pyrex compiler on the
source. Pyrex creates C files, which can then be compiled and used as you
would a normal extension. Some have sworn off C programming forever
upon discovering Pyrex. You can get Pyrex at its home page:

http://cosc.canterbury.ac.nz/~greg/python/Pyrex
http://en.wikipedia.org/wiki/Pyrex_(programming_language)

8.3.3 Cython

Cython is a fork of Pyrex from 2007—the first release of Cython was 0.9.6,
which came out around the same time as Pyrex 0.9.6. The Cython develop-
ers have a more agile and aggressive approach to Cython’s development
over the Pyrex team in that the latter takes a more cautious approach. The
result is that more patches, improvements, and extensions make it into
Cython faster/sooner than into Pyrex, but both are considered active proj-
ects. You can read more about Cython and its distinctions from Pyrex via
the links below.

http://cython.org
http://wiki.cython.org/DifferencesFromPyrex
http://wiki.cython.org/FAQ

http://swig.org
http://en.wikipedia.org/wiki/SWIG
http://cosc.canterbury.ac.nz/~greg/python/Pyrex
http://cython.org
http://wiki.cython.org/DifferencesFromPyrex
http://wiki.cython.org/FAQ
http://en.wikipedia.org/wiki/Pyrex_(programming_language)

ptg7615500

386 Chapter 8 • Extending Python

8.3.4 Psyco

Pyrex and Cython offer the benefit of no longer having to write pure C
code. However, do you need to learn some new syntax (sigh... yet another
language to have to deal with.) In the end, your Pyrex/Cython code turns
into C anyway. Developers write extensions or use tools like SWIG or
Pyrex/Cython for that performance boost. However, what if you can
obtain such performance gains without having to write code in a language
other than pure Python?

Psyco’s concept is quite different from those other approaches. Rather
than writing C code, why not just make your existing Python code run
faster? Psyco serves as a just-in-time (JIT) compiler, so you do not have to
change to your source other than importing the Psyco module and telling
it to start optimizing your code (during runtime).

Psyco can also profile your code to establish where it can make the most
significant improvements. You can even enable logging to see what Psyco
does while optimizing your code. The only restriction is that it solely supports
32-bit Intel 386 architectures (Linux, Max OS X, Windows, BSD) running
Python 2.2.2-2.6.x but not version 3.x. Version 2.7 support is not complete (at
the time of this writing). For more information, go to the following links:

http://psyco.sf.net
http://en.wikipedia.org/wiki/Psyco

8.3.5 PyPy

PyPy is the successor project to Psyco. It has a much more ambitious goal
of creating a generalized environment for developing interpreted lan-
guages, independent of platform or target execution environment. It all
started innocently, to create a Python interpreter written in Python—in
fact, this is what most people still think PyPy is, while in fact, this specific
interpreter is just part of the entire PyPy ecosystem.

However, this toolset comprises the “real goods,” the power to allow
language designers to only be concerned with the parsing and semantic
analysis of their interpreter language du jour. All of the difficult stuff in
translating to a native architecture, such as memory management, byte-
code translation, garbage collection, internal representation of numeric
types, primitive data structures, native architecture, etc., are taken care of
for you.

2.2-2.6

http://psyco.sf.net
http://en.wikipedia.org/wiki/Psyco

ptg7615500

8.3 Related Topics 387

The way it works is that you take your language and implement it with
a restricted, statically-typed version of Python, called RPython. As men-
tioned above, Python was the first target language, so an interpreter for it
was written in RPython—this is as close to the term “PyPy” as you’re
going to get. However, you can implement any language you want with
RPython, not just Python.

This toolchain will translate your RPython code into something lower-
level, like C, Java bytecode, or Common Intermediate Language (CIL),
which is the bytecode for languages written against the Common Lan-
guage Infrastructure (CLI) standard. In other words, interpreted language
developers only need to worry about language design and much less
about implementation and target architecture. For more information, go to:

http://pypy.org
http://codespeak.net/pypy
http://en.wikipedia.org/wiki/PyPy

8.3.6 Embedding

Embedding is another feature available in Python. It is the inverse of an
extension. Rather than taking C code and wrapping it into Python, you
take a C application and wrap a Python interpreter inside it. This has the
effect of giving a potentially large, monolithic, and perhaps rigid, proprie-
tary, and/or mission-critical application the power of having an embedded
Python interpreter. Once you have Python, well, it’s like a whole new ball
game.

For extension writer, there is a set of official documents that you should
refer to for additional information.

Here are links to some of the Python documentation related to this
chapter’s topics: http://docs.python.org/extending/embedding.

Extending and Embedding
http://docs.python.org/ext

Python/C API
http://docs.python.org/c-api

Distributing Python Modules
http://docs.python.org/distutils

http://pypy.org
http://codespeak.net/pypy
http://en.wikipedia.org/wiki/PyPy
http://docs.python.org/extending/embedding
http://docs.python.org/ext
http://docs.python.org/c-api
http://docs.python.org/distutils

ptg7615500

388 Chapter 8 • Extending Python

8.4 Exercises

8-1. Extending Python. What are some of the advantages of
Python extensions?

8-2. Extending Python. Can you see any disadvantages or dangers
of using extensions?

8-3. Writing Extensions. Obtain a C/C++ compiler and (re)familiarize
yourself with C/C++ programming. Create a simple utility
function that you can make available and configure as an
extension. Demonstrate that your utility executes in both
C/C++ and Python.

8-4. Porting from Python to C. Take several of the exercises you did in
earlier chapters and port them to C/C++ as extension modules.

8-5. Wrapping C Code. Find a piece of C/C++ code, which you
might have done a long time ago but want to port to Python.
Instead of porting, make it an extension module.

8-6. Writing Extensions. In one of the exercises in the object-
oriented programming chapter of Core Python Programming
or Core Python Language Fundamentals, you created a
dollarize() function as part of a class to format a floating-
point value into a financial numeric string. Create an exten-
sion featuring a wrapped dollarize() function and integrate
a regression testing function, for example, test(), into the
module. Extra Credit: In addition to creating a C extension,
also rewrite dollarize() in Pyrex or Cython.

8-7. Extending vs. Embedding. What is the difference between
extending and embedding?

8-8. Not Writing Extensions. Take the C/C++ code you used in
Exercise 8-3, 8-4, or 8-5 and redo it in pseudo-Python via
Pyrex or Cython. Describe your experiences using Pyrex/
Cython versus integrating that code all as part of a C extension.

ptg7615500

PAR T

Web
Development

ptg7615500

390

CHAPTER

Web Clients and Servers

If you have a browser from CERN’s WWW project
(World Wide Web, a distributed hypertext system) you can

 browse a WWW hypertext version of the manual.
—Guido van Rossum, November 1992

(first mention of the Web on the Python mailing list)

In this chapter...

• Introduction
• Python Web Client Tools
• Web Clients
• Web (HTTP) Servers
• Related Modules

ptg7615500

9.1 Introduction 391

9.1 Introduction
Because the universe of Web applications is so expansive, we’ve (re)orga-
nized this book in a way that allows readers to focus specifically on multi-
ple aspects of Web development via a set of chapters that cover individual
topics.

Before getting into the nitty-gritty, this introductory chapter on Web
programming will start you off by again focusing on client/server architec-
ture, but this time the perspective of the Web. It provides a solid founda-
tion for the material in the remaining chapters of the book.

9.1.1 Web Surfing: Client/Server Computing

Web surfing falls under the same client/server architecture umbrella that
we have seen repeatedly. This time, however, Web clients are browsers,
which, of course, are applications that allow users to view documents on
the World Wide Web. On the other side are Web servers, which are pro-
cesses that run on an information provider’s host computers. These serv-
ers wait for clients and their document requests, process them, and then
return the requested data. As with most servers in a client/server system,
Web servers are designed to run indefinitely. The Web surfing experience
is best illustrated by Figure 9-1. Here, a user runs a Web client program,
such as a browser, and makes a connection to a Web server elsewhere on
the Internet to obtain information.

The Internet

Client Server

Figure 9-1 A Web client and Web server on the Internet. A client sends a request out over the
Internet to the server, which then responds by sending the requested data back to the client.

ptg7615500

392 Chapter 9 • Web Clients and Servers

Clients can issue a variety of requests to Web servers. Such requests
might include obtaining a Web page for viewing or submitting a form
with data for processing. The request is then serviced by the Web server
(and possibly other systems), and the reply comes back to the client in a
special format for display purposes.

The language that is spoken by Web clients and servers, the standard
protocol used for Web communication, is called HyperText Transfer Proto-
col (HTTP). HTTP is written on top of the TCP and IP protocol suite,
meaning that it relies on TCP and IP to carry out its lower-level communi-
cation needs. Its responsibility is not to route or deliver messages—TCP
and IP handle that—but to respond to client requests (by sending and
receiving HTTP messages).

HTTP is known as a stateless protocol because it does not keep track of
information from one client request to the next, similar to the client/server
architecture we have seen so far. The server stays running, but client inter-
actions are singular events structured in such a way that once a client
request is serviced, it quits. New requests can always be sent, but they are
considered separate service requests. Because of the lack of context per
request, you might notice that some URLs have a long set of variables and
values chained as part of the request to provide some sort of state informa-
tion. Another alternative is the use of cookies—static data stored on the cli-
ent side that generally contain state information, as well. In later parts of
this chapter, we will look at how to use both long URLs and cookies to
maintain state information.

9.1.2 The Internet

The Internet is a moving and fluctuating “cloud” or “pond” of intercon-
nected clients and servers scattered around the globe. Metaphorically
speaking, communication from client to server consists of a series of con-
nections from one lily pad on the pond to another, with the last step con-
necting to the server. As a client user, all this detail is kept hidden from
your view. The abstraction is to have a direct connection between you
(the client) and the server you are visiting, but the underlying HTTP,
TCP, and IP protocols are hidden underneath, doing all of the dirty
work. Information regarding the intermediate nodes is of no concern or
consequence to the general user, anyway, so it’s good that the implemen-
tation is hidden. Figure 9-2 shows an expanded view of the Internet.

ptg7615500

9.1 Introduction 393

It’s worth mentioning that with all of the data moving around the Inter-
net, there might be some that is more sensitive. There is no encryption
service available by default, so standard protocols just transmit the data as
they’re sent from applications. An additional level of security has been
added to ordinary sockets, called the secure socket layer (SSL), to encrypt all
transmission going across a socket created with this additional level. Now
developers can determine whether they want this additional security or not.

Modem

ISP

Server

Modem

ISP Network

An Intranet

ISP Network

ISP Network

Home

Internal Server

External Server

Client

The Internet

Home User

Corporate Local Area Network Corporate Web Site (Network)

Colocated .com Servers

Client

Web Server
Farm LAN

Web Server
Farm LAN

Corporate
LAN

Corporate
LAN

Server

Internet Core

Figure 9-2 A grand view of the Internet. The left side illustrates where you would find Web
clients; the right side hints as to where Web servers are typically located.

ptg7615500

394 Chapter 9 • Web Clients and Servers

Where the Clients and Servers Are

As you can see from Figure 9-2, the Internet is made up of multiple, inter-
connected networks, all working with some sense of (perhaps disjointed)
harmony. The left half of the diagram is focused on the Web clients—users
who are either at home, connected via their ISP, or at work on their com-
pany’s LAN. Missing from the diagram are special-purpose (and popular)
devices such as firewalls and proxy servers.

Firewalls help fight against unauthorized access to a corporate (or home)
network by blocking known entry points, configurable on a per-network
basis. Without one of these, computers that have servers might allow
intruders to enter an unprotected port and gain system access. Network
administrators reduce the chances of hacking by locking everything out
and only opening up ports for well-known services like Web servers and
secure shell (SSH) access, the latter based on the aforementioned SSL.

Proxy servers are another useful tool that can work alongside firewalls
(or not). Network administrators might prefer that only a certain number
of computers have Internet access, perhaps to better monitor traffic in and
out of their networks. Another useful feature is if the proxy can cache data.
As an example, if Linda accesses a Web page which is proxy-cached, when
her co-worker Heather visits the same page later, she’ll experience a faster
loading time. Her browser did not need to go all the way to the Web
server; instead, it got everything it needed from the proxy. Furthermore,
the IT staff at their company now knows that at least two employees vis-
ited that Web site and when (and likely who). Such servers are also known
as forward proxies, based on what they do.

A similar type of computer is a reverse proxy. These do (sort-of) the
opposite of the forward proxy. (In actuality, you can configure a single
computer to perform as both a forward and reverse proxy.) A reverse
proxy acts like a server with which clients can connect. They will likely
access hit a back-end server to obtain the information for which the clients
are requesting. Reverse proxies can also cache such server data and return
it directly back to the client as if they were one of the back-ends.

As you can surmise, instead of caching on their behalf, “living closer
to,” and serving clients, reverse proxies live closer to (back-end) servers.
They act on the behalf of servers, possibly caching for them, load balancing,
etc. You can also use reverse proxies as firewalls or to encrypt data (SSL,
HTTPS, Secure FTP (SFTP), etc.). They’re very useful, and it’s highly likely
that you’ll come across more than one reverse proxy during daily Web surf-
ing. Now let’s talk about where some of those back-end Web servers are.

ptg7615500

9.1 Introduction 395

The right side of Figure 9-2 concentrates more on Web servers and
where they can be found. Corporations with larger Web sites will typically
have an entire Web server farm located at their ISPs. Such physical place-
ment is called co-location, meaning that a company’s servers reside at an
ISP along with computers from other corporate customers. These servers
are either all providing different data to clients or are part of a redundant
system with duplicated information designed for heavy demand (high
number of clients). Smaller corporate Web sites might not require as much
hardware and networking gear, and hence, might only have one or several
co-located servers at their ISP.

In either case, most co-located servers are stored with a larger ISP sit-
ting on a network backbone, meaning that they have a “fatter” (read wider)
and presumably faster connection to the Internet—closer to the core of the
Internet, if you will. This permits clients to access the servers quickly—being
on a backbone means clients do not have to hop across as many networks
to access a server, thus allowing more clients to be serviced within a given
time period.

Internet Protocols

You should also keep in mind that although Web surfing is the most com-
mon Internet application, it is not the only one and is certainly not the old-
est. The Internet predates the Web by almost three decades. Before the
Web, the Internet was mainly used for educational and research purposes,
and many of the original Internet protocols, such as FTP, SMTP, and NNTP
are still around today.

Since Python was initially known for Internet programming, you will
find support for all of the protocols discussed above in addition to many
others. We differentiate between “Internet programming” and “Web pro-
gramming” by stating that the latter pertains only to applications devel-
oped specifically for the Web, such as Web clients and servers, which are
the focus for this chapter.

Internet programming covers a wider range of applications, including
applications that use some of the Internet protocols we previously men-
tioned, plus network and socket programming in general, all of which are
covered in previous chapters in this book.

ptg7615500

396 Chapter 9 • Web Clients and Servers

9.2 Python Web Client Tools
One thing to keep in mind is that a browser is only one type of Web client.
Any application that makes a request for data from a Web server is consid-
ered a client. Yes, it is possible to create other clients that retrieve docu-
ments or data from the Internet. One important reason to do this is that a
browser provides only limited capacity; it is used primarily for viewing
and interacting with Web sites. A client program, on the other hand,
has the ability to do more—not only can it download data, but it can also
store it, manipulate it, or perhaps even transmit it to another location or
application.

Applications that use the urllib module to download or access informa-
tion on the Web (using either urllib.urlopen() or urllib.urlretrieve())
can be considered a simple Web client. All you need to do is provide a valid
Web address.

9.2.1 Uniform Resource Locators

Simple Web surfing involves using Web addresses called Uniform Resource
Locators (URLs). Such addresses are used to locate a document on the Web
or to call a CGI program to generate a document for your client. URLs are
part of a larger set of identifiers known as Uniform Resource Identifiers
(URIs). This superset was created in anticipation of other naming conven-
tions that have yet to be developed. A URL is simply a URI that uses an
existing protocol or scheme (i.e., http, ftp, etc.) as part of its addressing. To
complete this picture, we’ll add that non-URL URIs are sometimes known
as Uniform Resource Names (URNs), but because URLs are the only URIs in
use today, you really don’t hear much about URIs or URNs, save for per-
haps XML identifiers.

Like street addresses, Web addresses have some structure. An American
street address usually is of the form “number/street designation,” for
example, 123 Main Street. It can differ from other countries, which
might have their own rules. A URL uses the format:

prot_sch://net_loc/path;params?query#frag

ptg7615500

9.2 Python Web Client Tools 397

Table 9-1 describes each of the components.

net_loc can be broken down into several more components, some required,
others optional. The net_loc string looks like this:

user:passwd@host:port

These individual components are described in Table 9-2.

Of the four, the host name is the most important. The port number is
necessary only if the Web server is running on a different port number
from the default. (If you aren’t sure what a port number is, read Chapter 2,
“Network Programming.”)

Table 9-1 Web Address Components

URL Component Description

prot_sch Network protocol or download scheme

net_loc Location of server (and perhaps user information)

path Slash (/) delimited path to file or CGI application

params Optional parameters

query Ampersand (&) delimited set of “key=value” pairs

frag Fragment to a specific anchor within document

Table 9-2 Network Location Components

 Component Description

user User name or login

passwd User password

host Name or address of the computer running the Web server
(required)

port Port number (if not 80, which is the default)

ptg7615500

398 Chapter 9 • Web Clients and Servers

User names and perhaps passwords are used only when making FTP
connections, and even then they usually aren’t necessary because the
majority of such connections are anonymous.

Python supplies two different modules, each dealing with URLs in com-
pletely different functionality and capacities. One is urlparse, and the
other is urllib. We will briefly introduce some of their functions here.

9.2.2 The urlparse Module

The urlparse module provides basic functionality with which to manip-
ulate URL strings. These functions include urlparse(), urlunparse(), and
urljoin().

urlparse.urlparse()

urlparse() breaks up a URL string into some of the major components
described earlier. It has the following syntax:

urlparse(urlstr, defProtSch=None, allowFrag=None)

urlparse() parses urlstr into a 6-tuple (prot_sch, net_loc, path,
params, query, frag). Each of these components has been described earlier.
defProtSch specifies a default network protocol or download scheme in
case one is not provided in urlstr. allowFrag is a flag that signals whether
a fragment part of a URL is allowed. Here is what urlparse() outputs
when given a URL:

>>> urlparse.urlparse('http://www.python.org/doc/FAQ.html')
('http', 'www.python.org', '/doc/FAQ.html', '', '', '')

urlparse.urlunparse()

urlunparse() does the exact opposite of urlparse()—it merges a 6-tuple
(prot_sch, net_loc, path, params, query, frag)—urltup, which could be the
output of urlparse(), into a single URL string and returns it. Accordingly,
we state the following equivalence:

urlunparse(urlparse(urlstr)) ≡ urlstr

You might have already surmised that the syntax of urlunparse() is as
follows:

urlunparse(urltup)

ptg7615500

9.2 Python Web Client Tools 399

urlparse.urljoin()

The urljoin() function is useful in cases for which many related URLs are
needed, for example, the URLs for a set of pages to be generated for a Web
site. The syntax for urljoin() is:

urljoin(baseurl, newurl, allowFrag=None)

urljoin() takes baseurl and joins its base path (net_loc plus the full
path up to, but not including, a file at the end) with newurl. For example:

>>> urlparse.urljoin('http://www.python.org/doc/FAQ.html',
... 'current/lib/lib.htm')
'http://www.python.org/doc/current/lib/lib.html'

A summary of the functions in urlparse can be found in Table 9-3.

9.2.3 urllib Module/Package

CORE MODULE: urllib in Python 2 and Python 3

Unless you are planning on writing a more lower-level network client, the urllib
module provides all the functionality you need. urllib provides a high-level Web
communication library, supporting the basic Web protocols, HTTP, FTP, and
Gopher, as well as providing access to local files. Specifically, the functions of the
urllib module are designed to download data (from the Internet, local network,
or local host) using the aforementioned protocols. Use of this module generally

Table 9-3 Core urlparse Module Functions

urlparse Functions Description

urlparse(urlstr,
defProtSch=None,
allowFrag=None)

Parses urlstr into separate components, using
defProtSch if the protocol or scheme is not
given in urlstr; allowFrag determines whether
a URL fragment is allowed

urlunparse(urltup) Unparses a tuple of URL data (urltup) into a
single URL string

urljoin(baseurl, newurl,
allowFrag=None)

Merges the base part of the baseurl URL with
newurl to form a complete URL; allowFrag is
the same as for urlparse()

ptg7615500

400 Chapter 9 • Web Clients and Servers

obviates the need for using the httplib, ftplib, and gopherlib modules unless
you desire their lower-level functionality. In those cases, such modules can be con-
sidered as alternatives. (Note: most modules named *lib are generally for devel-
oping clients of the corresponding protocols. This is not always the case, however,
as perhaps urllib should then be renamed “internetlib” or something similar!)

With urllib, urlparse, urllib2, and others in Python 2, a step was taken in
Python 3 to streamline all of these related modules under a single package
named urllib, so you’ll find pieces of urllib and urllib2 unified into the
urllib.request module and urlparse turned into urllib.parse. The urllib
package in Python 3 also includes the response, error, and robotparser sub-
modules. Keep these changes in mind as you read this chapter and try the
examples or exercises.

The urllib module provides functions to download data from given
URLs as well as encoding and decoding strings to make them suitable for
including as part of valid URL strings. The functions we will be looking at
in the upcoming section include urlopen(), urlretrieve(), quote(),
unquote(), quote_plus(), unquote_plus(), and urlencode(). We will also
look at some of the methods available to the file-like object returned by
urlopen().

urllib.urlopen()

urlopen() opens a Web connection to the given URL string and returns a
file-like object. It has the following syntax:

urlopen(urlstr, postQueryData=None)

urlopen() opens the URL pointed to by urlstr. If no protocol or down-
load scheme is given, or if a “file” scheme is passed in, urlopen() will
open a local file.

For all HTTP requests, the normal request type is GET. In these cases,
the query string provided to the Web server (key-value pairs encoded or
quoted, such as the string output of the urlencode() function), should be
given as part of urlstr.

If the POST request method is desired, then the query string (again
encoded) should be placed in the postQueryData variable. (We’ll discuss
GET and POST some more later in the chapter, but such HTTP com-
mands are general to Web programming and HTTP itself, not tied specifi-
cally to Python.)

When a successful connection is made, urlopen() returns a file-like
object, as if the destination was a file opened in read mode. If our file

3.x

ptg7615500

9.2 Python Web Client Tools 401

object is f, for example, then our “handle” would support the expected
read methods such as f.read(), f.readline(), f.readlines(), f.close(),
and f.fileno().

In addition, a f.info() method is available which returns the Multipur-
pose Internet Mail Extension (MIME) headers. Such headers give the
browser information regarding which application can view returned file
types. For example, the browser itself can view HTML, plain text files, and
render PNG (Portable Network Graphics) and JPEG (Joint Photographic
Experts Group) or the old GIF (Graphics Interchange Format) graphics
files. Other files, such as multimedia or specific document types, require
external applications in order to view.

Finally, a geturl() method exists to obtain the true URL of the final
opened destination, taking into consideration any redirection that might
have occurred. A summary of these file-like object methods is given in
Table 9-4.

If you expect to be accessing more complex URLs or want to be able to
handle more complex situations, such as basic and digest authentication,
redirections, cookies, etc., then we suggest using the urllib2 module. It
too, has a urlopen() function, but it also provides other functions and
classes for opening a variety of URLs.

If you’re staying with version 2.x for now, we strongly recommend that
you use urllib2.urlopen(), instead, because it deprecates the original one
in urllib starting in version 2.6; the old one is removed in version 3.0. As

Table 9-4 urllib.urlopen() File-like Object Methods

urlopen() Object Methods Description

f.read([bytes]) Reads all or bytes bytes from f

f.readline() Reads a single line from f

f.readlines() Reads a all lines from f into a list

f.close() Closes URL connection for f

f.fileno() Returns file number of f

f.info() Gets MIME headers of f

f.geturl() Returns true URL opened for f

2.6, 3.0

ptg7615500

402 Chapter 9 • Web Clients and Servers

you read in the Core Module sidebar earlier, the functionality for both
modules are merged into urllib.request in Python 3. This is just another way
of saying that the version 3.x urllib.request.urlopen() function is ported
directly from version 2.x urllib2.urlopen() (and not urllib.urlopen()).

urllib.urlretrieve()

Rather than opening a URL and letting you access it like a file, urlretrieve()
just downloads the entire HTML and saves it as a file. Here is the syntax
for urlretrieve():

 urlretrieve(url, filename=None, reporthook=None, data=None)

Rather than reading from the URL like urlopen() does, urlretrieve()
simply downloads the entire HTML file located at urlstr to your local
disk. It stores the downloaded data into localfile, if given, or a tempo-
rary file if not. If the file has already been copied from the Internet or if the
file is local, no subsequent downloading will occur.

The downloadStatusHook, if provided, is a function that is called after
each block of data has been downloaded and delivered. It is called with
the following three arguments: number of blocks read so far, the block size
in bytes, and the total (byte) size of the file. This is very useful if you are
implementing download status information to the user in a text-based or
graphical display.

urlretrieve() returns a 2-tuple (filename, mime_hdrs). filename is the
name of the local file containing the downloaded data. mime_hdrs is the
set of MIME headers returned by the responding Web server. For more
information, see the Message class of the mimetools module. mime_hdrs is
None for local files.

urllib.quote() and urllib.quote_plus()

The quote*() functions take URL data and encode it so that it is fit for
inclusion as part of a URL string. In particular, certain special characters
that are unprintable or cannot be part of valid URLs to a Web server must
be converted. This is what the quote*() functions do for you. Both
quote*() functions have the following syntax:

quote(urldata, safe='/')

Characters that are never converted include commas, underscores, peri-
ods, and dashes, as well as alphanumerics. All others are subject to con-
version. In particular, the disallowed characters are changed to their

ptg7615500

9.2 Python Web Client Tools 403

hexadecimal ordinal equivalents, prepended with a percent sign (%), for
example, %xx, where xx is the hexadecimal representation of a character’s
ASCII value. When calling quote*(), the urldata string is converted to an
equivalent string that can be part of a URL string. The safe string should
contain a set of characters that should also not be converted. The default is
the slash (/).

quote_plus() is similar to quote(), except that it also encodes spaces to
plus signs (+). Here is an example using quote() versus quote_plus():

>>> name = 'joe mama'
>>> number = 6
>>> base = 'http://www/~foo/cgi-bin/s.py'
>>> final = '%s?name=%s&num=%d' % (base, name, number)
>>> final
'http://www/~foo/cgi-bin/s.py?name=joe mama&num=6'
>>>
>>> urllib.quote(final)
'http:%3a//www/%7efoo/cgi-bin/s.py%3fname%3djoe%20mama%26num%3d6'
>>>
>>> urllib.quote_plus(final)
'http%3a//www/%7efoo/cgi-bin/s.py%3fname%3djoe+mama%26num%3d6'

urllib.unquote() and urllib.unquote_plus()

As you have probably guessed, the unquote*() functions do the exact
opposite of the quote*() functions—they convert all characters encoded
in the %xx fashion to their ASCII equivalents. The syntax of unquote*() is
as follows:

unquote*(urldata)

Calling unquote() will decode all URL-encoded characters in urldata
and return the resulting string. unquote_plus() will also convert plus
signs back to space characters.

urllib.urlencode()

urlencode() takes a dictionary of key-value pairs and encodes them to be
included as part of a query in a CGI request URL string. The pairs are in
key=value format and are delimited by ampersands (&). Furthermore, the
keys and their values are sent to quote_plus() for proper encoding. Here
is an example output from urlencode():

>>> aDict = { 'name': 'Georgina Garcia', 'hmdir': '~ggarcia' }
>>> urllib.urlencode(aDict)
'name=Georgina+Garcia&hmdir=%7eggarcia'

ptg7615500

404 Chapter 9 • Web Clients and Servers

There are other functions in urllib and urlparse that we don’t have the
opportunity to cover here. Refer to the documentation for more information.

A summary of the urllib functions discussed in this section can be
found in Table 9-5.

SSL Support

Before wrapping up our discussion on urllib and looking at some exam-
ples, we want to mention that it supports opening HTTP connections
using the SSL. (The core change to add SSL is implemented in the socket
module.) The httplib module supports URLs using the “https” connec-
tion scheme. In addition to those two modules, other protocol client mod-
ules with SSL support include: imaplib, poplib, and smtplib.

Table 9-5 Core urllib Module Functions

urllib Functions Description

urlopen(urlstr,
postQueryData=None)

Opens the URL urlstr, sending the query
data in postQueryData if a POST request

urlretrieve(urlstr,
localfile=None,
downloadStatusHook=None)

Downloads the file located at the urlstr
URL to localfile or a temporary file
if localfile not given; if present,
downloaStatusHook is a function that
can receive download statistics

quote(urldata, safe='/') Encodes invalid URL characters of
urldata; characters in safe string are not
encoded

quote_plus(urldata, safe='/') Same as quote() except encodes spaces as
plus (+) signs (rather than as %20)

unquote(urldata) Decodes encoded characters of urldata

unquote_plus(urldata) Same as unquote() but converts plus
signs to spaces

urlencode(dict) Encodes the key-value pairs of dict into a
valid string for CGI queries and encodes
the key and value strings with
quote_plus()

ptg7615500

9.2 Python Web Client Tools 405

9.2.4 An Example of urllib2 HTTP Authentication

As mentioned in the previous subsection, urllib2 can handle more com-
plex URL opening. One example is for Web sites with basic authentication
(login and password) requirements. The most straightforward solution to
getting past security is to use the extended net_loc URL component, as
described earlier in this chapter, for example, http://username:passwd@
www.python.org. The problem with this solution is that it is not pro-
grammatic. Using urllib2, however, we can tackle this problem in two
different ways.

We can create a basic authentication handler (urllib2.HTTPBasicAuth
Handler) and register a login password given the base URL and realm,
meaning a string defining the secure area of the Web site. Once you have a
handler, you build an opener with it and install a URL-opener with it so
that all URLs opened will use our handler.

The realm comes from the defined .htaccess file for the secure part of
the Web site. One example of such a file appears here:

AuthType basic
AuthName "Secure Archive"
AuthUserFile /www/htdocs/.htpasswd
require valid-user

For this part of the Web site, the string listed for AuthName is the realm.
The username and (encrypted) password are created by using the htpasswd
command (and installed in the .htpasswd file). For more on realms and Web
authentication, see RFC 2617 (HTTP Authentication: Basic and Digest Access
Authentication) as well as the WikiPedia page at http://en.wikipedia.org/
wiki/Basic_access_authentication.

The alternative to creating an opener with a authentication handler is to
simulate a user typing the username and password when prompted by a
browser; that is, to send an HTTP client request with the appropriate
authorization headers. In Example 9-1, we demonstrate these two methods.

Example 9-1 Basic HTTP Authentication (urlopen_auth.py)

This script uses both techniques described earlier for basic HTTP authentication.
You must use urllib2 because this functionality isn’t in urllib.

1 #!/usr/bin/env python
2
3 import urllib2
4

(Continued)

www.python.org
http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Basic_access_authentication

ptg7615500

406 Chapter 9 • Web Clients and Servers

Line-by-Line Explanation

Lines 1–8
This is the usual, expected setup plus some constants for the rest of the
script to use. We don’t need to remind you that sensitive information should
come from a secure database, or at least from environment variables or pre-
compiled .pyc files rather than being hardcoded in plain text in a source file.

Lines 10–17
The “handler” version of the code allocates a basic handler class as
described earlier, and then adds the authentication information. The han-
dler is then used to create a URL-opener that is subsequently installed so
that all URLs opened will use the given authentication. This code was
adapted from the official Python documentation for the urllib2 module.

Lines 19–24
The “request” version of our code just builds a Request object and adds the
simple base64-encoded authentication header into our HTTP request. This

Example 9-1 Basic HTTP Authentication (urlopen_auth.py) (Continued)

5 LOGIN = 'wesley'
6 PASSWD = "you'llNeverGuess"
7 URL = 'http://localhost'
8 REALM = 'Secure Archive'
9
10 def handler_version(url):
11 from urlparse import urlparse
12 hdlr = urllib2.HTTPBasicAuthHandler()
13 hdlr.add_password(REALM,
14 urlparse(url)[1], LOGIN, PASSWD)
15 opener = urllib2.build_opener(hdlr)
16 urllib2.install_opener(opener)
17 return url
18
19 def request_version(url):
20 from base64 import encodestring
21 req = urllib2.Request(url)
22 b64str = encodestring('%s:%s' % (LOGIN, PASSWD))[:-1]
23 req.add_header("Authorization", "Basic %s" % b64str)
24 return req
25
26 for funcType in ('handler', 'request'):
27 print '*** Using %s:' % funcType.upper()
28 url = eval('%s_version' % funcType)(URL)
29 f = urllib2.urlopen(url)
30 print f.readline()
31 f.close()

ptg7615500

9.2 Python Web Client Tools 407

request is then used to substitute the URL string when calling urlopen()
upon returning back to “main.” Note that the original URL was “baked
into” the urllib2.Request object, hence the reason why it was not a prob-
lem to replace it in the subsequent call to urllib2.urlopen(). This code
was inspired by Michael Foord’s and Lee Harr’s recipes in the Python Cook-
book, which you can obtain at:

http://aspn.activestate.com/ASPN/Cookbook/Python/
Recipe/305288
http://aspn.activestate.com/ASPN/Cookbook/Python/
Recipe/267197

It would have been great to have been able to use Harr’s HTTPRealm
Finder class so that we do not need to hard-code it in our example.

Lines 26–31
The rest of this script just opens the given URL by using both techniques
and displays the first line (dumping the others) of the resulting HTML
page returned by the server once authentication has been validated. Note
that an HTTP error (and no HTML) would be returned if the authentica-
tion information is invalid.

The output should look something like this:
$ python urlopen_auth.py
*** Using HANDLER:
<html>

*** Using REQUEST:
<html>

In addition to the official Python documentation for urllib2, you may
find this companion piece useful:

http://www.voidspace.org.uk/python/articles/urllib2.shtml.

9.2.5 Porting the HTTP Authentication Example

to Python 3

At the time of this writing, porting this application requires a bit more
work than just using the 2to3 tool. Of course, it does the heavy lifting, but
it does require a softer (or is that “software”?) touch afterwards. Let’s take
our urlauth_open.py script and run the tool on it:

$ 2to3 -w urlopen_auth.py
. . .

3.x

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/305288
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/305288
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/267197
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/267197
http://www.voidspace.org.uk/python/articles/urllib2.shtml

ptg7615500

408 Chapter 9 • Web Clients and Servers

You would use a similar command on PCs, but as you might have
already seen from earlier chapters, the output shows the differences that
were changed between the Python 2 and Python 3 versions of the script,
and the original file is overridden with the Python 3 version, whereas the
Python 2 version was backed up automatically.

Rename the new file from urlopen_auth.py urlopen_auth3.py and the
backup from urlopen_auth.py.bak to urlopen_auth.py. On a POSIX sys-
tem, execute these file rename commands (and on PCs, you would do it
from Windows or use the ren DOS command):

$ mv urlopen_auth.py urlopen_auth3.py
$ mv urlopen_auth.py.bak urlopen_auth.py

This keeps with our naming strategy to help recognize our code that’s in
Python 2 versus those ported to Python 3. Anyway, running the tool is just
the beginning. If we’re optimistic that it will run the first time, our hopes
are dashed quickly:

$ python3 urlopen_auth3.py
*** Using HANDLER:
b'<HTML>\n'
*** Using REQUEST:
Traceback (most recent call last):
 File "urlopen_auth3.py", line 28, in <module>
 url = eval('%s_version' % funcType)(URL)
 File "urlopen_auth3.py", line 22, in request_version
 b64str = encodestring('%s:%s' % (LOGIN, PASSWD))[:-1]
 File "/Library/Frameworks/Python.framework/Versions/3.2/lib/
python3.2/base64.py", line 353, in encodestring
 return encodebytes(s)
 File "/Library/Frameworks/Python.framework/Versions/3.2/lib/
python3.2/base64.py", line 341, in encodebytes
 raise TypeError("expected bytes, not %s" % s.__class__.__name__)
TypeError: expected bytes, not str

Going with our gut instinct, change the string in line 22 to a bytes string
by adding a leading “b” before the opening quote, as in b'%s:%s' %
(LOGIN, PASSWD). Now if we run it again, we get another error—welcome
to the Python 3 porting club!

$ python3 urlopen_auth3.py
*** Using HANDLER:
b'<HTML>\n'
*** Using REQUEST:
Traceback (most recent call last):
 File "urlopen_auth3.py", line 28, in <module>
 url = eval('%s_version' % funcType)(URL)
 File "urlopen_auth3.py", line 22, in request_version
 b64str = encodestring(b'%s:%s' % (LOGIN, PASSWD))[:-1]
TypeError: unsupported operand type(s) for %: 'bytes' and 'tuple'

ptg7615500

9.2 Python Web Client Tools 409

Apparently, bytes objects do not support the string format operator
because, technically, you’re not supposed to use them as strings. Instead,
we need to format the string as (Unicode) text, and then convert the whole
thing into a bytes object: bytes('%s:%s' % (LOGIN, PASSWD), 'utf-8')). The
output after this change is much closer to what we want:

$ python3 urlopen_auth3.py

*** Using HANDLER:
b'<HTML>\n'
*** Using REQUEST:
b'<HTML>\n'

It’s still slightly off because we’re seeing the designation of the bytes
objects (leading “b”, quotes, etc.) instead of just the text in which we’re
interested. Change the print() call to this: print(str(f.readline(), 'utf-8')).
Now the output of the Python 3 version is identical to that of the Python 2
script:

$ python3 urlopen_auth3.py
*** Using HANDLER:
<html>

*** Using REQUEST:
<html>

As you can see, porting requires a bit of handholding, but it’s not impos-
sible. Again, as we noted earlier, urllib, urllib2, and urlparse are all
merged together under the urllib package umbrella in Python 3. Because
of how the 2to3 tool works, an import of urllib.parse already exists at the
top. It is thus is superfluous in the definition of handler_version() and
removed. You’ll find that change along with the others in Example 9-2.

Example 9-2 Python 3 HTTP Authentication Script (urlopen_auth3.py)

This represents the Python 3 version to our urlopen_auth.py script.

1 #!/usr/bin/env python3
2
3 import urllib.request, urllib.error, urllib.parse
4
5 LOGIN = 'wesley'
6 PASSWD = "you'llNeverGuess"
7 URL = 'http://localhost'
8 REALM = 'Secure Archive'
9

(Continued)

ptg7615500

410 Chapter 9 • Web Clients and Servers

Let’s now turn our attention to slightly more advanced Web clients.

9.3 Web Clients
Web browsers are basic Web clients. They are used primarily for searching
and downloading documents from the Web. You can also create Web clients
that do more than that, though. We’ll take a look at several in this section.

9.3.1 A Simple Web Crawler/Spider/Bot

One example of a slightly more complex Web client is a crawler (a.k.a. spider,
[ro]bot). These are programs that explore and download pages from the
Internet for a variety of reasons, some of which include:

• Indexing into a large search engine such as Google or Yahoo!

• Offline browsing—downloading documents onto a local hard
disk and rearranging hyperlinks to create almost a mirror
image for local browsing

Example 9-2 Python 3 HTTP Authentication Script (urlopen_auth3.py)
(Continued)

10 def handler_version(url):
11 hdlr = urllib.request.HTTPBasicAuthHandler()
12 hdlr.add_password(REALM,
13 urllib.parse.urlparse(url)[1], LOGIN, PASSWD)
14 opener = urllib.request.build_opener(hdlr)
15 urllib.request.install_opener(opener)
16 return url
17
18 def request_version(url):
19 from base64 import encodestring
20 req = urllib.request.Request(url)
21 b64str = encodestring(
22 bytes('%s:%s' % (LOGIN, PASSWD), 'utf-8'))[:-1]
23 req.add_header("Authorization", "Basic %s" % b64str)
24 return req
25
26 for funcType in ('handler', 'request'):
27 print('*** Using %s:' % funcType.upper())
28 url = eval('%s_version' % funcType)(URL)
29 f = urllib.request.urlopen(url)
30 print(str(f.readline(), 'utf-8')
31 f.close()

ptg7615500

9.3 Web Clients 411

• Downloading and storing for historical or archival purposes, or

• Web page caching to save superfluous downloading time on
Web site revisits.

The crawler in Example 9-3, crawl.py, takes a starting Web address (URL),
downloads that page and all other pages whose links appear in succeed-
ing pages, but only those that are in the same domain as the starting page.
Without such limitations, you will run out of disk space.

Example 9-3 Web Crawler (crawl.py)

The crawler consists of two classes: one to manage the entire crawling process
(Crawler), and one to retrieve and parse each downloaded Web page (Retriever).
(Refactored from earlier editions of this book.)

1 #!/usr/bin/env python
2
3 import cStringIO
4 import formatter
5 from htmllib import HTMLParser
6 import httplib
7 import os
8 import sys
9 import urllib
10 import urlparse
11
12 class Retriever(object):
13 __slots__ = ('url', 'file')
14 def __init__(self, url):
15 self.url, self.file = self.get_file(url)
16
17 def get_file(self, url, default='index.html'):
18 'Create usable local filename from URL'
19 parsed = urlparse.urlparse(url)
20 host = parsed.netloc.split('@')[-1].split(':')[0]
21 filepath = '%s%s' % (host, parsed.path)
22 if not os.path.splitext(parsed.path)[1]:
23 filepath = os.path.join(filepath, default)
24 linkdir = os.path.dirname(filepath)
25 if not os.path.isdir(linkdir):
26 if os.path.exists(linkdir):
27 os.unlink(linkdir)
28 os.makedirs(linkdir)
29 return url, filepath
30

(Continued)

ptg7615500

412 Chapter 9 • Web Clients and Servers

Example 9-3 Web Crawler (crawl.py) (Continued)

31 def download(self):
32 'Download URL to specific named file'
33 try:
34 retval = urllib.urlretrieve(self.url, self.file)
35 except (IOError, httplib.InvalidURL) as e:
36 retval = (('*** ERROR: bad URL "%s": %s' % (
37 self.url, e)),)
38 return retval
39
40 def parse_links(self):
41 'Parse out the links found in downloaded HTML file'
42 f = open(self.file, 'r')
43 data = f.read()
44 f.close()
45 parser = HTMLParser(formatter.AbstractFormatter(
46 formatter.DumbWriter(cStringIO.StringIO())))
47 parser.feed(data)
48 parser.close()
49 return parser.anchorlist
50
51 class Crawler(object):
52 count = 0
53
54 def __init__(self, url):
55 self.q = [url]
56 self.seen = set()
57 parsed = urlparse.urlparse(url)
58 host = parsed.netloc.split('@')[-1].split(':')[0]
59 self.dom = '.'.join(host.split('.')[-2:])
60
61 def get_page(self, url, media=False):
62 'Download page & parse links, add to queue if nec'
63 r = Retriever(url)
64 fname = r.download()[0]
65 if fname[0] == '*':
66 print fname, '... skipping parse'
67 return
68 Crawler.count += 1
69 print '\n(', Crawler.count, ')'
70 print 'URL:', url
71 print 'FILE:', fname
72 self.seen.add(url)
73 ftype = os.path.splitext(fname)[1]
74 if ftype not in ('.htm', '.html'):
75 return
76
77 for link in r.parse_links():
78 if link.startswith('mailto:'):
79 print '... discarded, mailto link'
80 continue

ptg7615500

9.3 Web Clients 413

Line-by-Line (Class-by-Class) Explanation

Lines 1–10
The top part of the script consists of the standard Python Unix startup line
and the import of the modules/packages to be used. Here are some brief
explanations:

• cStringIO, formatter, htmllib We use various classes in
these modules for parsing HTML.

81 if not media:
82 ftype = os.path.splitext(link)[1]
83 if ftype in ('.mp3', '.mp4', '.m4v', '.wav'):
84 print '... discarded, media file'
85 continue
86 if not link.startswith('http://'):
87 link = urlparse.urljoin(url, link)
88 print '*', link,
89 if link not in self.seen:
90 if self.dom not in link:
91 print '... discarded, not in domain'
92 else:
93 if link not in self.q:
94 self.q.append(link)
95 print '... new, added to Q'
96 else:
97 print '... discarded, already in Q'
98 else:
99 print '... discarded, already processed'
100
101 def go(self, media=False):
102 'Process next page in queue (if any)'
103 while self.q:
104 url = self.q.pop()
105 self.get_page(url, media)
106
107 def main():
108 if len(sys.argv) > 1:
109 url = sys.argv[1]
110 else:
111 try:
112 url = raw_input('Enter starting URL: ')
113 except (KeyboardInterrupt, EOFError):
114 url = ''
115 if not url:
116 return
117 if not url.startswith('http://') and \
118 not url.startswith('ftp://'):
119 url = 'http://%s/' % url
120 robot = Crawler(url)
121 robot.go()
122
123 if __name__ == '__main__':
124 main()

ptg7615500

414 Chapter 9 • Web Clients and Servers

• httplib We only need an exception from this module.

• os This provides various file system functions.

• sys We are just using argv for command-line arguments.

• urllib We only need the urlretrieve() function for
downloading Web pages.

• urlparse We use the urlparse() and urljoin() functions
for URL manipulation.

Lines 12–29
The Retriever class has the responsibility of downloading pages from the
Web and parsing the links located within each document, adding them to
the “to-do” queue, if necessary. A Retriever instance object is created for
each page that is downloaded from the Internet. Retriever consists of sev-
eral methods to aid in its functionality: a constructor (__init__()),
get_file(), download(), and parse_links().

Skipping ahead momentarily, the get_file() method takes the given
URL and comes up with a safe and sane corresponding filename to store
the file locally—we are downloading this file from the Web. Basically, it
works by removing the http:// prefix from the URL, getting rid of any
extras such as username, password, and port number in order to arrive at
the hostname (line 20).

URLs without trailing file extensions will be given the default filename
index.html and can be overridden by the caller. You can see how this
works as well as the final filepath created on lines 21–23.

We then pull out the final destination directory (line 24) and check if it is
already a directory—if so, we leave it alone and return the URL-filepath
pair. If we enter this if clause, this means the directory either doesn’t exist
or is a plain file. In the case it is the latter, so it will be erased. Finally, the tar-
get directory and any parents are created by using os.makedirs() in line 28.

Now let’s go back up to the initializer __init__(). A Retriever object is
created and stores both the URL (str) and the corresponding filename
returned by get_file() as (instance) attributes. In our current design,
instances are created for every file downloaded. In the case of a Web site
with many, many files, a small instance like this can cause additional mem-
ory usage. To help minimize consumed resources, we create a __slots__
variable, indicating that the only attributes that instances can have are
self.url and self.file.

ptg7615500

9.3 Web Clients 415

Lines 31–49
We’ll see the crawler momentarily, but this is a heads-up that it creates
Retriever objects for each downloaded file. The download() method, as
you can imagine, actually goes out to the Internet to download the page
with the given link (line 34). It calls urllib.urlretrieve() with the URL
and saves it to the filename (the one returned by get_file()).

If the download was successful, the filename is returned (line 34), but if
there’s an error, an error string prefixed with *** is returned instead (lines
35–36). The crawler checks this return value and calls parse_links() to
parse links out of the just-downloaded page only if all went well.

The more serious method in this part of our application is the
parse_links() method. Yes, the job of a crawler is to download Web
pages, but a recursive crawler (like ours) looks for additional links in each
downloaded page and processes them, too. It first opens up the down-
loaded Web page and extracts the entire HTML content as a single string
(lines 42–44).

The magic you see in lines 45–49 is a well-known recipe that uses the
htmllib.HTMLParser class. We would like to say something to the effect
that this is a recipe that’s been passed down by Python programmers from
generation to generation, but we would just be lying to you. Anyway, we
digress.

The main point of how it works is that the parser class doesn’t do I/O, so
it takes a formatter object to handle that. Formatter objects—Python only
has one real formatter: formatter.AbstractFormatter—parse the data and
use a writer object to dispatch its output. Similarly, Python only has one
useful writer object: formatter.DumbWriter. It optionally takes a file object
to which to write the output. If you omit it, it writes to standard output,
which is probably undesirable. To that effect, we instantiate a cStringIO.
StringIO object to absorb this output (think /dev/null, if you know what
that is.) You can search online for any of the class names and find similar
code snippets in many places along with additional commentary.

Because htmllib.HTMLParser is fairly long in the tooth and deprecated
starting in version 2.6, a smaller example demonstrating some of the more
contemporary tools comes in the next subsection. We leave it in this exam-
ple because it is/was such a common recipe and still can be the right tool
for this job.

Anyway, all the complexity in creating the parser is entirely contained
in a single call (lines 45–46). The rest of this block consists of passing in the
HTML, closing the parser, and then returning a list of parsed links/anchors.

ptg7615500

416 Chapter 9 • Web Clients and Servers

Lines 51–59
The Crawler class is the star of the show, managing the entire crawling
process for one Web site. If we added threading to our application, we
would create separate instances for each site crawled. The Crawler consists
of three items stored by the constructor during the instantiation phase, the
first of which is self.q, a queue of links to download. Such a list will fluc-
tuate during execution, shrinking as each page is processed and expanding
as new links are discovered within each downloaded page.

The other two data values for the Crawler include self.seen, a set
containing all the links that we have seen (downloaded) already. And
finally, we store the domain name for the main link, self.dom, and use that
value to determine whether any succeeding links are part of the same
domain. All three values are created in the initializer method __init__()
in lines 54–59.

Note that we parse the domain by using urlparse.urlparse() (line 58)
in the same way that we grab the hostname out of the URL in the
Retriever. The domain name comes by just taking the final two parts of
the hostname. Note that because we don’t use the host for anything else, you
can make your code harder to read by combining lines 58 and 59 like this:

self.dom = '.'.join(urlparse.urlparse(
 url).netloc.split('@')[-1].split(':')[0].split('.')[-2:])

Right above __init__(), the Crawler also has a static data item named
count. The purpose of this counter is just to keep track of the number of
objects we have downloaded from the Internet. It is incremented for every
successfully downloaded page.

Lines 61-105
Crawler has a pair of other methods in addition to its constructor:
get_page() and go(). go() is simply the method that is used to start the
Crawler. It is called from the main body of code. go() consists of a loop
that will continue to execute as long as there are new links in the queue
that need to be downloaded. The workhorse of this class, though, is the
get_page() method.

get_page() instantiates a Retriever object with the first link and lets it
go off to the races. If the page was downloaded successfully, the counter is
incremented (otherwise, links that error-out are skipped [lines 65–67]) and
the link added to the “already seen” set (line 72). We use a set because
order doesn’t matter and its lookup is much faster than using a list.

get_page() looks at all the links featured inside each downloaded page
(skipping all non-Web pages [lines 73–75]) and determines whether any

ptg7615500

9.3 Web Clients 417

more links should be added to the queue (lines 77–99). The main loop in
go() will continue to process links until the queue is empty, at which time
victory is declared (lines 103–105).

Links that are a part of another domain (lines 90–91), or have already
been downloaded (lines 98–99), are already in the queue waiting to be pro-
cessed (lines 96–97), or are mailto: links are ignored and not added to the
queue (lines 78–80). The same applies for media files (lines 81–85).

Lines 107–124
main() needs a URL to begin processing. If one is entered on the command
line (for example, when this script is invoked directly; lines 108–109), it
will just go with the one given. Otherwise, the script enters interactive
mode, prompting the user for a starting URL (line 112). With a starting
link in hand, the Crawler is instantiated, and away we go (lines 120–121).

One sample invocation of crawl.py might look like this:
$ crawl.py
Enter starting URL: http://www.null.com/home/index.html

(1)
URL: http://www.null.com/home/index.html
FILE: www.null.com/home/index.html
* http://www.null.com/home/overview.html ... new, added to Q
* http://www.null.com/home/synopsis.html ... new, added to Q
* http://www.null.com/home/order.html ... new, added to Q
* mailto:postmaster@null.com ... discarded, mailto link
* http://www.null.com/home/overview.html ... discarded, already in Q
* http://www.null.com/home/synopsis.html ... discarded, already in Q
* http://www.null.com/home/order.html ... discarded, already in Q
* mailto:postmaster@null.com ... discarded, mailto link
* http://bogus.com/index.html ... discarded, not in domain

(2)
URL: http://www.null.com/home/order.html
FILE: www.null.com/home/order.html
* mailto:postmaster@null.com ... discarded, mailto link
* http://www.null.com/home/index.html ... discarded, already processed
* http://www.null.com/home/synopsis.html ... discarded, already in Q
* http://www.null.com/home/overview.html ... discarded, already in Q

(3)
URL: http://www.null.com/home/synopsis.html
FILE: www.null.com/home/synopsis.html
* http://www.null.com/home/index.html ... discarded, already processed
* http://www.null.com/home/order.html ... discarded, already processed
* http://www.null.com/home/overview.html ... discarded, already in Q

ptg7615500

418 Chapter 9 • Web Clients and Servers

(4)
URL: http://www.null.com/home/overview.html
FILE: www.null.com/home/overview.html
* http://www.null.com/home/synopsis.html ... discarded, already
processed
* http://www.null.com/home/index.html ... discarded, already processed
* http://www.null.com/home/synopsis.html ... discarded, already
processed
* http://www.null.com/home/order.html ... discarded, already processed

After execution, a www.null.com directory would be created in the local
file system, with a home subdirectory. You will find all the processed files
within home.

If after reviewing the code you’re still wondering where writing a
crawler in Python can get you, you might be surprised to learn that the
original Google Web crawlers were written in Python. For more informa-
tion, see http://infolab.stanford.edu/~backrub/google.html.

9.3.2 Parsing Web Content

In the previous subsection, we took a look at a crawler Web client. Part of
the spidering process involved parsing of links, or anchors as they’re offi-
cially called. For a long while, the well-known recipe htmllib.HTMLParser
was employed for parsing Web pages; however, newer and improved
modules and packages have come along. We’ll be demonstrating some of
these in this subsection.

In Example 9-4, we explore one standard library tool, the HTMLParser class
in the HTMLParser module (added in version 2.2). HTMLParser.HTMLParser
was supposed to replace htmllib.HTMLParser because it was simpler, pro-
vided a lower-level view of the content, and handled XHTML, whereas
the latter was older and more complex because it was based on the
sgmllib module (meaning it had to understand the intricacies of Standard
Generalized Markup Language [SGML]). The official documentation is
fairly sparse when describing how to use HTMLParser.HTMLParser, so hope-
fully we’ll give a more useful example here.

We’ll also demonstrate the use of two of the other three most popular
Web parsers, BeautifulSoup and html5lib, which are available as separate
downloads outside of the standard library. You can access them both at the
Cheeseshop, or from http://pypi.python.org. For a less stressful installa-
tion, you can also use the easy_install or pip tools to get either one.

http://infolab.stanford.edu/~backrub/google.html
http://pypi.python.org

ptg7615500

9.3 Web Clients 419

The one we skipped was lxml; we’ll leave that as an exercise for you to
undertake. You’ll find more exercises at the end of the chapter that will
help you learn these more thoroughly by substituting them for htmllib.
HTMLParser in the crawler.

The parse_links.py script in Example 9-4 only consists of parsing anchors
out of any input data. Given a URL, it will extract all links, attempt to
make any necessary adjustments to make them full URLs, sort, and dis-
play them to the user. It runs each URL through all three parsers. For
BeautifulSoup in particular, we provide two different solutions: the first
one is simpler, parsing all tags then looking for all the anchor tags; the sec-
ond requires the use of the SoupStrainer class, which specifically targets
anchor tags and only parses those.

Example 9-4 Link Parser (parse_links.py)

This script uses three different parsers to extract links from HTML anchor tags.
It features the HTMLParser standard library module as well as the third-party
BeautifulSoup and html5lib packages.

1 #!/usr/bin/env python
2
3 from HTMLParser import HTMLParser
4 from cStringIO import StringIO
5 from urllib2 import urlopen
6 from urlparse import urljoin
7
8 from BeautifulSoup import BeautifulSoup, SoupStrainer
9 from html5lib import parse, treebuilders
10
11 URLs = (
12 'http://python.org',
13 'http://google.com',
14)
15
16 def output(x):
17 print '\n'.join(sorted(set(x)))
18
19 def simpleBS(url, f):
20 'simpleBS() - use BeautifulSoup to parse all tags to get anchors'
21 output(urljoin(url, x['href']) for x in BeautifulSoup(
22 f).findAll('a'))
23

(Continued)

ptg7615500

420 Chapter 9 • Web Clients and Servers

Example 9-4 Link Parser (parse_links.py) (Continued)

24 def fasterBS(url, f):
25 'fasterBS() - use BeautifulSoup to parse only anchor tags'
26 output(urljoin(url, x['href']) for x in BeautifulSoup(
27 f, parseOnlyThese=SoupStrainer('a')))
28
29 def htmlparser(url, f):
30 'htmlparser() - use HTMLParser to parse anchor tags'
31 class AnchorParser(HTMLParser):
32 def handle_starttag(self, tag, attrs):
33 if tag != 'a':
34 return
35 if not hasattr(self, 'data'):
36 self.data = []
37 for attr in attrs:
38 if attr[0] == 'href':
39 self.data.append(attr[1])
40 parser = AnchorParser()
41 parser.feed(f.read())
42 output(urljoin(url, x) for x in parser.data)
43
44 def html5libparse(url, f):
45 'html5libparse() - use html5lib to parse anchor tags'
46 output(urljoin(url, x.attributes['href']) \
47 for x in parse(f) if isinstance(x,
48 treebuilders.simpletree.Element) and \
49 x.name == 'a')
50
51 def process(url, data):
52 print '\n*** simple BS'
53 simpleBS(url, data)
54 data.seek(0)
55 print '\n*** faster BS'
56 fasterBS(url, data)
57 data.seek(0)
58 print '\n*** HTMLParser'
59 htmlparser(url, data)
60 data.seek(0)
61 print '\n*** HTML5lib'
62 html5libparse(url, data)
63
64 def main():
65 for url in URLs:
66 f = urlopen(url)
67 data = StringIO(f.read())
68 f.close()
69 process(url, data)
70
71 if __name__ == '__main__':
72 main()

ptg7615500

9.3 Web Clients 421

Line-by-Line Explanation

Lines 1–9
In this script, we use four modules from the standard library. HTMLParser is
one of the parsers; the other three are for general use throughout. The sec-
ond group of imports are of third-party (non-standard library) modules/
packages. This ordering is the generally accepted standard for imports:
standard library modules/packages first, followed by third-party installa-
tions, and finally, any modules/packages local to the application.

Lines 11–17
The URLs variable contains the Web pages to parse; feel free to add, change,
or remove URLs here. The output() function takes an iterable of links,
removes duplicates by putting them all into a set, sorts them in lexico-
graphic order, and then merges them into a NEWLINE-delimited string
that is displayed to the user.

Lines 19–27
We highlight the use of BeautifulSoup in the simpleBS() and fasterBS()
functions. In simpleBS(), the parsing happens when you instantiate Beau-
tifulSoup with the file handle. In the following short snippet, we do
exactly that, using an already downloaded page from the PyCon Web site
as pycon.html.

>>> from BeautifulSoup import BeautifulSoup as BS
>>> f = open('pycon.html')
>>> bs = BS(f)

When you get the instance and call its findAll() method requesting
anchor (‘a’) tags, it returns a list of tags, as shown here:

>>> type(bs)
<class 'BeautifulSoup.BeautifulSoup'>
>>> tags = bs.findAll('a')
>>> type(tags)
<type 'list'>
>>> len(tags)
19
>>> tag = tags[0]
>>> tag
PyCon 2011 Atlanta
>>> type(tag)
<class 'BeautifulSoup.Tag'>
>>> tag['href']
u'/2011/'

ptg7615500

422 Chapter 9 • Web Clients and Servers

Because the Tag object is an anchor, it should have an 'href' tag, so we
ask for it. We then call urlparse.urljoin() and pass along the head URL
along with the link to get the full URL. Here’s our continuing example
(assuming the PyCon URL):

>>> from urlparse import urljoin
>>> url = 'http://us.pycon.org'
>>> urljoin(url, tag['href'])
u'http://us.pycon.org/2011/'

The generator expression iterates over all the final links created by
urlparse.urljoin() from all of the anchor tags and sends them to output(),
which processes them as just described. If the code is slightly more diffi-
cult to understand because of the use of the generator expression, we can
expand out the code to the equivalent:

def simpleBS(url, f):
 parsed = BeautifulSoup(f)
 tags = parsed.findAll('a')
 links = [urljoin(url, tag['href']) for tag in tags]
 output(links)

For readability purposes, this wins over our single line version, and we
would recommend that when developing open-source, work, or group col-
laborative projects, you always consider this over a more cryptic one-liner.

Although the simpleBS() function is fairly easy to understand, one of its
drawbacks is that the way we’re processing it isn’t as efficient as it can be.
We use BeautifulSoup to parse all the tags in this document and then look
for the anchors. It would be quicker if we could just filter only the anchor
tags (and ignore the rest).

This is what fasterBS() does, accomplishing what we just described by
using the SoupStrainer helper class (and passing that request to filter only
anchor tags as the parseOnlyThese parameter). By using SoupStrainer, you
can tell BeautifulSoup to skip all the elements it isn’t interested in when
building the parse tree, so it saves time as well as memory. Also, once
parsing has completed, only the anchors make up the parse tree, so there’s
no need to use the findAll() method before iterating.

Lines 29–42
In htmlparser(), we use the standard library class HTMLParser.HTMLParser
to do the parsing. You can see why BeautifulSoup is a popular parser;
code is shorter and less complex than using HTMLParser. Our use of
HTMLParser is also slower here because you have to manually build a list,
that is, create an empty list and repeatedly call its append() method.

ptg7615500

9.3 Web Clients 423

You can also tell that HTMLParser is lower level than BeautifulSoup. You
subclass it and have to create a method called handle_starttag() that’s
called every time a new tag is encountered in the file stream (lines 31–39).
We skip all non-anchor tags (lines 33–34), and then add all anchor links to
self.data (lines 37–39), initializing self.data when necessary (lines 35–36).

To use your new parser, you instantiate and feed it (lines 40–41). The
results, as you know, are placed into parser.data, and we create the full
URLs and display them (line 42) as in our previous BeautifulSoup example.

Lines 44–49
The final example uses html5lib, a parser for HTML documents that fol-
low the HTML5 specification. The simplest way of using html5lib is to call
its parse() function with the payload (line 47). It builds and outputs a tree
in its custom simpletree format.

You can also choose to use any of a variety of popular tree formats,
including minidom, ElementTree, lxml, or BeautifulSoup. To choose an alter-
native tree format, just pass the name of the desired format in to parse() as
the treebuilder argument:

import html5lib
f = open("pycon.html")
tree = html5lib.parse(f, treebuilder="lxml")
f.close()

Unless you need a specific tree, usually simpletree is good enough. If
you were to perform a trial run and parse a generic document, you’d see
output looking something like this:

>>> import html5lib
>>> f = open("pycon.html")
>>> tree = html5lib.parse(f)
>>> f.close()
>>> for x in data:
... print x, type(x)
...
<html> <class 'html5lib.treebuilders.simpletree.DocumentType'>
<html> <class 'html5lib.treebuilders.simpletree.Element'>
<head> <class 'html5lib.treebuilders.simpletree.Element'>
<None> <class 'html5lib.treebuilders.simpletree.TextNode'>
<meta> <class 'html5lib.treebuilders.simpletree.Element'>
<None> <class 'html5lib.treebuilders.simpletree.TextNode'>
<title> <class 'html5lib.treebuilders.simpletree.Element'>
<None> <class 'html5lib.treebuilders.simpletree.TextNode'>
<None> <class 'html5lib.treebuilders.simpletree.CommentNode'>
 . . .
 <class 'html5lib.treebuilders.simpletree.Element'>
<None> <class 'html5lib.treebuilders.simpletree.TextNode'>
<h1> <class 'html5lib.treebuilders.simpletree.Element'>

ptg7615500

424 Chapter 9 • Web Clients and Servers

<a> <class 'html5lib.treebuilders.simpletree.Element'>
<None> <class 'html5lib.treebuilders.simpletree.TextNode'>
<h2> <class 'html5lib.treebuilders.simpletree.Element'>
<None> <class 'html5lib.treebuilders.simpletree.TextNode'>
 . . .

Most of the traversed items are either Element or TextNode objects. We
don’t really care about TextNode objects in our example here; we’re only
concerned with one specific type of Element object, the anchor. To filter
these out, we have two checks in the if clause of the generator expression:
only look at Elements, and of those, only anchors (lines 47–49). For those
that meet this criteria, we pull out their 'href' attribute, merge into a com-
plete URL, and output that as before (line 46).

Lines 51–72
The drivers of this application are the main() function, which process each
of links found on lines 11–14. It makes one call to download the Web page
and immediately sticks the data into a StringIO object (lines 65–68) so that
we can iterate over them using each of the parsers (line 69) via a call to
process().

The process() function (lines 51–62) takes the target URL and the
StringIO object, and then calls on each parser to perform its duty and out-
put its result. With every successive parse (after the first), process() must
also reset the StringIO object back to the beginning (lines 54, 57, and 60)
for the next parser.

Once you’re satisfied with the code and have it working, you can run it
and see how each parser outputs all links (sorted in alphabetical order)
found in anchor tags within the Web page’s URL. Note that at the time of
this writing, there is a preliminary port of BeautifulSoup to Python 3 but
not html5lib.

9.3.3 Programmatic Web Browsing

In this final section on Web clients, we’ll present a slightly different exam-
ple that uses a third-party tool, Mechanize (based on a similarly-named
tool written for Perl), which is designed to simulate a browser. It also
spawned off a Ruby version.

In the previous example (parse_links.py), BeautifulSoup was one of the
parsers we used to decipher Web page content. We’ll use that again here.

If you wish to play along, you’ll need to have both Mechanize and
BeautifulSoup installed on your system. Again, you can obtain and install
them separately, or you can use a tool like easy_install or pip.

ptg7615500

9.3 Web Clients 425

Example 9-5 presents the mech.py script, which is very much of a script
or batch-style application. There are no classes or functions. The whole
thing is just one large main() broken up into seven parts, each of which
explores one page of the Web site we’re examining today: the PyCon con-
ference Web site from 2011. We chose this because the site is not likely to
change over time (more recent conferences will get their own customized
application).

If it does change, however, there are many Web sites to which you can
adapt this example, such as logging in to any Web-based e-mail service you
subscribe to or some tech news or blog site you frequent. By going over
mech.py and what it does, you should have a good enough understanding of
how it works to easily port the sample code to work elsewhere.

Example 9-5 Programmatic Web Browsing (mech.py)

In a very batch-like, straightforward script, we employ the Mechanize third-
party tool to explore the PyCon 2011 Web site, parsing it with another non-
standard tool, BeautifulSoup.

1 #!/usr/bin/env python
2
3 from BeautifulSoup import BeautifulSoup, SoupStrainer
4 from mechanize import Browser
5
6 br = Browser()
7
8 # home page
9 rsp = br.open('http://us.pycon.org/2011/home/')
10 print '\n***', rsp.geturl()
11 print "Confirm home page has 'Log in' link; click it"
12 page = rsp.read()
13 assert 'Log in' in page, 'Log in not in page'
14 rsp = br.follow_link(text_regex='Log in')
15
16 # login page
17 print '\n***', rsp.geturl()
18 print 'Confirm at least a login form; submit invalid creds'
19 assert len(list(br.forms())) > 1, 'no forms on this page'
20 br.select_form(nr=0)

(Continued)

ptg7615500

426 Chapter 9 • Web Clients and Servers

Example 9-5 Programmatic Web Browsing (mech.py) (Continued)

21 br.form['username'] = 'xxx' # wrong login
22 br.form['password'] = 'xxx' # wrong passwd
23 rsp = br.submit()
24
25 # login page, with error
26 print '\n***', rsp.geturl()
27 print 'Error due to invalid creds; resubmit w/valid creds'
28 assert rsp.geturl() == 'http://us.pycon.org/2011/account/login/',

rsp.geturl()
29 page = rsp.read()
30 err = str(BS(page).find("div",
31 {"id": "errorMsg"}).find('ul').find('li').string)
32 assert err == 'The username and/or password you specified are not cor-

rect.', err
33 br.select_form(nr=0)
34 br.form['username'] = YOUR_LOGIN
35 br.form['password'] = YOUR_PASSWD
36 rsp = br.submit()
37
38 # login successful, home page redirect
39 print '\n***', rsp.geturl()
40 print 'Logged in properly on home page; click Account link'
41 assert rsp.geturl() == 'http://us.pycon.org/2011/home/', rsp.geturl()
42 page = rsp.read()
43 assert 'Logout' in page, 'Logout not in page'
44 rsp = br.follow_link(text_regex='Account')
45
46 # account page
47 print '\n***', rsp.geturl()
48 print 'Email address parseable on Account page; go back'
49 assert rsp.geturl() == 'http://us.pycon.org/2011/account/email/',

rsp.geturl()
50 page = rsp.read()
51 assert 'Email Addresses' in page, 'Missing email addresses'
52 print ' Primary e-mail: %r' % str(
53 BS(page).find('table').find('tr').find('td').find('b').string)
54 rsp = br.back()
55
56 # back to home page
57 print '\n***', rsp.geturl()
58 print 'Back works, on home page again; click Logout link'
59 assert rsp.geturl() == 'http://us.pycon.org/2011/home/', rsp.geturl()
60 rsp = br.follow_link(url_regex='logout')
61
62 # logout page
63 print '\n***', rsp.geturl()
64 print 'Confirm on Logout page and Log in link at the top'
65 assert rsp.geturl() == 'http://us.pycon.org/2011/account/logout/',

rsp.geturl()
66 page = rsp.read()
67 assert 'Log in' in page, 'Log in not in page'
68 print '\n*** DONE'

ptg7615500

9.3 Web Clients 427

Line-by-Line Explanation

Lines 1–6
This script is fairly simplistic. In fact, we don’t use any standard library pack-
ages/modules, so all you see here are the imports of the Mechanize.Browser
and BeautifulSoup.BeautifulSoup classes.

Lines 8–14
The first place we visit on the PyCon 2011 Web site is the home page. We
display the URL to the user as a confirmation (line 10). Note that this is the
final URL that is visited because the original link might have redirected
the user elsewhere. The last part of this section (lines 12–14) confirms that
the user is not logged in by looking for the 'Log in' link and following it.

Lines 16–23
Once we’ve confirmed that we’re on a login page (that has at least one
form on it), we select the first (and only) form, fill in the authentication
fields with erroneous data (unless, unfortunately, your login and pass-
word are both 'xxx'), and submit it.

Lines 25–36
Upon confirmation of a login error on the login page (lines 28–32), we fill
in the fields with the correct credentials (which the reader must supply
[YOUR_LOGIN, YOUR_PASSWD]) and resubmit.

Lines 38–44
Once authentication has been validated, you are directed back to the home
page. This is confirmed (on lines 41–43) by checking for a “Logout” link
(which wouldn’t be there if you had not successfully logged in). We then
click the Account link.

Lines 46–54
You must register by using an e-mail address. You can have more than
one, but there must be a single primary address. Your e-mail addresses are
the first tab that you arrive at when visiting this page for your Account
information. We use BeautifulSoup to parse and display the e-mail
address table and peek into the first cell of the first row of the table (lines
52–53). The next step is to click the “click on the back button” to return to
the home page.

ptg7615500

428 Chapter 9 • Web Clients and Servers

Lines 56–60
This is the shortest of all the sections; we really don’t do much here except
confirm that we’re back on the home page (lines 59), then follow the “Log-
out” link.

Lines 62–68
The last section confirms we’re on the logout page and that you’re not
logged in. This is accomplished by checking to see if there’s a “Log in” link
on this page (lines 66–67).

This application demonstrates that, using Mechanize.Browser is fairly
straightforward. You just need to mentally map user activity in a browser
to the right method calls. Ultimately, the primary concern is whether the
underlying Web page or application will be altered by its developers,
potentially rendering our script out-of-date. Note that at the time of this
writing, there is no Python 3 port of Mechanize yet.

Summary

This concludes our look at various types of Web clients. We can now turn
our attention to Web servers.

9.4 Web (HTTP) Servers
Until now, we have been discussing the use of Python in creating Web cli-
ents and performing tasks to aid Web servers in request processing. We
know (and saw earlier in this chapter) that Python can be used to create
both simple and complex Web clients.

However, we have yet to explore the creation of Web servers, and that is
the focus of this section. If Google Chrome, Mozilla Firefox, Microsoft
Internet Explorer, and Opera are among the most popular Web clients,
then what are the most common Web servers? They are Apache, ligHTTPD,
Microsoft IIS, LiteSpeed Technologies LiteSpeed, and ACME Laboratories
thttpd. For situations in which these servers might be overkill for your
desired application, Python can be used to create simple yet useful Web
servers.

Note that although these servers are simplistic and not meant for pro-
duction, they can be very useful in providing development servers for
your users. Both the Django and Google App Engine development servers
are based on the BaseHTTPServer module described in the next section.

ptg7615500

9.4 Web (HTTP) Servers 429

9.4.1 Simple Web Servers in Python

The base code needed is already available in the Python standard library—you
just need to customize it for your needs. To create a Web server, a base
server and a handler are required.

The base Web server is a boilerplate item—a must-have. Its role is to
perform the necessary HTTP communication between client and server.
The base server class is (appropriately) named HTTPServer and is found in
the BaseHTTPServer module.

The handler is the piece of software that does the majority of the Web
serving. It processes the client request and returns the appropriate file,
whether static or dynamically generated. The complexity of the handler
determines the complexity of your Web server. The Python Standard
Library provides three different handlers.

The most basic, plain, vanilla handler, BaseHTTPRequestHandler, is found
in the BaseHTTPServer module, along with the base Web server. Other than
taking a client request, no other handling is implemented at all, so you
have to do it all yourself, such as in our myhttpd.py server coming up.

The SimpleHTTPRequestHandler, available in the SimpleHTTP-Server
module, builds on BaseHTTPRequestHandler by implementing the stan-
dard GET and HEAD requests in a fairly straightforward manner. Still
nothing sexy, but it gets the simple jobs done.

Finally, we have the CGIHTTPRequestHandler, available in the CGIHTTPServer
module, which takes the SimpleHTTPRequestHandler and adds support for
POST requests. It has the ability to call common gateway interface (CGI)
scripts to perform the requested processing and can send the generated
HTML back to the client. In this chapter, we’re only going to explore a
CGI-processing server; the next chapter will describe to you why CGI is no
longer the way the world of the Web works, but you still need to know the
concepts.

To simplify the user experience, consistency, and code maintenance,
these modules (actually their classes) have been combined into a single
module named server.py and installed as part of the http package in
Python 3. (Similarly, the Python 2 httplib [HTTP client] module has been
renamed to http.client in Python 3.) The three modules, their classes,
and the Python 3 http.server umbrella package are summarized in Table 9-6.

3.x

ptg7615500

430 Chapter 9 • Web Clients and Servers

Implementing a Simple Base Web server

To be able to understand how the more advanced handlers found in the
SimpleHTTPServer and CGIHTTPServer modules work, we will implement
simple GET processing for a BaseHTTPRequestHandler. In Example 9-6, we
present the code for a fully working Web server, myhttpd.py.

Table 9-6 Web Server Modules and Classes

Module Description

BaseHTTPServera Provides the base Web server and base handler classes,
HTTPServer and BaseHTTPRequestHandler, respectively

SimpleHTTPServera Contains the SimpleHTTPRequestHandler class to per-
form GET and HEAD requests

CGIHTTPServera Contains the CGIHTTPRequestHandler class to process
POST requests and perform CGI execution

http.serverb All three Python 2 modules and classes above com-
bined into a single Python 3 package.

a. Removed in Python 3.0.
b. New in Python 3.0.

Example 9-6 Simple Web Server (myhttpd.py)

This simple Web server can read GET requests, fetch a Web page (.html file),
and return it to the calling client. It uses the BaseHTTPRequestHandler found in
BaseHTTPServer and implements the do_GET() method to enable processing of
GET requests.

1 #!/usr/bin/env python
2
3 from BaseHTTPServer import \
4 BaseHTTPRequestHandler, HTTPServer
5
6 class MyHandler(BaseHTTPRequestHandler):
7 def do_GET(self):
8 try:
9 f = open(self.path[1:], 'r')
10 self.send_response(200)
11 self.send_header('Content-type', 'text/html')

ptg7615500

9.4 Web (HTTP) Servers 431

This server derives from BaseHTTPRequestHandler and consists of a
single do_GET() method (lines 6–7), which is called when the base server
receives a GET request. We attempt to open the path (removing the
leading ‘/’) passed in by the client (line 9), and if all goes well, return
an “OK” status (200) and forward the downloaded Web page to the user
(line 13) via the wfile pipe. If the file was not found, it returns a 404 status
(lines 15–17).

 The main() function simply instantiates our Web server class and
invokes it to run our familiar infinite server loop, shutting it down if
interrupted by Ctrl+C or similar keystroke. If you have appropriate
access and can run this server, you will notice that it displays loggable
output, which will look something like this:

myhttpd.py
Welcome to the machine... Press ^C once or twice to quit
localhost - - [26/Aug/2000 03:01:35] "GET /index.html HTTP/1.0" 200 -
localhost - - [26/Aug/2000 03:01:29] code 404, message File Not Found:
x.html
localhost - - [26/Aug/2000 03:01:29] "GET /dummy.html HTTP/1.0" 404 -
localhost - - [26/Aug/2000 03:02:03] "GET /hotlist.htm HTTP/1.0" 200 -

Of course, our simple little Web server is so simple, it cannot even pro-
cess plain text files. We leave that as an exercise for you to undertake (see
Exercise 9-10 at the end of this chapter).

12 self.end_headers()
13 self.wfile.write(f.read())
14 f.close()
15 except IOError:
16 self.send_error(404,
17 'File Not Found: %s' % self.path)
18
19 def main():
20 try:
21 server = HTTPServer(('', 80), MyHandler)
22 print 'Welcome to the machine...',
23 print 'Press ^C once or twice to quit.'
24 server.serve_forever()
25 except KeyboardInterrupt:
26 print '^C received, shutting down server'
27 server.socket.close()
28
29 if __name__ == '__main__':
30 main()

ptg7615500

432 Chapter 9 • Web Clients and Servers

More Power, Less Code: A Simple CGI Web Server

The previous example is also weak in that it cannot process CGI requests.
BaseHTTPServer is as basic as it gets. One step higher, we have the
SimpleHTTPServer. It provides the do_HEAD() and do_GET() methods on
your behalf, so you don’t have to create either, such as we did with the
BaseHTTPServer.

The highest-level (take that with a grain of salt) server provided in the
standard library is CGIHTTPServer. In addition to do_HEAD() and do_GET(),
it defines do_POST(), with which you can process form data. Because of
these amenities, a CGI-capable development server can be created with
just two real lines of code (so short we’re not even bothering making it a
code example in this chapter, because you can just recreate it by typing it
up on your computer now):

#!/usr/bin/env python
import CGIHTTPServer
CGIHTTPServer.test()

Note that we left off the check to quit the server by using Ctrl+C and
other fancy output, taking whatever the CGIHTTPServer.test() function
gives us, which is a lot. You start the server by just invoking it from your
shell. Below is an example of running this code on a PC—it’s quite similar
to what you’ll experience on a POSIX machine:

C:\py>python cgihttpd.py
Serving HTTP on 0.0.0.0 port 8000 ...

It starts a server by default on port 8000 (but you can change that at run-
time by providing a port number as a command-line argument:

C:\py\>python cgihttpd.py 8080
Serving HTTP on 0.0.0.0 port 8080 ...

To test it out, just make sure that a cgi-bin folder exists (with some CGI
Python scripts) at the same level as the script. There’s no point in setting
up Apache, setting CGI handler prefixes, and all that extra stuff when you
just want to test a simple script. We’ll show you how to write CGI scripts
in Chapter 10, “Web Programming: CGI and WSGI,” as well as tell you
why you should avoid doing so.

As you can see, it doesn’t take much to have a Web server up and run-
ning in pure Python. Again, you shouldn’t be writing servers all the time.
Generally you’re creating Web applications that run on Web servers. These
server modules are meant only to create servers that are useful during
development, regardless of whether you develop applications or Web
frameworks.

ptg7615500

9.5 Related Modules 433

In production, your live service will instead be using servers that are
production-worthy such as Apache, ligHTTPD, or any of the others listed
at the beginning of this section. However, we hope this section will have
enlightened you such that you realize doing complex tasks can be simpli-
fied with the power that Python gives you.

9.5 Related Modules
In Table 9-7, we present a list of modules, some of which are covered in this
chapter (and others not), that you might find useful for Web development.

Table 9-7 Web Programming Related Modules

Module/Package Description

Web Applications

cgi Retrieves CGI form data

cgitbc Handles CGI tracebacks

htmllib Older HTML parser for simple HTML
files; HTML- Parser class extends from
sgmllib.SGMLParser

HTMLparserc Newer, non-SGML-based parser for HTML
and XHTML

htmlentitydefs HTML general entity definitions

Cookie Server-side cookies for HTTP state management

cookielibe Cookie-handling classes for HTTP clients

webbrowserb Controller: launches Web documents in a
browser

sgmllib Parses simple SGML files

robotparsera Parses robots.txt files for URL “fetchability”
analysis

httpliba Used to create HTTP clients

(Continued)

ptg7615500

434 Chapter 9 • Web Clients and Servers

Table 9-7 Web Programming Related Modules (Continued)

Module/Package Description

Web Applications

urllib Access servers via URL, other URL-related
utilities; urllib.urlopen() replaced by
urllib2.urlopen() in Python 3 as
urllib.request.urlopen()

urllib2; urllib.requestg,
urllib.errorg

Classes and functions to open (real-world)
URLs; broken up into the second two subpack-
ages in Python 3

urlparse, urllib.parseg Utilities for parsing URL strings; renamed as
urllib.parse in Python 3.

XML Processing

xmllib Original simple XML parser (outdated/
deprecated)

xmlb XML package featuring various parsers (some
following)

xml.saxb Simple API for XML (SAX) SAX2-compliant
XML parser

xml.domb Document Object Model [DOM] XML parser

xml.etreef Tree-oriented XML parser based on the
Element flexible container object

xml.parsers.expatb Interface to the non-validating Expat XML
parser

xmlrpclibc Client support for XML Remote Procedure Call
(RPC) via HTTP

SimpleXMLRPCServerc Basic framework for Python XML-RPC servers

DocXMLRPCServerd Framework for self-documenting XML-RPC
servers

ptg7615500

9.5 Related Modules 435

Module/Package Description

Web Servers

BaseHTTPServer Abstract class with which to develop Web servers

SimpleHTTPServer Serve the simplest HTTP requests (HEAD and
GET)

CGIHTTPServer In addition to serving Web files such as
SimpleHTTPServers, can also process CGI
(HTTP POST) requests

http.serverg New name for the combined package merging
together BaseHTTPServer, SimpleHTTPServer,
and CGIHTTPServer modules in Python 3

wsgireff Package defining a standard interface between
Web servers and Web applications

Third-Party Packages (not in standard library)

HTMLgen CGI helper converts Python objects into valid
HTML
http://starship.python.net/crew/friedrich/
HTMLgen/html/main.html

BeautifulSoup HTML and XML parser and screen-scraper
http://crummy.com/software/BeautifulSoup

Mechanize Web-browsing package based on WWW:
Mechanize
http://wwwsearch.sourceforge.net/mechanize/

a. New in Python 1.6.
b. New in Python 2.0.
c. New in Python 2.2.
d. New in Python 2.3.
e. New in Python 2.4.
f. New in Python 2.5.
g. New in Python 3.0.

http://starship.python.net/crew/friedrich/HTMLgen/html/main.html
http://starship.python.net/crew/friedrich/HTMLgen/html/main.html
http://crummy.com/software/BeautifulSoup
http://www.search.sourceforge.net/mechanize/

ptg7615500

436 Chapter 9 • Web Clients and Servers

9.6 Exercises

9-1. urllib Module. Write a program that takes a user-input URL
(either a Web page or an FTP file such as http://python.org or
ftp://ftp.python.org/pub/python/README), and downloads
it to your computer with the same filename (or modified
name similar to the original if it is invalid on your system).
Web pages (HTTP) should be saved as .htm or .html files, and
FTP’d files should retain their extension.

9-2. urllib Module. Rewrite the grabWeb.py script of Example 11-4
of Core Python Programming or Core Python Language Funda-
mentals, which downloads a Web page and displays the first
and last non-blank lines of the resulting HTML file so that
you use urlopen() instead of urlretrieve() to process the
data directly (as opposed to downloading the entire file first
before processing it).

9-3. URLs and Regular Expressions. Your browser can save your
favorite Web site URLs as a bookmarks HTML file (Mozilla-
flavored browsers do this) or as a set of .url files in a “favor-
ites” directory (Internet Explorer does this). Find your
browser’s method of recording your “hot links” and the loca-
tion of where and how they are stored. Without altering any
of the files, strip the URLs and names of the corresponding
Web sites (if given) and produce a two-column list of names
and links as output, and then store this data into a disk file.
Truncate site names or URLs to keep each line of output
within 80 characters in length.

9-4. URLs, urllib Module, Exceptions, and Regular Expressions. As
a follow-up problem to Exercise 9-3, add code to your script
to test each of your favorite links. Report back a list of dead
links (and their names) such as Web sites that are no longer
active or a Web page that has been removed. Only output
and save to disk the still-valid links.

Exercises 9-5 to 9-8 below pertain to Web server access log files and regular
expressions. Web servers (and their administrators) generally have to main-
tain an access log file (usually logs/access_log from the main Web,
server directory) which tracks requests. Over a period of time, such files
become large and either need to be stored or truncated. Why not save only
the pertinent information and delete the files to conserve disk space? The

http://python.org

ptg7615500

9.6 Exercises 437

exercises below are designed to give you some exercise with regular expres-
sions and how they can be used to help archive and analyze Web server
data.

9-5. Count how many of each type of request (GET versus POST)
exist in the log file.

9-6. Count the successful page/data downloads. Display all links
that resulted in a return code of 200 (OK [no error]) and how
many times each link was accessed.

9-7. Count the errors: Show all links that resulted in errors
(return codes in the 400s or 500s) and how many times each
link was accessed.

9-8. Track IP addresses: for each IP address, output a list of each
page/data downloaded and how many times that link was
accessed.

9-9. Web Browser Cookies and Web Site Registration. The user login
registration database you worked on in various chapters
(7, 9, 13) of Core Python Programming or Core Python Language
Fundamentals had you creating a pure text-based, menu-
driven script. Port it to the Web so that your user-password
information should now be site authentication system.
Extra Credit: Familiarize yourself with setting Web browser
cookies and maintain a login session for four hours from the
last successful login.

9-10. Creating Web Servers. Our code for myhttpd.py (Example 9-6)
is only able to read HTML files and return them to the calling
client. Add support for plain text files with the .txt ending.
Be sure that you return the correct MIME type of “text/plain.”
Extra Credit: Add support for JPEG files ending with either
.jpg or .jpeg and having a MIME type of “image/jpeg.”

Exercises 9-11 through 9-14 require you to update Example 9-3, crawl.py,
the Web crawler.

9-11. Web Clients. Port crawl.py so that it uses either HTMLParser,
BeautifulSoup, html5lib, or lxml parsing systems.

9-12. Web Clients. URLs given as input to crawl.py must have the
leading “http://” protocol indicator and top-level URLs must
contain a trailing slash, for example, http://www.prenhall-
professional.com/. Make crawl.py more robust by allowing

http://www.prenhall-professional.com/
http://www.prenhall-professional.com/

ptg7615500

438 Chapter 9 • Web Clients and Servers

the user to input just the hostname (without the protocol part
[make it assume HTTP]) and also make the trailing slash
optional. For example, www.prenhallprofessional.com should
now be acceptable input.

9-13. Web Clients. Update the crawl.py script to also download
links that use the ftp: scheme. All mailto: links are ignored
by crawl.py. Add support to ensure that it also ignores
telnet:, news:, gopher:, and about: links.

9-14. Web Clients. The crawl.py script only downloads .html files
via links found in Web pages at the same site and does not
handle/save images that are also valid “files” for those pages.
It also does not handle servers that are susceptible to URLs
that are missing the trailing slash (/). Add a pair of classes to
crawl.py to deal with these problems.
A My404UrlOpener class should subclass urllib.Fancy
URLOpener and consist of a single method, http_
error_404() which determines if a 404 error was reached
because of a URL without a trailing slash. If so, it adds the
slash and retries the request again (and only once). If it still
fails, return a real 404 error. You must set urllib._urlopener
with an instance of this class so that urllib uses it.
Create another class called LinkImageParser, which derives
from htmllib.HTMLParser. This class should contain a con-
structor to call the base class constructor as well as initialize a
list for the image files parsed from Web pages. The handle_
image() method should be overridden to add image file-
names to the image list (instead of discarding them like the
current base class method does).

The final set of exercises pertain to the parse_links.py file, shown earlier in
this chapter as Example 9-4.

9-15. Command-line Arguments. Add command-line arguments to
let the user see output from one or more parsers (instead of
just all of them [which could be the default]).

9-16. lxml Parser. Download and install lxml, and then add sup-
port for lxml to parse_links.py.

9-17. Markup Parsers. Subsitute each parser into the crawler replacing
htmllib.HTMLParser.
a) HTMLParser.HTMLParser

ptg7615500

9.6 Exercises 439

b) html5lib
c) BeaufifulSoup
d) lxml

9-18. Refactoring. Change the output() function to be able to sup-
port other forms of output.
a) Writing to a file
b) Sending to another process (i.e., writing to a socket)

9-19. Pythonic Coding. In the Line-by-Line Explanation of
parse_links.py, we expanded simpleBS() from a less-
readable one-liner to a block of properly formatted
Python code. Do the same thing with fasterBS() and
html5libparse().

9-20. Performance and Profiling. Earlier, we described how fasterBS()
performs better than simpleBS(). Use timeit to show it runs
faster, and then find a Python memory tool online to show it
saves memory. Describe what the memory profiler tool is
and where you found it. Do any of the three standard library
profilers (profile, hotshot, cProfile) show memory usage
information?

9-21. Best Practices. In htmlparser(), suppose that we didn’t like
the thought of having to create a blank list and having to call
its append() method repeatedly to build the list; instead, you
wanted to use a list comprehension to replace lines 35–39
with the following single line of code:
self.data = [v for k, v in attrs if k == 'href']

Is this a valid substitution? In other words, could we make
this change and still have it all execute correctly? Why (or
why not)?

9-22. Data Manipulation. In parse_links.py, we sort the URLs
alphabetically (actually lexicographically). However, this
might not be the best way to organize links:
http://python.org/psf/
http://python.org/search
http://roundup.sourceforge.net/
http://sourceforge.net/projects/mysql-python
http://twistedmatrix.com/trac/

http://python.org/psf/
http://python.org/search
http://roundup.sourceforge.net/
http://twistedmatrix.com/trac/
http://sourceforge.net/projects/mysql-python

ptg7615500

440 Chapter 9 • Web Clients and Servers

http://wiki.python.org/moin/
http://wiki.python.org/moin/CgiScripts
http://www.python.org/

Instead, a sort by domain name might make more sense:
http://python.org/psf/
http://python.org/search
http://wiki.python.org/moin/
http://wiki.python.org/moin/CgiScripts
http://www.python.org/
http://roundup.sourceforge.net/
http://sourceforge.net/projects/mysql-python
http://twistedmatrix.com/trac/

Give your script the ability to sort by domain in addition to the alpha/
lexicographic sort.

http://www.python.org/
http://wiki.python.org/moin/
http://wiki.python.org/moin/CgiScripts
http://python.org/psf/
http://python.org/search
http://wiki.python.org/moin/
http://wiki.python.org/moin/CgiScripts
http://www.python.org/
http://roundup.sourceforge.net/
http://sourceforge.net/projects/mysql-python
http://twistedmatrix.com/trac/

ptg7615500

441

CHAPTER

Web Programming:
CGI and WSGI

[The] benefits of WSGI are primarily for Web framework authors
and Web server authors, not Web application authors. This is

not an application API, it’s a framework-to-server glue API.
—Phillip J. Eby, August 2004

In this chapter...

• Introduction
• Helping Web Servers Process Client Data
• Building CGI Applications
• Using Unicode with CGI
• Advanced CGI
• Introduction to WSGI
• Real-World Web Development
• Related Modules

ptg7615500

442 Chapter 10 • Web Programming: CGI and WSGI

10.1 Introduction
This introductory chapter on Web programming will give you a quick and
broad overview of the kinds of things you can do with Python on the Inter-
net, from Web surfing to creating user feedback forms, from recognizing
URLs to generating dynamic Web page output. We’ll first explore the com-
mon gateway interface (CGI) then discuss the web server gateway interface (WSGI).

10.2 Helping Web Servers Process
Client Data

In this section, we’ll introduce you to CGI, what it means, why it exists,
and how it works in relation to Web servers. We’ll then show you how to
use Python to create CGI applications.

10.2.1 Introduction to CGI

The Web was initially developed to be a global online repository or archive
of documents (mostly educational and research-oriented). Such pieces of
information generally come in the form of static text and usually in HTML.

HTML is not as much a language as it is a text formatter, indicating
changes in font types, sizes, and styles. The main feature of HTML is in its
hypertext capability. This refers to the ability to designate certain text
(usually highlighted in some fashion) or even graphic elements as links
that point to other “documents” or locations on the Internet and Web that
are related in context to the original. Such a document can be accessed by a
simple mouse click or other user selection mechanism. These (static) HTML
documents live on the Web server and are sent to clients when requested.

As the Internet and Web services evolved, there grew a need to process
user input. Online retailers needed to be able to take individual orders,
and online banks and search engine portals needed to create accounts for
individual users. Thus fill-out forms were invented; they were the only
way a Web site could get specific information from users (until Java
applets came along). This, in turn, required that the HTML be generated
on the fly, for each client submitting user-specific data.

But, Web servers are only really good at one thing: getting a user
request for a file and returning that file (i.e., an HTML file) to the client.
They do not have the “brains” to be able to deal with user-specific data

ptg7615500

10.2 Helping Web Servers Process Client Data 443

such as those which come from fields. Given this is not their responsibility,
Web servers farm out such requests to external applications which create
the dynamically generated HTML that is returned to the client.

The entire process begins when the Web server receives a client request
(i.e., GET or POST) and calls the appropriate application. It then waits for
the resulting HTML—meanwhile, the client also waits. Once the applica-
tion has completed, it passes the dynamically generated HTML back to the
server, which then (finally) forwards it back to the user. This process of
the server receiving a form, contacting an external application, and receiv-
ing and returning the HTML takes place through the CGI. An overview of
how CGI works is presented in Figure 10-1, which shows you the execution
and data flow, step-by-step, from when a user submits a form until the
resulting Web page is returned.

Forms input on the client and sent to a Web server can include process-
ing and perhaps some form of storage in a back-end database. Just keep in
mind that any time a Web page contains items that require user input (text
fields, radio buttons, etc.) and/or a Submit button or image, it most likely
involves some sort of CGI activity.

CGI applications that create the HTML are usually written in one of
many higher-level programming languages that have the ability to accept
user data, process it, and then return HTML back to the server. Before we
take a look at CGI, we have to issue the caveat that the typical production
Web application is no longer being implemented in CGI.

Because of its significant limitations and limited ability to allow Web
servers to process an abundant number of simultaneous clients, CGI is

C IG

Web Browser (Client) Web Server CGI Application

Submit
completed form Call CGI

CGI
Program's
response

CGI
Program's
response

User

1 2

34

Figure 10-1 Overview of how CGI works. CGI represents the interaction between a Web server
and the application that is required to process a user’s form and generate the dynamic HTML that
is eventually returned.

ptg7615500

444 Chapter 10 • Web Programming: CGI and WSGI

a dinosaur. Mission-critical Web services rely on compiled languages like
C/C++ to scale. A modern-day Web server is typically composed of Apache
and integrated components for database access (MySQL or PostgreSQL),
Java (Tomcat), PHP, and various modules for dynamic languages such as
Python or Ruby, and secure sockets layer (SSL)/security. However, if you
are working on small personal Web sites or those of small organizations
and do not need the power and complexity required by mission critical
Web services, CGI is a quick way to get started. It can also be used for testing.

Furthermore, there are a good number of Web application development
frameworks out there as well as content management systems, all of
which make building CGI a relic of past. However, beneath all the fluff
and abstraction, they must still, in the end, follow the same model that
CGI originally provided, and that is being able to take user input, execute
code based on that input, and then provide valid HTML as its final output
for the client. Therefore, the exercise in learning CGI is well worth it in
terms of understanding the fundamentals required to develop effective
Web services.

In this next section, we will look at how to create CGI applications in
Python, with the help of the cgi module.

10.2.2 CGI Applications

A CGI application is slightly different from a typical program. The pri-
mary differences are in the input, output, and user interaction aspects of a
computer program. When a CGI script starts, it needs to retrieve the user-
supplied form data, but it has to obtain this data from the Web client, not a
user on the server computer or a disk file. This is usually known as the
request.

The output differs in that any data sent to standard output will be sent
back to the connected Web client rather than to the screen, GUI window, or
disk file. This is known as the response. The data sent back must be a set of
valid headers followed by HTML-tagged data. If it is not and the Web
client is a browser, an error (specifically, an Internal Server Error) will
occur because Web clients understand only valid HTTP data (i.e., MIME
headers and HTML).

Finally, as you can probably guess, there is no user interaction with the
script. All communication occurs among the Web client (on behalf of a
user), the Web server, and the CGI application.

ptg7615500

10.2 Helping Web Servers Process Client Data 445

10.2.3 The cgi Module

There is one primary class in the cgi module that does all the work: the
FieldStorage class. This class reads in all the pertinent user information
from the Web client (via the Web server); thus, it should be instantiated
when a Python CGI script begins. Once it has been instantiated, it will con-
sist of a dictionary-like object that contains a set of key-value pairs. The
keys are the names of the input items that were passed in via the form.
The values contain the corresponding data.

Values can be one of three objects. The first are FieldStorage objects
(instances). The second are instances of a similar class called MiniField
Storage, which is used in cases for which no file uploads or multiple-part
form data is involved. MiniFieldStorage instances contain only the key-
value pair of the name and the data. Lastly, they can be a list of such
objects. This occurs when a form contains more than one input item with
the same field name.

For simple Web forms, you will usually find all MiniFieldStorage
instances. All of our examples that follow pertain only to this general case.

10.2.4 The cgitb Module

As we mentioned earlier, a valid response back to the Web server (which
would then forward it to the user/browser) must contain valid HTTP
headers and HTML-tagged data. Have you thought about the returned
data if your CGI application crashes? What happens when you run a
Python script that results in an error? That’s right: a traceback occurs.
Would the text of a traceback be considered as valid HTTP headers or
HTML? No.

A Web server receiving a response it doesn’t understand will just throw
up its hands and give up, returning a “500 error.” The 500 is an HTTP
response code that means an internal Web server error has occurred, most
likely from the application that is being executed. The output on the
browser doesn’t aid the developer either, as the screen is either blank or
shows “Internal Server Error,” or something similar.

When our Python programs were running on the command-line or in
an integrated development environment (IDE), errors resulted in a traceback,
upon which we could take action. Not so in the browser. What we really
want is to see the Web application’s traceback on the browser screen, not
“Internal Server Error.” This is where the cgitb module comes in.

ptg7615500

446 Chapter 10 • Web Programming: CGI and WSGI

To enable a dump of tracebacks, all we need to do is to insert the follow-
ing import and call in our CGI applications:

import cgitb
cgitb.enable()

You’ll have plenty of opportunity as we explore CGI for the first half of
this chapter. For now, just leave these two lines out as we undertake some
simple examples. First, I want you to see the “Internal Server Error” mes-
sages and debug them the hard way. Once you realize how the server’s not
throwing you a bone, you’ll add these two lines religiously, on your own.

10.3 Building CGI Applications
In this section of the chapter, we go hands-on, showing you how to set up
a Web server, followed by a step-by-step breakdown of how to create a
CGI application in Python. We start with a simple script, then build on it
incrementally. The practices you learn here can be used for developing
applications using any Web framework.

10.3.1 Setting Up a Web Server

To experiment with CGI development in Python, you need to first install a
Web server, configure it for handling Python CGI requests, and then give
the Web server access to your CGI scripts. Some of these tasks might
require assistance from your system administrator.

Production Servers

If you want a real Web server, you will likely download and install
Apache, ligHTTPD, or thttpd. For Apache, there are various plug-ins or
modules for handling Python CGI, but they are not required for our exam-
ples. You might want to install those if you are planning on “going live” to
the world with your service. But even this might be overkill.

Developer Servers

For learning purposes or for simple Web sites, it might suffice to use
the Web servers that come with Python. In Chapter 9, “Web Clients and
Servers,” you were exposed to creating and configuring simple Python-
based Web servers. Our examples in this chapter are simpler, use only
Python’s CGI Web server.

ptg7615500

10.3 Building CGI Applications 447

If you want to start up this most basic Web server, execute it directly in
Python 2.x, as follows:

$ python -m CGIHTTPServer [port]

This won’t work as easily in Python 3 because all three Web servers and
their handlers have been merged into a single module (http.server), with
one base server and three request handler classes (BaseHTTPRequestHandler,
SimpleHTTPRequestHandler, and CGIHTTPRequestHandler).

If you don’t provide the optional port number for the server, it starts at
port 8000 by default. Also, the -m option is new in version 2.4. If you are
using an older version of Python or want to see alternative ways of run-
ning it, here are your options:

• Executing the module from a command shell

This method is somewhat troublesome because you need to
know where the CGIHTTPServer.py file is physically located.
On Windows-based PCs, this is easier because the typical
installation folder is C:\Python2X:
C:\>python C:\Python27\Lib\CGIHTTPServer.py
Serving HTTP on 0.0.0.0 port 8000 ...

On POSIX systems, you need to do a bit more sleuthing:
>>> import sys, CGIHTTPServer
>>> sys.modules['CGIHTTPServer']
<module 'CGIHTTPServer' from '/usr/local/lib/python2.7/
 CGIHTTPServer.py'>
>>>^D
$ python /usr/local/lib/python2.7/CGIHTTPServer.py
Serving HTTP on 0.0.0.0 port 8000 ...

• Use the -c option

Using the -c option you can run a string consisting of Python
statements. Therefore, import CGIHTTPServer and execute the
test() function, use the following:
$ python -c "import CGIHTTPServer; CGIHTTPServer.test()"
Serving HTTP on 0.0.0.0 port 8000 ...

Because CGIHTTPServer is merged into http.server in version 3.x,
you can issue the equivalent call (by using, for example,
Python 3.2) as the following:
$ python3.2 -c "from http.server import
CGIHTTPRequestHandler,test;test(CGIHTTPRequestHandler)"

2.x

3.x

2.4

3.x

ptg7615500

448 Chapter 10 • Web Programming: CGI and WSGI

• Create a quick script

Take the import and test() call from the previous option and
insert it into an arbitrary file, say cgihttpd.py file (Python 2
or 3). For Python 3, because there is no CGIHTTPServer.py
module to execute, the only way to get your server to start
from the command-line on a port other than 8000 is to use this
script:
$ python3.2 cgihttpd.py 8080
Serving HTTP on 0.0.0.0 port 8080 ...

Any of these four techniques will start a Web server on port 8000 (or
whatever you chose) on your current computer from the current directory.
Then you can just create a cgi-bin directory right under the directory from
which you started the server and put your Python CGI scripts there. Put
some HTML files in that directory and perhaps some .py CGI scripts in
cgi-bin, and you are ready to “surf” directly to this Web site with
addresses looking something like these:

http://localhost:8000/friends.htm
http://localhost:8080/cgi-bin/friendsB.py

Be sure to start up your server where there is a cgi-bin directory and
ensure that your .py files are there; otherwise, the development server will
return your Python files as static text rather than executing them.

10.3.2 Creating the Form Page

In Example 10-1, we present the code for a simple Web form, friends.htm.
As you can see in the HTML, the form contains two input variables: person
and howmany. The values of these two fields will be passed to our CGI
script, friendsA.py.

You will notice in our example that we install our CGI script into the
default cgi-bin directory (see the ACTION link) on the local host. (If this
information does not correspond with your development environment,
update the form action before attempting to test the Web page and CGI
script.) Also, because a METHOD subtag is missing from the form action,
all requests will be of the default type, GET. We choose the GET method
because we do not have very many form fields, and also, we want our
query string to show up in the Location (a.k.a. “Address,” “Go To”) bar so
that you can see what URL is sent to the server.

ptg7615500

10.3 Building CGI Applications 449

Figure 10-2 and 10-3 show the screen that is rendered by friends.htm
in clients running on both Mac and Windows.

Example 10-1 Static Form Web Page (friends.htm)

This HTML file presents a form to the user with an empty field for the user’s
name and a set of radio buttons from which the user can choose.

1 <HTML><HEAD><TITLE>
2 Friends CGI Demo (static screen)
3 </TITLE></HEAD>
4 <BODY><H3>Friends list for: <I>NEW USER</I></H3>
5 <FORM ACTION="/cgi-bin/friendsA.py">
6 Enter your Name:
7 <INPUT TYPE=text NAME=person VALUE="NEW USER" SIZE=15>
8 <P>How many friends do you have?
9 <INPUT TYPE=radio NAME=howmany VALUE="0" CHECKED> 0
10 <INPUT TYPE=radio NAME=howmany VALUE="10"> 10
11 <INPUT TYPE=radio NAME=howmany VALUE="25"> 25
12 <INPUT TYPE=radio NAME=howmany VALUE="50"> 50
13 <INPUT TYPE=radio NAME=howmany VALUE="100"> 100
14 <P><INPUT TYPE=submit></FORM></BODY></HTML>

Figure 10-2 The Friends form page in Chrome “incognito mode,” on Mac OS X.

ptg7615500

450 Chapter 10 • Web Programming: CGI and WSGI

10.3.3 Generating the Results Page

The input is entered by the user when the Submit button is clicked. (Alter-
natively, the user can also press the Return or Enter key within the text field
to invoke the same action.) When this occurs, the script in Example 10-2,
friendsA.py, is executed via CGI.

Example 10-2 Results Screen CGI code (friendsA.py)

This CGI script grabs the person and howmany fields from the form and uses that
data to create the dynamically generated results screen. Add parentheses to the
print statement on line 17 for the Python 3 version, friendsA3.py (not
displayed here). Both are available at corepython.com.

1 #!/usr/bin/env python
2
3 import cgi
4
5 reshtml = '''Content-Type: text/html\n
6 <HTML><HEAD><TITLE>
7 Friends CGI Demo (dynamic screen)
8 </TITLE></HEAD>
9 <BODY><H3>Friends list for: <I>%s</I></H3>
10 Your name is: %s<P>

Figure 10-3 The Friends form page in Firefox 6 on Windows.

ptg7615500

10.3 Building CGI Applications 451

This script contains all the programming power to read the form input
and process it as well as return the resulting HTML page back to the user.
All the “real” work in this script takes place in only four lines of Python
code (lines 14–17).

The form variable is our FieldStorage instance, containing the values
of the person and howmany fields. We read these into the Python who and
howmany variables, respectively. The reshtml variable contains the general
body of HTML text to return, with a few fields filled in dynamically, using
the data just read in from the form.

CORE TIP: HTTP headers separate from HTML

Here’s something that always catches beginners: when sending results back via
a CGI script, the CGI script must return the appropriate HTTP headers first
before any HTML. Furthermore, to distinguish between these headers and the
resulting HTML, there must be one blank line (a pair of NEWLINE characters)
inserted between both sets of data, as in line 5 of our friendsA.py example (one
explicit \n plus the implicit one at the end of line 5). You’ll notice this in the
other examples, too.

One possible resulting screen appears in Figure 10-4, (assuming the
user typed in “Annalee Lenday” as the name and clicked the “25 friends”
radio button).

If you are a Web site producer, you might be thinking, “Gee, wouldn’t it
be nice if I could automatically capitalize this person’s name, especially if
she forgot?” With Python CGI, you can accomplish this easily. (And we
shall do so soon!)

11 You have %s friends.
12 </BODY></HTML>'''
13
14 form = cgi.FieldStorage()
15 who = form['person'].value
16 howmany = form['howmany'].value
17 print reshtml % (who, who, howmany)

ptg7615500

452 Chapter 10 • Web Programming: CGI and WSGI

Notice how on a GET request that our form variables and their values
are added to the form action URL in the Address bar. Also, did you
observe that the title for the friends.htm page has the word “static” in it,
whereas the output screen from friends.py has the word “dynamic” in
its title? We did that for a reason: to indicate that the friends.htm file is a
static text file while the results page is dynamically generated. In other
words, the HTML for the results page did not exist on disk as a text file;
rather, it was generated by our CGI script, which returned it as if it were a
local file.

In our next example, we bypass static files altogether by updating our
CGI script to be somewhat more multifaceted.

10.3.4 Generating Form and Results Pages

We obsolete friends.html and merge it into friendsB.py. The script will
now generate both the form page as well as the results page. But how can
we tell which page to generate? Well, if there is form data being sent to us,
that means that we should be creating a results page. If we do not get any
information at all, that tells us that we should generate a form page for
the user to enter his data. Our new friendsB.py script is presented in
Example 10-3.

Figure 10-4 The Friends results page after the name and number of friends has been submitted.

ptg7615500

10.3 Building CGI Applications 453

Example 10-3 Generating Form and Results Pages (friendsB.py)

Both friends.htm and friendsA.py are merged into friendsB.py. The
resulting script can now output both form and results pages as dynamically
generated HTML and has the smarts to know which page to output. To port this
to the Python 3 version, friendsB3.py, you need to add parentheses to both
print statements and change the form action to friendsB3.py.

1 #!/usr/bin/env python
2
3 import cgi
4
5 header = 'Content-Type: text/html\n\n'
6
7 formhtml = '''<HTML><HEAD><TITLE>
8 Friends CGI Demo</TITLE></HEAD>
9 <BODY><H3>Friends list for: <I>NEW USER</I></H3>
10 <FORM ACTION="/cgi-bin/friendsB.py">
11 Enter your Name:
12 <INPUT TYPE=hidden NAME=action VALUE=edit>
13 <INPUT TYPE=text NAME=person VALUE="NEW USER" SIZE=15>
14 <P>How many friends do you have?
15 %s
16 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
17
18 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
19
20 def showForm():
21 friends = []
22 for i in (0, 10, 25, 50, 100):
23 checked = ''
24 if i == 0:
25 checked = 'CHECKED'
26 friends.append(fradio % (str(i), checked, str(i)))
27
28 print '%s%s' % (header, formhtml % ''.join(friends))
29
30 reshtml = '''<HTML><HEAD><TITLE>
31 Friends CGI Demo</TITLE></HEAD>
32 <BODY><H3>Friends list for: <I>%s</I></H3>
33 Your name is: %s<P>
34 You have %s friends.
35 </BODY></HTML>'''
36
37 def doResults(who, howmany):
38 print header + reshtml % (who, who, howmany)
39
40 def process():
41 form = cgi.FieldStorage()

(Continued)

ptg7615500

454 Chapter 10 • Web Programming: CGI and WSGI

Line-by-Line Explanation

Lines 1–5
In addition to the usual startup and module import lines, we separate the
HTTP MIME header from the rest of the HTML body because we will use
it for both types of pages (form page and results page) returned and we
don’t want to duplicate the text. We will add this header string to the cor-
responding HTML body when it’s time for output to occur.

Lines 7–28
All of this code is related to the now-integrated friends.htm form page in
our CGI script. We have a variable for the form page text, formhtml, and
we also have a string to build the list of radio buttons, fradio. We could
have duplicated this radio button HTML text as it is in friends.htm, but
we wanted to show how we could use Python to generate more dynamic
output—see the for loop in lines 22–26.

The showForm() function has the responsibility of generating a form for
user input. It builds a set of text for the radio buttons, merges those lines of
HTML into the main body of formhtml, prepends the header to the form,
and then returns the entire collection of data back to the client by sending
the entire string to standard output.

There are a couple of interesting things to note about this code. The first
is the “hidden” variable in the form called action, containing the value

Example 10-3 Generating Form and Results Pages (friendsB.py)
(Continued)

42 if 'person' in form:
43 who = form['person'].value
44 else:
45 who = 'NEW USER'
46
47 if 'howmany' in form:
48 howmany = form['howmany'].value
49 else:
50 howmany = 0
51
52 if 'action' in form:
53 doResults(who, howmany)
54 else:
55 showForm()
56
57 if __name__ == '__main__':
58 process()

ptg7615500

10.3 Building CGI Applications 455

edit on line 12. This field is the only way we can tell which screen to dis-
play (i.e., the form page or the results page). We will see this field come
into play in lines 53–56.

Also, observe that we set the 0 radio button as the default by “checking”
it within the loop that generates all the buttons. This will also allow us to
update the layout of the radio buttons and/or their values on a single line
of code (line 18) rather than over multiple lines of text. It will also offer
some more flexibility in letting the logic determine which radio button is
checked—see the next update to our script, friendsC.py, coming up.

Now you might be thinking, “Why do we need an action variable when
I could just as well be checking for the presence of person or howmany?”
That is a valid question, because yes, you could have just used person or
howmany in this situation.

However, the action variable is a more conspicuous presence, insofar as
its name as well as what it does—the code is easier to understand. The
person and howmany variables are used for their values, whereas the action
variable is used as a flag.

The other reason for creating action is that we will be using it again to
help us determine which page to generate. In particular, we will need to
display a form with the presence of a person variable (rather than a results
page). This will break your code if you are solely relying on there being a
person variable.

Lines 30–38
The code to display the results page is practically identical to that of
friendsA.py.

Lines 40–55
Because there are different pages that can result from this one script, we
created an overall process() function to get the form data and decide
which action to take. The main portion of process() will also look familiar
to the main body of code in friendsA.py. There are two major differences,
however.

Because the script might or might not be getting the expected fields
(invoking the script the first time to generate a form page, for example,
will not pass any fields to the server), we need to “bracket” our retrieval of
the form fields with if statements to check if they are even there. Also, we
mentioned the action field above, which helps us decide which page to
bring up. The code that performs this determination is in lines 52–55.

ptg7615500

456 Chapter 10 • Web Programming: CGI and WSGI

Figure 10-5 illustrates that the auto-generated form looks identical to
the static form presented in Figure 10-2; however, instead of a link ending
in .html, it ends in .py. If we enter “Cynthia Gilbert” for the name and
select 50 friends, clicking the Submit button results in what is shown in
Figure 10-6.

Note that a static friends.htm does not show up in the URL because
friendsB.py is responsible for both the form and results pages.

Figure 10-5 The autogenerated Friends form page in Chrome on Windows.

Figure 10-6 The Friends results page after submitting the name and friend count.

ptg7615500

10.3 Building CGI Applications 457

10.3.5 Fully Interactive Web Sites

Our final example will complete the circle. As in the past, a user enters her
information from the form page. We then process the data and output a
results page. This time, however, we will add a link to the results page that
will allow the user to go back to the form page, but rather than presenting a
blank form, we will fill in the data that the user has already provided. We
will also add some error processing to give you an example of how it can be
accomplished. The new friendsC.py is shown in Example 10-4.

Example 10-4 Full User Interaction and Error Processing (friendsC.py)

By adding a link to return to the form page with information already provided,
we have come full circle, giving the user a fully interactive Web surfing
experience. Our application also now performs simple error checking, which
notifies the user if no radio button was selected.

1 #!/usr/bin/env python
2
3 import cgi
4 from urllib import quote_plus
5
6 header = 'Content-Type: text/html\n\n'
7 url = '/cgi-bin/friendsC.py'
8
9 errhtml = '''<HTML><HEAD><TITLE>
10 Friends CGI Demo</TITLE></HEAD>
11 <BODY><H3>ERROR</H3>
12 %s<P>
13 <FORM><INPUT TYPE=button VALUE=Back
14 ONCLICK="window.history.back()"></FORM>
15 </BODY></HTML>'''
16
17 def showError(error_str):
18 print header + errhtml % error_str
19
20 formhtml = '''<HTML><HEAD><TITLE>
21 Friends CGI Demo</TITLE></HEAD>
22 <BODY><H3>Friends list for: <I>%s</I></H3>
23 <FORM ACTION="%s">
24 Enter your Name:
25 <INPUT TYPE=hidden NAME=action VALUE=edit>
26 <INPUT TYPE=text NAME=person VALUE="%s" SIZE=15>
27 <P>How many friends do you have?
28 %s
29 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
30

(Continued)

ptg7615500

458 Chapter 10 • Web Programming: CGI and WSGI

Example 10-4 Full User Interaction and Error Processing (friendsC.py)
(Continued)

31 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
32
33 def showForm(who, howmany):
34 friends = []
35 for i in (0, 10, 25, 50, 100):
36 checked = ''
37 if str(i) == howmany:
38 checked = 'CHECKED'
39 friends.append(fradio % (str(i), checked, str(i)))
40 print '%s%s' % (header, formhtml % (
41 who, url, who, ''.join(friends)))
42
43 reshtml = '''<HTML><HEAD><TITLE>
44 Friends CGI Demo</TITLE></HEAD>
45 <BODY><H3>Friends list for: <I>%s</I></H3>
46 Your name is: %s<P>
47 You have %s friends.
48 <P>Click here to edit your data again.
49 </BODY></HTML>'''
50
51 def doResults(who, howmany):
52 newurl = url + '?action=reedit&person=%s&howmany=%s'%\
53 (quote_plus(who), howmany)
54 print header + reshtml % (who, who, howmany, newurl)
55
56 def process():
57 error = ''
58 form = cgi.FieldStorage()
59
60 if 'person' in form:
61 who = form['person'].value.title()
62 else:
63 who = 'NEW USER'
64
65 if 'howmany' in form:
66 howmany = form['howmany'].value
67 else:
68 if 'action' in form and \
69 form['action'].value == 'edit':
70 error = 'Please select number of friends.'
71 else:
72 howmany = 0
73
74 if not error:
75 if 'action' in form and \
76 form['action'].value != 'reedit':
77 doResults(who, howmany)
78 else:
79 showForm(who, howmany)
80 else:
81 showError(error)
82
83 if __name__ == '__main__':
84 process()

ptg7615500

10.3 Building CGI Applications 459

friendsC.py is not too unlike friendsB.py. We invite you to compare the
differences; we present a brief summary of the major changes for you here.

Abridged Line-by-Line Explanation

Line 7
We take the URL out of the form because we now need it in two places, the
results page being the new customer in addition to the user input form.

Lines 9–18, 68–70, 74–81
All of these lines deal with the new feature of having an error screen. If the
user does not select a radio button indicating the number of friends, the
howmany field is not passed to the server. In such a case, the showError()
function returns the error page to the user.

The error page also features a JavaScript “Back” button. Because but-
tons are input types, we need a form, but no action is needed because we
are just going back one page in the browsing history. Although our script
currently supports (a.k.a. tests for) only one type of error, we still use a
generic error variable in case we want to continue development of this
script to add more error detection in the future.

Lines 26–28, 37–40, 47, and 51–54
One goal for this script is to create a meaningful link back to the form page
from the results page. This is implemented as a link to give the user the
ability to return to a form page to update or edit the data he entered. The
new form page makes sense only if it contains information pertaining to
the data that has already been entered by the user. (It is frustrating for
users to re-enter their information from scratch!)

To accomplish this, we need to embed the current values into the
updated form. In line 26, we add a value for the name. This value will be
inserted into the name field, if given. Obviously, it will be blank on the ini-
tial form page. In Lines 37–38, we set the radio box corresponding to the
number of friends currently chosen. Finally, on lines 48 and the updated
doResults() function on lines 52–54, we create the link with all the exist-
ing information, which returns the user to our modified form page.

Line 61
Finally, we added a simple feature that we thought would be a nice aes-
thetic touch. In the screens for friendsA.py and friendsB.py, the text
entered by the user as her name is taken verbatim. If you look at the equiv-
alent line in friendsA.py and friendsB.py, you’ll notice that we leave the

ptg7615500

460 Chapter 10 • Web Programming: CGI and WSGI

names alone from form to display. This means that if users enter names in
all lowercase, they will show up in all lowercase, etc. So, we added a call to
str.title() to automatically capitalize a user’s name. The title() string
method titlecases the passed-in string. This might or might not be a desired
feature, but we thought that we would share it with you so that you know
that such functionality exists.

Figures 10-7 through 10-10 show the progression of user interaction
with this CGI form and script.

In Figure 10-7, we invoke friendsC.py to bring up the form page. We
enter a name “foo bar,” but deliberately avoid checking any of the radio but-
tons. The resulting error after submitting the form can be seen in Figure 10-8.

Figure 10-7 The Friends initial form page without friends selection.

Figure 10-8 An error page appears due to invalid user input.

ptg7615500

10.3 Building CGI Applications 461

We click the Back button, click the 50 radio button, and then resubmit
our form. The results page, shown in Figure 10-9, is also familiar, but now
has an extra link at the bottom, which will take us back to the form page.
The only difference between the new form page and our original is that all
the data filled in by the user is now set as the default settings, meaning
that the values are already available in the form. (Hopefully you’ll notice
the automatic name capitalization too.) We can see this in Figure 10-10.

Figure 10-9 The Friends results page with valid input.

Figure 10-10 The Friends form page redux.

ptg7615500

462 Chapter 10 • Web Programming: CGI and WSGI

Now the user is able to make changes to either of the fields and resub-
mit her form.

As the developer, however, you will no doubt begin to notice that as our
forms and data become more complicated, so does the generated HTML,
especially for complex results pages. If you ever get to a point where gen-
erating the HTML text is interfering with your application, you might con-
sider trying Python packages, such as HTMLgen, xist, or HSC. These third-
party tools specialize in HTML generation directly from Python objects.

Finally, in Example 10-5, we want to show you the Python 3 equivalent,
friendsC3.py.

Example 10-5 Python 3 port of friendsC.py (friendsC3.py)

The equivalent of friendsC.py in Python 3. What are the differences?

1 #!/usr/bin/env python
2
3 import cgi
4 from urllib.parse import quote_plus
5
6 header = 'Content-Type: text/html\n\n'
7 url = '/cgi-bin/friendsC3.py'
8
9 errhtml = '''<HTML><HEAD><TITLE>
10 Friends CGI Demo</TITLE></HEAD>
11 <BODY><H3>ERROR</H3>
12 %s<P>
13 <FORM><INPUT TYPE=button VALUE=Back
14 ONCLICK="window.history.back()"></FORM>
15 </BODY></HTML>'''
16
17 def showError(error_str):
18 print(header + errhtml % (error_str))
19
20 formhtml = '''<HTML><HEAD><TITLE>
21 Friends CGI Demo</TITLE></HEAD>
22 <BODY><H3>Friends list for: <I>%s</I></H3>
23 <FORM ACTION="%s">
24 Enter your Name:
25 <INPUT TYPE=hidden NAME=action VALUE=edit>
26 <INPUT TYPE=text NAME=person VALUE="%s" SIZE=15>
27 <P>How many friends do you have?
28 %s
29 <P><INPUT TYPE=submit></FORM></BODY></HTML>'''
30

ptg7615500

10.3 Building CGI Applications 463

31 fradio = '<INPUT TYPE=radio NAME=howmany VALUE="%s" %s> %s\n'
32
33 def showForm(who, howmany):
34 friends = []
35 for i in (0, 10, 25, 50, 100):
36 checked = ''
37 if str(i) == howmany:
38 checked = 'CHECKED'
39 friends.append(fradio % (str(i), checked, str(i)))
40 print('%s%s' % (header, formhtml % (
41 who, url, who, ''.join(friends))))
42
43 reshtml = '''<HTML><HEAD><TITLE>
44 Friends CGI Demo</TITLE></HEAD>
45 <BODY><H3>Friends list for: <I>%s</I></H3>
46 Your name is: %s<P>
47 You have %s friends.
48 <P>Click here to edit your data again.
49 </BODY></HTML>'''
50
51 def doResults(who, howmany):
52 newurl = url + '?action=reedit&person=%s&howmany=%s' % (
53 quote_plus(who), howmany)
54 print(header + reshtml % (who, who, howmany, newurl))
55
56 def process():
57 error = ''
58 form = cgi.FieldStorage()
59
60 if 'person' in form:
61 who = form['person'].value.title()
62 else:
63 who = 'NEW USER'
64
65 if 'howmany' in form:
66 howmany = form['howmany'].value
67 else:
68 if 'action' in form and \
69 form['action'].value == 'edit':
70 error = 'Please select number of friends.'
71 else:
72 howmany = 0
73
74 if not error:
75 if 'action' in form and \
76 form['action'].value != 'reedit':
77 doResults(who, howmany)
78 else:
79 showForm(who, howmany)
80 else:
81 showError(error)
82
83 if __name__ == '__main__':
84 process()

ptg7615500

464 Chapter 10 • Web Programming: CGI and WSGI

10.4 Using Unicode with CGI
In the “Sequences” chapter of Core Python Programming or Core Python
Language Fundamentals, we introduced the use of Unicode strings. In one
particular section, we gave a simple example of a script that takes a Uni-
code string, writes it out to a file, and then reads it back in. Here, we’ll
demonstrate a similar CGI script that produces Unicode output. We’ll
show you how to give your browser enough clues to be able to render the
characters properly. The one requirement is that you must have East
Asian fonts installed on your computer so that the browser can display
them.

To see Unicode in action, we will build a CGI script to generate a multi-
lingual Web page. First, we define the message in a Unicode string. We
assume that your text editor can only enter ASCII. Therefore, the non-
ASCII characters are input by using the \u escape. In practice, the message
can also be read from a file or database.

Greeting in English, Spanish,
Chinese and Japanese.
UNICODE_HELLO = u"""
Hello!
\u00A1Hola!
\u4F60\u597D!
\u3053\u3093\u306B\u3061\u306F!
"""

The first output generated by the CGI is the content-type HTTP header.
It is very important to declare here that the content is transmitted in the
UTF-8 encoding so that the browser can correctly interpret it.

print 'Content-type: text/html; charset=UTF-8\r'
print '\r'

Then, output the actual message. Use the string’s encode() method to
translate the string into UTF-8 sequences first.

print UNICODE_HELLO.encode('UTF-8')

You can look through the code in Example 10-6, whose output will look
like the browser window shown in Figure 10-11.

ptg7615500

10.4 Using Unicode with CGI 465

Example 10-6 Simple Unicode CGI Example (uniCGI.py)

This script outputs Unicode strings to your Web browser.

1 #!/usr/bin/env python
2
3 CODEC = 'UTF-8'
4 UNICODE_HELLO = u'''
5 Hello!
6 \u00A1Hola!
7 \u4F60\u597D!
8 \u3053\u3093\u306B\u3061\u306F!
9 '''
10
11 print 'Content-Type: text/html; charset=%s\r' % CODEC
12 print '\r'
13 print '<HTML><HEAD><TITLE>Unicode CGI Demo</TITLE></HEAD>'
14 print '<BODY>'
15 print UNICODE_HELLO.encode(CODEC)
16 print '</BODY></HTML>'

Figure 10-11 A simple Simple Unicode CGI demonstration output in Firefox.

ptg7615500

466 Chapter 10 • Web Programming: CGI and WSGI

10.5 Advanced CGI
We will now take a look at some of the more advanced aspects of CGI pro-
gramming. These include the use of cookies (cached data saved on the client
side), multiple values for the same CGI field, and file upload using multi-
part form submissions. To save space, we show you all three of these
features with a single application. Let’s take a look at multipart submis-
sions first.

10.5.1 Multipart Form Submission and File

Uploading

Currently, the CGI specifications only allow two types of form encodings:
“application/x-www-form-urlencoded” and “multipart/form-data.” Because
the former is the default, there is never a need to state the encoding in the
FORM tag like this:

<FORM enctype="application/x-www-form-urlencoded" ...>

But for multipart forms, you must explicitly give the encoding as:
<FORM enctype="multipart/form-data" ...>

You can use either type of encoding for form submissions, but at this
time, file uploads can only be performed with the multipart encoding.
Multipart encoding was invented by Netscape in the early days of the Web
but has since been adopted by all major browsers today.

File uploads are accomplished by using the file input type:
<INPUT type=file name=...>

This directive presents an empty text field with a button on the side
which allows you to browse your file directory structure for a file to
upload. When using multipart, your Web client’s form submission to the
server will look amazingly like (multipart) e-mail messages with attach-
ments. A separate encoding was needed because it would not be wise to
“urlencode” a file, especially a binary file. The information still gets to the
server, but it is just packaged in a different way.

Regardless of whether you use the default encoding or the multipart,
the cgi module will process them in the same manner, providing keys
and corresponding values in the form submission. You will simply access
the data through your FieldStorage instance, as before.

ptg7615500

10.5 Advanced CGI 467

10.5.2 Multivalued Fields

In addition to file uploads, we are going to show you how to process fields
with multiple values. The most common case is when you provide check-
boxes for a user to select from various choices. Each of the checkboxes is
labeled with the same field name, but to differentiate them, each will have
a different value associated with a particular checkbox.

As you know, the data from the user is sent to the server in key-value
pairs during form submission. When more than one checkbox is submit-
ted, you will have multiple values associated with the same key. In these
cases, rather than being given a single MiniFieldStorage instance for
your data, the cgi module will create a list of such instances that you will
iterate over to obtain the different values. Not too painful at all.

10.5.3 Cookies

Finally, we will use cookies in our example. If you are not familiar with
cookies, they are just bits of data information which a server at a Web site
will request to be saved on the client side (the browser).

Because HTTP is a stateless protocol, information that has to be carried
from one page to another can be accomplished by using key-value pairs in
the request, as you have seen in the GET requests and screens earlier in
this chapter. Another way of doing it, as we have also seen before, is by
using hidden form fields such as the action variable in some of the later
friends*.py scripts. These variables and their values are managed by the
server because the pages they return to the client must embed these in
generated pages.

One alternative to maintaining persistency in state across multiple page
views is to save the data on the client side, instead. This is where cookies
come in. Rather than embedding data to be saved in the returned Web
pages, a server will make a request to the client to save a cookie. The
cookie is linked to the domain of the originating server (so a server cannot
set or override cookies from other Web sites) and has an expiration date
(so your browser doesn’t become cluttered with cookies).

These two characteristics are tied to a cookie along with the key-value
pair representing the data item of interest. There are other attributes of
cookies such as a domain subpath or a request that a cookie should only
be delivered in a secure environment.

ptg7615500

468 Chapter 10 • Web Programming: CGI and WSGI

By using cookies, we no longer have to pass the data from page to page
to track a user. Although they have been subject to a good amount of con-
troversy with regard to privacy, most Web sites use cookies responsibly. To
prepare you for the code, a Web server requests that a client store a cookie by
sending the “Set-Cookie” header immediately before the requested file.

Once cookies are set on the client side, requests to the server will auto-
matically have those cookies sent to the server using the HTTP_COOKIE
environment variable. The cookies are delimited by semicolons (;), and
each key-value pair is separated by equal signs (=). All your application
needs to do to access the data values is to split the string several times (i.e.,
using str.split() or manual parsing).

Like multipart encoding, cookies originated from Netscape, which
wrote up the first specification that is still mostly valid today. You can
access this document at the following Web site:

http://www.netscape.com/newsref/std/cookie_spec.html
Once cookies are standardized and this document finally made obsolete,

you will be able to get more current information from Request for Comment
documents (RFCs). The first published on cookies was RFC 2109 in 1997. It
was then replaced by RFC 2965 a few years later in 2000. The most recent
one (which supersedes the other two) at the time of this writing is RFC
6265, published in April 2011.

10.5.4 Cookies and File Upload

We now present our CGI application, advcgi.py, which has code and
functionality not too unlike the friendsC.py script earlier in this chapter.
The default first page is a user fill-out form consisting of four main parts:
user-set cookie string, name field, checkbox list of programming lan-
guages, and file submission box. Figure 10-12 presents an image of this
screen along with some sample input.

All of the data is submitted to the server using multipart encoding, and
retrieved in the same manner on the server side using the FieldStorage
instance. The only tricky part is in retrieving the uploaded file. In our
application, we choose to iterate over the file, reading it line by line. It is
also possible to read in the entire contents of the file if you are not wary of
its size.

Because this is the first occasion data is received by the server, it is at
this time, when returning the results page back to the client, that we use
the “Set-Cookie:” header to cache our data in browser cookies.

http://www.netscape.com/newsref/std/cookie_spec.html

ptg7615500

10.5 Advanced CGI 469

In Figure 10-13, you will see the results after submitting our form data.
All the fields the user entered are shown on the page. The given file in the
final dialog box was uploaded to the server and displayed, as well.

You will also notice the link at the bottom of the results page, which
returns us to the form page, again using the same CGI script.

If we click that link at the bottom, no form data is submitted to our
script, causing a form page to be displayed. Yet, as you can see from Fig-
ure 10-14, what shows up is anything but an empty form; information pre-
viously entered by the user is already present. How did we accomplish
this with no form data (either hidden or as query arguments in the URL)?
The secret is that the data is stored on the client side in cookies—two of
them, in fact.

Figure 10-12 An advanced CGI cookie, upload, and multivalue form page.

ptg7615500

470 Chapter 10 • Web Programming: CGI and WSGI

The user cookie holds the string of data typed in by the user in the
“Enter cookie value” form field, and the user’s name, languages he is
familiar with, and uploaded files are stored in the information cookie.

When the script detects no form data, it shows the form page, but before
the form page has been created, it grabs the cookies from the client (which
are automatically transmitted by the client when the user clicks the link)
and fills out the form accordingly. So when the form is finally displayed,
all the previously entered information appears to the user like magic.

We are certain you are eager to take a look at this application, so take a
look at it in Example 10-7.

Figure 10-13 Our advanced CGI application results page.

ptg7615500

10.5 Advanced CGI 471

Example 10-7 Advanced CGI Application (advcgi.py)

This script has one main class that does a bit more, AdvCGI.py. It has methods to
show either form, error, or results pages, as well as those that read or write
cookies from/to the client (a Web browser).

1 #!/usr/bin/env python
2
3 from cgi import FieldStorage
4 from os import environ
5 from cStringIO import StringIO
6 from urllib import quote, unquote
7

(Continued)

Figure 10-14 The new form page with data loaded from cookies, except the uploaded file.

ptg7615500

472 Chapter 10 • Web Programming: CGI and WSGI

Example 10-7 Advanced CGI Application (advcgi.py) (Continued)

8 class AdvCGI(object):
9 header = 'Content-Type: text/html\n\n'
10 url = '/cgi-bin/advcgi.py'
11
12 formhtml = '''<HTML><HEAD><TITLE>
13 Advanced CGI Demo</TITLE></HEAD>
14 <BODY><H2>Advanced CGI Demo Form</H2>
15 <FORM METHOD=post ACTION="%s" ENCTYPE="multipart/form-data">
16 <H3>My Cookie Setting</H3>
17 <CODE>CPPuser = %s</CODE>
18 <H3>Enter cookie value

19 <INPUT NAME=cookie value="%s"> (<I>optional</I>)</H3>
20 <H3>Enter your name

21 <INPUT NAME=person VALUE="%s"> (<I>required</I>)</H3>
22 <H3>What languages can you program in?
23 (<I>at least one required</I>)</H3>
24 %s
25 <H3>Enter file to upload <SMALL>(max size 4K)</SMALL></H3>
26 <INPUT TYPE=file NAME=upfile VALUE="%s" SIZE=45>
27 <P><INPUT TYPE=submit>
28 </FORM></BODY></HTML>'''
29
30 langSet = ('Python', 'Ruby', 'Java', 'C++', 'PHP', 'C',

 'JavaScript')
31 langItem = '<INPUT TYPE=checkbox NAME=lang VALUE="%s"%s> %s\n'
32
33 def getCPPCookies(self): # reads cookies from client
34 if 'HTTP_COOKIE' in environ:
35 cookies = [x.strip() for x in environ['HTTP_

 COOKIE'].split(';')]
36 for eachCookie in cookies:
37 if len(eachCookie)>6 and eachCookie[:3]=='CPP':
38 tag = eachCookie[3:7]
39 try:
40 self.cookies[tag] = eval(unquote(

 eachCookie[8:]))
41 except (NameError, SyntaxError):
42 self.cookies[tag] = unquote(

 eachCookie[8:])
43 if 'info' not in self.cookies:
44 self.cookies['info'] = ''
45 if 'user' not in self.cookies:
46 self.cookies['user'] = ''
47 else:
48 self.cookies['info'] = self.cookies['user'] = ''
49

ptg7615500

10.5 Advanced CGI 473

50 if self.cookies['info'] != '':
51 self.who, langStr, self.fn = self.cookies['info'].split(':')
52 self.langs = langStr.split(',')
53 else:
54 self.who = self.fn = ' '
55 self.langs = ['Python']
56
57 def showForm(self):
58 self.getCPPCookies()
59
60 # put together language checkboxes
61 langStr = []
62 for eachLang in AdvCGI.langSet:
63 langStr.append(AdvCGI.langItem % (eachLang,
64 ' CHECKED' if eachLang in self.langs else '',
65 eachLang))
66
67 # see if user cookie set up yet
68 if not ('user' in self.cookies and self.cookies['user']):
69 cookStatus = '<I>(cookie has not been set yet)</I>'
70 userCook = ''
71 else:
72 userCook = cookStatus = self.cookies['user']
73
74 print '%s%s' % (AdvCGI.header, AdvCGI.formhtml % (
75 AdvCGI.url, cookStatus, userCook, self.who,
76 ''.join(langStr), self.fn))
77
78 errhtml = '''<HTML><HEAD><TITLE>
79 Advanced CGI Demo</TITLE></HEAD>
80 <BODY><H3>ERROR</H3>
81 %s<P>
82 <FORM><INPUT TYPE=button VALUE=Back
83 ONCLICK="window.history.back()"></FORM>
84 </BODY></HTML>'''
85
86 def showError(self):
87 print AdvCGI.header + AdvCGI.errhtml % (self.error)
88
89 reshtml = '''<HTML><HEAD><TITLE>
90 Advanced CGI Demo</TITLE></HEAD>
91 <BODY><H2>Your Uploaded Data</H2>
92 <H3>Your cookie value is: %s</H3>
93 <H3>Your name is: %s</H3>
94 <H3>You can program in the following languages:</H3>
95 %s
96 <H3>Your uploaded file...

97 Name: <I>%s</I>

(Continued)

ptg7615500

474 Chapter 10 • Web Programming: CGI and WSGI

Example 10-7 Advanced CGI Application (advcgi.py) (Continued)

98 Contents:</H3>
99 <PRE>%s</PRE>
100 Click here to return to form.
101 </BODY></HTML>'''
102
103 def setCPPCookies(self):# tell client to store cookies
104 for eachCookie in self.cookies.keys():
105 print 'Set-Cookie: CPP%s=%s; path=/' % \
106 (eachCookie, quote(self.cookies[eachCookie]))
107
108 def doResults(self):# display results page
109 MAXBYTES = 4096
110 langList = ''.join(
111 '%s
' % eachLang for eachLang in self.langs)
112 filedata = self.fp.read(MAXBYTES)
113 if len(filedata) == MAXBYTES and f.read():
114 filedata = '%s%s' % (filedata,
115 '... <I>(file truncated due to size)</I>')
116 self.fp.close()
117 if filedata == '':
118 filedata = <I>(file not given or upload error)</I>'
119 filename = self.fn
120
121 # see if user cookie set up yet
122 if not ('user' in self.cookies and self.cookies['user']):
123 cookStatus = '<I>(cookie has not been set yet)</I>'
124 userCook = ''
125 else:
126 userCook = cookStatus = self.cookies['user']
127
128 # set cookies
129 self.cookies['info'] = ':'.join(
130 (self.who, ','.join(self.langs, ','), filename))
131 self.setCPPCookies()
132
133 print '%s%s' % (AdvCGI.header, AdvCGI.reshtml % (
134 cookStatus, self.who, langList,
135 filename, filedata, AdvCGI.url)
136
137 def go(self): # determine which page to return
138 self.cookies = {}
139 self.error = ''
140 form = FieldStorage()
141 if not form.keys():
142 self.showForm()
143 return
144
145 if 'person' in form:
146 self.who = form['person'].value.strip().title()
147 if self.who == '':
148 self.error = 'Your name is required. (blank)'

ptg7615500

10.5 Advanced CGI 475

advcgi.py looks strikingly similar to our friendsC.py CGI scripts seen
earlier in this chapter. It has a form, results, and error pages to return. In
addition to all of the advanced CGI features that are part of our new script,
we are also infusing more of an object-oriented feel to our script by using a
class with methods instead of just a set of functions. The HTML text for
our pages is now static data for our class, meaning that they will remain
constant across all instances—even though there is actually only one
instance in our case.

Line-by-Line Explanation

Lines 1–6
The usual startup and import lines appear here. If you’re not familiar with
the StringIO class, it’s is a file-like data structure whose core element is a
string—think in-memory text stream.

149 else:
150 self.error = 'Your name is required. (missing)'
151
152 self.cookies['user'] = unquote(form['cookie'].value.strip()) if

'cookie' in form else ''
153 if 'lang' in form:
154 langData = form['lang']
155 if isinstance(langData, list):
156 self.langs = [eachLang.value for eachLang in langData]
157 else:
158 self.langs = [langData.value]
159 else:
160 self.error = 'At least one language required.'
161
162 if 'upfile' in form:
163 upfile = form['upfile']
164 self.fn = upfile.filename or ''
165 if upfile.file:
166 self.fp = upfile.file
167 else:
168 self.fp = StringIO('(no data)')
169 else:
170 self.fp = StringIO('(no file)')
171 self.fn = ''
172
173 if not self.error:
174 self.doResults()
175 else:
176 self.showError()
177
178 if __name__ == '__main__':
179 page = AdvCGI()
180 page.go()

ptg7615500

476 Chapter 10 • Web Programming: CGI and WSGI

For Python 2, this class is found in either the StringIO module or its C-
equivalent, cStringIO. In Python 3, it has been moved into the io package.
Similarly, the Python 2 urllib.quote() and urllib.unquote() functions
have been moved into the urllib.parse package for Python 3.

Lines 8–28
After the AdvCGI class is declared, the header and url (static class) variables
are created for use by the methods displaying all the different pages. The
static text form HTML comes next, followed by the programming lan-
guage set and HTML element for each language.

Lines 33–55
This example uses cookies. Somewhere further down in this application is
the setCPPCookies() method, which our application calls to send cookies
(from the Web server) back to the browser and store them there.

The getCPPCookies() method does the opposite. When a browser makes
subsequent calls to the application, it sends those same cookies back to the
server via HTTP headers. By the time our application executes, those val-
ues are available to us (the application) via the HTTP_COOKIE environment
variable.

This method parses the cookies, specifically seeking those that start
with the CPP string (line 37). In our application, we’re only looking for
cookies named “CPPuser” and “CPPinfo.” The keys 'user' and 'info' are
extracted as the tag on line 38, the equal sign at index 7 skipped, and the
value starting at index 8 unquoted and evaluated into a Python object
occurs on lines 39–42. The exception handler looks for cookie payloads
that are not valid Python objects and just saves the string value. If either of
the cookies are missing, they are assigned to the empty string (lines
43–48). The getCPPCookies() method is only called from showForm().

We parse the cookies ourselves in this simple example, but if things get
more complex, you will likely use the Cookie module (renamed to
http.cookies in Python 3) to perform this task.

Similarly, if you’re writing Web clients and need to manage all the cook-
ies stored in the browser (a cookie jar) and communication to Web servers,
you’ll likely use the cookielib module (renamed to http.cookiejar in
Python 3).

Lines 57–76
The checkUserCookie() method is used by both showForm() and doResults()
to check whether the user-supplied cookie value has been set. Both the
form and results HTML templates display this value.

ptg7615500

10.5 Advanced CGI 477

The showForm() method’s only purpose is to display the form to the
user. It relies on getCPPCookies() to retrieve cookies from previous
requests (if any) and format the form as appropriate.

Lines 78–87
This block of code is responsible for the error page.

Lines 89–101
This is just the HTML template for the results page. It is used in
doResults(), which fills in all the required data.

Lines 102–135
The results page is created by using these blocks of code. The setCPPCookies()
method requests that a client store the cookies for our application, and the
doResults() method puts together all the data and sends the output back
to the client.

The latter, called from the go() method, does all the heavy lifting to put
together the output. In the first block of this method (lines 109–119), we
process the user input: the set of programming languages chosen (at least
one required—see the go() method), any uploaded file and the user-
supplied cookie value, both of which are optional.

The final steps of doResults() (lines 128–135) cram all this data into a
single “CPPinfo” cookie for use later, and then renders the results tem-
plate with all the data.

Lines 137–180
The script begins by instantiating an AdvCGI page object and then calling
its go() method to start the ball rolling. The go() method contains the logic
that reads all incoming data and decides which page to show.

The error page will be displayed if no name was given or if no lan-
guages were checked. The showForm() method is called to output the
form if no input data was received; otherwise, the doResults() method is
invoked to display the results page. Error situations are created by setting
the self.error variable, which serves two purposes. It lets you set an error
reason as a string and also serves as a flag to indicate that an error has
occurred. If this value is not blank, the user will be forwarded to the error
page.

Handling the person field (lines 145–150) is the same as we have seen in
the past: a single key-value pair. However, collecting the language infor-
mation (lines 153–160) is a bit trickier because we must check for either a

ptg7615500

478 Chapter 10 • Web Programming: CGI and WSGI

(Mini)FieldStorage instance or a list of such instances. We will employ
the familiar isinstance() built-in function for this purpose. In the end, we
will have a list of a single language name or many, depending on the
user’s selections.

The use of cookies to contain data illustrates how they can be used to
avoid using any kind of CGI field pass-through. In our previous examples
in this chapter, we passed such values as CGI variables. Now we are only
using cookies. You will notice in the code that obtains such data that no
CGI processing is invoked, meaning that the data does not come from the
FieldStorage object. The data is passed to us by the Web client with each
request and the values (user’s chosen data as well as information to fill in a
succeeding form with pre-existing information) are obtained from cookies.

Because the showResults() method receives the new input from the
user, it has the responsibility of setting the cookies, for example, by calling
setCPPCookies(). However, showForm(), must read in the cookies’ values
in order to display a form page with the current user selections. This is
done by its invocation of the getCPPCookies() method.

Finally, we get to the file upload processing (lines 162–171). Regardless
of whether a file was actually uploaded, FieldStorage is given a file han-
dle in the file attribute. On line 171, if there was no filename given, then
we just set it to a blank string. As a better alternative, you can access the
file pointer—the file attribute—and perhaps read only one line at a time or
other kind of slower processing.

In our case, file uploads are only part of user submissions, so we simply
pass on the file pointer to the doResults() function to extract the data
from the file. doResults() will display only the first 4KB (as set on line
112) of the file for space reasons and to show you that it is not necessary
(or necessarily productive or useful) to display a 4GB binary file.

Existing Core Python readers will notice that we have refactored this
code significantly from previous editions of this book. The original was
over a decade old and did not reflect contemporary Python practices. It is
likely this incarnation of advcgi.py will not run in Python older than ver-
sion 2.5. However, you can still access the code from earlier editions of this
script from the book’s Web site as well as the equivalent Python 3 version.

10.6 Introduction to WSGI
This section of the chapter introduces you to everything you need to know
about WSGI, starting with the motivation and background. The second
half of this section covers how to write Web applications without having
to worry about how they will be executed.

2.5

ptg7615500

10.6 Introduction to WSGI 479

10.6.1 Motivation (CGI Alternatives)

Okay, now you have a good understanding of what CGI does and why
something like it is needed: servers cannot create dynamic content; they
don’t have knowledge of user-specific application information data, such
as authentication, bank accounts, online purchases, etc. Web servers must
communicate with an outside process to do this custom work.

In the first two-thirds of this chapter, we discussed how CGI solves this
problem and taught you how it works. We also mentioned that it is woe-
fully inadequate because it does not scale; CGI processes (like Python
interpreters) are created per-request then thrown away. If your application
receives thousands of requests, spawning of a like-number of language
interpreters will quickly bring your servers to a halt. Two widely-used
methods to combat this performance issue are: server integration and
external processes. Let’s briefly discuss each of these.

10.6.2 Server Integration

Server integration is also known as a server API. These include proprietary
solutions like the Netscape Server Application Programming Interface
(NSAPI) and Microsoft’s Internet Server Application Programming Interface
(ISAPI). The most widely-user server solution today (since the mid-1990s) is
the Apache HTTP Web server, an open-source solution. Apache as it is com-
monly called, has a server API, as well, and uses the term module to describe
compiled plug-in components that extend its functionality and capability.

All three of these and similar solutions address the CGI performance
problem by integrating the gateway into the server. In other words,
instead of the server forking off a separate language interpreter to handle
a request, it merely makes a function call, running any application code
and coming up with the response in-process. These servers may process
their work via a set of pre-created processes or threads, depending on its
API. Most can be adjusted to suit the requirements of the supported appli-
cations. General features that servers also provide include compression,
security, proxying, and virtual hosting, to name a few.

Of course, no solution is without its downsides, and for server APIs,
this includes a variety of issues such as buggy code affecting server perfor-
mance, language implementations that are not-fully compatible, requiring
the API developer to have to code in the same programming language as
the Web server implementation, integration into a proprietary solution (if
not using an open-source server API), requiring that applications must be
thread-safe, etc.

ptg7615500

480 Chapter 10 • Web Programming: CGI and WSGI

10.6.3 External Processes

Another solution is an external process. These are CGI applications that
permanently run outside of the server. When a request comes in, the
server passes it off to such a process. They scale better than pure CGI
because these processes are long-lived as opposed to being spawned for
individual requests then terminated. The most well-known external pro-
cess solution is FastCGI. With external processes, you get the benefits of
server APIs but not as many of the drawbacks because, for instance, you
get to run outside the server, they can be implemented in your language of
choice, application defects might not affect the Web server, you’re not
forced to code against a proprietary source, etc.

Naturally, there is a Python implementation of FastCGI, as well as a
variety of Python modules for Apache (PyApache, mod_snake, mod_python,
etc.), some of which are no longer being maintained. All these plus the
original pure CGI solution make up the gamut of Web server API gateway
solutions to calling Python Web applications.

Because of these different invocation mechanisms, an additional burden
has been placed on the developer. You not only need to build your applica-
tion, but you must also decide on integration with these Web servers. In
fact, when you write your application, you need to know exactly in which
one of these mechanisms it will execute and code it that way.

This problem is more acute for Web framework developers, because
you want to give your users the most flexibility. If you don’t want to force
them to create multiple versions of their applications, you’ll need to pro-
vide interfaces to all server solutions in order to promote adoption of your
framework. This dilemma certainly doesn’t sound like it lends itself to
being Pythonic, thus it has led to the creation of the Web Server Gateway
Interface (WSGI) standard.

10.6.4 Introducing WSGI

It’s not a server, an API you program against, or an actual piece of code,
but it does define an interface. The WSGI specification was created as PEP
333 in 2003 to address the wide proliferation of disparate Web frame-
works, Web servers, and various invocation styles just discussed (pure
CGI, server API, external process).

The goal was to reduce this type of interoperability and fragmentation
with a standard that targets a common API between the Web server and
Web framework layers. Since its creation, WSGI adoption has become

ptg7615500

10.6 Introduction to WSGI 481

commonplace. Nearly all of the Python-based Web servers are WSGI-
compliant. Having WSGI as a standard is advantageous to application
developers, framework creators, and the community as a whole.

A WSGI application is defined as a callable which (always) takes the fol-
lowing parameters: a dictionary containing the server environment vari-
ables, and another callable that initializes the response with an HTTP
status code and HTTP headers to return back to the client. This callable
must return an iterable which makes up the payload.

In the sample “Hello World” WSGI application that follows, these vari-
ables are named environ and start_response(), respectively:

def simple_wsgi_app(environ, start_response):
 status = '200 OK'
 headers = [('Content-type', 'text/plain')]
 start_response(status, headers)
 return ['Hello world!']

The environ variable contains familiar environment variables, such as
HTTP_HOST, HTTP_USER_AGENT, SERVER_PROTOCOL, etc. The start_response()
callable that must be executed within the application to prepare the
response that will eventually be sent back to the client. The response must
include an HTTP return code (200, 300, etc.) as well as HTTP response
headers.

In this first version of the WSGI standard, start_response() should also
return a write() function in order to support legacy servers that stream
results back. It is recommended against using it and returning just an iter-
able to let the Web server manage returning the data back to the client
(instead of having the application do so as that is not in its realm of exper-
tise). Because of this, most applications just drop the return value from
start_response() or don’t use or save it otherwise.

In the previous example, you can see that a 200 status code is set as well
as the Content-Type header. Both are passed into start_response() to for-
mally begin the response. Everything else that comes after should be some
iterable, such as, list, generator, etc. that make up the actual response pay-
load. In this example, we’re only returning a list containing a single string,
but you can certainly imagine a lot more data going back. It can also be any
iterable not just a list; a generator or callable instance are great alternatives.

The last thing we wanted to say about start_response() is the third and
optional exception information parameter, usually known by its abbrevia-
tion, exc_info. If an application has set the headers to say “200 OK” (but
has not actually sent them) and encounters problems during execution, it’s
possible to change the headers to something else, like “403 Forbidden” or
“500 Internal Server Error,” if desired.

ptg7615500

482 Chapter 10 • Web Programming: CGI and WSGI

To make this happen, we can assume that the application called
start_response() with the regular pair of parameters at the beginning of
execution. When errors occur, start_response() can be called again, but
with exc_info passed in along with the new status and headers that will
replace the existing ones.

It is an error to call start_response() a second time without exc_info.
Again, this must all happen before any HTTP headers are sent. If the head-
ers have already been sent, an exception must be raised, such as, raise
exc_info[0], exc_info[1], or exc_info[2'].

For more information on the start_response() callable, refer to PEP 333 at
http://www.python.org/dev/peps/pep-0333/#the-start-response-callable.

10.6.5 WSGI servers

On the server side, we need to call the application (as we discussed previ-
ously), pass in the environment and start_response() callable, and then
wait for the application to complete. When it does, we should get an iter-
able as the return value and return this data back to the client. In the fol-
lowing script, we present a simplistic and limited example of what a WSGI
Web server would look like:

import StringIO
import sys

def run_wsgi_app(app, environ):
 body = StringIO.StringIO()

 def start_response(status, headers):
 body.write('Status: %s\r\n' % status)
 for header in headers:
 body.write('%s: %s\r\n' % header)
 return body.write

 iterable = app(environ, start_response)
 try:
 if not body.getvalue():
 raise RuntimeError("start_response() not called by app!")
 body.write('\r\n%s\r\n' % '\r\n'.join(line for line in iterable))
 finally:
 if hasattr(iterable, 'close') and callable(iterable.close):
 iterable.close()

 sys.stdout.write(body.getvalue())
 sys.stdout.flush()

http://www.python.org/dev/peps/pep-0333/#the-start-response-callable

ptg7615500

10.6 Introduction to WSGI 483

The underlying server/gateway will take the application as provided by
the developer and put it together the with environ dictionary with the con-
tents of os.environ() plus the WSGI-specified wsgi.* environment variables
(see the PEP, but expect elements, such as wsgi.input, wsgi.errors,
wsgi.version, etc.) as well as any framework or middleware environment
variables. (More on middleware coming soon.) With both of these items, it
will then call run_wsgi_app(), which returns the response back to the client.

In reality as an application developer, you wouldn’t be interested in
minutia such as this. Creating servers is for those wanting to provide, with
WSGI specifications, a consistent execution framework for applications.
You can see from the preceding example that WSGI provides a clean break
between the application side and the server side. Any application can be
passed to the server described above (or any other WSGI server). Similarly,
in any application, you don’t care what kind of server is calling you; all
you care about is the environment you’re given and the start_response()
callable that you need to execute before returning data to the client.

10.6.6 Reference Server

As we just mentioned, application developers shouldn’t be forced to write
servers too, so rather than having to create and manage code like
run_wsgi_app(), you should be able to choose any WSGI server you want,
and if none are handy, Python provides a simple reference server in the
standard library: wsgiref.simple_server.WSGIServer.

You can build one using the class directly; however, the wsgiref package
itself features a convenience function called make_server() that you can
employ for simple access to the reference server. Let’s do so with our sam-
ple application, simple_wsgi_app():

#!/usr/bin/env python

from wsgiref.simple_server import make_server

httpd = make_server('', 8000, simple_wsgi_app)
print "Started app serving on port 8000..."
httpd.serve_forever()

This takes the application we created earlier, simple_wsgi_app(), wraps
it in a server running on port 8000, and starts the server loop. If you visit
http://localhost:8000 in a browser (or whatever [host, port] pair you’re
using), you should see the plain text output of “Hello World!”

ptg7615500

484 Chapter 10 • Web Programming: CGI and WSGI

For the truly lazy, you don’t have to write the application or the server.
The wsgiref module also has a demonstration application, wsgiref.simple_
server.demo_app(). The demo_app() is nearly identical to simple_wsgi_
app(), except that in addition, it displays the environment variables.
Here’s the code for running the demonstration application with the refer-
ence server:

#!/usr/bin/env python

from wsgiref.simple_server import make_server, demo_app

httpd = make_server('', 8000, demo_app)
print "Started app serving on port 8000..."
httpd.serve_forever()

Start up a CGI server, and then browse to the application; you should
see the “Hello World!” output along with the environment variable dump.

This is just the reference model for a WSGI-compliant server. It is not
full-featured or intended to serve in production use. However, server cre-
ators can take a page from this to design their own products and make
them WSGI-compliant. The same is true for demo_app() as a reference
WSGI-compliant application for application developers.

10.6.7 Sample WSGI Applications

As mentioned earlier, WSGI is now the standard, and nearly all Python
Web frameworks support it, even if it doesn’t look like it. For example, an
Google App Engine handler class, given the usual imports, might contain
code that looks something like this:

class MainHandler(webapp.RequestHandler):
 def get(self):
 self.response.out.write('Hello world!')

application = webapp.WSGIApplication([
 ('/', MainHandler)], debug=True)
run_wsgi_app(application)

Not all frameworks will have an exact match as far as code goes, but
you can clearly see the WSGI reference. For a much closer comparison,
you can go one level lower and take a look at the run_bare_wsgi_app()
function found in the util.py module of the webapp subpackage of the
App Engine Python SDK. You’ll find this code looks much more like a
derivative of simple_wsgi_app().

ptg7615500

10.6 Introduction to WSGI 485

10.6.8 Middleware and Wrapping WSGI

Applications

There might be situations in which you want to let the application run as-
is, but you want to inject pre or post-processing before (the request) or
after the application executes (the response). This is commonly known as
middleware, which is additional functionality that sits between the Web
server and the Web application. You’re either massaging the data coming
from the user before passing it to the application, or you need to do some
final tweaks to the results from the application before returning the pay-
load back to the user. This is commonly referred to as a middleware onion,
indicating the application is at the heart, with additional layers in between.

Preprocessing can include activities, such as intercepting the request
parameters; modifying them; adding or removing them; altering the envi-
ronment (including any user-submitted form [CGI] variables); using the
URL path to dispatch application functionality; forwarding or redirecting
requests; load-balancing based on network traffic via the inbound client IP
address; delegating to altered functionality (e.g., using the User-Agent
header to send mobile users to a simplified UI/app); etc.

Examples of post-processing primarily involves manipulating the out-
put from the application. The following script is an example, similar to the
timestamp server that we created in Chapter 2, “Network Programming”:
for each line from the application’s results, we’re going to prepend it with
a timestamp. In practice of course, this is much more complicated, but this
is an example similar to others you can find online that capitalize or lower-
case application output. Here, we’ll wrap our call to simple_wsgi_app()
with ts_simple_wsgi_app() and install the latter as the application that the
server registers:

#!/usr/bin/env python

from time import ctime
from wsgiref.simple_server import make_server

def ts_simple_wsgi_app(environ, start_response):
 return ('[%s] %s' % (ctime(), x) for x in \
 simple_wsgi_app(environ, start_response))

httpd = make_server('', 8000, ts_simple_wsgi_app)
print "Started app serving on port 8000..."
httpd.serve_forever()

ptg7615500

486 Chapter 10 • Web Programming: CGI and WSGI

For those of you with more of an object bent, you can use a class wrap-
per instead of a function wrapper. On top of this, we can reduce environ
and start_response() into a single variable argument tuple (see stuff in
the example that follows) to shorten the code a bit because we added some
with the inclusion of a class and definition of a pair of methods:

class Ts_ci_wrapp(object):
 def __init__(self, app):
 self.orig_app = app

 def __call__(self, *stuff):
 return ('[%s] %s' % (ctime(), x) for x in
 self.orig_app(*stuff))

httpd = make_server('', 8000, Ts_ci_wrapp(simple_wsgi_app))
print "Started app serving on port 8000..."
httpd.serve_forever()

We’ve named the class Ts_ci_wrapp, which is short for “timestamp call-
able instance wrapped application” that is instantiated when we create the
server. The initializer takes the original application and caches it for use
later. When the server executes the application, it still passes in the envi-
ron dict and start_response() callable, as before. With this change, the
instance itself will be called (hence the __call__() method definition).
Both environ and start_response() are passed to the original application
via stuff.

Although we used a callable instance here and a function earlier, keep
in mind that any callable will work. Also note that none of these last few
examples modify simple_wsgi_app() in any way. The main point is that
WSGI provides a clean break between the Web application and the Web
server. This helps compartmentalize development, allow teams to more
easily divide the work, and gives a consistent and flexible way to allow
Web application’s to run with any type of WSGI-compliant back-end. It
also frees the Web server creator from having to incorporate any custom or
specific hooks for users who choose to run applications by using their
(Web) server software.

10.6.9 Updates to WSGI in Python 3

PEP 333 defined the WSGI standard for Python 2. PEP 3333 offers
enhances to PEP 333 to bring the standard to Python 3. Specifically, it calls
out that the network traffic is all done in bytes. While such strings are
native to Python 2, native Python 3 strings are Unicode to emphasize that
they represent text data while the original ASCII strings were renamed to
the bytes type.

3.x

ptg7615500

10.7 Real-World Web Development 487

Specifically, PEP 3333 clarifies that “native” strings—the data type
named str, regardless of whether you’re using Python 2 or 3—are those
used for all HTTP headers and corresponding metadata. It also states that
“byte” strings are those which are used for the HTTP payloads (requests/
responses, GET/POST/PUT input data, HTML output, etc.). For more
information on PEP 333, take a look at its definition, which you can find at
www.python.org/dev/peps/pep-3333/.

Independent of PEP 3333, there are other related proposals that will
make for good reading. One is PEP 444, which is a first attempt to define a
“WSGI 2,” if such a thing takes on that name. The community generally
regards PEP 3333 as a “WSGI 1.0.1,” an enhancement to the original
PEP 333 specification, whereas PEP 444 is a consideration for WSGI’s next
generation.

10.7 Real-World Web Development
CGI was the way things used to work, and the concepts it brought still
apply in Web programming today; hence, the reason why we spent so
much time looking at it. The introduction to WSGI brought you one step
closer to reality.

Today, new Python Web programmers have a wealth of choices, and
while the big names in the Web framework space are still Django, Pyra-
mid, and Google App Engine, there are plenty more options for users to
choose from—perhaps a mind-numbing selection, actually. Frameworks
aren’t even necessary: you could go straight down to a WSGI-compliant
Web server without any of the extra “fluff” or framework features. How-
ever, the chances are more likely that you will go with a framework because
of the convenience of having the rest of the Web stack available to you.

A modern Web execution environment will likely consist of either a
multithreaded or multiprocess server model, signed/secure cookies, basic
user authentication, and session management. Many of these things regu-
lar application developers already know; authentication represents user
registration with a login name and password, and cookies are ways of
maintaining user information, sometimes session information, as well. We
also know that in order to scale, Web servers need to be able to handle
requests from multiple users; hence, the use of threads or processes. How-
ever, one thing that hasn’t been covered is the need for sessions.

If you look at all the application code in this entire chapter that runs on
Web servers, it might take a while for you to know that aside from the
obvious differences from scripts that run from beginning to end or server

www.python.org/dev/peps/pep-3333/

ptg7615500

488 Chapter 10 • Web Programming: CGI and WSGI

loops which just run forever, Web applications (or servlets in Java parlance)
are executed for every request. There’s no state saved within the code, and
we already mentioned that HTTP is stateless, as well. In other words, don’t
expect data to be saved in variables, global or otherwise. Think of a
request like a single transaction. It comes in, does its business, and fin-
ishes, leaving nothing behind in the codebase.

This is why session management—saving of a user’s state across one or
more requests within a well-defined duration of time—is needed. Gener-
ally, this is accomplished by using some sort of persistent storage, such as
memcache, flat (or not-so-flat) files, and even databases. Developers can
certainly roll their own, especially when writing lower-level code, as
we’ve seen in this chapter. But without question this wheel has already
been (re)invented several times, which is why many of the larger, more
well-known Web frameworks, including Django, come with their own ses-
sion management software. (This leads directly into our next chapter.)

10.8 Related Modules
In Table 10-1, we present a list of modules that you might find useful
for Web development. You might also take a look at Chapter 3, “Internet
Client Programming,” and Chapter 13, “Web Services,” for other useful
Web application modules.

Table 10-1 Web Programming Related Modules

Module/Package Description

Web Applications

cgi Retrieves CGI form data

cgitbc Handles CGI tracebacks

htmllib Older HTML parser for simple HTML files; HTML-Parser
class extends from sgmllib.SGMLParser

HTMLparserc Newer, non-SGML-based parser for HTML and XHTML

htmlentitydefs HTML general entity definitions

Cookie Server-side cookies for HTTP state management

cookielibe Cookie-handling classes for HTTP clients

ptg7615500

10.8 Related Modules 489

Module/Package Description

Web Applications

webbrowserb Controller: launches Web documents in a browser

sgmllib Parses simple SGML files

robotparsera Parses robots.txt files for URL “fetchability” analysis

httpliba Used to create HTTP clients

Web Servers

BaseHTTPServer Abstract class with which to develop Web servers

SimpleHTTPServer Serve the simplest HTTP requests (HEAD and GET)

CGIHTTPServer In addition to serving Web files like SimpleHTTPServers,
can also process CGI (HTTP POST) requests

http.serverg New name for the combined package merging together
BaseHTTPServer, SimpleHTTPServer, and CGIHTTPServer
modules in Python 3

wsgireff WSGI reference module

3rd party packages (not in standard library)

BeautifulSoup Regex-based HTML and XML parser
http://crummy.com/software/BeautifulSoup

html5lib HTML5 parser
http://code.google.com/p/html5lib

lxml Comprehensive HTML and XML parser (supports both
of the above parsers) http://lxml.de

a. New in Python 1.6.
b. New in Python 2.0.
c. New in Python 2.2.
d. New in Python 2.3.
e. New in Python 2.4.
f. New in Python 2.5.
g. New in Python 3.0.

http://crummy.com/software/BeautifulSoup
http://code.google.com/p/html5lib
http://lxml.de

ptg7615500

490 Chapter 10 • Web Programming: CGI and WSGI

10.9 Exercises

CGI and Web Applications

10-1. urllib Module and Files. Update the friendsC.py script so
that it stores names and corresponding number of friends
into a two-column text file on disk and continues to add
names each time the script is run.

Extra Credit: Add code to dump the contents of such a file to
the Web browser (in HTML format). Additional Extra Credit:
Create a link that clears all the names in this file.

10-2. Error Checking. The friendsC.py script reports an error if no
radio button was selected to indicate the number of friends.
Update the CGI script to also report an error if no name (e.g.,
blank or whitespace) is entered.
Extra Credit: We have so far explored only server-side error
checking. Explore JavaScript programming and implement
client-side error checking by creating JavaScript code to
check for both error situations so that these errors are
stopped before they reach the server.

10-3. Simple CGI. Create a “Comments” or “Feedback” page for
a Web site. Take user feedback via a form, process the data in
your script, and then return a “thank you” screen.

10-4. Simple CGI. Create a Web guestbook. Accept a name, an
e-mail address, and a journal entry from a user, and then log
it to a file (format of your choice). Like Exercise 10-3, return a
“thanks for filling out a guestbook entry” page. Also provide
a link so that users can view guestbooks.

10-5. Web Browser Cookies and Web Site Registration. Create a user
authentication service for a Web site. Manager user names
and passwords in an encrypted way. You may have done
a plain text version of this exercise in either Core Python
Programming or Core Python Language Fundamentals and can
use parts of that solution if you wish.
Extra Credit: Familiarize yourself with setting Web browser
cookies and maintain a login session for four hours from the
last successful login.

ptg7615500

10.9 Exercises 491

Extra Credit: Allow for federated authentication via OpenID,
allowing users to log in via Google, Yahoo!, AOL, Word-
Press, or even proprietary authentication systems such as
“Facebook Connect” or “sign in with Twitter.” You can also
use the Google Identity Toolkit that you can download from
http://code. google.com/apis/identitytoolkit.

10-6. Errors. What happens when a CGI script crashes? How can
the cgitb module be helpful?

10-7. CGI, File Updates, and Zip Files. Create a CGI application that
not only saves files to the server’s disk, but also intelligently
unpacks Zip files (or other archive) into a subdirectory
named after the archive file.

10-8. Web Database Application. Think of a database schema that
you want to provide as part of a Web database application.
For this multi-user application, you want to grant everyone
read access to the entire contents of the database, but per-
haps only write access to each individual. One example
might be an address book for your family and relatives. Each
family member, once successfully logged in, is presented
with a Web page with several options, add an entry, view my
entry, update my entry, remove or delete my entry, and view
all entries (entire database).
Design a UserEntry class and create a database entry for
each instance of this class. You can use any solution cre-
ated for any previous problem to implement the registration
framework. Finally, you can use any type of storage mecha-
nism for your database, either a relational database such as
MySQL or some of the simpler Python persistent storage
modules such as anydbm or shelve.

10-9. Electronic Commerce Engine. Create an e-commerce/online
shopping Web service that is generic and can be “reskinned”
for multiple clients. Add your own authentication system as
well as classes for users and shopping carts (If you have Core
Python Programming or Core Python Language Fundamentals,
you can use the classes created for your solutions to Exer-
cises 4 and 11 in the Object-Oriented Programming chapter.)
Don’t forget that you will also need code to manage your
products, whether they are hard goods or services. You
might want to connect to a payment system such as those
offered by PayPal or Google. After reading the next few

http://code.google.com/apis/identitytoolkit

ptg7615500

492 Chapter 10 • Web Programming: CGI and WSGI

chapters, port this temporary CGI solution to Django, Pyra-
mid, or Google App Engine.

10-10. Python 3. Examine the differences between friendsC.py and
friendsC3.py. Describe each change.

10-11. Python 3, Unicode/Text vs. Data/Bytes. Port the Unicode example,
uniCGI.py, to Python 3.

WSGI

10-12. Background. What is WSGI and what were some of the reasons
behind its creation?

10-13. Background. What are/were some of the techniques used to
get around the scalability issue of CGI?

10-14. Background. Name some well-known frameworks that are WSGI-
compliant, and do some research to find some that are not.

10-15. Background. What is the difference between WSGI and CGI?
10-16. WSGI Applications. WSGI applications can be what kind(s) of

Python object(s)?
10-17. WSGI Applications. What are the two required arguments for

a WSGI application? Go into more detail about the second one.
10-18. WSGI Applications. What is (are) the possible return type(s) of

a WSGI application?
10-19. WSGI Applications. Solutions to Exercises 10-1 through 10-11

only work if/when your server processes form data in the
same manner as CGI. Choose one of them to port to WSGI,
where it will work regardless of which WSGI-compliant
server you choose, with perhaps only slight modifications.

10-20. WSGI Servers. The WSGI servers presented in Section 10.6.5
featured a sample run_wsgi_app() server function which
executes a WSGI application.
a) The run_wsgi_app() function currently does not feature

the optional third parameter exc_info. Study PEPs 333
and 3333 and add support for exc_info.

b) Create a Python 3 port of this function.
10-21. Case Study. Compare and contrast the WSGI implementa-

tions of the following Python Web frameworks: Werkzeug,
WebOb, Django, Google App Engine’s webapp.

10-22. Standards. While PEP 3333 includes clarifications and
enhancements to PEP 333 for Python 3, PEP 444 is something
else. Describe what PEP 444 is all about and how it relates to
the existing PEPs.

ptg7615500

493

CHAPTER

Web Frameworks: Django

Python: the only language with more Web frameworks than keywords.
—Harald Armin Massa, December 2005

In this chapter...

• Introduction
• Web Frameworks
• Introduction to Django
• Projects and Apps
• Your “Hello World”

Application (A Blog)
• Creating a Model to

Add Database Service
• The Python Application

Shell
• The Django Administration

App

• Creating the Blog’s User Interface
• Improving the Output
• Working with User Input
• Forms and Model Forms
• More About Views
• *Look-and-Feel Improvements
• *Unit Testing
• *An Intermediate Django App:

The TweetApprover
• Resources

ptg7615500

494 Chapter 11 • Web Frameworks: Django

11.1 Introduction
In this chapter, we’ll go outside the Python Standard Library and explore
one popular Web framework for Python: Django. We’ll first go over Web
frameworks in general, and then expose you to developing applications by
using Django. This discussion starts with the basics and a “Hello World”
application then takes you beyond that with other areas that you’ll likely
come across when developing a real application. This roadmap essentially
defines the structure of this chapter: a solid introduction followed by an
intermediate application involving Twitter, e-mail, and OAuth, which is
an open protocol for authorization to gain access to data via application
programming interfaces (APIs).

The goal is to introduce you to a real tool that Python developers use
every day to get their jobs done. We’ll give you the skills and provide
enough knowledge for you to build more complex applications via
Django. You can also take these skills and jump to any of the other Python
Web frameworks. To get started, let’s define the topic.

11.2 Web Frameworks
We hope that you gained a greater understanding of Web development
from the material presented in Chapter 10, “Web Programming: CGI and
WSGI.” Rather than doing everything by hand, you can take advantage of
the significant body of work done by others to make your life easier. These
Web development environments are generically called Web frameworks,
and their goal is to help you to perform your job by pushing common
tasks “under the hood” and/or providing resources for you to create,
update, execute, and scale applications with a minimal amount of work.

Also, we explained earlier, using CGI is no longer an option, due to scal-
ability limitations. So, people in the Python community look to more pow-
erful Web server solutions such as Apache, ligHTTPD (pronounced as
“lighty”), or nginx. Some servers, such as Pylons and CherryPy, have their
own framework ecosystem around them. However, serving content is
only one aspect of creating Web applications. You still need to worry about
ancillary tools such as a JavaScript framework, an object-relational mapper
(ORM) or lower-level database adapter, a web templating system, and
orthogonal but necessary for any type of development: a unit-testing and/
or continuous integration framework. Python Web frameworks are either
individual (or multiple) subcomponents or complete full-stack systems.

ptg7615500

11.2 Web Frameworks 495

The term full-stack means that you can develop code for all phases and
levels of a Web application. Frameworks that are considered as such will
provide all related services, such as a Web server, database ORM, templat-
ing, and all necessary middleware hooks. Some even provide a JavaScript
library. Django is arguably one of the most well-known Web frameworks
on the market today; many consider it as Python’s answer to Ruby on
Rails. It includes all of the services mentioned above as a single, all-in-one
solution (except for a built-in JavaScript library, because you can use
whichever one you like). We’ll see in Chapter 12, “Cloud Computing:
Google App Engine,” that Google App Engine also provides many of these
components but is geared more specifically for scalability and fast request/
response Web and non-Web applications hosted by the Internet giant.

Although Django was created as a single entity by one engineering
team, not all frameworks follow in this philosophy. TurboGears, for exam-
ple, is a best-of-breed full-stack system, built by a scattered team of devel-
opers, serving as glue code that ties together well-known individual
components in the stack, such as ToscaWidgets (high-level Web widgets
that can utilize a variety of JavaScript frameworks, such as Ex1tJS, jQuery,
etc.), SQLAlchemy (ORM), Pylons (Web server), and Genshi (templating).
Frameworks that follow this architectural style provide greater flexibility
in that users can choose from a variety of templating systems, JS libraries,
tools to generate raw SQL, and multiple Web servers. You only need to
sacrifice a bit of consistency and any peace of mind that comes with using
only one tool. However, that might not be that different from what you’re
used to.

Pyramid is also very popular and is the successor to both repoze.bfg (or
“BFG” for short) and the Pylons Web frameworks. Its approach is even
simpler: it only provides with you the basics, such as URL dispatch, tem-
plating, security, and resources. If you need anything else, you must add
those capabilities yourself. Its minimalistic approach along with its strong
sense of testing and documentation, plus its inheritance of users from both
the Pylons and BFG communities, make it a strong contender in today’s set
of Web frameworks available for Python.

If you’re new to Python, you might be coming from Rails or perhaps
PHP, which has significantly expanded from its original intention as an
HTML-embedded scripting language to its own large monolithic universe.
One benefit you gain from Python is that you’re not locked to a “single
language, single framework” type of scenario. There are many frame-
works out there from which to choose; hence, the quote at the beginning of

ptg7615500

496 Chapter 11 • Web Frameworks: Django

this chapter. Web framework popularity was accelerated by the creation of
the web server gateway interface (WSGI) standard, defined by PEP 333 at
http://python.org/dev/peps/pep-0333.

If you don’t already know about WSGI, it’s not really code or an API as
much as it is an interface definition that frees the Web framework devel-
oper from having to create a custom Web server for the framework, which
in turn frees application developers from having to use that server when
perhaps they would prefer something else. With WSGI, it’s easy for appli-
cation developers to swap between WSGI-compliant servers (or develop
new ones) without worrying about being forced to change application
code. For more on WSGI, take a look back at Chapter 10.

I don’t know if it’s a good thing to say this (especially in print), but
when passionate Python developers become dissatisfied with the choices
out there, they’ll just come up with a new framework. After all, there are
more Web frameworks than keywords in Python, right? Other frame-
works you’ll undoubtedly hear about at some point will include web2py,
web.py, Tornado, Diesel, and Zope. One good resource is the wiki page on
the Python Web site at http://wiki.python.org/moin/WebFrameworks.

Okay, enough idle chatter, let’s engage our Web development knowl-
edge and take a look at Django.

11.3 Introduction to Django
Django bills itself as “the Web framework for perfectionists with deadlines.” It
originated in the early 2000s, created by Web developers at the online pres-
ence of the Lawrence Journal-World newspaper, which introduced it to the
world in 2005 as a way of “developing code with journalism deadlines.” We’ll
put ourselves on a deadline and see how fast we can produce a very simple
blog by using Django, and later do the same with Google App Engine.
(You’ll have to work on your perfectionist side on your own.) Although
we’re going to blast through this example, we’ll still give you enough in the
way of explanation so that you know what’s going on. However, if you
would like to explore a full treatment of this exact example, you’ll find it in
Chapter 2 of Python Web Development with Django (Addison-Wesley, 2009),
written by my esteemed colleagues, Jeff Forcier (lead developer of Fabric)
and Paul Bissex (creator of dpaste), plus yours truly.

http://python.org/dev/peps/pep-0333
http://wiki.python.org/moin/WebFrameworks

ptg7615500

11.3 Introduction to Django 497

CORE TIP: Python 3 availability forthcoming

At the time of this writing, Django is not available for Python 3, so all of the
examples in this chapter are Python 2.x only. However, because the Python 3
port currently passes all tests (at the time of this writing), a release will be
forthcoming once the documentation is ready. When this occurs, look for
Python 3 versions of the code from this chapter on the book’s Web site. I strongly
believe that Python 3 adoption will definitely experience a significant uptick
once large frameworks like Django, along with other infrastructure libraries
such as database adapters, become available on that next generation platform.

11.3.1 Installation

Before jumping into Django development, we first need to install the nec-
essary components, which include installation of the prerequisites fol-
lowed by Django itself.

Prerequisites

Before you install Django, Python must already be installed. Because you’re
more than knee-deep in a Python book, we’re going to assume that’s
already been taken care of. Also, most POSIX-compliant (Mac OS X, Linux,
*BSD) operating systems already come with Python installed. Microsoft
Windows users are typically the only ones that need to download and
install Python.

Apache is the king of Web servers, so this is what most deployments
use. The Django team recommends the mod_wsgi Apache module and pro-
vides simple instructions at http://docs.djangoproject.com/en/dev/topics/
install/#install-apache-and-mod-wsgi as well as a more comprehensive
document at http://docs.djangoproject.com/en/dev/howto/deployment/
modwsgi/. Another great document for more complex installations—those
that host multiple Django Web sites (projects) using only one instance of
Apache—can be found at http://forum.webfaction.com/viewtopic.php?id=3646.
If you’re wondering about mod_python, it’s mostly found in older installa-
tions or part of operating system distributions before mod_wsgi became the
standard. Support for mod_python is now officially deprecated (and in fact
removed in Django 1.5).

3.x

http://docs.djangoproject.com/en/dev/topics/install/#install-apache-and-mod-wsgi
http://docs.djangoproject.com/en/dev/topics/install/#install-apache-and-mod-wsgi
http://docs.djangoproject.com/en/dev/howto/deployment/modwsgi/
http://docs.djangoproject.com/en/dev/howto/deployment/modwsgi/
http://forum.webfaction.com/viewtopic.php?id=3646

ptg7615500

498 Chapter 11 • Web Frameworks: Django

As we close our discussion of Web servers,1 it’s good to remind you that
you don’t need to use Apache for your production server. As just men-
tioned there are other options, as well, with many of them lighter in mem-
ory footprint and faster; perhaps one of those might be a better fit for your
application. You can find out more about some of the possible Web server
arrangements at http://code.djangoproject.com/wiki/ServerArrangements.

Django does require a database. The standard version of Django (cur-
rently) only runs on SQL-based relational database management systems
(RDBMSs). The four main databases employed by users are PostgreSQL,
MySQL, Oracle, and SQLite. By far, the easiest to set up is SQLite. Further-
more, SQLite is the only one of the four that does not require running a
database server, so it’s also the simplest. Of course, that doesn’t make it a toy;
it performs admirably against its more well-known brethren.

Why is it easy to set up? The SQLite database adapter comes bundled in
all versions of Python, starting with version 2.5. Be aware that we’re only
talking about the adapter here. Some distributions come bundled with
SQLite, others link to the system-installed SQLite, and everyone else will
need to download and install it manually.

SQLite is just one RDBMS supported by Django, so don’t feel you’re
stuck with that, especially if your company is already using one of the
server-based databases. You can read more about Django and database
installation at http://docs.djangoproject.com/en/dev/topics/install/#data-
base-installation.

We have also seen a recent rapid proliferation of non-relational (NoSQL)
databases. Presumably this is due to the additional scalability offered by
such systems in the face of an ever-increasing amount of data. If you’re
talking about the volume of data on the scale of Facebook, Twitter, or sim-
ilar services, a relational database usually requires manual partitioning,
also known as sharding. If you wish to develop for NoSQL databases such
as MongoDB or Google App Engine’s native datastore, try Django-nonrel
so that users have the option of using either relational or non-relational
databases, as opposed to just one type. (As an FYI, Google App Engine
also has a relational [MySQL-compatible] database option, Google Cloud
SQL.)

1. A Web server is not required until deployment, so you can hold off on
this if you prefer. Django comes with a development server (which we’ll
take a look at) that aids you during the creation and testing of your
application until you’re ready to go live.

2.5

http://code.djangoproject.com/wiki/ServerArrangements
http://docs.djangoproject.com/en/dev/topics/install/#data-base-installation
http://docs.djangoproject.com/en/dev/topics/install/#data-base-installation

ptg7615500

11.3 Introduction to Django 499

You can download Django-nonrel from http://www.allbuttonspressed.
com/projects/django-nonrel followed by one of the adapters, https://
github.com/FlaPer87/django-mongodb-engine (Django with MongoDB),
or http://www.allbuttonspressed.com/projects/djangoappengine (Django
on Google App Engine’s datastore). Because Django-nonrel is (at the time
of this writing) a fork of Django, you can just install it instead of a stock
Django package. The main reason for doing that is because you want to
use the same version for both development and production. As stated at
http://www.allbuttonspressed.com/projects/django-nonrel, “the modifications
to Django are minimal (maybe less than 100 lines).” Django-nonrel is available
as a Zip file, so you would just unzip it, go into the folder, and issue the
following command:

$ sudo python setup.py install

These are the same instructions as if you went to download the stock
Django tarball (see below), so you can completely skip the next subsection
(Installing Django) to the start of the tutorial.

Installing Django

There are several ways of installing Django on your system, which are
listed here in increasing order of effort and/or complexity:

• Python package manager

• Operating system package manager

• Standard release tarball

• Source code repository

The simplest download and installation process takes advantage of
Python package management tools like easy_install from Setuptools
(http://packages.python.org/distribute/easy_install.html) or pip (http://
pip.openplans.org), both of which are available for all platforms. For Win-
dows users with Setuptools, the easy_install.exe file should be installed
in the Scripts folder in which your Python distribution is located. You
only need to issue a single command; this is the command you would use
from a DOS Command window:

C:\WINDOWS\system32>easy_install django
Searching for django
Reading http://pypi.python.org/simple/django/
Reading http://www.djangoproject.com/
Best match: Django 1.2.7

http://www.allbuttonspressed.com/projects/django-nonrel
http://www.allbuttonspressed.com/projects/django-nonrel
http://www.allbuttonspressed.com/projects/djangoappengine
http://www.allbuttonspressed.com/projects/django-nonrel
http://packages.python.org/distribute/easy_install.html
http://pip.openplans.org
http://pip.openplans.org
https://github.com/FlaPer87/django-mongodb-engine
https://github.com/FlaPer87/django-mongodb-engine

ptg7615500

500 Chapter 11 • Web Frameworks: Django

Downloading http://media.djangoproject.com/releases/1.2/Django-
1.2.7.tar.gz
Processing Django-1.2.7.tar.gz
. . .
Adding django 1.2.7 to easy-install.pth file
Installing django-admin.py script to c:\python27\Scripts

Installed c:\python27\lib\site-packages\django-1.2.7-py2.7.egg
Processing dependencies for django
Finished processing dependencies for django

To avoid having to type in the full path of easy_install.exe, we recom-
mend that you add C:\Python2x\Scripts to your PATH environment vari-
able,2 depending on which Python 2.x you have installed. If you’re on a
POSIX system, easy_install will be installed in a well-known path such
as /usr/bin or /usr/local/bin, so you don’t have to worry about adding a
new directory to your PATH, but you will probably need to use the sudo
command to install it the typical system directories such as /usr/local.
Your command will look something like

$ sudo easy_install django

or, like this:
$ sudo pip install django

Using sudo is only necessary if you’re installing in a location for which
superuser access is required; if installing in user-land then it isn’t neces-
sary. We also encourage you to consider “container” environments such as
virtualenv. Using virtualenv gives you the ability to have multiple instal-
lations with multiple versions of Python and/or Django, different data-
bases, etc. Each environment runs in its own container and can be created,
managed, executed, and destroyed at your convenience. You can find out
more about virtualenv at http://pypi.python.org/pypi/virtualenv.

Another way to install Django is by using your operating system’s pack-
age manager, if your system has one. These are generally confined to POSIX
computers (Linux and Mac OS X). You’ll issue a command similar to the
following:

(Linux) $ sudo COMMAND install django
(Mac OS X) $ sudo port install django

2. Windows-based PC users can modify their PATH by right-clicking My
Computer, and then selecting Properties. In the dialog box that opens,
select the Advanced tab, and then click the Environment Variables button.

http://pypi.python.org/pypi/virtualenv

ptg7615500

11.4 Projects and Apps 501

For Linux, COMMAND is your distribution’s package manager, for example,
apt-get, yum, aptitude, etc. You can find instructions for installing from dis-
tributions at http://docs.djangoproject.com/en/dev/misc/distributions.

In addition to the methods just described, you can simply download
and install the original release tarball from the Django Web site. Once you
unzip it, you can run the usual installation command:

$ sudo python setup.py install

You can find more specific instructions at http://docs.djangoproject.com/
en/dev/topics/install/#installing-an-official-release

Hardcore developers might prefer to get the latest from the Subversion
source tree itself. You can find the instructions at http://docs.djangoproject.com/
en/dev/topics/install/#installing-the-development-version

Finally, here are the overall installation instructions:
http://docs.djangoproject.com/en/dev/topics/install/
#install-the-django-code

The next step is to bring up a server and confirm that everything installed
properly and is working correctly. But first, let’s talk about some basic
Django concepts: projects and apps.

11.4 Projects and Apps
What are projects and apps in Django? Simply put, you can consider a
project as the set of all files necessary to create and run an entire Web site.
Within a project folder are a set of one or more subdirectories that have
specific functionality; these are called apps, although apps don’t necessar-
ily need to be inside the project folder. Apps can be specific to the project,
or they can be reusable components that you can take from project to proj-
ect. Apps are the individual subcomponents of functionality, the sum of
which form an entire Web experience. You can have apps that solicit and
manage user/reader feedback, update real-time information, process feed
data, aggregate data from other sites, etc.

One of the more well-known set of reusable Django apps can be found
in a platform called Pinax. Such apps include (but are not limited to)
authentication (OpenID support, password management, etc.), messaging
(e-mail verification, notifications, user-to-user contact, interest groups,
threaded discussions, etc.), and more stand-alone features, such as project
management, blogging, tagging, and contact import. You can read more
about Pinax at http://pinaxproject.com.

http://docs.djangoproject.com/en/dev/misc/distributions
http://docs.djangoproject.com/en/dev/topics/install/#installing-an-official-release
http://docs.djangoproject.com/en/dev/topics/install/#installing-an-official-release
http://docs.djangoproject.com/en/dev/topics/install/#installing-the-development-version
http://docs.djangoproject.com/en/dev/topics/install/#installing-the-development-version
http://docs.djangoproject.com/en/dev/topics/install/#install-the-django-code
http://docs.djangoproject.com/en/dev/topics/install/#install-the-django-code
http://pinaxproject.com

ptg7615500

502 Chapter 11 • Web Frameworks: Django

The concept of projects and apps makes this type of plug-n-play func-
tionality feasible and gives the added bonus of strongly encouraging agile
design and code reuse. Okay, now that you know what projects and apps
are, let’s create a project!

11.4.1 Creating a Project in Django

Django comes with a utility called django-admin.py that can streamline
tasks such as the creation of the aforementioned project directories. On
POSIX platforms, it will usually be installed into directories such as /usr/
local/bin, /usr/bin, etc.; if you’re on a Windows-based computer, it goes
into the Scripts folder, which is directly in your Python installation folder,
e.g., C:\Python27\Scripts. For either POSIX computers or Windows com-
puters, you should make sure that django-admin.py is in your PATH envi-
ronment variable so that it can be executed from the command-line (unless
you like calling interpreters by using full pathnames).

For Windows computers, you will likely have to manually add
c:\python27 and c:\python27\scripts to your system PATH variable for
everything to work well (or whatever directory you installed Python in).
You do this by opening the Control Panel and then clicking System, or you
can right-click My Computer, and then choose Properties. From here,
select the Advanced tab, and then click the Environment Variables button.
You can choose to edit the PATH entry either for a single user (the top
listbox) or for all users (the bottom listbox), and then add ;c:\python27;c:\
python27\scripts after any text in the Variable value textbox. Some of
what you see appears in Figure 11-1.

Once your PATH is set (on either type of platform), you should be able
to run python and get an interactive interpreter and Django’s django-
admin.py command to see its usage. You can test this by opening up a Unix
shell or DOS Command window and issuing those command names.
Once you’ve confirmed that everything is working, we can proceed.

The next step is to go to a directory or folder in which you want to place
your code. To create the project in the current working directory, issue the
following command (we’ll use a generic project name such as mysite, but
you can call it anything you wish):

$ django-admin.py startproject mysite

ptg7615500

11.4 Projects and Apps 503

Note that if you’re on a Windows PC, you’ll first need to open a DOS
Command window first. Of course, your prompt will look more like
C:\WINDOWS\system32> as a (shell) prompt instead of the POSIX dollar sign
($) or percent symbol (%) for the old-timers.

Now let’s take a look at the contents of the directory to see what this
command has created for you. It should look something like the following
on a POSIX computer:

$ cd mysite
$ ls -l
total 32
-rw-r--r-- 1 wesley admin 0 Dec 7 17:13 __init__.py
-rw-r--r-- 1 wesley admin 546 Dec 7 17:13 manage.py
-rw-r--r-- 1 wesley admin 4778 Dec 7 17:13 settings.py
-rw-r--r-- 1 wesley admin 482 Dec 7 17:13 urls.py

If you are developing in Windows, opening an Explorer window to that
folder will appear similar to Figure 11-2, if we had earlier created a folder
named C:\py\django with the intention of putting our project there.

Figure 11-1 Adding Python to the Windows PATH variable.

ptg7615500

504 Chapter 11 • Web Frameworks: Django

In Django, a barebones project consists of the four files, __init__.py,
manage.py, settings.py, and urls.py (you will add your applications
later). Table 11-1 explains the purpose of each file.

You’ll notice that every file created by the startproject command is
Python source code—there are no .ini files, XML data, or funky configu-
ration syntax. Django pursues a “pure Python” philosophy wherever pos-
sible. This gives you a lot of flexibility without adding complexity to the
framework as well as the ability to have your settings file import
additional settings from some other file, based on the current configuration,

Table 11-1 Django Project Files

Filename Description/Purpose

__init__.py Specifies to Python that this is a package

urls.py Global URL configuration (“URLconf”)

settings.py Project-specific configuration

manage.py Command-line interface for applications

Figure 11-2 The mysite folder on a Windows-based PC.

ptg7615500

11.4 Projects and Apps 505

or calculate a value instead of having it hardcoded. There is no barrier, it’s
just Python. We’re sure you’ve also figured out that django-admin.py is a
Python script, too. It serves as a command-line interface between you and
your project. You’ll use manage.py in similar way to manage your apps.
(Both commands have a Help option with which you can get more infor-
mation on how to use each.)

11.4.2 Running the Development Server

At this point, you haven’t created an app yet, but nonetheless, there are
some Django conveniences in place for your use. One of the handiest is
Django’s built-in Web server. It’s a server designed for the development
phase that runs on your local computer. Note that we strongly recommend
against using it for deploying public sites because it is not a production-
worthy server.

Why does the development server exist? Here are some of the reasons:

1. You can use it to run your project (and apps) without requir-
ing a full production environment just to test some code.

2. It automatically detects when you make changes to your
Python source files and reloads those modules. This saves
time and is convenient over systems that require you to man-
ually restart every time you edit your code.

3. The development server knows how to find and display static
media files for the Django Administration (or “admin”) appli-
cation so that you can get started working with that right
away. (You will meet the admin soon. For now, just don’t get it
confused with the django-admin.py script.)

Running the development server is as simple as issuing the following
single command from your project’s manage.py utility:

(POSIX) $ python ./manage.py runserver
(PCs) C:\py\django\mysite> python manage.py runserver

If you’re using a POSIX system and assign your script execute permission,
that is, $ chmod 755 manage.py, you won’t need to explicitly call python, for
example, $./manage.py runserver. The same is true in a DOS Command
window, if Python is correctly installed in your Windows registry.

ptg7615500

506 Chapter 11 • Web Frameworks: Django

Once the server has started, you should see output similar to that in the
following example (Windows uses a different quit key combination):

Validating models...
0 errors found.

Django version 1.2, using settings 'mysite.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Open that link (http://127.0.0.1:8000/ or http://localhost:8000/) in
your browser, and you should see Django’s “It Worked!” screen, as shown
in Figure 11-3.

Note that if you want to run your server on a different port, you can
specify that on the command-line. For example, if you want to run it on
port 8080, instead, issue this command: $ python ./manage.py runserver
8080. You can find all of the runserver options at http://docs.djangoproject.
com/en/dev/ref/django-admin/#django-admin-runserver.

Figure 11-3 Django’s initial “It worked!” screen.

http://docs.djangoproject.com/en/dev/ref/django-admin/#django-admin-runserver
http://docs.djangoproject.com/en/dev/ref/django-admin/#django-admin-runserver

ptg7615500

11.5 Your “Hello World” Application (A Blog) 507

If you’re seeing the “It worked!” screen in Figure 11-3, then everything
is in great shape. Meanwhile, if you look in your terminal session, you’ll
see that the development server has logged your GET request:

[11/Dec/2010 14:15:51] "GET / HTTP/1.1" 200 2051

The four sections of the log line are, from left to right, the timestamp,
request, HTTP response code, and byte count (yours might be slightly dif-
ferent). The “It Worked!” page is Django’s friendly way of telling you that
the development server is working, and that you can create applications
now. If your server isn’t working at this point, retrace your steps. Be ruth-
less! It’s probably easier to delete your entire project and start from scratch
than it is to debug at this point.

When the server is running successfully, we can move on to setting up
your first Django application.

11.5 Your “Hello World” Application
(A Blog)

Now that we have a project, we can create apps within it. To create our
blog application, use manage.py again:

$./manage.py startapp blog

As with your project, you can call your application blog as we did or
anything else that you prefer. It’s just as simple as starting a project. Now
we have a blog directory inside our project directory. Here’s what’s in
it, first in POSIX format, then in a screenshot of the folder in Windows
(Figure 11-4):

$ ls -l blog
total 24
-rw-r--r-- 1 wesley admin 0 Dec 8 18:08 __init__.py
-rw-r--r-- 1 wesley admin 175 Dec 10 18:30 models.py
-rw-r--r-- 1 wesley admin 514 Dec 8 18:08 tests.py
-rw-r--r-- 1 wesley admin 26 Dec 8 18:08 views.py

ptg7615500

508 Chapter 11 • Web Frameworks: Django

Descriptions of the app-level files are given in Table 11-2.

As with your project, your app is a Python package, too, but in this case,
the models.py and views.py files have no real code in them (yet); they’re
merely placeholders for you to put your stuff into. The unit tests that go
into tests.py haven’t been written yet and are waiting for your input
there, as well. Similarly, even though you can use your project’s URLconf
to direct all the traffic, one for a local app isn’t automatically created for
you. You’ll need to do it yourself, and then use the include() directive
from the project’s URLconf to have requests routed to an app’s URLconf.

Table 11-2 Django App Files

Filename Description/Purpose

__init__.py Specifies to Python that this is a package

urls.py The app’s URL configuration (“URLconf”); this isn’t auto-
matically created such as for project URLconf (hence, why
it’s missing from the above)

models.py Data models

views.py View functions (think “controllers”)

tests.py Unit tests

Figure 11-4 The blog folder on a Windows-based PC.

ptg7615500

11.6 Creating a Model to Add Database Service 509

To inform Django that this new app is part of your project, you need to
edit settings.py (which we can also refer to as your settings file). Open it
in your editor and find the INSTALLED_APPS tuple near the bottom. Add
your app name (blog) as a member of that tuple (usually toward the bot-
tom), so that it looks like this:

INSTALLED_APPS = (
 . . .
 'blog',
)

Although it isn’t necessary, we add a trailing comma so that if we want
to add more to this tuple, we wouldn’t then need to add it. Django uses
INSTALLED_APPS to determine the configuration of various parts of the sys-
tem, including the automatic administration application and the testing
framework.

11.6 Creating a Model to Add Database
Service

We’ve now arrived at the core of your Django-based blog application: the
models.py file. This is where we’ll define the data structures of the blog.
Following the principle of Don't Repeat Yourself (DRY), Django gets a lot of
mileage out of the model information you provide for your application.
Let’s create a basic model and then see all the stuff Django does for us
using that information.

The data model represents the type of data that will be stored per
record in the database. Django provides a variety of fields to help you map
your data into your app. We’ll use three different field types in our app
(see the code sample that follows).

Open models.py in your editor and add the following model class
directly after the import statement already present in the file:

models.py
from django.db import models

class BlogPost(models.Model):
 title = models.CharField(max_length=150)
 body = models.TextField()
 timestamp = models.DateTimeField()

That’s a complete model, representing a “blog post” object with three
fields. (To be accurate, it has four fields—Django automatically creates an
auto-incrementing, unique ID field for each model, by default). You can

ptg7615500

510 Chapter 11 • Web Frameworks: Django

see that our newly minted class, BlogPost, is a subclass of django.db.models.
Model. That’s Django’s standard base class for data models, which is the
core of Django’s powerful ORM. The fields are defined like regular class
attributes, with each one being an instance of a particular field class, where
an instance of the composite is equivalent to a single database record.

For our app, we chose the CharField for the blog post title, limiting the
field to a maximum length. A CharField is appropriate for short, single
lines of text. For larger chunks of text, such as the body of blog post, we
picked the TextField type. Finally, the timestamp is a DateTimeField. A
DateTimeField is represented by a Python datetime.datetime object.

Those field classes are also defined in django.db.models, and there are
many more types than the three we’re using here, from BooleanField to
XMLField. For a comprehensive list of all that are available, read the official
documentation at http://docs.djangoproject.com/en/dev/ref/models/fields/
#field-types.

11.6.1 Setting Up the Database

If you don’t have a database server installed and running, we recommend
SQLite as the easiest way to get going. It’s fast, widely available, and stores
its database as a single file in the file system. Access controls are simply
file permissions. If you do have a database server—MySQL, PostgreSQL,
Oracle—and want to use it rather than SQLite, then use your database’s
administration tools to create a new database for your Django project. In
the examples here, our database is called mysite.db, but you can call it
whatever you like.

Using MySQL

With your (empty) database in place, all that remains is to instruct Django
on how to use it. This is where your project’s settings.py file comes in
(again). There are six potentially relevant settings here (though you might
need only two): ENGINE, NAME, HOST, PORT, USER, and PASSWORD. Their names
render their respective purposes pretty obvious. Just plug in the correct
values corresponding to the database server you’ll be using with Django.
For example, settings for MySQL will look something like the following:

http://docs.djangoproject.com/en/dev/ref/models/fields/#field-types
http://docs.djangoproject.com/en/dev/ref/models/fields/#field-types

ptg7615500

11.6 Creating a Model to Add Database Service 511

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'testdb',
 'USER': 'wesley',
 'PASSWORD': 's3Cr3T',
 'HOST': '',
 'PORT': '',
 }
}

Note that if you’re using an older version of Django, then instead of
everything being in a single dictionary, you’ll find these as stand-alone,
module-level variables.)

We haven’t specified PORT because that’s only needed if your database
server is running on a non-standard port. For example, MySQL’s server
uses port 3306 by default. Unless you’ve changed the setup, you don’t
need to specify PORT. HOST was left blank to indicate that the database
server is running on the current computer that runs our application. Be
sure that you’ve already executed CREATE DATABASE testdb or whatever
you named your database and that the user (and its password) already
exist before you continue with Django. Using PostgreSQL is more like the
setup to MySQL than is Oracle.

For details on setting up new databases, users, and your settings, see the
Django documentation at http://docs.djangoproject.com/en/dev/intro/
tutorial01/#database-setup and http://docs.djangoproject.com/en/dev/ref/
settings/#std:setting-DATABASES as well as Appendix B of Python Web
Development with Django, if you have the book.

Using SQLite

SQLite is a popular choice for testing. It’s even a good candidate for
deployment in scenarios for which there isn’t a great deal of simultaneous
writing going on. No host, port, user, or password information is needed
because SQLite uses the local file system for storage and the native file
system permissions for access control—you can also choose a pure in-mem-
ory database. This is why our DATABASES configuration in settings.py
shown in the following code only has ENGINE and NAME when directing
Django to use your SQLite database.

http://docs.djangoproject.com/en/dev/intro/tutorial01/#database-setup
http://docs.djangoproject.com/en/dev/intro/tutorial01/#database-setup
http://docs.djangoproject.com/en/dev/ref/settings/#std:setting-DATABASES
http://docs.djangoproject.com/en/dev/ref/settings/#std:setting-DATABASES

ptg7615500

512 Chapter 11 • Web Frameworks: Django

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '/tmp/mysite.db', # use full pathname to avoid confusion
 }
}

When using SQLite with a real Web server like Apache, you’ll need to
ensure that the account that owns the Web server process has write access
both for the database file itself and the directory containing that database
file. When working with the development server as we are here, permis-
sions are typically not an issue because the user running the development
server (you) also owns the project files and directories.

SQLite is also one of the most popular choices on Windows-based PCs
because it comes included with the Python distribution (starting with ver-
sion 2.5). Given that we have already created a C:\py\django folder with
our project (and application), let’s create a db directory, as well, and specify
the name of the database file that will be created later:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': r'C:\py\django\db\mysite.db', # full pathname
 }
}

If you’ve been working with Python for some time, you’re probably
aware that the r before the folder name designates this is a Python raw
string. This just means to take each string character verbatim and to not
translate special characters, meaning that “\n” should be interpreted as a
backslash (\) followed by the letter “n” instead of a single NEWLINE
character. DOS file pathnames and regular expressions are two of the most
common use cases for Python raw strings because they often include the
backslash character, which in Python is a special escape character. See the
section on strings in the Sequences chapter of Core Python Programming or
Core Python Language Fundamentals for more details.

11.6.2 Creating the Tables

Now we need to instruct Django to use the connection information you’ve
given it to connect to the database and set up the tables that your applica-
tion needs. You’ll use manage.py and its syncdb command, as demon-
strated in the following sample execution:

2.5

ptg7615500

11.6 Creating a Model to Add Database Service 513

$./manage.py syncdb
Creating tables ...
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_user_permissions
Creating table auth_user_groups
Creating table auth_user
Creating table auth_message
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table blog_blogpost

When you issue the syncdb command, Django looks for a models.py file
in each of your INSTALLED_APPS. For each model it finds, it creates a data-
base table. (There are exceptions to this rule but it’s true for the most part.)
If you are using SQLite, you will also notice that the mysite.db database
file is created exactly where you specified in your settings.

The other items in INSTALLED_APPS—the items that were there by
default—all have models, too. The output from manage.py syncdb confirms
this; you can see Django is creating one or more tables for each of those
apps. That’s not all the output from the syncdb command, though. There
are also some interactive queries related to the django.contrib.auth app
(see the following example). We recommend you create a superuser,
because we’ll need one soon. Here’s how this process works from the tail
end of the syncdb command:

You just installed Django's auth system, which means you don't have
any superusers defined.
Would you like to create one now? (yes/no): yes
Username (Leave blank to use 'wesley'):
E-mail address: ****@****.com
Password:
Password (again):
Superuser created successfully.
Installing custom SQL ...
Installing indexes ...
No fixtures found.

Now you have one superuser (hopefully yourself) in the auth system.
This will come in handy in a moment, when we add in Django’s automatic
admin application.

Finally, the setup process wraps up with a line relating to a feature
called fixtures, which represent serialized, pre-existing contents of a data-
base. You can use fixtures to pre-load this type of data in any newly cre-
ated applications. Your initial database setup is now complete. The next
time you run the syncdb command on this project (which you’ll do any

ptg7615500

514 Chapter 11 • Web Frameworks: Django

time you add an application or model), you’ll see a bit less output, because
it doesn’t need to set up any of those tables a second time or prompt you to
create a superuser.

At this point we’ve completed the data model portion of our app. It’s
ready to accept user input; however, we don’t have any way of doing this,
yet. If you subscribe to the model-view controller (MVC) pattern of Web
application design, you’ll recognize that only the model is done. There is
no view (user-facing HTML, templating, etc.) or controller (application
logic) yet.

CORE TIP: MVC vs. MTV

The Django community uses an alternate representation of the MVC pattern. In
Django, it’s called model-template-view or MTV. The data model remains the
same, but the view is known as the template in Django because templates are
used to define what the users see. Finally, the “view” in Django represents
view functions, the sum of which form all of the logic of the controller. It’s all
the same, but just a different interpretation of the roles. To read more about
Django’s philosophy with regard to this matter, check out the FAQ answer at
http://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-
mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-tem-
plate-how-come-you-don-t-use-the-standard-names.

11.7 The Python Application Shell
Python programmers know how useful the interactive interpreter is. The
creators of Django know this as well, and have integrated it to aid in
everyday Django development. In these subsections, we’ll explore how to
use the Python shell to perform low-level data introspection and manipu-
lation when such things are not so easily accomplished with Web applica-
tion development.

11.7.1 Using the Python Shell in Django

Even without the template (view) or view (controller), we can still test out
our data model by adding some BlogPost entries. If your app is backed by
an RDBMS, as most Django apps are, you would be adding rows to a table
per blog entry. If you end up using a NoSQL database such as MongoDB

http://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-tem-plate-how-come-you-don-t-use-the-standard-names
http://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-tem-plate-how-come-you-don-t-use-the-standard-names
http://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-tem-plate-how-come-you-don-t-use-the-standard-names

ptg7615500

11.7 The Python Application Shell 515

or Google App Engine’s datastore, you would be adding objects, docu-
ments, or entities into the database, instead.

How do we do this? Django provides a Python application shell that
you can use to instantiate your models and otherwise interact with your
app. Python users will recognize the familiar interactive interpreter start-
up and prompt when using the shell command of the manage.py script:

$ python2.5 ./manage.py shell
Python 2.5.1 (r251:54863, Feb 9 2009, 18:49:36)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>>

The difference between this Django shell and the standard Python inter-
active interpreter is that in addition to the latter, the shell is much more
aware of your Django project’s environment. You can interact with your
view functions and your data models because the shell automatically sets
up environment variables, including your sys.path, that give it access to
the modules and packages in both Django and your project that you
would otherwise need to manually configure. In addition to the standard
shell, there are a couple of alternative interactive interpreters that you can
consider, some of which we cover in Chapter 1 of Core Python Programming
or Core Python Language Fundamentals.

Rich shells such as IPython and bpython are actually preferred by
Django because they provide extremely useful functionality on top of the
vanilla interpreter. When you run the shell command, Django searches
first for a rich shell, employing the first one it finds or reverting to the
standard interpreter if none are available.

In the previous example, we used a Python 2.5 interpreter without a
rich shell; hence, the reason the standard interpreter came up. Now when
we execute manage.py shell, in which one (IPython) is available, it comes
up, instead:

$./manage.py shell
Python 2.7.1 (r271:86882M, Nov 30 2010, 09:39:13)
[GCC 4.0.1 (Apple Inc. build 5494)] on darwin
Type "copyright", "credits" or "license" for more information.

IPython 0.10.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object'. ?object also works, ?? prints
more.

In [1]:

ptg7615500

516 Chapter 11 • Web Frameworks: Django

You can also use the --plain option to force a vanilla interpreter:
$./manage.py shell --plain
Python 2.7.1 (r271:86882M, Nov 30 2010, 09:39:13)
[GCC 4.0.1 (Apple Inc. build 5494)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>>

Note that having a rich shell or not has nothing to do with the version of
Python you have installed, as in the preceding example; it just so happens
I have IPython available only for the version 2.7 installation on my com-
puter but not for version 2.5.

If you want to install a rich shell, just use easy_install or pip, as
explained earlier when we described the different methods for installing
Django. Here’s what it looks like for Windows PC users to install IPython
on their system:

C:\WINDOWS\system32>\python27\Scripts\easy_install ipython
Searching for ipython
Reading http://pypi.python.org/simple/ipython/
Reading http://ipython.scipy.org
Reading http://ipython.scipy.org/dist/0.10
Reading http://ipython.scipy.org/dist/0.9.1
 . . .
Installing ipengine-script.py script to c:\python27\Scripts
Installing ipengine.exe script to c:\python27\Scripts
Installed c:\python27\lib\site-packages\ipython-0.10.1-py2.7.egg
Processing dependencies for ipython
Finished processing dependencies for ipython

11.7.2 Experimenting with Our Data Model

Now that we know how to start a Python shell, let’s play around with our
application and its data model by starting IPython and giving a few
Python or IPython commands:

In [1]: from datetime import datetime
In [2]: from blog.models import BlogPost
In [3]: BlogPost.objects.all() # no objects saved yet!
Out[3]: []
In [4]: bp = BlogPost(title='test cmd-line entry', body='''
 : yo, my 1st blog post...
 : it's even multilined!''',
 : timestamp=datetime.now())
In [5]: bp
Out[5]: <BlogPost: BlogPost object>
In [6]: bp.save()

ptg7615500

11.7 The Python Application Shell 517

In [7]: BlogPost.objects.count()
Out[7]: 1
In [8]: exec _i3 # repeat cmd #3; should have 1 object now
Out[8]: [<BlogPost: BlogPost object>]
In [9]: bp = BlogPost.objects.all()[0]
In [10]: print bp.title
test cmd-line entry
In [11]: print bp.body # yes an extra \n in front, see above

yo, my 1st blog post...
it's even multilined!
In [12]: bp.timestamp.ctime()
Out[12]: 'Sat Dec 11 16:38:37 2010'

The first couple of commands just bring in the objects we need. Step #3
queries the database for BlogPost objects, of which there are none, so in
step #4, we add the first one to our database by instantiating a BlogPost
object, passing in its attributes that were defined earlier (title, body, and
timestamp). Once our object is created, we need to write it to the database
(step #6) with the BlogPost.save() method.

When that’s done, we can confirm the object count in the database has
gone from 0 to 1 by using BlogPost.objects.count() method (step #7). In
step #8, we take advantage of the IPython command to repeat step #3 to
get a list of all the BlogPost objects stored in the database—we could have
just retyped BlogPost.objects.all(), but we wanted to demonstrate a
rich shell feature. The last steps involve grabbing the first (and only) ele-
ment of the list of all BlogPost objects (step #9) and dumping out all the
data to show that we were able to successfully retrieve the data we just
stored moments ago.

The preceding is just a sampling of what you can do with an interactive
interpreter tied to your app. You can read more about the shell’s features at
http://docs.djangoproject.com/en/dev/intro/tutorial01/#playing-with-the-
api. These Python shells are great developer tools. In addition to the stan-
dard command-line tool you get bundled with Python, you’ll find them
incorporated into integrated development environments (IDEs) as well as
augmented with even more functionality in third-party developed interac-
tive interpreters such as IPython and bpython.

Almost all users and many developers prefer a web-based create, read,
update, delete (CRUD) tool instead, and this is true for every web app
that’s developed. But do developers really want to create such an adminis-
tration Web console for every single app they create? Seems like you’d
always want to have one, and that’s where the Django admin app comes in.

http://docs.djangoproject.com/en/dev/intro/tutorial01/#playing-with-the-api
http://docs.djangoproject.com/en/dev/intro/tutorial01/#playing-with-the-api

ptg7615500

518 Chapter 11 • Web Frameworks: Django

11.8 The Django Administration App
The automatic back-end administration application, or admin for short, has
been described as Django’s crown jewel. For anyone who has tired of cre-
ating simple CRUD interfaces for Web applications, it’s a godsend. Admin
is an app that every Web site needs. Why? Well, you might want to con-
firm your app’s ability to insert a new record as well as update or delete it.
You understand that, but if your app hasn’t been completed yet, that
makes this a bit more difficult. The admin app solves this problem for you
by giving developers the ability to validate their data manipulation code
before the full UI has been completed.

11.8.1 Setting Up the Admin

Although the admin app comes free with Django, it’s still optional, so
you’ll need to explicitly enable it by specifying this in your configuration
settings, just like you did with your own blog application. Open settings.py
and let’s zoom down to the INSTALLED_APPS tuple again. You added
'blog', earlier, but you probably overlooked the four lines right above it:

INSTALLED_APPS = (
 . . .
 # Uncomment the next line to enable the admin:
 # 'django.contrib.admin',
 # Uncomment the next line to enable admin documentation:
 # 'django.contrib.admindocs',
 'blog',
)

The one we care about is the first commented-out entry, 'django.
contrib.admin'. Remove the hash character (#)—a.k.a. the octothorpe,
pound sign, or comment symbol—at the beginning of the line to enable it.
The second one is optional, representing the Django admin documenta-
tion generator. The admindocs app auto-generates documents for your
project by extracting Python documentation strings (“docstrings”) and
makes those available to the admin. If you want to enable it, that’s fine, but
we won’t be using it in our example here.

Every time you add a new application to your project, you should per-
form a syncdb to ensure that the tables it needs have been created in your
database. Here we can see that adding the admin app to INSTALLED_APPS
and running syncdb triggers the creation of one more table in our database:

ptg7615500

11.8 The Django Administration App 519

$./manage.py syncdb
Creating tables ...
Creating table django_admin_log
Installing custom SQL ...
Installing indexes ...
No fixtures found.

Now that the app is set up, all we need to do is give it a URL so that we
can get to it. In the automatically generated (project) urls.py, you’ll notice
these lines near the top:

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

You’ll also see this 2-tuple commented out near the bottom of the
urlpatterns global variable:

Uncomment the next line to enable the admin:
(r'^admin/', include(admin.site.urls)),

Uncomment all three real lines of code and save the file. You’ve just
directed Django to load up the default admin site when visitors to the Web
site hit the URL http://localhost:8000/admin.

Finally, your applications need to specify to Django which models
should show up for editing in the admin screens. To do so, you simply
need to register your BlogPost model with it. Create blog/admin.py with
the following lines:

admin.py
from django.contrib import admin
from blog import models

admin.site.register(models.BlogPost)

The first two lines import the admin and our data model(s). They are
followed by the line that registers our BlogPost class with the admin. This
enables the admin to manage objects of this type in the database (in addi-
tion to the others already registered).

11.8.2 Trying Out the Admin

Now that we’ve registered our model with the admin, let’s take it out for a
spin. Issue the manage.py runserver command again, and then go to the
same link as earlier (either http://127.0.0.1:8000 or http://localhost:8000).
What do you get? Hopefully, you actually get an error. Specifically, you
should get a 404 error that looks similar to the one depicted in Figure 11-5.

ptg7615500

520 Chapter 11 • Web Frameworks: Django

Why do you get this error? It’s because you haven’t defined an action for
the '/' URL yet. The only one that you’ve enabled for your app is /admin, so
you need to go directly to that URL, instead; that is, you need to go to http://
127.0.0.1:8000/admin, or http://localhost:8000/admin, or just add /admin to the
existing path in your browser.

In fact, if you look carefully at the error screen, Django itself informs
you that only /admin is available because it tries them all before it gives up.
Note that the “It Worked!” page is a special case for which you have no
URLs set for your app. (If it weren’t for that special case, you would’ve
received a 404 error, as well.)

When you do arrive at the admin safely, you’ll be prompted to login
with a nice, friendly screen, as shown in Figure 11-6.

Type in the superuser username and password that you created earlier.
Once you’ve logged in, you’ll see the admin home page, as shown in
Figure 11-7.

What you’ll see is the set of all classes that have registered with the
admin app. Because the admin allows you to manipulate all of these
classes which live in the database, including Users, this means that you
can add standard, “staff,” or other superusers (and from a friendly Web
interface, not a command-line or a shell environment).

Figure 11-5 The admin login screen.

ptg7615500

11.8 The Django Administration App 521

Figure 11-6 The admin login screen.

Figure 11-7 The admin home page.

ptg7615500

522 Chapter 11 • Web Frameworks: Django

CORE TIP: My class isn’t there!

Sometimes, your class might not appear in the list. The three most common
causes for “my app’s data doesn’t show up in the admin” issues include:

1. Forgetting to register your model class with admin.site.
register()

2. Errors in the app’s models.py file
3. Forgetting to add the app to the INSTALLED_APPS tuple in your

settings.py file.

Now, let’s explore the real power of the admin: the ability to manipulate
your data. If you click the “Blog posts” link, you’ll go to a page listing all
of the BlogPost objects in the database (see Figure 11-8)—so far, we only
have the one that we entered from the shell, earlier.

Figure 11-8 Our solitary BlogPost object.

ptg7615500

11.8 The Django Administration App 523

Notice in the figure that it’s identified with a very generic tag of “Blog-
Post object.” Why is the post given such an awkward name? Django is
designed to flexibly handle an infinite variety of content types, so it
doesn’t take guesses about what field might be the best handle for a given
piece of content. As a result, it’s direct and not so interesting.

Because you are fairly certain that this post represents the data you
entered earlier, and you’re not going to confuse this entry with other Blog-
Post objects, no additional information about this object is needed. Go
ahead and click it to enter the edit screen shown in Figure 11-9.

Feel free to make any changes you desire (or none at all), and then click
Save and add another so that we can experiment with adding an entry
from a Web form (instead of from the shell). Figure 11-10 illustrates how
the form is identical to that in which you edited the previous post a
moment ago.

Figure 11-9 Web view of our command-line BlogPost entry.

ptg7615500

524 Chapter 11 • Web Frameworks: Django

What’s a new BlogPost without content? Give your post a title and some
scintillating content, perhaps similar to what you see in Figure 11-11. For
the timestamp, you can click the Today and Now shortcut links to fill in
the current date and time. You can also click the calendar and clock icons
to pull up handy date and time pickers. When you’re done writing your
masterpiece, click the Save button.

After your post has been saved to the database, a screen pops up that
displays a confirmation message (The blog post “BlogPost object” was
added successfully.) along with a list of all your blog posts, as shown in
Figure 11-12.

Note that this output has not improved any—in fact, it has become
worse because we now have two BlogPost objects, but there’s no way to
distinguish between them. You just aren’t going to feel satisfied seeing all
the entries generically labeled as “BlogPost object.” You’re certainly not
alone if you’re thinking, “There has got to be a way to make it look more
useful!” Well, Django gives you the power to do just that.

Earlier, we enabled the admin tool with the bare minimum configura-
tion, namely registering our model with the admin app all by itself. How-
ever, with an extra two lines of code and a modification of the registration

Figure 11-10 With the previous post saved, we’re ready to add a new one.

ptg7615500

11.8 The Django Administration App 525

call, we can make the presentation of the listing much nicer and more useful.
Update your blog/admin.py file with a new BlogPostAdmin class, and add
it to the registration line so that it now looks like this:

admin.py
from django.contrib import admin
from blog import models

class BlogPostAdmin(admin.ModelAdmin):
 list_display = ('title', 'timestamp')

admin.site.register(models.BlogPost, BlogPostAdmin)

Note that because we define BlogPostAdmin here, we do not prepend it
as an attribute of our blog/models.py module; that is, we don’t register
models.BlogPostAdmin. If you refresh the admin page for BlogPost objects
(see Figure 11-13), you will now see much more useful output, based on
the new list_display variable you added to your BlogPostAdmin class:

The image in Figure 11-13 must seem like a breath of fresh air as we’re
no longer looking at a pair of BlogPost objects. To a developer new to
Django, it might surprise you that adding two lines and editing a third is
all it takes to change the output to something much more relevant.

Figure 11-11 Adding a new post directly from the admin.

ptg7615500

526 Chapter 11 • Web Frameworks: Django

Figure 11-12 The new BlogPost has been saved. Now we have a pair of posts , but there’s no
way to tell them apart.

Figure 11-13 Much better!

ptg7615500

11.9 Creating the Blog’s User Interface 527

Try clicking the Title and Timestamp column headers that have
appeared—each one affects how your items are sorted. For example, click
the Title column head once to sort in ascending order by title; click it a sec-
ond time to change to descending order. Also try sorting by timestamp
order. Yes, these features are already built-in to the admin! You didn’t have
to roll your own like in the good ’ol days.

The admin has many other useful features that can be activated with
just a line or two of code: searching, custom ordering, filters, and more.
We’ve barely touched the features in the admin, but hopefully, we’ve
given you enough of a taste to whet your appetite.

11.9 Creating the Blog’s User Interface
Everything that we have just done was strictly for you, the developer,
right? Users of your app will not be using the Django shell and probably
not the admin tool either. We now need to build the public-facing side of
your app. From Django’s perspective, a Web page has the following three
typical components:

• A template that displays information passed to it (via a Python
dictionary-like object).

• A view function or “view” that performs the core logic for a
request. It will likely fetch (and format) the information to be
displayed, typically from a database.

• A URL pattern that matches an incoming request with the
corresponding view, optionally passing parameters to the
view, as well.

When you think about it, you can see how when Django processes a
request, it processes the request bottom-up: it starts by finding the match-
ing URL pattern. It then calls the corresponding view function which then
returns the data rendered into a template back to the user.

We’re going to build our app in a slightly different order:

1. A basic template comes first because we need to be able to see
stuff.

2. Design a quick URL pattern so that Django can access our app
right away.

3. Prototype and then iterate as we develop the view function.

ptg7615500

528 Chapter 11 • Web Frameworks: Django

The main reason for this order is that your template and URL pattern
aren’t going to change very much. The heart and soul of your application
will be in the view, so we want to employ an agile way of building it. By
creating the view steps at a time, we’re more in-line with the test-driven
development (TDD) model.

11.9.1 Creating a Template

Django’s template language is easy enough to read that we can jump right
in to example code. This is a simple template for displaying a single blog
post (based on the attributes of our BlogPost object):

<h2>{{ post.title }}</h2>
<p>{{ post.timestamp }}</p>
<p>{{ post.body }}</p>

You probably noticed that’s it’s just HTML (though Django templates
can be used for any kind of textual output) plus special tags in curly
braces: {{ ... }}. These tags are called variable tags. They display the con-
tents of the object within the braces. Inside a variable tag, you can use
Python-style dot-notation to access attributes of these variables. The val-
ues can be pure data or callables—if they’re the latter, they will automati-
cally be called without requiring you to include “()” to indicate a
function/method call.

There are also special functions that you can use in variable tags called
filters. These are functions that you can apply immediately to a variable
while inside the tag. All you need to do is to insert a pipe symbol (|) right
after the variable, followed by the filter name. For example, if we wanted
to titlecase the BlogPost title, you would simply call the title() filter like
this:

<h2>{{ post.title|title }}</h2>

This means that when the template encounters our post.title of “test
admin entry,” the final HTML output will be <h2>Test Admin Entry</h2>.

Variables are passed to the template in the form of a special Python dic-
tionary called a context. In the preceding example, we’re assuming a Blog-
Post object called “post” has been passed in via the context. The three lines
of the template fetch the BlogPost object’s title, body, and timestamp fields,
respectively. Now let’s enhance the template a bit to make it a bit more
useful, such as passing in all blog posts via the context so that we can loop
through and display them:

ptg7615500

11.9 Creating the Blog’s User Interface 529

<!-- archive.html -->
{% for post in posts %}
 <h2>{{ post.title }}</h2>
 <p>{{ post.timestamp }}</p>
 <p>{{ post.body }}</p>
 <hr>
{% endfor %}

The original three lines are unchanged; we’ve simply wrapped this core
functionality with a loop over all posts. In doing so, we’ve introduced
another construct of Django’s templating language: block tags. Whereas
variable tags are delimited by using pairs of curly braces, block tags use
braces and percent symbols as enclosing pairs: {% ... %}. They are used to
embed logic such as loops and conditionals into your HTML template.

Save the HTML template code above into a simple template in a file
called archive.html and put it in a directory called templates, inside your
app’s folder; thus, the path to your template file should be mysite/blog/
templates/archive.html. The name of the template itself is arbitrary (we
could have called it foo.html), but the templates directory name is manda-
tory. By default, when searching for templates, Django will look for a
templates directory inside each of your installed applications.

To learn more about templates and tags, check out the official docu-
ments page at http://docs.djangoproject.com/en/dev/ref/templates/api/
#basics.

The next step is to prepare for the creation of the view function that
users are eventually going to execute to see the output from our brand
new template. Before we create the view, let’s approach this from the
user’s point of view.

11.9.2 Creating a URL Pattern

In this next section, we’re going to discuss how the pathnames of URLs in
your users’ browsers are mapped to various parts of your app. When
users issue a client request from their browsers, the Internet magic of map-
ping hostnames to IP addresses happens, followed by the client making a
connection to the server’s address and at port 80 or other designated port
(the Django development server uses 8000 by default).

The Project’s URLconf

The server, through the magic of WSGI, will end up calling the endpoint of
Django, which passes the request down the line. The type of request (GET,

http://docs.djangoproject.com/en/dev/ref/templates/api/#basics
http://docs.djangoproject.com/en/dev/ref/templates/api/#basics

ptg7615500

530 Chapter 11 • Web Frameworks: Django

POST, etc.) and path (the remainder of the URL beyond the protocol, host,
and port) are accepted and arrives at the project URLconf (mysite/
urls.py) file. Here, there must be a valid (regular expression) match on the
path that resolves the request; otherwise, the server will return a 404 error
just like the one we encountered earlier in the “Trying Out the Admin”
subsection, because we did not define a handler for '/'.

We could create the needed URL pattern directly inside mysite/urls.py,
but that makes for a messy coupling between our project and our app.
However, we might want to use our blog app somewhere else, so it would
be nice if it were responsible for its own URLs. This falls in line with code
reuse principles, DRY, debugging the same code in one place, etc. To keep
our project and app appropriately compartmentalized, we’ll define the
URL mapping in two simple steps and create two URLconfs: one for the
project, and one for the app.

The first step is much like enabling the admin that you saw earlier. In
mysite/urls.py, there’s an autogenerated, commented-out example line
that is almost what we need. It appears near the top of your urlpatterns
variable:

urlpatterns = patterns('',
 # Example:
 # (r'^mysite/', include('mysite.foo.urls')),
 . . .

Edit out the comment and make the necessary name changes so that it
points to our app’s URLconf:

 (r'^blog/', include('blog.urls')),

The include() function defers taking action here to another URLconf
(the app’s URLconf, naturally). In our example here, we’re catching
requests that begin with blog/ and passing them on to the mysite/blog/
urls.py that we’re about to create. (More on include() coming up soon.)

Along with setting up the admin app that we did earlier, now your
entire project URLconf should look like this:

mysite/urls.py
from django.conf.urls.defaults import *

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 (r'^blog/', include('blog.urls')),
 (r'^admin/', include(admin.site.urls)),
)

ptg7615500

11.9 Creating the Blog’s User Interface 531

The patterns() function takes a group of 2-tuples (URL regular expres-
sion, destination). The regex is straightforward, but what is the destina-
tion? It’s either directly a view function that’s called for URLs that match
the pattern, or it’s a call to include() another URLconf file.

When include() is used, the current URL path head is removed, and
the remainder of the path is passed to the patterns() function of the
downwind URLconf. For example, when the URL http://localhost:8000/
blog/foo/bar is entered into the client browser, the project’s URLconf
receives blog/foo/bar. It matches the '^blog' regex and finds an include()
function (as opposed to a view function), so it passes foo/bar down to the
matching URL handler in mysite/blog/urls.py.

You can see this in the parameter to include(): 'blog.urls'. A similar
scenario exists for http://localhost:8000/admin/xxx/yyy/zzz; the xxx/yyy/
zzz would be passed to admin/site/urls.py as specified by include
(admin.site.urls). Now, if your eyes are sharp enough, you might notice
something odd in the code snippet—something small and perhaps miss-
ing? It is nearly an optical illusion. Take a careful look at the calls to the
include() function.

Do you see how the reference to blog.urls is in quotes, but not
admin.site.urls? Nope, it’s not a typo. Both patterns() and include()
accept strings or objects. Generally strings are used, but some developers
prefer the more concrete use of passing in objects. The only thing you need
to remember when passing in objects is to ensure that they are imported.
In the preceding example, the import of django.contrib.admin does the job.

Another example of this usage is coming up in the next subsection. To
read more about strings versus objects, take a look at the documents page
on this topic at http://docs.djangoproject.com/en/dev/topics/http/urls/
#passing-callable-objects-instead-of-strings.

The App’s URLconf

With the include() of blog.urls, we’re on the hook to define URLs to
match remaining path elements inside the blog application package itself.
Create a new file, mysite/blog/urls.py, that contains these lines:

urls.py
from django.conf.urls.defaults import *
import blog.views

urlpatterns = patterns('',
 (r'^$', blog.views.archive),
)

http://docs.djangoproject.com/en/dev/topics/http/urls/#passing-callable-objects-instead-of-strings
http://docs.djangoproject.com/en/dev/topics/http/urls/#passing-callable-objects-instead-of-strings

ptg7615500

532 Chapter 11 • Web Frameworks: Django

It looks quite similar to our project URLconf. First, let’s remind you that
the head (blog/) part of the request URL on which our root URLconf was
matching, has been stripped, so we only need to match the empty string,
which is handled by the regex ^$. Our blog application is now reusable
and shouldn’t care if it’s mounted at blog/ or news/ or what/i/had/for/
lunch/. The only mystery here is the archive() view function to which our
request is sent.

Incorporating new view functions as part of your app is as simple as
adding individual lines to your URLconf, not adding ten lines here, edit-
ing another five lines of some complex XML file there, etc. In other words,
if you were to add view functions foo() and bar(), your updated urlpatterns
would just have to be changed to the following (but don’t really make
these changes to yours):

urlpatterns = patterns('',
 (r'^$', blog.views.archive),
 (r'foo/', blog.views.foo),
 (r'bar/', blog.views.bar),
)

So that’s great, but if you continue to develop in Django and come back
to look at this file again and again, you’ll begin to notice a lot of repetition
here, violating DRY, of course. Do you see all the references to blog.views
to get to the view functions? This is a good indicator that we should use a
feature in patterns(), namely the first argument, which has been an
empty string all this time.

That parameter is a prefix for the views, so we can move blog.views up
there, remove the repetition, and tweak the import so that it doesn’t
NameError-out. Here’s what the modified URLconf would look like:

from django.conf.urls.defaults import *
from blog.views import *
urlpatterns = patterns('blog.views',
 (r'^$', archive),
 (r'foo/', foo),
 (r'bar/', bar),
)

Based on the import statement, all three functions are expected to be in
blog.views, meaning mysite/blog/views.py. From the earlier discussion,
you know that because we imported it, we can pass in the objects as we
just did in the preceding example (archive, foo, bar). But, would it be so
bad of us to be even lazier and just not even have that import statement?

ptg7615500

11.9 Creating the Blog’s User Interface 533

As described in the previous subsection, Django supports strings in
addition to objects so that you don’t even need that import. If you remove
it and put quotes around your view names, that’s fine, too:

from django.conf.urls.defaults import *

urlpatterns = patterns('blog.views',
 (r'^$', 'archive'),
 (r'foo/', 'foo'),
 (r'bar/', 'bar'),
)

Okay, we know that foo() and bar() don’t exist in our example applica-
tion, but you can expect that real projects will have multiple views in your
app’s URLconf. We were just showing you how to do to basic cleanup. You
can find more information on reducing the clutter in URLconf files in
the Django documentation at http://docs.djangoproject.com/en/dev/intro/
tutorial03/#simplifying-the-urlconfs.

The final piece of our puzzle is the controller, the view function, which
is called upon seeing a matching URL path.

11.9.3 Creating a View Function

In this section, we focus on the view function, the core functionality of
your app. The development process can take some time, so we’ll first
show you how to get started quickly for those who are impatient, and then
go into more detail so that you know how to do it right in practice.

“Hello World” Fake View

So, you want to debug your HTML template and URLconf right away
without having to create your complete and entire view at this early stage
of development? Let’s do this! Blow up a fake BlogPost and render it into
the template immediately. Create this “Hello World” mysite/blog/
views.py six-statement file now:

views.py
from datetime import datetime
from django.shortcuts import render_to_response
from blog.models import BlogPost

def archive(request):
 post = BlogPost(title='mocktitle', body='mockbody',
 timestamp=datetime.now())
 return render_to_response('archive.html', {'posts': [post]})

http://docs.djangoproject.com/en/dev/intro/tutorial03/#simplifying-the-urlconfs
http://docs.djangoproject.com/en/dev/intro/tutorial03/#simplifying-the-urlconfs

ptg7615500

534 Chapter 11 • Web Frameworks: Django

We know the view needs to be called archive() because of its designa-
tion in the URLconf, so that’s easy. The code creates a fake blog post and
passes it to the template as a single-element posts list. (Don’t call
post.save() because... well, guess why not?!?)

We’ll come back to render_to_response() shortly, but if you just use
your imagination and guess that it takes a template (archive.html, found
in mysite/blog/templates) and a context dictionary, merges them
together, and spits back the generated HTML to the user, then your imagi-
nation would be correct.

Bring up your development server (or run it live by using a real Web
server). Work through any errors you have in your URLconf or template,
and then when you’ve got it working, you’ll see something similar to that
shown in Figure 11-14.

Coming up with a fake view with semi-mocked data is the fastest way
to get instant gratification and validation that your basic setup is okay.
This iterative process is agile, and when things are good, it signals to you
that it’s safe to begin the real work.

The Real View

Now we’re going to create the real thing, a simple view function (actually
twice) that will fetch all of our blog posts from the database and display

Figure 11-14 The output from our fake “view.”

ptg7615500

11.9 Creating the Blog’s User Interface 535

them to users by employing our template. First, we’re going to do it the
“formal” way, which means strict adherence to the following steps, from
obtaining the data to returning the HTTP response back to the client:

• Query the database for all blog entries

• Load the template file

• Create the context dictionary for the template

• Pass the context to the template

• Render the template into HTML

• Return the HTML via the HTTP response

Open blog/views.py and enter the following lines of code, exactly as
shown. This will execute our preceding recipe—it pretty much replaces all
of your earlier fake views.py file:

views.py
from django.http import HttpResponse
from django.template import loader, Context
from blog.models import BlogPost

def archive(request):
 posts = BlogPost.objects.all()
 t = loader.get_template("archive.html")
 c = Context({'posts': posts})
 return HttpResponse(t.render(c))

Check the development (or real Web) server, then go to the app again in
your browser. You should see a simple, bare-bones rendering (with real
data) of any blog posts that you have entered, complete with title, time-
stamp, and post body, separated by a horizontal rule (<hr>), similar to
what you see in Figure 11-15 (if you created the first and only pair of posts
that we made earlier).

That’s great! But in keeping with the tradition of not repeating yourself,
the developers of Django noticed that this was an extremely common pat-
tern (get data, render in template, return response), so they created a
shortcut when rendering a template from a simple view function. This is
where we run into our friend, render_to_response(), once again.

ptg7615500

536 Chapter 11 • Web Frameworks: Django

We saw render_to_response() earlier in our fake view, but let’s roll that
into our real view now. Add its import from django.shortcuts, remove
the now-superfluous imports of loader, Context, and HttpResponse, and
replace those last three lines of your view. You should be left with this:

views.py
from django.shortcuts import render_to_response
from blog.models import BlogPost

def archive(request):
 posts = BlogPost.objects.all()
 return render_to_response('archive.html', {'posts': posts})

If you refresh your browser, nothing will change because you’ve only
shortened your code and haven’t changed any real functionality. To read
more about using render_to_response(), check out these pages from the
official documentation:

• http://docs.djangoproject.com/en/dev/intro/tutorial03/#a-
shortcut-render-to-response

• http://docs.djangoproject.com/en/dev/topics/http/shortcuts/
#render-to-response

Figure 11-15 The user’s view of blogposts.

http://docs.djangoproject.com/en/dev/intro/tutorial03/#a-shortcut-render-to-response
http://docs.djangoproject.com/en/dev/intro/tutorial03/#a-shortcut-render-to-response
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#render-to-response
http://docs.djangoproject.com/en/dev/topics/http/shortcuts/#render-to-response

ptg7615500

11.10 Improving the Output 537

Shortcuts are just the beginning. There are other, special types of view
functions that we’ll discuss later called generic views, which are even more
hands-off than render_to_response(). With a generic view, for example,
you wouldn’t even need to write a view function—you’d just use a pre-
made generic view that Django provides and map to it directly from the
URLconf. That is one of the main goals of generic views if you can believe
it: not having to write any code at all!

11.10 Improving the Output
That’s it! You did the three steps it takes to get a working app to the point
where we now have a user-facing interface (and don’t have to rely on the
Admin for CRUD of data). So now what? We’ve got a simple blog work-
ing. It responds to client requests, extracts the information from the data-
base, and displays all posts to the user. This is good but we can certainly
make some useful improvements to exhibit more realistic behavior.

One logical direction to take is to show the posts in reverse chronological
order; it makes sense to see the most recent posts first. Another is to limit the
output. If you have any more than 10 (or even 5) posts showing on the page,
it is certainly too long for users. First, let’s tackle reverse-chronological order.

It’s easy for us to tell Django to do that. In fact, we have a choice as to
where we want to tell it to do so. We can either add a default ordering to
our model, or we can add it to the query in our view code. We’ll do the lat-
ter first because it’s the simplest to explain.

11.10.1 Query Change

Taking a quick step back, BlogPost is your data model class. The objects
attribute is a model Manager class, and it has an all() method to give you a
QuerySet. You can think of a QuerySet as objects that represent the rows
of data returned from the database. That’s about as far as you should
go because they’re not the actual rows because QuerySets perform “lazy
iteration.”

The database isn’t actually hit until the QuerySet is evaluated. In other
words, you can do all kinds of QuerySet manipulation without touching
the data at all. To find out when a QuerySet is evaluated, check out the offi-
cial documentation at http://docs.djangoproject.com/en/dev/ref/models/
querysets/.

http://docs.djangoproject.com/en/dev/ref/models/querysets/
http://docs.djangoproject.com/en/dev/ref/models/querysets/

ptg7615500

538 Chapter 11 • Web Frameworks: Django

Now we have the background out of the way. We could have simply
told you to add a call to the order_by() method and provide a sort param-
eter. In our case, we want to sort newest first, which means reverse order
by timestamp. It’s as simple as changing your query statement to the
following:

 posts = BlogPost.objects.all().order_by('-timestamp')

By prepending the minus sign (–) to timestamp, we are specifying a
descending chronological sort. For normal ascending order, remove the
minus sign.

To test reading in the top ten posts, we need more than just two BlogPost
entries in the database, so here’s a great place to whip up a few lines of code
using the Django shell (plain one this time; we don’t need the power of
IPython or bpython) and auto-generate a bunch of records in the database:

$./manage.py shell --plain
Python 2.7.1 (r271:86882M, Nov 30 2010, 09:39:13)
[GCC 4.0.1 (Apple Inc. build 5494)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> from datetime import datetime as dt
>>> from blog.models import BlogPost
>>> for i in range(10):
... bp = BlogPost(title='post #%d' % i,
... body='body of post #%d' % i, timestamp=dt.now())
... bp.save()
...

Figure 11-16 shows the change reflected in the browser when you per-
form a refresh.

The shell can also be used to test the change that we just made as well as
the new query we want to use:

>>> posts = BlogPost.objects.all().order_by('-timestamp')
>>> for p in posts:
... print p.timestamp.ctime(), p.title
...
Fri Dec 17 15:59:37 2010 post #9
Fri Dec 17 15:59:37 2010 post #8
Fri Dec 17 15:59:37 2010 post #7
Fri Dec 17 15:59:37 2010 post #6
Fri Dec 17 15:59:37 2010 post #5
Fri Dec 17 15:59:37 2010 post #4
Fri Dec 17 15:59:37 2010 post #3
Fri Dec 17 15:59:37 2010 post #2
Fri Dec 17 15:59:37 2010 post #1
Fri Dec 17 15:59:37 2010 post #0
Mon Dec 13 00:13:01 2010 test admin entry
Sat Dec 11 16:38:37 2010 test cmd-line entry

ptg7615500

11.10 Improving the Output 539

This gives us some degree of certainty that when the core bits are copied
to the view function, things should pretty much work right away.

Furthermore, the output can be limited to only the top 10 by using
Python’s friendly slice syntax ([:10]), so add that, too. Take these changes
and update your blog/views.py file so that it looks like the following:

views.py
from django.shortcuts import render_to_response
from blog.models import BlogPost

def archive(request):
 posts = BlogPost.objects.all().order_by('-timestamp')[:10]
 return render_to_response('archive.html', {'posts': posts})

Save the change and refresh your browser again. You should see two
changes: the blogs post in reverse-chronological order, and only the ten
most recent posts show up—in other words, of 12 total entries, you should
no longer see either of the two original posts, as demonstrated in Figure 11-17.

Figure 11-16 The original pair of blog entries, plus ten more.

ptg7615500

540 Chapter 11 • Web Frameworks: Django

So changing the query is fairly straightforward, but for our particular
case, setting a default ordering in the model is a more logical option
because this (most recent, top N posts) is pretty much the only type of
ordering that makes sense for a blog.

Setting the Model Default Ordering

If we set our preferred ordering in the model, any other Django-based app
or project that accesses our data will use that ordering. To set default
ordering for your model, give it an inner class called Meta and set the
ordering attribute in that class:

class Meta:
 ordering = ('-timestamp',)

This effectively moves order_by('-timestamp') from the query to the
model. Make these changes to both files, and you should be left with code
shown in the following:

Figure 11-17 Only the ten newest blog posts appear here.

ptg7615500

11.10 Improving the Output 541

models.py
from django.db import models

class BlogPost(models.Model):
 title = models.CharField(max_length=150)
 body = models.TextField()
 timestamp = models.DateTimeField()

 class Meta:
 ordering = ('-timestamp',)

views.py
from django.shortcuts import render_to_response
from blog.models import BlogPost

def archive(request):
 posts = BlogPost.objects.all()[:10]
 return render_to_response('archive.html', {'posts': posts})

CORE TIP (HACKER’S CORNER): Reducing archive() down to one

(long) line of Python

It’s possible to reduce archive() down to a single line if you feel comfortable
using lambda:

archive = lambda req: render_to_response('archive.html',
 {'posts': BlogPost.objects.all()[:10]})

Readability is one of the hallmarks of having a Pythonic piece of code. Another
goal of expressive languages such as Python, is to help reduce the number of
lines of code to attain such readability. Although this does reduce the number
of lines, I can’t say that it helps with making it easier to read; hence, why it’s in
this Hacker’s Corner.

Other differences to the original: the request variable was reduced to just req,
and we do save a tiny bit of memory without having the posts variable. If
you’re new to Python, we recommend you check out the Functions chapter of
Core Python Programming or Core Python Language Fundamentals which covers
lambda.

If you refresh your Web browser, you should see no changes at all, as it
should be. Now that we’ve spent some time improving data retrieval from
the database, we’re going to suggest that you minimize database interaction.

ptg7615500

542 Chapter 11 • Web Frameworks: Django

11.11 Working with User Input
So now our app is complete, right? You’re able to add blog posts via the
shell or admin… check. You can view the data with our user-facing data
dumper… check. Are we really done? Not so fast!

Maybe you will be satisfied entering data by creating objects in the shell
or through the more user-friendly admin, but your users probably don’t
know what a Python shell is, much less how to use it, and do you really
want to give people access to your project’s admin app? No way!

If you’ve understood the material in Chapter 10 pretty well, and include
what you’ve learned so far in this chapter, you might be wise enough to
realize that it’s still the same three-step process:

• Add an HTML form in which the user can enter data

• Insert the (URL, view) URLconf entry

• Create the view to handle the user input

We’ll take these on in the same order as our first view, earlier.

11.11.1 The Template: Adding an HTML Form

The first step is pretty simple: create a form for users. To make it easier for
us during development, just add the following HTML to the top of blog/
templates/archive.html (above the BlogPost object display) for now; we
can split it off to another file later.

<!-- archive.html -->
<form action="/blog/create/" method="post">
 Title:
 <input type=text name=title>

 Body:
 <textarea name=body rows=3 cols=60></textarea>

 <input type=submit>
</form>
<hr>

{% for post in posts %}
. . .

The reason why we’re putting in the same template during develop-
ment is that it’s helpful to have both the user input and the blog post(s)
display on a single page. In other words, you won’t need to click and flip
back-and-forth between a separate form entry page and the BlogPost list-
ing display.

ptg7615500

11.11 Working with User Input 543

11.11.2 Adding the URLconf Entry

The next step is to add our URLconf entry. Using the preceding HTML,
we’re going to use a path of /blog/create/, so we need to hook that up to
a view function we’re going to write that will save the entry to the data-
base. Let’s call our view create_blogpost(); add the appropriate 2-tuple to
urlpatterns in your app’s URLconf so that it looks like this:

urls.py
from django.conf.urls.defaults import *

urlpatterns = patterns('blog.views',
 (r'^$', 'archive'),
 (r'^create/', 'create_blogpost'),
)

The remaining task is to come up with the code for create_blogpost().

11.11.3 The View: Processing User Input

Processing Web forms in Django looks quite similar to handling the com-
mon gateway interface (CGI) variables that you saw in Chapter 10: you
just need to do the Django equivalent. You can do a casual flip-through of
the Django documentation to get enough knowledge to whip up the snip-
pets of code to add to blog/views.py. First you’ll need some new imports,
as shown in the following:

from datetime import datetime
from django.http import HttpResponseRedirect

The actual view function then would look something like this:
def create_blogpost(request):
 if request.method == 'POST':
 BlogPost(
 title=request.POST.get('title'),
 body=request.POST.get('body'),
 timestamp=datetime.now(),
).save()
 return HttpResponseRedirect('/blog/')

Like the archive() view function, the request is automatically passed
in. The form input is coming in via a POST, so we need to check for that.
Next, we create a new BlogPost entry with the form data plus the current
time as the timestamp, and then save() it to the database. Then we’re
going to redirect back to /blog to see our newest post (as well as another
blank form at the top for the next blog entry).

ptg7615500

544 Chapter 11 • Web Frameworks: Django

Again, double-check either your development or real Web server and
visit your app’s page. You’ll now see the form on top of the data dump (see
Figure 11-18), enabling us to test drive your new feature.

11.11.4 Cross-Site Request Forgery

Not so fast! If you were able to debug your app so that you get a form and
submit, you’ll see that your browser does try to access the /blog/create/
URL, but it’s getting stopped by the error shown in Figure 11-19.

Django comes with a data-preserving feature that disallows POSTs
which are not secure against cross-site request forgery (CSRF) attacks. Expla-
nations of CSRF are beyond the scope of this book, but you can read more
about them here:

• http://docs.djangoproject.com/en/dev/intro/tutorial04/#write-
a-simple-form

• http://docs.djangoproject.com/en/dev/ref/contrib/csrf/

For your simple app, there are two fixes, both of which involve adding
minor snippets of code to what you already have:

1. Add a CSRF token ({% csrf_token %}) to forms that POST
back to your site

2. Send the request context instance to the token via the template

Figure 11-18 Our first user form (followed by previous entries).

http://docs.djangoproject.com/en/dev/intro/tutorial04/#write-a-simple-form
http://docs.djangoproject.com/en/dev/intro/tutorial04/#write-a-simple-form
http://docs.djangoproject.com/en/dev/ref/contrib/csrf/

ptg7615500

11.11 Working with User Input 545

A request context is exactly what it sounds like: a dictionary that con-
tains information about the request. If you go to the CSRF documentation
sites that we just provided, you’ll find out that django.template.Request
Context is always processed in a way that includes built-in CSRF protection.

The first step is accomplished by adding the token to the form. Edit the
<FORM> header line in mysite/blog/templates/archive.html, adding the CSRF
token inside the form so that it looks like this:

<form action="/blog/create/" method=post>{% csrf_token %}

The second part involves editing mysite/blog/views.py. Alter the return
line in your archive() view function by adding the RequestContext instance,
as shown here:

return render_to_response('archive.html', {'posts': posts,},
 RequestContext(request))

Figure 11-19 The CSRF error screen.

ptg7615500

546 Chapter 11 • Web Frameworks: Django

Don’t forget to import django.template.RequestContext:
from django.template import RequestContext

Once you save these changes, you’ll be able to submit data to your
application from a form (not the admin or the shell). CSRF errors will
cease and you’ll experience a successful BlogPost entry submission.

11.12 Forms and Model Forms
In the previous section, we demonstrated how to work with user input by
showing you the steps to create an HTML form. Now, we will show you
how Django simplifies the effort required to accept user data (Django
Forms), especially forms containing the exact fields that makes up a data
model (Django Model Forms).

11.12.1 Introducing Django Forms

Discounting the one-time additional work required to handle CSRFs, the
three earlier steps to integrate a simple input form frankly look too labori-
ous and repetitious. After all, this is Django, virtuous student of the DRY
principle.

The most suspiciously repetitious parts of our app involve seeing our
data model embedded everywhere. In the form, we see the name and title:

 Title: <input type=text name=title>

 Body: <textarea name=body rows=3 cols=60></textarea>

And in the create_blogpost() view, we see pretty much the same:
 BlogPost(
 title=request.POST.get('title'),
 body=request.POST.get('body'),
 timestamp=datetime.now(),
).save()

The point is that once you’ve defined the data model, it should be the
only place where you see title, body, and perhaps timestamp (although the
last is a special case because we do not ask the user to input this value).
Based on the data model alone, isn’t it straightforward to expect the Web
framework to come up with the form fields? Why should the developer
have to write this in addition to the data model? This is where Django
forms come in.

ptg7615500

11.12 Forms and Model Forms 547

First, let’s create a Django form for our input data:
from django import forms

class BlogPostForm(forms.Form):
 title = forms.CharField(max_length=150)
 body = forms.CharField(widget=forms.Textarea)
 timestamp = forms.DateTimeField()

Okay, that’s not quite complete. In our HTML form, we specified the
HTML textarea element to have three rows and a width of sixty characters.
Because we’re replacing the raw HTML by writing code that automatically
generates it, we need to find a way to specify these requirements, and in
this case, the solution is to pass these attributes directly:

 body = forms.CharField(
 widget=forms.Textarea(attrs={'rows':3, 'cols':60})
)

11.12.2 The Case for Model Forms

Aside from the minor blip regarding specifying attributes, did you do a
double-take when looking at the BlogPostForm definition? I mean, wasn’t it
repetitious too? As you can see in the following, it looks nearly identical to
the data model:

class BlogPost(models.Model):
 title = models.CharField(max_length=150)
 body = models.TextField()
 timestamp = models.DateTimeField()

Yes, you would be correct: they look almost like fraternal twins. This is
far too much duplication for any self-respecting Django script. What we
did previously by creating a stand-alone Form object is fine if we wanted to
create a form for a Web page from scratch without a data model backing it.

However, if the form fields are an exact match with a data model, then a
Form isn’t what we’re looking for; instead, you would really do better with
a Django ModelForm, as demonstrated here:

class BlogPostForm(forms.ModelForm):
 class Meta:
 model = BlogPost

Much better—now that’s the laziness we’re looking for. By switching
from a Form to a ModelForm, we can define a Meta class that designates on
which data model the form should be based. When the HTML form is gen-
erated, it will have fields for all attributes of the data model.

ptg7615500

548 Chapter 11 • Web Frameworks: Django

In our case though, we don’t trust the user to enter the correct time-
stamp, and instead, we want our app to add that content programmati-
cally, per post entry. Not a problem, we only need to add one more
attribute named exclude to remove form items from the generated HTML.
Integrate the import as well as the full BlogPostForm class presented in the
following example to the bottom of your blog/models.py file, following
your definition of BlogPost:

blog/models.py
from django.db import models
from django import forms

class BlogPost(models.Model):
. . .

class BlogPostForm(forms.ModelForm):
 class Meta:
 model = BlogPost
 exclude = ('timestamp',)

11.12.3 Using the ModelForm to Generate the

HTML Form

What does this buy us? Well, right off the bat we can just cut out the fields
in our form. Thus, change the code at the top of mysite/blog/templates/
archive.html to:

<form action="/blog/create/" method=post>{% csrf_token %}
 <table>{{ form }}</table>

 <input type=submit>
</form>

Yeah, you need to leave the submit button in there. Also, as you can see,
the form defaults to the innards of a table. Want some proof? Just go into
the Django shell, make a BlogPostForm, and then mess around with it a little.
It’s as easy as this:

>>> from blog.models import BlogPostForm
>>> form = BlogPostForm()
>>> form
<blog.models.BlogPostForm object at 0x12d32d0>
>>> str(form)
'<tr><th><label for="id_title">Title:</label></th><td><input
id="id_title" type="text" name="title" maxlength="150" /></td></
tr>\n<tr><th><label for="id_body">Body:</label></th><td><textarea
id="id_body" rows="10" cols="40" name="body"></textarea></td></tr>'

ptg7615500

11.12 Forms and Model Forms 549

That’s all the HTML that you didn’t have to write. (Again, note that due
to our exclude, the timestamp is left out of the form. For fun, you can tem-
porarily comment it out and see the additional timestamp field in the gen-
erated HTML.)

If you want output different from HTML table rows and cells, you can
request it by using the as_*() methods: {{ form.as_p }} for <p>...</p>
delimited text, {{ form.as_ul }} for a bulleted list with elements, etc.

The URLconf stays the same, so the last modification necessary is
updating the view function to send the ModelForm over to the template. To
do this, you instantiate it and pass it as an additional key-value pair of the
context dictionary. So, change the final line of archive() in blog/views.py
to the following:

return render_to_response('archive.html', {'posts': posts,
 'form': BlogPostForm()}, RequestContext(request))

Don’t forget to add the import for both your data and form models at the
top of views.py:

from blog.models import BlogPost, BlogPostForm

11.12.4 Processing the ModelForm Data

The changes we just made were to create the ModelForm and have it generate
the HTML to present to the user. What about after the user has submitted
her information? We still see duplication in the create_blogpost() view
which, as you know, is also in blog/views.py. Similar to how we defined the
Meta class for BlogPostForm to instruct it to take its fields from BlogPost, we
shouldn’t have to create our object like this in create_blogpost():

def create_blogpost(request):
 if request.method == 'POST':
 BlogPost(
 title=request.POST.get('title'),
 body=request.POST.get('body'),
 timestamp=datetime.now(),
).save()
 return HttpResponseRedirect('/blog/')

There should be no need to mention title, body, etc., because they’re in
the data model. We should be able to shorten this view to the following:

def create_blogpost(request):
 if request.method == 'POST':
 form = BlogPostForm(request.POST)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect('/blog/')

ptg7615500

550 Chapter 11 • Web Frameworks: Django

Unfortunately, we can’t do this because of the timestamp. We had to
make an exception in the preceding HTML form generation, so we need to
do likewise here. Here is the if clause that we need to use:

if form.is_valid():
 post = form.save(commit=False)
 post.timestamp=datetime.now()
 post.save()

As you can see, we have to add the timestamp to our data and then
manually save the object to get our desired result. Note that this is the
form save(), not the model save(), which returns an instance of the Blog
model, but because commit=False, no data is written to the database until
post.save() is called. Once these changes are in place, you can start using
the form normally, as illustrated in Figure 11-20.

Figure 11-20 The automatically generated user form.

ptg7615500

11.13 More About Views 551

11.13 More About Views
The final most important thing that we need to discuss is a topic that no
Django book should omit: generic views. So far, when you’ve needed a con-
troller or logic for your app, you’ve rolled your own custom view. However,
you know that Django likes to stick with DRY, hence the reason why you
were exposed to shortcuts such as render_to_response().

Generic views are so powerful yet so simple of an abstraction, that
when you’re able to employ them, you won’t have to write a view at all.
You’ll just link to them directly from your URLconf, pass in a few pieces of
required data, and not even need to edit/create any code in views.py. We
just need to give you enough background to lead you there. We’ll begin
our journey by going back to a short discussion about CSRF without really
talking about it. What do I mean by this?

11.13.1 Semi-Generic Views

Since CSRF is something for which you need to be vigilante in any appli-
cation that posts back to your app, this renders passing the request context
instance extremely repetitious. It’s also not very user-friendly to beginners.
This is where we can start to play with a generic view without really using
it as such. We’re going to tweak our custom view to use a generic view to
do the heavy lifting. This is called a semi-generic view.

Bring up mysite/blog/views.py in your editor, and then replace this
final line of archive():

return render_to_response('archive.html', {'posts': posts,
 'form': BlogPostForm()}, RequestContext(request))

Add the new import that follows (and remove the one for render_to_
response()):

from django.views.generic.simple import direct_to_template

Modify the final line to match the following:
return direct_to_template(request, 'archive.html',
 {'posts': posts, 'form': BlogPostForm()})

Wait… what was that all about? Yes, Django does make your life easier
by reducing the amount of code you need to write, but we only dropped

ptg7615500

552 Chapter 11 • Web Frameworks: Django

the request context instance. Are there any other gains to be had here? Not
yet. This was just seed-planting. Because we didn’t really use direct_to_
template() as a generic view in this example, we did convert our custom
view to a semi-generic view now, because of its use.

Again, pure generic view usage means we call it directly from the URL-
conf and wouldn’t need any code here in view.py. Generic views are often-
reused views that are fairly basic but that you still wouldn’t want to create
or re-create each time you needed the same functionality. Examples include
directing users to static pages, providing a generic output for objects, etc.

Really Using a Generic View

Although we employed a generic view function in the previous subsec-
tion, we didn’t really use it as a pure generic view. Let’s do the real thing
now. Go to your project URLconf (mysite/urls.py). Do you remember the
404 error we got when going to http://localhost:8000/ in the “Trying Out
the Admin” subsection earlier in the chapter?

We explained that Django could only handle paths for which there is a
matching regular expression. Well, '/' matches neither '/blog/' nor /admin/,
so we forced users to visit only those links to get access to your app. This is
a disappointment if you want to provide your users some convenience by
letting them visit the top-level '/' path and then have your app automati-
cally redirect to '/blog/'.

Here is the perfect opportunity to use the redirect_to() generic view in
the proper environment. All you need to do is add a single line to your
urlpatterns, as shown in the following:

urlpatterns = patterns('',
 (r'^$', 'django.views.generic.simple.redirect_to',
 {'url': '/blog/'}),
 (r'^blog/', include('blog.urls')),
 (r'^admin/', include(admin.site.urls)),
)

Okay, maybe it’s two lines, but it’s all part of a single statement. Also, no
import is necessary here as we’ve used a string instead of an object. Now
when users visit '/', they’ll be redirected to '/blog/', which is exactly
what you want. No modifications were needed in view.py, and all you did
was call it from an URLconf file (project or app). That’s a generic view! (If
you’re looking for something more substantial, we understand—you’ll
have a more complex generic view exercise at the end of the chapter to get
you fully up to speed.)

So far, we’ve seen direct_to_template() and redirect_to() generic
views, but there are others that you’ll likely use fairly often. These include

ptg7615500

11.14 *Look-and-Feel Improvements 553

object_list() and object_detail() as well as time-oriented generic
views such as archive_{day,week,month,year,today,index}(). And finally,
there are CRUD generic views such as {create,update,delete}_object().

Finally, we would be remiss if we didn’t inform that the trend is moving
toward class-based generic views, a new feature introduced in Django 1.3. As
powerful as generic views are, converting them to class-based generic
views makes them even more so. (The reasons are similar to why excep-
tions switched from plain strings to classes back in Python 1.5.)

You can read more about plain ’ol generic views as well as class-based
generic views from the official documentation at http://docs.django-
project.com/en/dev/topics/generic-views/ and http://docs.djangoproject.com/
en/dev/topics/class-based-views.

The remaining subsections aren’t as critical but they do contain useful
information that you can come back to at a later time. If you want to move
further ahead, either skip to the intermediate Django app or jump all the
way to Chapter 12.

11.14 *Look-and-Feel Improvements
From this point, there are a couple of things you can do to improve the
way your app works and to give your site a more consistent look-and-feel:

1. Create a Cascading Style Sheets (CSS) file
2. Create a base template and use template inheritance

The CSS is fairly straightforward, so we won’t go over it here, but let’s
take a look at a really short example of template inheritance:

<!-- base.html -->
Generic welcome to your web page [Login - Help - FAQ]
<h1>Blog Central</h1>
{% block content %}
{% endblock %}
© 2011 your company [About - Contact]
</body>
</html>

It’s not very fancy, but it’ll do. Put the common header material, such as
corporate logo, sign-in/sign-out and other links, etc., at the top; at the bot-
tom, you’ll have items such as a copyright notice, some links, etc. How-
ever, the detail to notice is the {% block ... %} tag in the middle. This
defines a named area that subtemplates will control.

http://docs.django-project.com/en/dev/topics/generic-views/
http://docs.django-project.com/en/dev/topics/generic-views/
http://docs.djangoproject.com/en/dev/topics/class-based-views
http://docs.djangoproject.com/en/dev/topics/class-based-views

ptg7615500

554 Chapter 11 • Web Frameworks: Django

To use this new base template, you must extend it and define the block
that is dropped into the base template. For example, if we wanted to have
our user-facing blog app page use this template, just add the appropriate
boilerplate, and you’re good to go. To avoid confusion with archive.html,
we’ll call it index.html, generically:

<!-- index.html -->
{% extends "base.html" %}
{% block content %}
 {% for post in posts %}
 <h2>{{ post.title }}</h2>
 <p>{{ post.timestamp }}</p>
 <p>{{ post.body }}</p>
 <hr>
 {% endfor %}
{% endblock %}

The {% extends ... %} tag instructs Django to look for a template named
base.html and plug the content of any named blocks in this template
into the corresponding blocks in that template. If you do decide to try tem-
plate inheritance, be sure to change your view to use index.html as the
template file instead of the original archive.html.

11.15 *Unit Testing
Testing is something that we shouldn’t even need to remind developers to
do. You should eat, live, and breathe testing for every app you write. Like
so many other aspects of programming, Django offers testing in the form
of extending the Python stock unit-testing module that comes with the
version of Python you’re using. Django can also test documentation
strings (or docstrings for short). Perhaps not a surprise, these are called
doctests, and you can read about them in the Django documents page on
testing, so we won’t cover them here. More important are unit tests.

Unit tests can be simple to create. Django attempts to motivate you by
auto-generating a tests.py file for you when you create your application.
Replace mysite/blog/tests.py with the contents of Example 11-1.

Example 11-1 The blog Application Unit-Testing Module (tests.py)

1 # tests.py
2 from datetime import datetime
3 from django.test import TestCase
4 from django.test.client import Client

ptg7615500

11.15 *Unit Testing 555

Line-by-Line Explanation

Lines 1–5
Here we’re importing datetime for post timestamps, the main test class,
django.test.TestCase, the test Web client django.test.client.Client,
and finally, our BlogPost class.

Lines 8–13
There are no naming restrictions for your test methods other than they
must begin with test_. The test_obj_create() method does nothing
more than test to ensure that the object was created successfully and
affirms the title. The assertEqual() method ensures that both arguments
equate or it fails this test. Here, we assert both the object count as well as
the data entered. This is a very basic test, and with a bit of imagination, we
can probably make it more useful than it stands. You might also consider
testing the ModelForm, too.

5 from blog.models import BlogPost
6
7 class BlogPostTest(TestCase):
8 def test_obj_create(self):
9 BlogPost.objects.create(title='raw title',
10 body='raw body', timestamp=datetime.now())
11 self.assertEqual(1, BlogPost.objects.count())
12 self.assertEqual('raw title',
13 BlogPost.objects.get(id=1).title)
14
15 def test_home(self):
16 response = self.client.get('/blog/')
17 self.failUnlessEqual(response.status_code, 200)
18
19 def test_slash(self):
20 response = self.client.get('/')
21 self.assertIn(response.status_code, (301, 302))
22
23 def test_empty_create(self):
24 response = self.client.get('/blog/create/')
25 self.assertIn(response.status_code, (301, 302))
26
27 def test_post_create(self):
28 response = self.client.post('/blog/create/', {
29 'title': 'post title',
30 'body': 'post body',
31 })
32 self.assertIn(response.status_code, (301, 302))
33 self.assertEqual(1, BlogPost.objects.count())
34 self.assertEqual('post title',
35 BlogPost.objects.get(id=1).title)

ptg7615500

556 Chapter 11 • Web Frameworks: Django

Lines 15–21
The next pair of test methods checks the user interface—they make Web
calls, as opposed to the first method, which just tests object creation. The
test_home() method calls the main page for our app at '/blog/' and en-
sures an HTTP “error” code of 200 is received; test_slash() is practically
the same, but confirms that our URLconf redirection that uses the
redirect_to() generic view does work. The assertion here is slightly dif-
ferent because we’re expecting a redirect response code such as 301 or 302.
We’re really expecting a 301 here, but don’t fail the test if it returns a 302
as a demonstration of the assertIn() test method as well as reusing this
assertion for the final two test methods, both of which should result in 302
responses. In lines 16 and 20, you might be wondering where self.client
came from. If you subclass from django.test.TestCase, you get an in-
stance of a Django test client automatically for free by referring to it direct
as self.client.

Lines 23–35
These last two methods both test the view for '/blog/create/',
create_blogpost(). The first, test_empty_create(), tests for the situation
in which someone erroneously makes a GET request without any data.
Our code should ignore the request and redirect to '/blog/'. The second,
test_post_create(), simulates a true user request for which real data is
sent via POST, the entry created, and the user redirected to '/blog/'. We
assert all three: 302 redirect, adding of the new post, and data validation.

Okay, let’s try it out by running the following command and observ-
ing the output:

$ manage.py test
Creating test database 'default'...
..........
..........
..........

Ran 288 tests in 7.061s

OK
Destroying test database 'default'...

By default, the system creates a separate in-memory database (called
default) just for testing. This is so you don’t panic that you’re going to

damage your production data. Each dot (.) means a passing test.
Unsuccessful

ptg7615500

11.15 *Unit Testing 557

tests are denoted by “E” for error and “F” for failure. To learn more about
testing in Django, check out the documentation at http://docs. djangoproject.
com/en/dev/topics/testing.

11.15.1 Blog Application Code Review

Let’s take a look at all the final versions of our application code at the same
time (plus __init__.py [empty] and tests.py [see Example 11-1]). The
comments have been left out here, but you can download either these
stripped versions or versions with more documentation on this book’s Web
site.

Although not officially part of our blog application, the first file we look
at in Example 11-2 is the project-level URLconf file, mysite/urls.py.

Line-by-Line Explanation

Lines 1–4
The setup lines import the stuff necessary for the project URLconf plus the
admin-enabling code. Not all apps will employ the admin, so the second
and third lines can be omitted if you’re not using it.

Lines 6–11
The urlpatterns designate actions and directives to either generic views
or any of your project’s apps. The first pattern is for '/', which redirects to
the handler for '/blog/' by using the redirect_to() generic view; the sec-
ond pattern, for '/blog/', sends all requests to the blog app’s URLconf
(coming up next); and the last one is for admin requests.

Example 11-2 The mysite Project URLconf (urls.py)

1 # urls.py
2 from django.conf.urls.defaults import *
3 from django.contrib import admin
4 admin.autodiscover()
5
6 urlpatterns = patterns('',
7 (r'^$', 'django.views.generic.simple.redirect_to',
8 {'url': '/blog/'}),
9 (r'^blog/', include('blog.urls')),
10 (r'^admin/', include(admin.site.urls)),
11)

http://docs.djangoproject.com/en/dev/topics/testing
http://docs.djangoproject.com/en/dev/topics/testing

ptg7615500

558 Chapter 11 • Web Frameworks: Django

The next file we look at in Example 11-3 is the app’s URLconf, mysite/
blog/urls.py.

Line-by-Line Explanation

Lines 4–7
The core of urls.py is the definition of the URL mappings (urlpatterns).
When users visit '/blog/', they are handled by the blog.views.archive().
Recall that the '/blog' is stripped off by the project URLconf, so by the
time we get here, the URL path is only '/'. A call to '/blog/create/'
should only come from POSTing the form and its data; this request is han-
dled by the blog.views.create_blogpost() view function.

In Example 11-4, we take a look at the data model for the blog app,
mysite/blog/models.py. It also contains the form class, as well.

Example 11-3 The blog App’s URLconf (urls.py)

The blog app’s URLconf file. URLs should be processed here calling view
functions (or class methods).

1 # urls.py
2 from django.conf.urls.defaults import *
3
4 urlpatterns = patterns('blog.views',
5 (r'^$', 'archive'),
6 (r'^create/', 'create_blogpost'),
7)

Example 11-4 The blog App Data and Form Models File (models.py)

The data models live here, but the latter group can be split off into their own
file.

1 # models.py
2 from django.db import models
3 from django import forms
4
5 class BlogPost(models.Model):
6 title = models.CharField(max_length=150)
7 body = models.TextField()
8 timestamp = models.DateTimeField()
9 class Meta:
10 ordering = ('-timestamp',)
11

ptg7615500

11.15 *Unit Testing 559

Line-by-Line Explanation

Lines 1–3
We import the classes required to define models and forms. We include
both classes together in this simple app. If you had more models and/or
forms, you might want to split out the forms into a separate forms.py file.

Lines 5–10
This is the definition of our BlogPost model. It includes its data attributes
as well as requests that all database queries sort the objects in reverse
order according to each row’s timestamp field (via the Meta inner class).

Lines 12–15
Here, we create the BlogPostForm object, a form version of the data model.
The Meta.model attribute specifies on which data model it should be
based, and the Meta.exclude variable requests that this data field be absent
from the automatically generated forms. It is expected that the developer
fills in this field (if required) before the BlogPost instance is saved to the
database.

The mysite/blog/admin.py file in Example 11-5 is only used if you
enable the admin for your application. This file contains the classes you’re
registering for use in the admin as well as any specific admin classes.

12 class BlogPostForm(forms.ModelForm):
13 class Meta:
14 model = BlogPost
15 exclude = ('timestamp',)

Example 11-5 The blog Application Admin Configuration File (admin.py)

1 # admin.py
2 from django.contrib import admin
3 from blog import models
4
5 class BlogPostAdmin(admin.ModelAdmin):
6 list_display = ('title', 'timestamp')
7
8 admin.site.register(models.BlogPost, BlogPostAdmin)

ptg7615500

560 Chapter 11 • Web Frameworks: Django

Line-by-Line Explanation

Lines 5–8
Purely for the optional Django admin, the list_display attribute of the
BlogPostAdmin class gives the admin direction as to which fields to display
in the admin console to help viewers differentiate each data record. There
are many other attributes we didn’t get a chance to cover; however, we
encourage you to read the documentation at http://docs.djangoproject.com/
en/dev/ref/contrib/admin/#modeladmin-options. Without this designation,
you’ll just see the generic object names for every row, making it nearly
impossible to differentiate instances from one another. The last thing we
do (on line 8) is to register both the data and admin models with the
admin app.

Example 11-6 presents the core of our app, which is in mysite/blog/
views.py. This is where all of our views go; it is the equivalent of the con-
troller code for most Web apps. The ironic thing about Django, its adher-
ence to DRY, and the power of generic views is that the goal is to have an
empty views file. (However, there are those who feel that they hide too
much, making the source code harder to read and understand.) Hopefully
any custom or semi-generic views you do create in this file are short, easy-
to-read, maximize code reuse, etc.—in other words, as Pythonic as possi-
ble. Creating good tests and documentation also goes without saying.

Example 11-6 The blog Views File (views.py)

All of your app’s logic lives in the views.py file, its components called via
URLconf.

1 # views.py
2 from datetime import datetime
3 from django.http import HttpResponseRedirect
4 from django.views.generic.simple import direct_to_template
5 from blog.models import BlogPost, BlogPostForm
6
7 def archive(request):
8 posts = BlogPost.objects.all()[:10]
9 return direct_to_template(request, 'archive.html',
10 {'posts': posts, 'form': BlogPostForm()})
11

http://docs.djangoproject.com/en/dev/ref/contrib/admin/#modeladmin-options
http://docs.djangoproject.com/en/dev/ref/contrib/admin/#modeladmin-options

ptg7615500

11.15 *Unit Testing 561

Line-by-Line Explanation

Lines 1–5
There are many imports here, so it’s time to share another best practice:
organize your imports by order of proximity to your app. That means
access all standard library modules (datetime) and packages first. Those
are likely to be dependencies of your framework modules and pack-
ages—these are the second set (django.*). Finally, your app’s own imports
come last (blog.models). Doing your imports in this order avoids the most
obvious dependency issues.

Lines 7–11
The blog.views.archive() function is the primary view of our app. It
extracts the ten most recent BlogPost objects from the database, and then
bundles that data as well as creates an input form for users. It then passes
both as the context to give to the archive.html template. The shortcut
function render_to_response() was replaced by the direct_to_template()
generic view (turning archive() into a semi-generic view in the process).

Originally, render_to_response() not only took the template name and
context, but it also passed the RequestContext object required for the CSRF
verification and the resulting response is returned back to the client. When
we converted to using direct_to_template(), we didn’t need to pass in the
request context instance because all of this stuff was pushed down to the
generic view to handle, leaving only core app matters for the developer to
deal with, a shortcut to the (original) shortcut, if you will.

Lines 12–19
The blog.views.create_blogpost() function is intimately tied to the form
action in template/archive.html because the URLconf directs all POSTs to
this view. If the request was indeed a POST, then the BlogPostForm object is
created to extract the form fields filled in by the user. After successful vali-
dation on line 16, we call the form.save() method to return the instance of
BlogPost that was created.

12 def create_blogpost(request):
13 if request.method == 'POST':
14 form = BlogPostForm(request.POST)
15 if form.is_valid():
16 post = form.save(commit=False)
17 post.timestamp=datetime.now()
18 post.save()
19 return HttpResponseRedirect('/blog/')

ptg7615500

562 Chapter 11 • Web Frameworks: Django

As mentioned earlier, the commit=False flag instructs save() to not store
the instance in the database yet (because we need to fill in the timestamp).
This requires us to explicitly call the instance’s post.save() method to
actually persist it. If is_valid() comes back False, we skip saving the
data; the same applies if the request was a GET, which is what happens
when a user enters this URL directly into the address bar.

The last file we’ll look at the template file myblog/apps/templates/
archive.html, which we present in Example 11-7.

Line-by-Line Explanation

Lines 1–6
The first half of our template represents the user input form. Upon sub-
mission, the server executes your create_blogpost() view function we
discussed a moment ago to create a new BlogPost entry in the database.
The form variable in line 2 comes from an instance of BlogPostForm, which
is the form that is based on your data model (in a tabular format). As we
mentioned earlier, you can choose from other options. We also explained
that the csrf_token on line 1 is used to protect against CSRF—it is also the
reason that you must provide the RequestContext in the archive() view
function so that the template can use it here.

Example 11-7 The blog App’s Main Page Template File (archive.html)

The template file features HTML plus logic to programmatically control the
output.

1 <!-- archive.html -->
2 <form action="/blog/create/" method=post>{% csrf_token %}
3 <table>{{ form }}</table>

4 <input type=submit>
5 </form>
6 <hr>
7
8 {% for post in posts %}
9 <h2>{{ post.title }}</h2>
10 <p>{{ post.timestamp }}</p>
11 <p>{{ post.body }}</p>
12 <hr>
13 {% endfor %}

ptg7615500

11.15 *Unit Testing 563

Lines 8–13
The latter half of the template simply takes the set of (at most) ten (most
recent) BlogPost objects and loops through them, emitting individual post
details for the user. In between each (as well as just prior to this loop) are
horizontal rules to visually segregate the data.

11.15.2 Blog App Summary

Of course, we could continue adding features to our blog app ad nauseam
(many people do), but hopefully we’ve given you enough of a taste of the
power of Django. (Check the exercises at the end of the chapter for addi-
tional challenges.) In the course of building this skeletal blog app, you’ve
seen a number of Django’s elegant, labor-saving features. These include
the following:

• The built-in development server, which makes your
development work more self-contained, and which
automatically reloads your code if you edit it.

• The pure-Python approach to data model creation, which
saves you from having to write or maintain SQL code or XML
description files.

• The automatic admin application, which provides full-
fledged content-editing features even for non-technical users.

• The template system, which can be used to produce HTML,
CSS, JavaScript, or any textual output format.

• Template filters, which can alter the presentation of your data
(such as dates) without interfering with your application’s
business logic.

• The URLconf system, which gives you great flexibility in URL
design while keeping application-specific portions of URLs in
the application, where they belong.

• ModelForm objects give you a simple way of creating form data
based on your data model with little effort on your part.

Finally, we encourage you to stage your app on a real server connected
to the Internet and stop using the development server. By getting off of
localhost/127.0.0.1, you can really confirm that your app will work in a
production environment.

ptg7615500

564 Chapter 11 • Web Frameworks: Django

If you enjoyed this example, you’ll find an extended version of it along
with four other similar training apps of differing variety in Python Web
Development with Django. Now that you’ve got your feet wet, let’s do a larger,
more ambitious real-world project: a Django app that handles e-mail, talks
to Twitter, performs OAuth, and is a launch point for something even
bigger.

11.16 *An Intermediate Django App: The
TweetApprover

Now that you have seen the basics of Django, let’s create a more realistic
application that does something useful. This second half of our treatment
on Django will show you how to perform the following tasks:

1. Segment a larger Web app (project) in Django
2. Use third-party libraries
3. Use Django’s permissions system
4. Send e-mails from Django

This application will solve an increasingly common use case: a com-
pany has a Twitter account and wants regular employees to post updates
to it about sales, new products, etc. However, there is some business logic
involved, too, and a manager must approve all tweets before they are
posted.

When a reviewer approves a tweet, it is then automatically posted to the
company’s Twitter account, but when the reviewer rejects a tweet, it is sent
back to the author with a note indicating why and/or suggestions to
improve if resubmission is desired or intended. You can see this workflow
illustrated in Figure 11-21.

It would take considerable effort to write this app from scratch. We’d
have to build the data model, write code to connect to the database to read
and write data, map data entities to Python classes, write code to handle
Web requests, dress up the data in HTML before it’s returned to the user,
and so on. With Django, all of this become easy. And even though Django
doesn’t have built-in functionality for communicating with Twitter, there
are Python libraries available that can do the job.

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 565

11.16.1 Creating the Project File Structure

When designing a new Django application, the app structure is a good
place to start. With Django, you can split up a project into separate appli-
cations. In our blog example, we only had one app (blog) in our project,
but as we mentioned early on in the chapter, you’re not restricted to just
one. Whenever you are writing a non-trivial application, it is easier to
manage multiple small applications as opposed to a large, single, mono-
lithic application.

“TweetApprover” has two faces: one for regular employees (who post
tweets), and one for managers (who approve tweets). We will build one
Django app for each within the TweetApprover project; the apps will be
called poster and approver.

Figure 11-21 A target TweetApprover workflow.

ptg7615500

566 Chapter 11 • Web Frameworks: Django

First, let’s create the Django project. From the command-line, run the
django-admin.py startproject command, similar to what we did earlier
with our mysite project.

$ django-admin.py startproject myproject

To distinguish this project from our mysite project earlier, we’ll call it
"myproject," instead—yeah… we’re not exactly pushing the limits of cre-
ativity here. :-) Anyway, this creates the myproject directory along with
the standard boilerplate files, about which you already know.

From the command line, jump into the myproject folder, in which we
can create the two apps, poster and approver:

$ manage.py startapp poster approver

This creates the directories poster and approver within myproject, with
those standard app boilerplate files in each. Your barebones file structure
should now look like this:

$ ls -l *
-rw-r--r-- 1 wesley admin 0 Jan 11 10:13 __init__.py
-rwxr-xr-x 1 wesley admin 546 Jan 11 10:13 manage.py
-rw-r--r-- 1 wesley admin 4790 Jan 11 10:13 settings.py
-rw-r--r-- 1 wesley admin 494 Jan 11 10:13 urls.py

approver:
total 24
-rw-r--r-- 1 wesley admin 0 Jan 11 10:14 __init__.py
-rw-r--r-- 1 wesley admin 57 Jan 11 10:14 models.py
-rw-r--r-- 1 wesley admin 514 Jan 11 10:14 tests.py
-rw-r--r-- 1 wesley admin 26 Jan 11 10:14 views.py

poster:
total 24
-rw-r--r-- 1 wesley admin 0 Jan 11 10:14 __init__.py
-rw-r--r-- 1 wesley admin 57 Jan 11 10:14 models.py
-rw-r--r-- 1 wesley admin 514 Jan 11 10:14 tests.py
-rw-r--r-- 1 wesley admin 26 Jan 11 10:14 views.py

The Settings File

After you have created a new Django project, you usually open the set-
tings.py file and edit it for your installation. For TweetApprover, we need
to add a few settings that aren’t in the file by default. First, add a new set-
ting to specify who should be notified when new tweets are submitted and
need to be reviewed.

TWEET_APPROVER_EMAIL = 'someone@mydomain.com'

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 567

Note that this is not a standard Django setting, but something only our
app needs. As the settings file is a standard Python file, we are free to add
our own settings. However, rather than putting this information in each of
the two apps, it’s simpler to have a single place for this setting at the proj-
ect level. Be sure to replace the example value above with the real e-mail
address of the manager assigned to review tweets.

Similarly, we need to instruct Django how to send e-mail. These settings
are read by Django, but they are not included in the settings file by
default, so we need to add them.

EMAIL_HOST = 'smtp.mydomain.com'
EMAIL_HOST_USER = 'username'
EMAIL_HOST_PASSWORD = 'password'
DEFAULT_FROM_EMAIL = 'username@mydomain.com'
SERVER_EMAIL = 'username@mydomain.com'

Replace the example values above with valid ones for your e-mail
server. If you don’t have access to a mail server, feel free to skip these
five e-mail settings and comment out the code in TweetApprover that
sends e-mails. I’ll remind you when we get to that part. For details on all of
Django’s settings, visit http://docs.djangoproject.com/en/dev/ref/settings.

TweetApprover will publish tweets by using Twitter’s public API. To do
that, the application needs to supply OAuth credentials. (We’ll explain
more about OAuth in the sidebar that’s coming up.) OAuth credentials are
similar to regular usernames and passwords, except that one pair of cre-
dentials is needed for the application (called “consumer” in OAuth) and
one pair is needed for the user.

All four pieces of data must be sent to Twitter for the API calls to work.
Just like TWEET_APPROVER_EMAIL in our first example in this subsection,
these settings are not standard Django settings but are custom to the
TweetApprover application.

TWITTER_CONSUMER_KEY = '. . .'
TWITTER_CONSUMER_SECRET = '. . .'
TWITTER_OAUTH_TOKEN = '. . .'
TWITTER_OAUTH_TOKEN_SECRET = '. . .'

Fortunately Twitter makes it easy to obtain these four values. Go to
http://dev.twitter.com, sign in, and then click Your Apps. Next, click
Register New App if you don’t have an app yet, or select the app if you
have one. For creating a new app, fill out the form to match that shown in
Figure 11-22. It does not matter what you put in the Application Website
field. Note that in our illustrations for this chapter, we are using the Tweet-
Approver name, which is obviously taken already, so you will need to create
your own application name.

http://docs.djangoproject.com/en/dev/ref/settings
http://dev.twitter.com

ptg7615500

568 Chapter 11 • Web Frameworks: Django

After you have filled out the form and clicked Save Application, click the
Application Details button. On the details page, look for the OAuth 1.0a Set-
tings. From that section, copy the Consumer Key and Consumer Secret val-
ues into the variables TWITTER_CONSUMER_KEY and TWITTER_CONSUMER_SECRET
variables, respectively, in your settings file.

Finally, we need the values for TWITTER_OAUTH_TOKEN and TWITTER_
OAUTH_TOKEN_SECRET. Click the My Access Token button and you will see a
page similar to that depicted in Figure 11-23 that has these values.

Figure 11-22 Registering a new application with Twitter.

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 569

CORE NOTE: OAuth and Authorization vs. Authentication

OAuth is an open authorization protocol that provides for a safe and secure way of
letting applications access data on your behalf via an API. Not only does it allow
you to grant access to applications without revealing your username and pass-
word, it also allows you to revoke access easily. An increasing number of Web
APIs are using OAuth, just like Twitter. You can read more about how OAuth
works at the following locations:

http://hueniverse.com/oauth

http://oauth.net

http://en.wikipedia.org/wiki/Oauth

Figure 11-23 Getting the OAuth token and OAuth token secret from Twitter.

http://hueniverse.com/oauth
http://oauth.net
http://en.wikipedia.org/wiki/Oauth

ptg7615500

570 Chapter 11 • Web Frameworks: Django

Note that OAuth is an example of an authorization protocol, which is different
from a protocol such as OpenID, which is an authentication protocol. Rather
than data access, the purpose of authentication is identity, such as a username
and password pair. An example in which both play a part is an app that
requires a user to authenticate via Twitter but (the user) authorizes that app
to (be able to) post a status update to his Twitter stream.

As usual, you should edit the DATABASES variable to point to the data-
base in which TweetApprover will store its data. In our simple blog app,
we used SQLite, but recall that we did suggest you can use any supported
database. If you want to stick with SQLite, then just copy the appropriate
settings from your blog app. Don’t forget to run manage.py syncdb as you
did before.

Also, as we saw earlier, it’s usually a good idea to enable Django’s
admin for easy CRUD data access. Earlier in our blog app, we mostly ran
the admin with the development server where the images and stylesheets
for the admin pages are served automatically. If you are running on an
actual Web server, like Apache, you need to ensure that the ADMIN_
MEDIA_PREFIX variable points to the Web directory in which these files
reside. You can find more details on this at http://docs.djangoproject.com/
en/dev/howto/deployment/modwsgi/#serving-the-admin-files

You can also specify to Django where to look for HTML templates for
Web pages if they are not in the normal place, which would be a templates
directory under each app. For example, if you want to create a single uni-
fied place for them like we would for this app, then you need to explicitly
call this out in your settings.py file.

For TweetApprover, we want to consolidate to a single templates folder
in the myproject directory. To do this, edit settings.py and ensure that the
TEMPLATE_DIRS variable points to that physical directory. On a POSIX com-
puter, it would look similar to this:

TEMPLATES_DIRS = (
'/home/username/myproject/templates',

)

On a Windows-based PC, your directory path would look a little differ-
ent because of the DOS filepath names. If we were to add the project to our
existing C:\py\django folder, the path would look like this:

r'c:\py\django\myproject\templates',

Recall that the leading “r” is to indicate a Python raw string, which is
preferable here over requiring multiple backslashes.

http://docs.djangoproject.com/en/dev/howto/deployment/modwsgi/#serving-the-admin-files
http://docs.djangoproject.com/en/dev/howto/deployment/modwsgi/#serving-the-admin-files

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 571

Finally, you need to inform Django about the two apps (poster and
approver) you created. You do this by adding 'myproject.approver' and
'myproject.poster' to the INSTALLED_APPS variable in the settings file.

11.16.2 Installing the Twython Library

The TweetApprove app will publish tweets to the world by using Twitter’s
public API. Fortunately, there are a couple of good libraries that make it
really easy to call this API. Twitter maintains a list of the most popular
ones at http://dev.twitter.com/pages/libraries#python. The upcoming Web
Services chapter features both the Twython and Tweepy libraries.

For this application, we will use the Twython library to facilitate commu-
nication between our app and Twitter. We’ll get it by using easy_install.
(You can also install it by using pip.) easy_install will install twython as
well as its dependencies, oauth2, httplib2, and simplejson. Unfortunately,
due to naming conventions, although Python 2.6 and later comes with
simplejson, it’s named as json, so easy_install will still install all three of
these libraries, which twython is dependent on, as you can see from the fol-
lowing output:

$ sudo easy_install twython
Password: ***********
Searching for twython
. . .
Processing twython-1.3.4.tar.gz
Running twython-1.3.4/setup.py -q bdist_egg --dist-dir /tmp/
easy_install-QrkR6M/twython-1.3.4/egg-dist-tmp-PpJhMK
. . .
Adding twython 1.3.4 to easy-install.pth file
. . .
Processing dependencies for twython
Searching for oauth2
. . .
Processing oauth2-1.2.0.tar.gz
Running oauth2-1.2.0/setup.py -q bdist_egg --dist-dir /tmp/
easy_install-br8On8/oauth2-1.2.0/egg-dist-tmp-cx3yEm
Adding oauth2 1.2.0 to easy-install.pth file
. . .
Searching for simplejson
. . .
Processing simplejson-2.1.2.tar.gz
Running simplejson-2.1.2/setup.py -q bdist_egg --dist-dir /tmp/
easy_install-ZiTOri/simplejson-2.1.2/egg-dist-tmp-FWOza6
Adding simplejson 2.1.2 to easy-install.pth file
. . .
Searching for httplib2
. . .

2.6

http://dev.twitter.com/pages/libraries#python

ptg7615500

572 Chapter 11 • Web Frameworks: Django

Processing httplib2-0.6.0.zip
Running httplib2-0.6.0/setup.py -q bdist_egg --dist-dir /tmp/
easy_install-rafDWd/httplib2-0.6.0/egg-dist-tmp-zqPmmT
Adding httplib2 0.6.0 to easy-install.pth file
. . .
Finished processing dependencies for twython

CORE TIP: Troubleshooting your installation

Your installation of version 2.6 might not go as smoothly as we portray. Here are a
couple of examples of what can go wrong:

1. I ran into a situation installing simplejson on Python 2.5 on a Mac
in which easy_install just could not get it right, complained, and
quit, leaving me hanging. In this case, I resorted to doing it the old-
fashioned way:

• Find and downloaded the tarball (in my case, simplejson)

• Untar/unzip the distribution and go into the top-level directory

• Run python setup.py install

2. Another reader discovered a problem when compiling the optional
simplejson speedups component. In this case, because it is a Python
extension, it requires you to have all the necessary tools to build
Python extensions, which includes Python.h, etc., accessible by
your compiler. On a Linux system, you would just install the
python-dev package.

We’re sure that there are other caveats out there, but if you run into similar
issues, hopefully this helps. Small incompatibilities are everywhere; don’t get
discouraged if it affects you. There is plenty of help out there!

Once everything has been successfully installed, it’s time to decide
which URLs TweetApprover will use and how they will map to different
user actions.

11.16.3 URL Structure

To create a consistent URI strategy, we’re going to name all functionality
for the poster app with URLs that start with /post, and for the approver
app, URLs that start with /approve. This means that if your copy of Tweet-
Approver runs in your domain example.com, the poster URLs would start
with http://example.com/post, and the approver URLs would start with
http://example.com/approve.

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 573

Now let’s go into more detail about the pages under /post that are used
to propose new tweets. We will need a page for submitting a brand new
tweet; let’s take the user to that page when we receive the URL /post with-
out anything after it. Once the user has submitted a tweet, we’ll need a
page that acknowledges the submission; let’s put that at /post/thankyou.
Finally, we will need a URL that takes the user to an existing tweet that
needs to be edited; let’s put that under /post/edit/X, where X is the ID of
the tweet that should be edited.

The pages for the manager are under /approve; let’s display a list of
pending and published tweets when the user accesses that URL. We will
also need a page for reviewing one particular tweet and leaving feedback
on it; let’s put that under /approve/review/X, where X is the ID of the
tweet.

Finally, we have to decide what page is displayed when the user goes to
the bare URL (example.com/). As most users of TweetApprover will be
employees proposing new tweets, let’s make the bare URL point to the
same page as /post.

We have seen that Django uses configuration files to map URLs to code.
At the project level, in the myproject directory, you will find the urls.py
file that directs Django to which application in the project to route requests.
Example 11-8 presents the file that implements the preceding URL structure:

Example 11-8 The Project URLconf file (myproject/urls.py)

As with the previous example, this project URLconf also goes to either our app
or the admin site.

1 # urls.py
2 from django.conf.urls.defaults import *
3 from django.contrib import admin
4 admin.autodiscover()
5
6 urlpatterns = patterns('',
7 (r'^post/', include('myproject.poster.urls')),
8 (r'^$', include('myproject.poster.urls')),
9 (r'^approve/', include('myproject.approver.urls')),
10 (r'^admin/', include(admin.site.urls)),
11 (r'^login', 'django.contrib.auth.views.login',
12 {'template_name': 'login.html'}),
13 (r'^logout', 'django.contrib.auth.views.logout'),
14)

ptg7615500

574 Chapter 11 • Web Frameworks: Django

Line-by-Line Explanation

Lines 1–4
The first few lines represent boilerplate that always seem to show up in
URLconf files: the proper imports as well as the admin for development.
(When you’re done with development and/or don’t want the admin, it’s
easy to get rid of it.)

Lines 6–14
Things become interesting when we get to the urlpatterns variable. Line 7
instructs Django that for any URL that starts with post/ (after the domain
name) it should consult the URL configuration myproject.poster.urls.
This configuration is in the file myproject/poster/urls.py. The next line
(line 8) says that any empty URL (after the domain name) should also be
handled per the poster application’s configuration. Line 9 directs Django
to route URLs starting with approve/ to the approver application.

Finally, the file includes directives for URLs leading to the admin (line
10) and login and logout pages (lines 11 and 12). A lot of this functionality
is part of Django, so you will not need to write code for it. As yet, we
haven’t discussed authentication, but here it is as simple as including a
few more 2-tuples in your URLconf. Django provides its own authentica-
tion system, but you can create your own, as well. In Chapter 12, you’ll
find that Google App Engine offers two authentication options: Google
Accounts, or federated login using OpenID.

To recap, the complete URL dispatching looks like what you see in
Table 11-3.

Table 11-3 The URLs Handled by This Project and Corresponding Actions

URL Action

/post Propose new tweet or post

/post/edit/X Edit post X

/post/thankyou Show acknowledgement after the user has submit-
ted a post

/ Same as /post

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 575

As you can see in Table 11-3, the main purpose of a project’s URLconf is
to route requests to the appropriate apps and their handlers, so we’re
going to continue our journey by looking at the app-level urls.py files. We
will start with the poster application.

As we just saw in the project’s URLconf, the URLs that match /post/ or
“/” will be redirected to the poster application’s URLconf, myproject/
poster/urls.py. The job of this file in Example 11-9 is to map the rest of the
URL to actual code that will be executed within the poster application.

The regular expressions in this file only see the part of the URL that fol-
lows after /post/, and based on the first parameter to patterns(), you can
see that all view functions will be in myproject/poster/views.py. For the
first URL pattern, if it’s empty (meaning the original request was either /
post/ or “/”), the post_tweet() view is called. If that part is thankyou, then
thank_you() is called. Finally, if that part of the URL is edit/X, where X is a
number, then post_tweet() is called and X is passed as the tweet_id

URL Action

/approve List all pending and published tweets

/approve/review/X Review tweet X

/admin Go to the admin site for our project

/login Log the user in

/logout Log the user out

Example 11-9 The poster Application’s urls.py URLconf file

The URLconf for the poster app processes a poster’s actions.

1 from django.conf.urls.defaults import *
2
3 urlpatterns = patterns('myproject.poster.views',
4 (r'^$', 'post_tweet'),
5 (r'^thankyou', 'thank_you'),
6 (r'^edit/(?P<tweet_id>\d+)', 'post_tweet'),
7)

ptg7615500

576 Chapter 11 • Web Frameworks: Django

parameter to the method. Pretty nifty, isn’t it? If you’re unfamiliar with
this regular expression syntax assigning matches to variable names instead
of integers (the default), flip back to Chapter 1, “Regular Expressions,” for
more information.

Because we’ve segregated our project into two distinct applications, the
URLconf and view function files are kept to a minimum. They are also
simpler to digest and easier to reuse. Now that we’re done looking at
the setup for the poster application, let’s do the same for the approver
application.

By the same token as our analysis of the poster URLconf, the file
myproject/approver/urls.py shown in Example 11-10 is consulted when
Django sees a request for a URL that starts with /approve/. It calls
list_tweets() if the path doesn’t continue beyond /approve/, and
review_tweet(tweet_id=X) if the URL path matches /approve/review/X.

This URLconf is shorter because the approver app consists of fewer
actions. At this point, we know exactly where to direct users based on the
inbound URL path. Now we need to cover the details about the data
model used for our project.

11.16.4 The Data Model

TweetApprover needs to store tweets in the database. When managers
review tweets, they need to be able to annotate them, so each tweet can
have multiple comments. Both tweets and comments need some data
fields, as illustrated in Figure 11-24.

The state field will be used to store where in the life cycle each tweet is.
Figure 11-25 demonstrates that there are three different states, and Django
can help us to ensure that no tweets end up in any other states.

Example 11-10 The approver Application’s urls.py URLconf file

The URLconf for the approver app processes an approver’s actions

1 from django.conf.urls.defaults import *
2
3 urlpatterns = patterns('myproject.approver.views',
4 (r'^$', 'list_tweets'),
5 (r'^review/(?P<tweet_id>\d+)$', 'review_tweet'),
6)

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 577

As we have seen, Django makes it really easy to create the right tables in
the database and to read and write Tweet and Comment objects. In this case,
the data model can go in either myproject/poster/models.py or in myproject/
approver/models.py. As shown in Example 11-11, we chose, somewhat
arbitrarily, to put it in the first place. Not to worry, the approver app will
still be able to access the data model.

Figure 11-24 The data model for TweetApprover.

Figure 11-25 The state model for tweets in TweetApprover.

ptg7615500

578 Chapter 11 • Web Frameworks: Django

The first data model is the Tweet class. This represents the message, com-
monly called a post or tweet, that authors are trying to submit to the Twitter
service, and the ones which the administrator or manager must approve.
Tweet objects can be commented on by administrators/managers, so Com-
ment objects are meant to represent the zero or more comments a Tweet can
have. Let’s go into some detail about these classes and their attributes.

The text field and author_email field of the Tweet class are limited to
140 and 200 characters, respectively. Tweets are limited to the maximum
length of short message service [SMS] or text messages on mobile phones,
and most regular e-mail addresses are shorter than 200 characters long.

For the created_at field, we use Django’s handy auto_now_add feature.
This means that whenever we create a new tweet and save it to the data-
base, the created_at field will contain the current date and time, unless we

Example 11-11 The models.py Data Models File for the poster app

The data model’s file for the poster app contains classes for posts (Tweet) as
well as feedback (Comment).

1 from django.db import models
2
3 class Tweet(models.Model):
4 text = models.CharField(max_length=140)
5 author_email = models.CharField(max_length=200)
6 created_at = models.DateTimeField(auto_now_add=True)
7 published_at = models.DateTimeField(null=True)
8 STATE_CHOICES = (
9 ('pending', 'pending'),
10 ('published', 'published'),
11 ('rejected', 'rejected'),
12)
13 state = models.CharField(max_length=15, choices=STATE_CHOICES)
14
15 def __unicode__(self):
16 return self.text
17
18 class Meta:
19 permissions = (
20 ("can_approve_or_reject_tweet",
21 "Can approve or reject tweets"),
22)
23
24 class Comment(models.Model):
25 tweet = models.ForeignKey(Tweet)
26 text = models.CharField(max_length=300)
27 created_at = models.DateTimeField(auto_now_add=True)
28
29 def __unicode__(self):
30 return self.text

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 579

explicitly set it. Another DateTimeField, published_at, is allowed to have a
null value. This will be used for tweets that haven’t been published to
Twitter yet.

After that, we see an enumeration of states and a definition of the state
field. By calling out the states like this and binding the state variable to
them, Django will not allow Tweet objects to have any other but one of the
three allowed states. The definition of the __unicode__() method instructs
Django to display each Tweet object’s text attribute in the administration
Web site—remember earlier in this chapter how BlogPost object wasn’t
very useful? Well, neither is Tweet object, especially when there are more
than one listed with the exact same label.

We were introduced to the Meta inner class earlier, but as a reminder,
you can use it to inform Django about other special requirements on a data
entity. In this case, it is used to alert Django about a new permission flag.
By default, Django creates permission flags for adding, changing, and
deleting all entities in the data model. The application can check if the cur-
rently logged-in user has permission to add a Tweet object; with the
Django admin, the site administrator can assign permissions to registered
users.

This is all fine, but the TweetApprover app needs a special permission
flag for publishing a tweet to Twitter. This is slightly different from add-
ing, changing, or deleting Tweet objects. By adding this flag to the Meta
class, Django will create the appropriate flags in the database. We will see
later how to read this flag to ensure that only managers can approve or
reject tweets.

The Comment class is secondary but worth discussing anyway. It has a
ForeignKey field that points to the Tweet class. This directs Django to create
a one-to-many relationship between Tweet and Comment objects in the data-
base. Like Tweet objects, Comment records also have text and created_at
fields, which have identical meanings as their Tweet brethren.

Once the model file is in place, we can run the syncdb command to cre-
ate the tables in the database and create a super-user login:

$./manage.py syncdb

Finally, as presented in Example 11-12, we need to add the myproject/
poster/admin.py file to instruct Django to allow editing of Tweet and
Comment objects within the admin.

ptg7615500

580 Chapter 11 • Web Frameworks: Django

All the pieces are now in place for Django to auto-generate an adminis-
tration Web site for this application. If you want to try the admin Web site
right now, before you have written the approver and poster views, you
need to temporarily comment out lines 6–8 in Example 11-13 (myproject/
urls.py) that reference these views. Then you can access the admin Web
site (see Figure 11-26) with the /admin URL. Remember to uncomment
these lines again once you have created poster/views.py and approver/
views.py.

Figure 11-27 shows that when you create a new user, you see the custom
permission flag for Can approve or reject tweets. Create a user and grant
the new user this permission; you will need it when testing out Tweet-
Approver later. After you create a new user, you will be able to edit the
user’s profile and set custom permissions. (You won’t be able to set those
permissions while you’re creating the new user.)

Example 11-12 Register Models with the Admin (admin.py)

The URLconf for the poster app processes a poster’s actions

1 from django.contrib import admin
2 from models import *
3
4 admin.site.register(Tweet)
5 admin.site.register(Comment)

Example 11-13 The (Temporary) Project URLconf File (myproject/urls.py)

References to views we haven’t written yet have been taken out, so we can try
out Django’s admin Web site.

1 from django.conf.urls.defaults import *
2 from django.contrib import admin
3 admin.autodiscover()
4
5 urlpatterns = patterns('',
6 #(r'^post/', include('myproject.poster.urls')),
7 #(r'^$', include('myproject.poster.urls')),
8 #(r'^approve/', include('myproject.approver.urls')),
9 (r'^admin/', include(admin.site.urls)),
10 (r'^login', 'django.contrib.auth.views.login',
11 {'template_name': 'login.html'}),
12 (r'^logout', 'django.contrib.auth.views.logout'),
13)

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 581

Figure 11-26 The built-in Django administration site.

Figure 11-27 Assigning our custom permission for a new user.

ptg7615500

582 Chapter 11 • Web Frameworks: Django

CORE NOTE: Minimizing the amount of code

So far we’ve done a lot of configuration and very little actual programming.
One of the advantages of Django is that if you do the configuration correctly,
you don’t have to write a lot of code. Yes, it’s somewhat ironic to think that
developing code is discouraged. However, you need to keep in mind that
Django was created at a company where the majority of users were journalists,
not Web developers. Empowering writers and other newspaper staff who
know how to use a computer is great because now you’re giving them some
Web development skills, but not to the point of overwhelming them and trying
to change their careers. This (non-developer) user-friendliness is the approach
employed by Django.

11.16.5 Submitting New Tweets for Review

When you created the poster application, Django generated the near-empty
file views.py in that application’s directory. This is where the methods refer-
enced in the URL configuration files should be defined. Example 11-14 rep-
resents what our complete myproject/poster/views.py file should look
like.

Example 11-14 The poster Application View Functions (views.py)

The core logic for the poster app resides here.

1 # poster/views.py
2 from django import forms
3 from django.forms import ModelForm
4 from django.core.mail import send_mail
5 from django.db.models import Count
6 from django.http import HttpResponseRedirect
7 from django.shortcuts import get_object_or_404
8 from django.views.generic.simple import direct_to_template
9 from myproject import settings
10 from models import Tweet
11
12 class TweetForm(forms.ModelForm):
13 class Meta:
14 model = Tweet
15 fields = ('text', 'author_email')
16 widgets = {
17 'text': forms.Textarea(attrs={'cols': 50, 'rows': 3}),
18 }

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 583

Line-by-Line Explanation

Lines 1–10
These are nothing more than the normal import statements with which we
bring in the needed Django functionality.

Lines 12–18
After all the import statements, a TweetForm is defined, based on the Tweet
entity. The TweetForm is defined as containing only the fields text and
author_email, as the rest are not visible to users. It also specifies that the
text field should be displayed as an HTML textarea (multi-line text box)
widget instead of a long, single text field. This form definition will be used
in the post_tweet() method.

19
20 def post_tweet(request, tweet_id=None):
21 tweet = None
22 if tweet_id:
23 tweet = get_object_or_404(Tweet, id=tweet_id)
24 if request.method == 'POST':
25 form = TweetForm(request.POST, instance=tweet)
26 if form.is_valid():
27 new_tweet = form.save(commit=False)
28 new_tweet.state = 'pending'
29 new_tweet.save()
30 send_review_email()
31 return HttpResponseRedirect('/post/thankyou')
32 else:
33 form = TweetForm(instance=tweet)
34 return direct_to_template(request, 'post_tweet.html',
35 {'form': TweetForm(instance=tweet)})
36
37 def send_review_email():
38 subject = 'Action required: review tweet'
39 body = ('A new tweet has been submitted for approval. '
40 'Please review it as soon as possible.')
41 send_mail(subject, body, settings.DEFAULT_FROM_EMAIL,
42 [settings.TWEET_APPROVER_EMAIL])
43
44 def thank_you(request):
45 tweets_in_queue = Tweet.objects.filter(
46 state='pending').aggregate(Count('id')).values()[0]
47 return direct_to_template(request, 'thank_you.html',
48 {'tweets_in_queue': tweets_in_queue})

ptg7615500

584 Chapter 11 • Web Frameworks: Django

Lines 20–36
The post_tweet() method is called when the URL /post or /post/edit/X is
accessed. This behavior was defined in the previous URL configuration
files. The method does one of four things, as is depicted in Figure 11-28.

The user starts in one of the top boxes and then moves to the box below
by clicking the form’s submit button. This use case and this pattern of if
statements is common in Django view methods that deal with forms.
When all the main processing is done in this method, it calls the
post_tweet.html template and passes it a TweetForm instance. Also, note
that an e-mail is sent to the reviewer by calling the send_review_email()
method. Remove this line if you don’t have access to a mail server and
didn’t enter any mail server details in the settings file.

This block of code also features a new function that we haven’t seen
before, the get_object_or_404() shortcut. There are some who might
think there’s too much magic going on here, but it really is a convenience
that developers often need. It takes a data model class and a primary key
and attempts to fetch an object of that type with the given ID. If the object
is found, it’s assigned to the tweet variable. Otherwise, an HTTP 404 error
(not found) is thrown. We want this behavior to control unruly users who
manipulate the URL by hand—users should get this error in the browser
in such cases, whether malicious or otherwise.

Figure 11-28 The behavior of the post_tweet() method.

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 585

Lines 38–42
The send_review_email() method is a simple helper that’s used to send an
e-mail to the manager when a new tweet has been submitted for review or
if an existing tweet has been updated. It uses Django’s send_mail()
method, which sends e-mail by using the server and credentials you pro-
vided in the settings files.

Lines 44–48
The thank_you() method shown in Example 11-16 is called when the user
is redirected to /post/thankyou/ after submitting the TweetForm. The
method uses Django’s built-in data access functionality to query the data-
base for the number of Tweet objects that are currently in the pending state.
Those of you who come from a relational database background will no
doubt recognize that the Django ORM will issue SQL a command that
might look something like: SELECT COUNT(id) FROM Tweet WHERE state=
"pending". The great thing about an ORM is that those who do not know
SQL can just come up with object-flavored chained method calls such as
the code you see here; the ORM magically issues the SQL on the devel-
oper’s behalf.

Once the number of pending posts is obtained, the app then calls up the
thank_you.html template and sends that total to it. As shown in Figure 11-30,
this template displays one message if there are several pending tweets,
and another if there is only one. Example 11-15 and 11-16 display the tem-
plate files used by the poster app.

Example 11-15 Template with the Submission Form (post_tweet.html)

The submission form for the poster app seems bare because all of the goods are
handled by the TweetForm model.

1 <html>
2 <body>
3 <form action="" method="post">{% csrf_token %}
4 <table>{{ form }}</table>
5 <input type="submit" value="Submit" />
6 </form>
7 </body>
8 </html>

ptg7615500

586 Chapter 11 • Web Frameworks: Django

The post_tweet.html template is simple: it only displays the form in an
HTML table and adds a submit button below it. Compare the template in
Example 11-15 to the form we used in our blog application earlier; you
could almost reuse this. I know we’re always encouraging code reuse, but
sharing HTML goes above and beyond the call of duty.

Figure 11-29 shows the template output, which presents the input form
for users intending on making a post/tweet. Now we’ll look at the tem-
plate generating the “thanks for your submission” page that the users sees
afterward, which is depicted in Figure 11-30.

Example 11-16 The thank_you() Template After Submission
(thank_you.html)

The “thank you” form for the poster app features logic to tell the user where
they stand.

1 <html>
2 <body>
3 Thank you for your tweet submission. An email has been sent
4 to the assigned approver.
5 <hr>
6 {% if tweets_in_queue > 1 %}
7 There are currently {{ tweets_in_queue }} tweets waiting
8 for approval.
9 {% else %}
10 Your tweet is the only one waiting for approval.
11 {% endif %}
12 </body>
13 </html>

Figure 11-29 The form for submitting new tweets, available at /post.

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 587

11.16.6 Reviewing Tweets

Now that we have gone through the poster application, it’s time for the
approver application. The file myproject/approver/urls.py calls the methods
list_tweets() and review_tweet() in myproject/approver/views.py. You
can see the entire file in Example 11-17.

Example 11-17 The approver App View Functions (views.py)

The core functionality for the approver app includes the form, displays posts
pending review, and helps process decisions.

1 # approver/views.py
2 from datetime import datetime
3 from django import forms
4 from django.core.mail import send_mail
5 from django.core.urlresolvers import reverse
6 from django.contrib.auth.decorators import permission_required
7 from django.http import HttpResponseRedirect
8 from django.shortcuts import get_object_or_404

(Continued)

Figure 11-30 The thank you page, as seen after submitting a new tweet.

ptg7615500

588 Chapter 11 • Web Frameworks: Django

Example 11-17 The approver App View Functions (views.py) (Continued)

9 from django.views.generic.simple import direct_to_template
10 from twython import Twython
11 from myproject import settings
12 from myproject.poster.views import *
13 from myproject.poster.models import Tweet, Comment
14
15 @permission_required('poster.can_approve_or_reject_tweet',
16 login_url='/login')
17 def list_tweets(request):
18 pending_tweets = Tweet.objects.filter(state=
19 'pending').order_by('created_at')
20 published_tweets = Tweet.objects.filter(state=
21 'published').order_by('-published_at')
22 return direct_to_template(request, 'list_tweets.html',
23 {'pending_tweets': pending_tweets,
24 'published_tweets': published_tweets})
25
26 class ReviewForm(forms.Form):
27 new_comment = forms.CharField(max_length=300,
28 widget=forms.Textarea(attrs={'cols': 50, 'rows': 6}),
29 required=False)
30 APPROVAL_CHOICES = (
31 ('approve', 'Approve this tweet and post it to Twitter'),
32 ('reject',
33 'Reject this tweet and send it back to the author with your

comment'),
34)
35 approval = forms.ChoiceField(
36 choices=APPROVAL_CHOICES, widget=forms.RadioSelect)
37
38 @permission_required('poster.can_approve_or_reject_tweet',
39 login_url='/login')
40 def review_tweet(request, tweet_id):
41 reviewed_tweet = get_object_or_404(Tweet, id=tweet_id)
42 if request.method == 'POST':
43 form = ReviewForm(request.POST)
44 if form.is_valid():
45 new_comment = form.cleaned_data['new_comment']
46 if form.cleaned_data['approval'] == 'approve':
47 publish_tweet(reviewed_tweet)
48 send_approval_email(reviewed_tweet, new_comment)
49 reviewed_tweet.published_at = datetime.now()
50 reviewed_tweet.state = 'published'
51 else:
52 link = request.build_absolute_uri(
53 reverse(post_tweet, args=[reviewed_tweet.id]))
54 send_rejection_email(reviewed_tweet, new_comment,
55 link)
56 reviewed_tweet.state = 'rejected'
57 reviewed_tweet.save()
58 if new_comment:
59 c = Comment(tweet=reviewed_tweet, text=new_comment)
60 c.save()
61 return HttpResponseRedirect('/approve/')

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 589

Line-by-Line Explanation

Lines 1–24
After all the imports, the first method we come across is list_tweet(). Its
job is to return a list of pending and published tweets to the user. Right
above the method header is the decorator @permission_required. This informs
Django that only logged-in users with the permission poster.can_approve_
or_reject_tweet are allowed to access the method. This is the custom per-
mission we declared in myproject/poster/models.py. Users who are not
logged in or who are logged in but don’t have the correct permission are
sent to /login. (If you’ve forgotten what decorators are, you can review
them in the Functions chapter of Core Python Programming or Core Python
Language Fundamentals.)

If the user has the proper permission, the method executes. It uses
Django data access functionality to pull out a list of all tweets pending

62 else:
63 form = ReviewForm()
64 return direct_to_template(request, 'review_tweet.html', {
65 'form': form, 'tweet': reviewed_tweet,
66 'comments': reviewed_tweet.comment_set.all()})
67
68 def send_approval_email(tweet, new_comment):
69 body = ['Your tweet (%r) was approved & published on Twitter.'\
70 % tweet.text]
71 if new_comment:
72 body.append(
73 'The reviewer gave this feedback: %r.' % new_comment)
74 send_mail('Tweet published', '%s\r\n' % ' '.join(
75 body), settings.DEFAULT_FROM_EMAIL, [tweet.author_email])
76
77 def send_rejection_email(tweet, new_comment, link):
78 body = ['Your tweet (%r) was rejected.' % tweet.text]
79 if new_comment:
80 body.append(
81 'The reviewer gave this feedback: %r.' % new_comment)
82 body.append('To edit your proposed tweet, go to %s.' % link)
83 send_mail('Tweet rejected', '%s\r\n' % (' '.join(
84 body), settings.DEFAULT_FROM_EMAIL, [tweet.author_email]))
85
86 def publish_tweet(tweet):
87 twitter = Twython(
88 twitter_token=settings.TWITTER_CONSUMER_KEY,
89 twitter_secret=settings.TWITTER_CONSUMER_SECRET,
90 oauth_token=settings.TWITTER_OAUTH_TOKEN,
91 oauth_token_secret=settings.TWITTER_OAUTH_TOKEN_SECRET,
92)
93 twitter.updateStatus(status=tweet.text.encode("utf-8"))

ptg7615500

590 Chapter 11 • Web Frameworks: Django

approval and a list of all published tweets. Then it hands off those two lists
to the list_tweets.html template and lets that template render the result.
See the following for more details on this template file.

Lines 26–36
Next, in myproject/approver/views.py, we notice the definition of Review-
Form. There are two ways to define forms in Django. In myproject/poster/
views.py, a TweetForm was defined on the basis of the Tweet entity. Here, a
form is defined as a collection of fields, instead, without any underlying
data entity. The form will be used by managers to approve or reject pend-
ing tweets, and there is no data entity that represents a review decision.
The form uses a choice collection to define the approve/reject choice that
the reviewer needs to make and represents it as a list of radio buttons.

Line 38–66
After that comes the review_tweet() method (see Figure 11-31 for the
flow). It is similar to the form-handling method in myproject/poster/
views.py, but it assumes tweet_id is always defined. There is no use case
that involves reviewing a non-existing tweet.

Figure 11-31 Form handling in the review_tweet() method.

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 591

The code needs to read what data the user submitted in the form. With
Django, you can do that by using the form.cleaned_data[] array, which
will contain the values submitted through the form by the user, converted
to Python data types.

Notice how the build_absolute_uri() method is called on the request
object in the review_tweet() view function. This method is called to get
the link to the form for editing the tweet. This link will be sent in the rejec-
tion e-mail to the author so that he can take note of the manager’s feedback
and reword the tweet. The build_absolute_uri() method returns the URL
that corresponds to a specific method, in this case, post_tweet(). We know
this URL is /poster/edit/X, where X is the tweet’s ID. Why not simply use
a string containing that URL?

Well, if we ever decide that this URL should change to /poster/change/X,
we would have to remember all the places where we hardcoded the URL
pattern /poster/edit/X and update them to the new URL. This breaks the
DRY principle behind Django. You can read more about DRY and other
Django design principles at http://docs.djangoproject.com/en/dev/misc/
design-philosophies.

This situation just described is different from hardcoding a flat URL
without any variable component, as in /post/thankyou, where 1) there
aren’t many of them, 2) they aren’t likely to change, and 3) there’s no view
function necessarily associated with it. To help us not hardcode a URL for
our situation, we use another tool, django.core.urlresolvers.reverse()
in place of a hardcoded URL. What does this do? Well, we usually start off
with a URL and find a view function to which to dispatch the request. In
this case, we know what view function we want but desire to build a URL
from it, hence the tool’s name. A view function is passed to reverse() along
with any arguments, and a URL is returned. You can find another example by
using reverse() in the Django tutorial at https://docs.djangoproject.com/
en/dev/intro/tutorial04/#write-a-simple-form.

Lines 68–84
The two helper methods, send_approval_email() and send_rejection_email(),
send e-mails to the tweet’s author by using Django’s send_mail() function.
Again, remove the calls to these methods from review_tweet() if you are
running this example without access to a mail server.

http://docs.djangoproject.com/en/dev/misc/design-philosophies
http://docs.djangoproject.com/en/dev/misc/design-philosophies
https://docs.djangoproject.com/en/dev/intro/tutorial04/#write-a-simple-form
https://docs.djangoproject.com/en/dev/intro/tutorial04/#write-a-simple-form

ptg7615500

592 Chapter 11 • Web Frameworks: Django

Lines 86–93
The method publish_tweet() is also a helper. It calls the updateStatus()
method found in the Twython package to publish a new tweet to Twitter.
Note that it uses the four Twitter credentials you added earlier in the set-
tings.py file. Also, note that it encodes the tweet by using the UTF-8 char-
acter encoding, because that is the way Twitter wants it.

Now we can look at the template files. We’ll start with the status page
first, followed by the login because the former is surely more interesting
than the latter. Example 11-18 shows the template used for the status page.
The output page itself is divided into two main sections for the user: the
set of posts that are awaiting a decision as well as those which have been
approved and published.

Example 11-18 Template Used to Display Post Status (list_tweets.html)

The template for the poster app’s status page features two main sections:
pending and published posts.

1 <html>
2 <head>
3 <title>
4 Pending and published tweets
5 </title>
6 <style type=text/css>
7 tr.evenrow {
8 background: #FFFFFF;
9 }
10 tr.oddrow {
11 background: #DDDDDD;
12 }
13 </style>
14 </head>
15 <table>
16 <tr>
17 <td colspan=2 align=center>
18 Pending tweets
19 </td>
20 </tr>
21 <tr>
22 <td>
23 Tweet text
24 </td>
25 <td>
26 Submitted
27 </td>
28 </tr>

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 593

This template is interesting in that it is the first one we have seen that
contains a loop. It iterates over the collection pending_tweets and then
published_tweets. It then renders a table row for each tweet, using the
cycle construct to give every other row a gray background, as illustrated
in Figure 11-32. It also makes the text of each pending tweet a link to the
page /approve/review/X, where X is the tweet’s ID. Finally, it uses Django’s
timesince filter to display the time elapsed since the tweet was created,
rather than displaying the raw date and time. This makes the list a little
easier to read and it makes more sense for users who might be spread out
over multiple time zones.

Once the approver selects a potential post on which to make a decision,
they’ll see an isolated view of that post in question, as shown in Figure 11-33.

29 {% for tweet in pending_tweets %}
30 <tr class="{% cycle 'oddrow' 'evenrow' %}">
31 <td>
32 {{ tweet.text }}
33 </td>
34 <td>
35 {{ tweet.created_at|timesince }} ago
36 </td>
37 </tr>
38 {% endfor %}
39 </table>
40 <hr>
41 <table>
42 <tr>
43 <td colspan=2 align=center>
44 Published tweets
45 </td>
46 </tr>
47 <tr>
48 <td>
49 Tweet text
50 </td>
51 <td>
52 Published
53 </td>
54 </tr>
55 {% for tweet in published_tweets %}
56 <tr class="{% cycle 'oddrow' 'evenrow' %}">
57 <td>
58 {{ tweet.text }}
59 </td>
60 <td>
61 {{ tweet.published_at|timesince }} ago
62 </td>
63 </tr>
64 {% endfor %}
65 </table>
66 </html>

ptg7615500

594 Chapter 11 • Web Frameworks: Django

Figure 11-32 A list of pending and published tweets.

Figure 11-33 Approving a pending tweet.

ptg7615500

11.16 *An Intermediate Django App: The TweetApprover 595

The template that renders the pending tweet form is review_tweet.html,
which is presented in Example 11-19.

What about the login/ URL that users are sent to if they aren’t logged in
or don’t have the appropriate permission? In myproject/urls.py, Django
was instructed to run the code in the method django.contrib.
auth.views.login, which comes with Django and handles logging in so
that we don’t have to. All we have to do is write the login.html template.
Example 11-20 presents the simple one used in this application. To find
out more about Django’s authentication system, check the documentation
at https://docs.djangoproject.com/en/dev/topics/auth/.

Example 11-19 myproject/templates/review_tweet.html

The template for the poster app’s tweet review page.

1 <html>
2 <body>
3 <form action="" method="post">{% csrf_token %}
4 <table>
5 <tr>
6 <td>
7 Proposed tweet:
8 </td>
9 <td>
10 {{ tweet.text }}
11 </td>
12 </tr>
13 <tr>
14 <td>
15 Author:
16 </td>
17 <td>
18 {{ tweet.author_email }}
19 </td>
20 </tr>
21 {{ form.as_table }}
22 </table>
23 <input type="submit" value="Submit" />
24 </form>
25 <hr>
26 History
27 <hr>
28 {% for comment in comments %}
29 <i>{{ comment.created_at|timesince }} ago:</i>
30 {{ comment.text }}
31 <hr>
32 {% endfor %}
33 </body>
34 </html>

https://docs.djangoproject.com/en/dev/topics/auth/

ptg7615500

596 Chapter 11 • Web Frameworks: Django

Take TweetApprover for a Spin

Now that all the pieces are in place, go back to your URLconf and uncom-
ment all the action you just added. If you haven’t created a user with per-
mission “Can approve or reject tweets” yet, do so now. Go to /post (within
your domain) with your Web browser, and then enter a new tweet. Finally,
go to /approve and reject or accept the tweet. After you have accepted a
tweet, go to Twitter’s Web site and verify that the tweet was published.

You can download the complete project source code at this book’s Web
site at http://corepython.com.

Example 11-20 myproject/templates/login.html

The template for the poster app’s login page takes advantage of Django’s
authentication system.

1 <html>
2 {% if form.errors %}
3 Your username and password didn't match. Please try again.
4 {% endif %}
5
6 <form method="post"
7 action="{% url django.contrib.auth.views.login %}">
8 {% csrf_token %}
9 <table>
10 <tr>
11 <td>{{ form.username.label_tag }}</td>
12 <td>{{ form.username }}</td>
13 </tr>
14 <tr>
15 <td>{{ form.password.label_tag }}</td>
16 <td>{{ form.password }}</td>
17 </tr>
18 </table>
19
20 <input type="submit" value="login" />
21 <input type="hidden" name="next" value="{{ next }}" />
22 </form>
23 </html>

http://corepython.com

ptg7615500

11.18 Conclusion 597

11.17 Resources
Table 11-4 presents a variety of resources for topics and projects covered in
this chapter.

11.18 Conclusion
You’ve just touched the tip of the Django iceberg. The Web development
universe is quite large when paired with Python. There is plenty to
explore, so we recommend that you read the excellent Django documenta-
tion—especially the tutorial—found at http://docs.djangoproject.com/en/
dev/intro/tutorial01. You can also start exploring those reusable plug-in
apps that come with Pinax.

In addition, you can benefit from a more in-depth treatment of the
framework in Python Web Development with Django. You’re also now able to
explore other Python Web frameworks, such as Pyramid, TurboGears,
web2py, or more minimal frameworks, such as Bottle, Flask, and Tipfy.
Another direction you can take is to begin exploring cloud computing. We
take this journey with you in Chapter 12.

Table 11-4 Additional Web Framework Resources

Django http://djangoproject.com

Pyramid & Pylons http://pylonsproject.org

TurboGears http://turbogears.org

Pinax http://pinaxproject.com

Python Web Frameworks http://wiki.python.org/moin/WebFrameworks

Django-nonrel http://www.allbuttonspressed.com

virtualenv http://pypi.python.org/pypi/virtualenv

Twitter Developers http://dev.twitter.com

OAuth http://oauth.net

http://docs.djangoproject.com/en/dev/intro/tutorial01
http://docs.djangoproject.com/en/dev/intro/tutorial01
http://djangoproject.com
http://pylonsproject.org
http://turbogears.org
http://pinaxproject.com
http://wiki.python.org/moin/WebFrameworks
http://www.allbuttonspressed.com
http://pypi.python.org/pypi/virtualenv
http://dev.twitter.com
http://oauth.net

ptg7615500

598 Chapter 11 • Web Frameworks: Django

11.19 Exercises

Web Frameworks

11-1. Review Terminology. What do CGI and WSGI mean?
11-2. Review Terminology. What is the main problem with pure CGI,

and why isn’t it used more for production Web services
today?

11-3. Review Terminology. What problem(s) do(es) WSGI solve?
11-4. Web Frameworks. What is the purpose of a Web framework?
11-5. Web Frameworks. Web development using frameworks typi-

cally follows the model-view controller (MVC) pattern.
Describe each of these components.

11-6. Web Frameworks. Name some of Python’s full-stack Web
frameworks. Create a simple “Hello World” application by
using each of them. Write down any development and exe-
cution differences between each of them.

11-7. Web Frameworks. Do some research on the various available
Python templating systems. Create a grid or spreadsheet that
compares and contrasts them. Be sure to have syntax entries
for (at least) the directives to: a) display data variables, b) call
functions or methods, c) embed pure Python code, d) perform
loops, e) if-elseif-else conditionals, and f) template inheritance.

Django

11-8. Background. When and where was the Django framework cre-
ated? What are some of the main goals of its existence?

11-9. Terminology. What is the difference between a Django project
and a Django app?

11-10. Terminology. Instead of MVC, Django uses model-template-
view (MTV). Compare and contrast MTV with MVC.

11-11. Configuration. Where do Django developers create their data-
base settings?

11-12. Configuration. Django can run on top of:
a) relational databases
b) non-relational databases
c) both a and b
d) neither, it runs on the power of ponies

ptg7615500

11.19 Exercises 599

11-13. Configuration. Go to http://djangoproject.com then download
and install the Django Web framework (and SQLite if you are
not using a Windows-based PC, because it comes for free
with Python 2.5+ for Windows).
a) Execute ‘django-admin.py startproject helloworld’

to start your project, and then ‘cd helloworld; python
./manage.py startapp hello’ to start your app.

b) Edit helloworld/hello/views.py to include this code:
from django.http import HttpResponse
def index(request):
 return HttpResponse('Hello world!')

c) In helloworld/settings.py, add 'hello', to the
INSTALLED_APPS variable (in any position of the tuple).

d) In helloworld/urls.py, replace the commented-out line
(r'helloworld/', include('helloworld.foo.urls')),

with this (uncommented) line:
(r'^$', 'hello.views.index'),

e) Execute ‘python ./manage.py runserver’ and visit http://
localhost:8000 to confirm that your code works and
“Hello world!” does show up on your browser. Change
the output to something other than “Hello world!”.

11-14. Configuration. What is a URLconf, and where would you typi-
cally find one?

11-15. Tutorial. Do all four parts of the Django tutorial found start-
ing at http://docs.djangoproject.com/en/dev/intro/tutorial01.
Warning: do not merely copy the code you find there. I
expect to see you modify the app to do something slightly
different than what’s offered, and/or add new functionality
that isn’t present.

11-16. Tools. What is the Django admin app? How do you enable it?
Why is the admin useful?

11-17. Tools. Is there a way to test your app’s code without bringing
up the admin or even a Web server?

11-18. Terminology. What does CSRF mean, and why does Django
contain security mechanisms to thwart such attempts?

11-19. Models. Name the top five model types you think you’ll be
using and what type of data would typically be used with
those models.

http://djangoproject.com
http://docs.djangoproject.com/en/dev/intro/tutorial01

ptg7615500

600 Chapter 11 • Web Frameworks: Django

11-20. Templates. In Django templates, what is a tag? Furthermore,
what is the difference between a block tag and a variable tag?
How can you distinguish between the two types of tags?

11-21. Templates. Describe how you would implement template
inheritance by using Django.

11-22. Templates. In Django templates, what is a filter?
11-23. Views. What are generic views? Why would you want to use

them? Are there any situations in which you don't want to
have a generic view?

11-24. Forms. Describe forms in Django, how they work, where they
live in code (from the data model to the HTML template).

11-25. Forms. Discuss model forms and what their benefits are.

Django Blog App

11-26. Templates. In the archive.html template of your BlogPost
application, it loops through each post and displays them to
the user. Add a test for the special case where no posts have
been added yet and display a special message in such cases.

11-27. Models. In our application, we’re still doing too much extra
work for the timestamp. There is a way to instruct Django to
automatically add the timestamp upon creation of our Blog-
Post object. Find out what that is and make the necessary
changes to make that happen and remove the explicit setting
of the timestamp in blog.views.create_blogpost() and
blog.tests.BlogPostTest.test_obj_create(). Do we also
need to change blog.tests.BlogPostTest.test_post_create()
in a similar way? Hint: You can take a peek of how Google
App Engine does it elsewhere in this chapter.

11-28. Generic views. Deprecate your archive() view function and
its use of render_to_response() and convert your app to use
a generic view. You will just remove archive() completely
from blog/views.py and also move blog/templates/
archive.html into blog/templates/blogpost/blogpost_
list.html. Read up on the list_detail.object_list()
generic view and call it directly from your app’s URLconf.
You will need to create a dictionary with a ‘queryset’ as well
as ‘extra_context’ to pass your automatically generated
BlogPostForm() object plus all the blog entries to the tem-
plate via the generic view.

ptg7615500

11.19 Exercises 601

11-29. Templates. Earlier we introduced you to Django template
filters (and gave an example using upper()). Take the
archive.html (or blogpost_list.html) template for your
BlogPost app and add another line to display the total num-
ber of blog posts in the database using a filter before show-
ing the ten most recent ones.

11-30. Forms. By having the form object created automatically using
ModelForm, we’ve lost the ability to specify the rows and cols
attributes of the body textarea (rows = 3, cols = 60), as we did
with just the Form and specifying the HTML widget for
forms.CharField. Instead, it defaulted to rows = 10 and cols = 40,
as shown in Figure 11-20. How can we specify 3 rows and 60
cols? Hint: See the docs at http://docs.djangoproject. com/en/
dev/topics/forms/modelforms/#overriding-the-default-field-
types-or-widgets

11-31. Templates. Create a base template for your blog app, and
modify all existing templates to use template inheritance.

11-32. Templates. Read the Django documentation on using static
files (HTML, CSS, JS, etc.) and improve the look of your blog
app. If it’s hard for you to get started, try these minor settings
until you can think of something more contemporary:
<style type="text/css">
body { color: #efd; background: #453; padding: 0 5em; margin: 0 }
h1 { padding: 2em 1em; background: #675 }
h2 { color: #bf8; border-top: 1px dotted #fff; margin-top: 2em }
p { margin: 1em 0 }
</style>

11-33. CRUD. Give users the ability to edit and delete posts. You
can consider adding an additional timestamp field for time
edited if you wish the existing timestamp to remain repre-
senting creation time. If not, then change the existing time-
stamp when a post has been edited or deleted.

11-34. Cursors and Pagination. Showing the ten most recent posts is
good, but letting users paginate through older posts is even
better. Use cursors and add pagination to your app.

11-35. Caching. In the Google App Engine blog, we employed the
use of Memcache to cache objects so that we don’t have to go
to the datastore again for similar requests. Do we need to do
this with our Django app? Why or why not?

http://docs.djangoproject.com/en/dev/topics/forms/modelforms/#overriding-the-default-field-types-or-widgets
http://docs.djangoproject.com/en/dev/topics/forms/modelforms/#overriding-the-default-field-types-or-widgets
http://docs.djangoproject.com/en/dev/topics/forms/modelforms/#overriding-the-default-field-types-or-widgets

ptg7615500

602 Chapter 11 • Web Frameworks: Django

11-36. Users. Support multiple blogs on your site. Each individual
user should get a set of blog pages.

11-37. Communication. Add another feature to your app such that
whenever a new blog entry is made, both the admin of the
Web site as well as the owner of the blog receive an e-mail
message with the details.

11-38. Business Logic. In addition to the previous exercise where an
e-mail message is sent, take a page from the Twitter app, and
require admin approval of a blog entry before it is actually
posted to the blog itself.

Django Twitter App

11-39. Templates. The build_absolute_uri() method was used to
eliminate hardcoded URLs outside the URL configuration
files. But there are still some hardcoded URL paths in
the HTML templates. Where are they? How can these
hardcoded URLs be removed? Hint: Read up on http://
docs.djangoproject.com/en/dev/ref/templates/builtins/
#std:templatetag-url.

11-40. Templates. Make the TweetApprover application pretty
by adding a CSS file and referencing it from the HTML
templates.

11-41. Users. Right now, any user can post new tweets without log-
ging in. Modify the app so that users can’t post new tweets
without logging in and having the permission “add tweet”
set for their user account.

11-42. Users. After forcing users to log in to propose new tweets,
pre-populate the Author email field with the logged-in
user’s e-mail address, if the user’s profile has one. Hint: Read
http://docs.djangoproject.com/en/1.2/topics/auth.

11-43. Caching. Cache the list of tweets shown when the user visits
/approve. Once a user has approved or rejected a tweet, she is
sent back to that page again; when she arrives there, ensure that
she sees a fresh, non-cached version of the page.

http://docs.djangoproject.com/en/dev/ref/templates/builtins/#std:templatetag-url
http://docs.djangoproject.com/en/dev/ref/templates/builtins/#std:templatetag-url
http://docs.djangoproject.com/en/dev/ref/templates/builtins/#std:templatetag-url
http://docs.djangoproject.com/en/1.2/topics/auth

ptg7615500

11.19 Exercises 603

11-44. Logging and Reporting. Create an audit trail for tweets by add-
ing new Comments to a post whenever it changes state. For
example, when a tweet is rejected, add a Comment to it indicat-
ing that it was rejected and at what time. Whenever the text
is updated, add another Comment. Whenever it is published,
add another Comment saying when it was published and who
approved it.

11-45. CRUD. Add a third option on the tweet review page that lets
the reviewer delete a submitted tweet, besides accepting or
rejecting it. You can delete an object from the database by
calling the delete() method on it, like so:
reviewed_tweet.delete()

11-46. Communication. When an employee proposes a new tweet, an
e-mail is sent to the manager. But the e-mail just says there is
a tweet to approve. Make that e-mail friendlier by adding the
text of the new tweet to it, as well as a link that the manager
can click to go directly to the Web page for approving or
rejecting that tweet. You can compare with how e-mails are
sent in myproject/approver/views.py.

ptg7615500

604

CHAPTER

Cloud Computing:
Google App Engine

Our industry is going through quite a wave of invention and it has
been powered by... one major phenomenon... the Cloud. And

nobody knows what this is or what it means, exactly.
—Steve Ballmer, October 2010

In this chapter...

• Introduction
• What Is Cloud Computing?
• The Sandbox and the

App Engine SDK
• Choosing an App

Engine Framework
• Python 2.7 Support

• Comparisons to Django?
• Morphing “Hello World” into a

Simple Blog
• Adding Memcache Service
• Static Files
• Adding Users Service
• Remote API Shell

ptg7615500

12.2 What Is Cloud Computing? 605

• Lightning Round
(with Python Code)

• Sending Instant Messages
by Using XMPP

• Processing Images
• Task Queues (Unscheduled

Tasks)

12.1 Introduction
The next development system we’ll explore is Google App Engine. While
App Engine does not provide a full-stack framework like Django (although
you can run Django on App Engine as we’ll find out later in this chapter),
it is a development platform, initially focused for Web applications (it
comes with its own micro framework, webapp, or its replacement, the new
webapp2), but it can and is certainly used for building general applications
and services, as well.

In using the term “general,” we don’t mean any application can be cre-
ated for or ported to App Engine; rather, we mean networked applications
that need only an HTTP endpoint to be reached. This includes, but is not
limited to, Web applications. One popular non-Web use case is a back-end
service for user-facing mobile clients. App Engine belongs to the category
of cloud computing focused on providing a platform for developers to build
and host applications or service back-ends. Before we actually go into the
platform’s details, we first need to introduce the cloud computing eco-
sphere so that we can better define where App Engine fits into this picture.

12.2 What Is Cloud Computing?
Whereas Django, Pyramid, or Turbogears applications are served by your
favorite provider or even on your own computers, Google App Engine
applications are hosted by Google and are a part of a larger class of services,
collectively bundled under the cloud computing umbrella. The main prem-
ise behind these services is for its users to offload or outsource part of a
company’s (or an individual’s) computing infrastructure, whether it is

• Profiling with Appstats
• The URLfetch Service
• Lightning Round (without

Python Code)
• Vendor Lock-In
• Resources

ptg7615500

606 Chapter 12 • Cloud Computing: Google App Engine

actual hardware, application development and execution, or software
hosting. If you are using cloud computing, you’re delegating the comput-
ing, hosting, and/or serving of your application to a corporate entity other
than your own.

Such services are only available on the Internet, and their exact physical
location might or might not be known. This includes everything from the
raw hardware1 all the way to applications, and all other possible services
in between, such as operating systems, databases, files and raw disk stor-
age, computation, messaging, e-mail, instant messaging, virtual machines,
caching (multiple levels, from Memcached to content delivery networks
[CDNs]), etc. There is a lot of activity in this industry, and new services are
continually being introduced by providers. Payment for services usually
comes under some sort of subscription or pay-per-usage model.

Cost is usually one of the main reasons why companies deploy cloud
computing services. However, the requirements differ enough that every
firm needs to do their own research to determine whether it’s the right
decision for them. Do you own a startup company and are unable to afford
all that hardware (nor do you want to lease a data center or co-location facil-
ity for those computers)? No problem, rent one computer or a thousand
from Amazon or use a very large disk from Google. Gone are the days
when founders of small startups would have to bootstrap their operations
by investing in infrastructure like this—usually on their credit cards. Now,
they can focus on their applications and the problem(s) they’re trying to
solve.

The situation is slightly different when looking at large enterprises or
Fortune 500 companies that have enough horsepower but discover it’s not
being utilized to its fullest potential. You don’t have to create a cloud busi-
ness the likes of which Amazon did (more about this in the next section),
but you can create an in-house or private cloud to provide cloud services
internally, or perhaps you can form a hybrid cloud and host some of your
infrastructure internally, perhaps the part that handles sensitive data, and
then outsource other parts (computing, applications, storage, etc.) to a
public cloud such as Google or Amazon.

Firms that employ cloud services are often concerned with physical loca-
tion, security, a service-level agreement (SLA), and compliance; depending
on their industry or governing jurisdiction, they might be compelled to do
so. Obviously when outsourcing applications, data, etc., companies want

1. The term hardware includes physical devices (which can also include
disk and memory) plus power, cooling, and networking.

ptg7615500

12.2 What Is Cloud Computing? 607

guarantees that their intellectual property is safe and secure, is available
from a physical location that is geographically permitted by their govern-
ing bodies (if any), and that access to such resources is available at any
time. Once these requirements are met, the next decision would be to
determine the appropriate level(s) of cloud computing they need.

12.2.1 Levels of Cloud Computing Service

Cloud computing is available in three levels of service. Figure 12-1 pres-
ents a view of each service layer as well as some representative products at
each respective level. The lowest layer, known as Infrastructure-as-a-Service
(IaaS), provides bare computing power such as the computers themselves
(physical or virtual), storage (usually disk), and compute or computation.
Amazon Web Services (AWS) provides their Elastic Compute Cloud (EC2)
and Simple Storage System (S3) services at the IaaS level. Google also pro-
vides an IaaS storage service called Google Cloud Storage.

Google App Engine operates at the middle level of cloud computing
known as Platform-as-a-Service, or PaaS. This level provides users with an
execution platform for their applications. The highest layer is Software-as-
a-Service (SaaS). At this level, users simply access applications that are
native to and only accessible via the Internet. Examples of SaaS include
web-based e-mail services such as Gmail, Yahoo! Mail, and Hotmail.

Source: Gartner AADI Summit Dec 2009

IaaS

PaaS

SaaS
❐ Google Apps
❐ Salesforce

❐ Yahoo! Mail
❐ NetSuite

❐ Google App Engine
❐ Heroku
❐ VMware Cloud Foundry

❐ Microsoft Windows Azure
❐ Red Hat OpenShift
❐ Salesforce force.com

❐ Amazon Web Services
❐ Google (Storage, Prediction, BigQuery)
❐ Rackspace Cloud
❐ Joyent Cloud

Figure 12-1 The three cloud computing service levels.

ptg7615500

608 Chapter 12 • Cloud Computing: Google App Engine

Of these three levels, IaaS and SaaS are the most well-known while PaaS
doesn’t bask in the limelight as often as its brethren. This might be chang-
ing, however, as PaaS is perhaps the most powerful of them all. With PaaS,
you get IaaS for free, but it includes many services that are extremely
costly and the most cumbersome to maintain yourself. These can include
anything at the IaaS level and beyond, such as the operating system, data-
bases, software licensing, networking and load-balancing, servers (Web and
otherwise), software patches and upgrades, monitoring, alerting, security
fixes, system administration, etc. A key benefit to using this service level
versus maintaining your own equipment is there won’t be “idle capacity”
because you bought more computer firepower than you actually needed,
based on the Web traffic you originally forecast. There is nothing more frus-
trating than sitting on an expensive investment that you know is not being
properly utilized or amortized.

Although the concept of cloud computing has been around for a long
time—John Gage of Sun Microsystems coined the memorable slogan, The
Network is the Computer, in 1984—it has only been commercialized in the
mid-2000s, specifically in early 2006 when Amazon introduced AWS. It
was the issue of idle capacity that led them down this path. Amazon had
to purchase enough computing resources to power their online retail busi-
ness to withstand the traffic and demand of the holiday shopping season.

According to their whitepaper,2 Amazon claims that “[by] 2005, [they]
had spent over a decade and hundreds of millions of dollars building and managing
the large-scale, reliable, and efficient IT infrastructure that powered the operation
of one of the world's largest online retail platforms.”

However, with all that capacity and computing power, guess what most
of those devices are doing the rest of the year? Frankly, a whole lot of noth-
ing, so why not rent out this additional CPU and storage capacity like a
utility service? And that’s exactly what they did. Since then, several other
large technology companies have joined this trend: Google, Salesforce,
Microsoft, RackSpace, Joyent, VMware, and many, many others who have
all jumped on the cloud bandwagon.

While Amazon’s EC2 and S3 services are clearly situated at the infra-
structure level, a new market began to open up for those desiring to out-
source their applications, specifically being able to write custom software
systems that take advantage of corporate Salesforce (customer relation-
ship) data. This is what led Salesforce to create force.com, the first plat-
form service to do just that. Of course, not everyone wants a Salesforce

2. http://media.amazonwebservices.com/AWS_Overview.pdf

http://media.amazonwebservices.com/AWS_Overview.pdf

ptg7615500

12.2 What Is Cloud Computing? 609

application written in yet another proprietary programming language, so
Google developed a more general PaaS service called App Engine, which
burst onto the scene in April 2008.

12.2.2 What Is App Engine?

What is App Engine doing in a Python book? Is it a core part of the lan-
guage or a core third-party package? Although not really either, its release
and existence have had a profound impact in the Python community and
in the market; so much so, in fact, that there was strong encouragement
from multiple sources to add a section on Google App Engine here. (The
same thing happened with Python Web Development with Django, the book I
wrote with my esteemed colleagues, Jeff Forcier and Paul Bissex.)

While the various web frameworks have the expected similarities and
differences, App Engine is a remarkable departure from them all because
not only is it a development platform but it also comes with application
hosting services, which is the main reason why you would even want to
create applications with App Engine. Users now have a much simpler
alternative to developing an application and finding somewhere to host
it—or worse, building their own infrastructure to support their applica-
tion. All this additional work involves much more than just designing,
coding, and testing an application.

Instead of having to deal with an ISP or self-hosting, developers upload
their applications to Google, which will take care of all the logistics of
maintaining them online. The regular Web developer now shares the same
resources as all of Google, running in the same data centers and on the
same hardware that powers the Internet giant itself. In fact, through App
Engine and its other cloud services, Google is actually providing a public
API to the stack it uses to run itself. This includes App Engine APIs, such
as Datastore (Megastore, Bigtable), Blobstore, Image (Picasa), Email (GMail),
Channel (GTalk), etc. In addition, now the developer no longer has to
worry about computers, networking, operating systems, power, cooling,
load-balancing, etc.

That’s all well and good, but where does Python fit into this picture?
When App Engine originally launched in 2008, the only language run-

time supported was Python. Java eventually came a year later, but Python
holds a special place because it was App Engine’s first supported runtime.
Current Python programmers already know that it’s the ease-of-use king,
encourages group collaboration, allows for extremely rapid development,
and does not require its users to necessarily have a computer science degree

ptg7615500

610 Chapter 12 • Cloud Computing: Google App Engine

in order to use it as an effective tool. This approach is more welcoming of
developers of all backgrounds and persuasions. The creator of Python
himself is an engineer on the App Engine team, not to mention yours truly.
Because of its ground-breaking nature and close ties to the Python com-
munity, I’m excited to help you get started with it!

There are four main components of App Engine that make up the entire
system: the language runtimes, the scalable hardware infrastructure, the
web-based administration console, and the software development kit (SDK)
which gives users the tools they need: a development server and access to
App Engine’s APIs.

Language Runtimes

With regard to language runtimes, we’re (obviously) going to spend the rest
of the time on Python, but please be aware that at the time of this writing,
Java and Go are also available. Also, due to the Java support, developers can
code in languages that have an appropriate interpreter capable of running
in a Java virtual machine (JVM), such as Ruby, PHP, JavaScript, and Python,
executed by JRuby, Quercus, Rhino, and Jython, respectively, plus Scala and
Groovy. Python via Jython is the most intriguing; some people are per-
plexed as to why users would want to run a Jython application when they
can just use the native Python support. The primary reason involves users
who want to develop new projects in Python but already have existing Java
packages. Understandably, they want to take advantage of their existing
packages but cannot afford or want to port those libraries to Python.

Hardware Infrastructure

The hardware infrastructure is really a black box for users: you don’t know
much about any of the hardware on which your code runs. You’ll likely
conclude it has some flavor of Linux and that the boxes sit in data centers
attached to the global network. You might have even heard of Bigtable, the
non-relational database system that App Engine uses for its datastore. For
most people, this is as much as they actually need to know: remember, with
cloud computing, it’s not your headache anymore. The extremely difficult
work and details to maintain and make such infrastructure available for users
to take advantage of is pushed behind the curtains, out of sight.

Web-Based Administration and System Status

In the remaining sections of this chapter, we’ll look at various features of
the Python application programming interface (API). Be aware that in

ptg7615500

12.2 What Is Cloud Computing? 611

production, your applications are not going to be running full versions of
the Python (or Java) interpreters. Because your application shares resources
with other users’ applications, it makes sense that for security reasons, all
applications must execute in a sandbox, which is a restricted environment.
Yes, you’re losing some level of control in exchange for extremely difficult-
to-build components and scalability.

In exchange, App Engine provides a web-based administration console
(called admin console for short) that gives developers an insight into their
application, its traffic, data, logging, billing, settings, usage, quotas, etc.
Figure 12-2, presents a screenshot of an application’s admin console.

There is also a system-wide status page (see Figure 12-3) with which you
can monitor how App Engine is doing as a whole across all applications.

Keep in mind that “across all applications” really means just that. As of
winter 2010, Google App Engine serves more than one billion Web pages
daily. Once you create and deploy your application, you’ll be adding to
this total. Although that’s exciting to think about, again, keep in mind that
because App Engine is shared among all developers, you need to learn
how to live in the sandbox. It’s not as bad as it sounds because App Engine
provides many services and APIs for developers.

Figure 12-2 The Google App Engine application’s administration console. (Image courtesy
of Google)

ptg7615500

612 Chapter 12 • Cloud Computing: Google App Engine

12.3 The Sandbox and the App Engine SDK
It is a no-brainer that developers would not want other applications to be
able to access their own applications’ source code nor their data, so it’s
only fair that you respect other applications and the associated data, as
well. There are certain restrictions from within the sandbox that cannot be
circumvented. (From time to time, Google will lift such restrictions if and
when it is safe to do so.) Verboten actions include (but are not limited to)
the following:

• You cannot create a local disk file, but you can create a
distributed one using the Files API.

• You cannot open an inbound network socket connection.

• You cannot fork new processes.

Figure 12-3 Google App Engine application’s System Status page. (Image courtesy of Google)

ptg7615500

12.3 The Sandbox and the App Engine SDK 613

• You cannot make (operating) system calls.

• You cannot upload any non-Python source code.

Because of these limitations, the App Engine SDK comes with higher-
level APIs to make up for any loss functionality due to the restrictions.

Furthermore, because the version of Python that App Engine executes
(currently versions 2.5 and 2.7) is a subset of the full distribution, you
don’t have access to all of Python’s features, especially those which are
compiled in C. Some of the C-compiled Python modules and packages are
available. Version 2.7 does support significantly more C libraries, how-
ever, including some of the more well-known external packages, such as
NumPy, lxml, and PIL. In fact, while the version 2.5 support for C libraries
is in the form of a “whitelist,” version 2.7 has made available so many
more of these, that the list there is actually a “blacklist.”

The Python 2.5 allowed/whitelisted and the Python 2.7 disallowed/
blacklisted C-libraries are outlined at http://code.google.com/appengine/
kb/libraries.html (there is a similar list for Java classes). However, if you
want to use any third-party Python packages, you’re welcome to bundle
them with your source as long as they are pure Python (For instance, no
executables, .so or .dll files, etc.) and don’t use modules/packages that
are not in the whitelist.

Keep in mind that there is limit to the total number of files (currently
10,000) that you can upload, another limit on the total size of all files
uploaded (currently 150MB)—this includes application files or static
assets such as HTML, CSS, JavaScript, etc.—as well as a per-file size limit
(currently 32MB). To see the list of current size limitations, go to http://
code.google.com/appengine/docs/python/runtime.html#Quotas_and_Limits
as the team tries hard to raise limits wherever and whenever possible. Still,
there are several workarounds that help ease the pain of these restrictions.

If your application serves media files that exceed the per-file size limit,
you can store them in the App Engine Blobstore (see Table 12-1) where
you can store a file that’s arbitrary in size, that is, there is no size limitation
for each file (blob). If you’re concerned about the total number of .py files,
you can store them in a Zip file and upload that, instead. Regardless of
how many .py files you’ve archived, you only pay the penalty of a single
Zip file. Of course that Zip file must also be below the per-file size limit,
but at least you don’t have to worry as much about the number of files. You
can read more about using Zip files in the article located at http://
docs.djangoproject.com/en/dev/ref/settings (pay attention to the note at
the top of the article).

http://code.google.com/appengine/kb/libraries.html
http://code.google.com/appengine/kb/libraries.html
http://code.google.com/appengine/docs/python/runtime.html#Quotas_and_Limits
http://code.google.com/appengine/docs/python/runtime.html#Quotas_and_Limits
http://docs.djangoproject.com/en/dev/ref/settings
http://docs.djangoproject.com/en/dev/ref/settings

ptg7615500

614 Chapter 12 • Cloud Computing: Google App Engine

File limitations aside, let’s go back to the execution restrictions (no sockets,
files, processes, or system calls). Without these building blocks, it doesn’t sound
like you can have a very useful application. Don’t despair; help is available!

12.3.1 Services and APIs

To help you get your work done, Google gives you an ever-increasing
number of building blocks to work with that make up for those core
restrictions. For example, why would you want to open a network socket?
Do you want to communicate with other servers? In that case, use the
URLfetch API. What about sending or receiving e-mail? The Email API
was created just for that purpose. Similarly, use the XMPP (eXtensible
Messaging and Presence Protocol, or simply: Jabber) API for sending or
receiving instant messages (IMs). The stories are similar for accessing a
network-based secondary cache (Memcache API), employing reverse
AJAX or browser push (Channel API), accessing a database (Datastore
API), etc. Table 12-1 lists all the services and APIs that are available to App
Engine developers at the time of this writing.

Table 12-1 Google App Engine Services and APIs (Some Experimental)

Service/API Description

App Identity Use this when your application contains code that needs to
identify itself or other APIs which demand such information.

Appstats An event-based framework that helps you to measure the
performance of your application.

Backends If the standard request/response or task queue deadlines are
not long enough for your requirements, you can use Back-
ends to App Engine code to run indefinitely.

Blobstore Using Blobstore, you can use applications to serve data
objects (“blobs”) that are too large for the Datastore (e.g.,
media files).

Capabilities Gives applications the ability to detect when the App Engine
datastore or memcache are unavailable in order to provide
graceful downtime service to users.

Channel This is a service with which your application can push data
directly to the browser; a.k.a. Reverse Ajax, browser push,
Comet.

ptg7615500

12.3 The Sandbox and the App Engine SDK 615

Service/API Description

Cloud SQL Use a relational database (instead of the default scalable
non-distributed datastore).

Cloud Storage Read or write files directly to the Google Cloud Storage ser-
vice by using the familiar Files API (see the description later
in this table).

Conversion Use this to convert between HTML, PDF, text, and image
formats.

Cron Cron gives you the ability to schedule tasks to run at specific
dates, times, or intervals.

Datastore A distributed, scalable, non-relational persistent storage for
your data.

Denial-of-Service Use this to set up filters to block IP addresses/families that
issue Denial of Service (DoS) attacks on your application.

Download In the event of a catastrophe, developers can download the
code they uploaded to Google.

Files Create distributed (blobstore or Cloud Storage) files using
the common Python file interface.

Search Perform searches for text, timestamps, etc. in your datastore
entities.

Images Manipulate image data; for example, create thumbnails,
crop, resize, and rotate images.

Logs Allows users to access application and request logs, and
even purge at runtime for long-running requests.

Mail This API gives your application the ability to send and/or
receive e-mail

MapReduce Used to perform distributed computing over significantly
large datasets. This API includes the map, shuffle, and
reduce phases.

Matcher Highly scalable real-time matching infrastructure: register
queries to match against an object stream.

Memcache Standard distributed in-memory data cache (like Mem-
cached) between your application and persistent storage.

(Continued)

ptg7615500

616 Chapter 12 • Cloud Computing: Google App Engine

Okay, sounds exciting, but enough talk already—let’s get started! The
first thing you need to do is to select a framework with which to build
your applications.

Table 12-1 Google App Engine Services and APIs (Some Experimental)
(Continued)

Service/API Description

Namespaces
(Multitenancy)

With Namespaces, you can create multitenant applications
by compartmentalizing your Google App Engine data.

NDB (new
database)

New, experimental Python-App Engine higher-level data-
store interface.

OAuth Provide a secure way for third-parties to access data on a
user’s behalf without requiring authorization (logins/
passwords, etc.).

OpenID A Federated authentication service with which users can
login from Google Accounts and OpenID accounts.

Pipeline Manage multiple long-running tasks/workflows and collate
their results.

Prospective
Search

Somewhat in contrast to the full-text search API that allows
users to search existing data, Prospective Search allows
users to query for data that has not been created yet: set up
your queries, and when matching data is stored, the API is
called (think of a combination of a database trigger plus a
task queue task).

Socket Allow users to create and communicate via outbound socket
connections.

Task Queue Users can perform background tasks (concurrently if
desired) away from user interaction.

URLfetch Communicate with other applications online via HTTP/S
requests/responses.

Users App Engine’s authentication service manages the user sign-
in process.

WarmUp Loads applications on instances before traffic arrives to
reduce request service time.

XMPP Gives your application the ability to chat (send and/or
receive instant messages) via Jabber/XMPP protocol.

ptg7615500

12.4 Choosing an App Engine Framework 617

12.4 Choosing an App Engine Framework
If you’re writing an application that’s not user-facing—meaning other
applications will just make calls to your application for service—choosing
a framework is less important. Currently there are several options from
which to choose, which we present in Table 12-2.

Table 12-2 Frameworks for Development with Google App Engine

Framework Description

webapp, webapp2 A default lightweight Web framework that comes with
the App Engine SDK.

bottle A lightweight WSGI micro Web framework in Python;
ships with App Engine adapter (gae).

Django Django is a popular Python full-stack Web framework
(not all features are available).

Django-nonrel Bridges the gap between running Django applications on
non-relational datastores such as App Engine.

Flask Another microframework (like “bottle” above) based on
Werkzeug & Jinja2 (like Kay below) and focused on ease
of customization, and without a native data abstraction
layer, you use App Engine’s Datastore directly.

GAE Framework Based on Django, but simplified. Use this framework to reuse
existing infrastructure “apps” such as users, blog, admin, etc.
Think simplified (Django+Pinax) for App Engine.

Google App
Engine Oil
(GAEO)

If Webapp is too simplistic and Django is too complex,
this model-view-template framework, like Django, is also
inspired by Ruby’s Rails and Zend frameworks.

Kay Also similar to Django, but uses the Werkzeug lower-level
framework, the Jinja2 templating engine, and babel for
doing language translations.

MVCEngine Framework inspired by Rails and ASP.NET.

Pyramid Another popular full-stack Web framework based on
Pylons and repoze.bfg.

tipfy More powerful lightweight framework than webapp, created
just for App Engine. This also led to the creation of webapp2,
meaning its original creator no longer maintains it.

(Continued)

ptg7615500

618 Chapter 12 • Cloud Computing: Google App Engine

Most beginners to App Engine will just start with webapp or webapp2
to see how far they can get because that’s the one you get with App
Engine. That’s a great approach, because although webapp is fairly sim-
plistic, it provides the basic tools you need to create useful applications.
However, there is a class of veteran Python Web developers who have
used Django for a long time and prefer that approach, instead. Because of
App Engine’s restricted environment, by default you don’t have access to
all of Django’s features. However, App Engine does have somewhat of a
relationship with Django.

Some components of Django have been integrated into App Engine,
and Google provides some versions of Django (albeit somewhat older) on
App Engine servers so that users do not have to upload the entire Django
installation along with their applications. These include the 0.96, 1.2, and
1.3 releases of Django (at the time of this writing; new versions could have
been added by the time you read this). However, there several critical
pieces of Django that have not been brought over to App Engine, the most
important being its Object-Relational Mapper (ORM) which has tradition-
ally relied on having a SQL relational database foundation.

I use the word traditionally because there are multiple ongoing efforts
to get Django to support non-relational (NoSQL) databases, too. However,
at the time of this writing, none of those projects have been integrated into
the Django distribution yet. Perhaps by the time you read this, the world
will have changed to the point where Django can do either relational or
non-relational. In addition to proposals for Django 1.3 and 1.4, one of the
other well-known projects is called Django-non-rel. This is a branch of
Django that comes with adapters for Google App Engine as well as MongoDB
(plus several more on the way). There is also some work to bring JOINs to
the NoSQL adapters, but that is also in development at this time. If there is
any material relevant for Django non-relational developers, we’ll mention
them along our journey.

Tipfy is a lightweight framework developed specifically for App Engine.
You can think of it as a webapp++ or “webapp 2.0” as it consists of features

Table 12-2 Frameworks for Development with Google App Engine
(Continued)

Framework Description

web2py Another Python full-stack Web framework that has a
higher-level of abstraction, meaning it’s easier to use than
others but hides more details (seen as both good and bad).

ptg7615500

12.4 Choosing an App Engine Framework 619

representing functionality that is notably absent from webapp. The feature-set
includes (but is not limited to) internationalization, session management,
alternative forms of authentication (Facebook, FriendFeed, Twitter, etc.),
access to Adobe Flash (AMF protocol access plus Flash messages), ACLs
(access control lists), and additional templating engines (Jinja2, Mako,
Genshi). It is based on WSGI and hooks into the Werkzeug utility set that
form the foundation of any WSGI-compliant application. You can find out
more about Tipfy from its Web page and wiki at http://tipfy.org.

web2py is one of the four well-known full-stack Web frameworks for
Python (in addition to Django, TurboGears, and Pyramid). It is the second
that is compatible with Google App Engine. web2py focuses on letting
developers create fast, scalable, secure, and portable Web applications that
rely on a database system, whether it be relational or Google App Engine’s
non-relational datastore, and it works with a wide variety of databases. A
database abstraction layer (DAL) transposes ORM requests in SQL in real
time and uses that as its interface to database. Naturally, for App Engine
applications, you’re still restricted to the relational limitations presented
by the Datastore (i.e., no JOINs). It also supports a variety of Web servers
such as Apache, ligHTTPD, or any WSGI-compliant server. Using web2py
is a natural route for existing web2py developers who want to migrate
their applications to App Engine.

You can choose any one of these frameworks to develop your applica-
tions. Alternatively, any WSGI-compliant framework will work. Here, we
use the lowest common denominator (webapp); we encourage you to at
least move forward and do all the examples by using webapp2.

A bit of history: one passionate App Engine developer wasn’t satisfied
with his framework selection, which motivated him to create tipfy. He then
wanted to improve webapp, dropped tipfy, and built webapp2, which turned
out so good that Google integrated it as part of the version 2.7 runtime SDK
(thus, the quote at the beginning of Chapter 11, “Web Frameworks: Django”).

12.4.1 Frameworks: webapp then Django

In Chapter 11, we covered Django and how to create a blog by using that
framework. Here, we’re going to do the same thing but use the webapp
default, instead. We’ll show you how to build almost the same thing by
using App Engine, running it by using the App Engine development envi-
ronment, just like in our Django example. Users can also optionally create
a Google Account or other OpenID identification (or use an existing one) and
set up an application to run on the live App Engine production environment.

http://tipfy.org

ptg7615500

620 Chapter 12 • Cloud Computing: Google App Engine

We’ll show you how to do that, as well, but it’s not necessary nor is there
any obligation to do so. No credit card is required to set up an application
online, but you will need a mobile phone with text messaging or short
message service (SMS) capability.

To wrap up this chapter, we’ll port this application to Django and run
that on App Engine, too (development or production environments). The
concepts and features of App Engine are enough to warrant a book on its
own, so although we won’t be giving it a full treatment here, our material
should be able to get you started and comfortable with multiple aspects of
the App Engine product.

Downloading and Installing the App Engine SDK

To get started, you need to get the App Engine SDK for your development
platform. There are a variety of files available to download, so you need to
be aware of the correct ones for your system. Visit the Google App Engine
home page located at http://code.google.com/appengine, and then click
the Downloads link. From there, you can find the appropriate files for
your system. Files are also available for Java developers, but for our pur-
poses here, we’ll focus only on Python.

Linux or *BSD users should download the Zip file, unzip the archive, and
install that folder (google_appengine) in your favorite place, such as /usr/
local, and drop a link to the dev_appserver.py and appcfg.py commands
in a place similar to /usr/local/bin. Alternatively, you can just add /usr/
local/google_appengine to your path. (You can skip the rest of this section
as well as the next one on using the Launcher and go straight to the sec-
tion, “Creating ‘Hello World’ manually.”)

Windows PC users should download the .msi file; Mac users should
grab the .dmg file. Once you’ve located the appropriate file, double-click
or launch it to install the App Engine SDK. This process will also install
the Google App Engine Launcher. The Launcher can be used to manage
your App Engine applications you have on your development computer as
well as to help you upload them to Google for running live in production.

Using the Launcher to Create “Hello World”

(Windows and Mac Users Only)

Once you start up the Launcher, you’ll see a control panel similar to those
depicted in Figure 12-4 and Figure 12-5.

http://code.google.com/appengine

ptg7615500

12.4 Choosing an App Engine Framework 621

There are various buttons that will bring up (and take down) your
development server (Run); view your logs (Logs); browse your develop-
ment admin console (SDK console); edit configuration settings (Edit);
upload your application to App Engine production servers (Deploy); or
go to your live application’s admin console (Dashboard). Let’s get started
and create a new application. We’ll visit several of the Launcher buttons
throughout the course of developing our application.

Figure 12-4 The App Engine Launcher for Mac.

Figure 12-5 The App Engine Launcher for Windows.

ptg7615500

622 Chapter 12 • Cloud Computing: Google App Engine

To do this, go to the menu and pull down the selection to create a new
application. Give it some sort of unique name; “helloworld” has probably
already been taken. You can provide a few other options, as well, such as
the folder in which to create the new boilerplate files as well as the server’s
port number. Once that’s done, you’ll see your application in the
Launcher’s main panel, which means it’s ready to run. Before we do that
however, let’s just take a quick look at the three files that were created for
you, app.yaml, index.yaml, and main.py.

The App Engine Default Files
The app.yaml file represents your configuration settings. The default file
that’s generated for you looks like that shown in Example 12-1.

You’ll get the idea that a YAML (yet another markup language) file is
made up of mappings (key-value pairs) and sequences. For more infor-
mation on this file type, you can go to both http://yaml.org and http://
en.wikipedia.org/wiki/Yaml.

Line-by-Line Explanation

Lines 1–4
The first section is pure configuration, assigning a name to your App
Engine application (APP_ID) followed by its version number. For develop-
ment, you can pick any name you like, for example, blog. If you intend to
upload to the App Engine live production environment, you’ll need to be
more creative and come up with a name that hasn’t been chosen yet. A
quick note about names, about which you should be aware: names cannot
be transferred, and names are never recycled; once a name is taken it’s
gone, even if an application is deleted, so choose carefully.

Example 12-1 A Default Configuration File (app.yaml)

1 application: APP_ID
2 version: 1
3 runtime: python
4 api_version: 1
5
6 handlers:
7 - url: .*
8 script: main.py

http://yaml.org
http://en.wikipedia.org/wiki/Yaml
http://en.wikipedia.org/wiki/Yaml

ptg7615500

12.4 Choosing an App Engine Framework 623

The version number is a unique string that you can set. It’s up to you to
determine how you want to implement versioning. You can go with the
traditional 0.8, 1.0, 1.1, 1.1.2, 1.2, etc., or you can use another naming con-
vention such as v1.6 or 1.3beta. It’s just a string, but you’re restricted to
alphanumeric characters plus hyphens. You can create up to ten versions
of your application (major or minor makes no difference). After that, you
won’t be able to upload any more until you delete at least one version.

Below the version number is the runtime type. Here, it’s Python and
version 1 of that API. You can also use app.yaml for Java and JRuby by
inserting “Go,” between Java and JRuby, and other runtimes for the JVM;
the app.yaml file is used in turn to generate the web.xml and appengine-
web.xml files that are actually needed for your servlet(s).

Lines 6–8
The final few lines specify your handlers. Just as with a Django URLconf
file, you need to specify a regular expression to match against client
requests as well as provide a corresponding handler. In Django, these han-
dler url-script pairs correspond to the project-level URLconf file, which
forwards requests to an application-level URLconf. Similarly in app.yaml,
the script directive sends the request to the given Python script, which
contains more specific URLs and maps them to handler classes, in the
same way that a Django app’s URLconf points to a view function.

To learn more about configuring your application, read the documentation
at http://code.google.com/appengine/docs/python/config/appconfig.html.

Now let’s look at the index.yaml file:
indexes:

AUTOGENERATED
This index.yaml is automatically updated whenever the dev_appserver
. . .

The index.yaml file is needed when you need to create custom indexes
for your application. To make App Engine query the datastore faster, you
need to have a corresponding index for each query. (Indexes for simple
queries are created automatically—you don’t need to do so.) You generally
won’t need to consider this until your queries become more complex. To
read more about using indexes, view the official documentation at http://
code.google.com/appengine/docs/python/config/indexconfig.html.

http://code.google.com/appengine/docs/python/config/appconfig.html
http://code.google.com/appengine/docs/python/config/indexconfig.html
http://code.google.com/appengine/docs/python/config/indexconfig.html

ptg7615500

624 Chapter 12 • Cloud Computing: Google App Engine

The last file that is automatically generated by the Launcher on your
behalf is the main application file (main.py), as shown in Example 12-2.

Line-by-Line Explanation

Lines 1–2
The first two lines import the webapp framework as well as bring in its
run_wsgi_app() utility function.

Lines 4–6
After these introductory lines, you’ll find the MainHandler class. This is the
core functionality of this example. It defines a get() method to process
HTTP GET requests; hence its name. A handler instance will have attri-
butes for both the request and the response. In our example, we’re only
writing out the HTML/text to return to the user via the response.out file.

Lines 8–11
Next comes the main() function, which spawns an instance of an application
and then runs it. Within the call to instantiate webapp.WSGIApplication,
you’ll find pairs (or 2-tuples)—well, just one so far, that determine which
handler(s) process which requests. In our case, the only URL our applica-
tion handles at the moment is '/', and these requests will be handled by
the MainHandler class that we just described.

Example 12-2 The Main Application File (main.py)

1 from google.appengine.ext import webapp
2 from google.appengine.ext.webapp import util
3
4 class MainHandler(webapp.RequestHandler):
5 def get(self):
6 self.response.out.write('Hello world!')
7
8 def main():
9 application = webapp.WSGIApplication([('/', MainHandler)],
10 debug=True)
11 util.run_wsgi_app(application)
12
13 if __name__ == '__main__':
14 main()

ptg7615500

12.4 Choosing an App Engine Framework 625

Lines 13–14
Finally, we have the familiar lines for determining execution based on
whether this Python source file was imported or executed directly as a script.
If you’re not familiar with this code, we recommend you flip back and review
Chapter 3, “Internet Client Programming,” and Chapter 12, in Core Python.

All of the code should be fairly straightforward, even if you’re seeing
some of this for the very first time. From this point forward, we’re going to
make continuous changes to the application—iterating as it were—to
improve it or add new functionality.

Minor Code Cleanup

Before we start adding to the application, let’s make a few cosmetic changes
to main.py that don’t affect execution at all, as shown in Example 12-3.

What We Did and Why

1. We don’t want WSGIApplication to be instantiated each time
this application is run. By moving it out of main() into the
global code block, we instantiate this class only once instead
of on a per-request basis. We get a minor performance bene-
fit—it’s not very big, but this is just a simple optimization that
you would do in any similar Python application, regardless of
whether it’s App Engine or not. The only (minor) penalty is
that application is now a global variable versus a local.

Example 12-3 Housekeeping and Cleanup of the Main Application File
(main.py)

1 from google.appengine.ext import webapp
2 from google.appengine.ext.webapp.util import run_wsgi_app
3
4 class MainHandler(webapp.RequestHandler):
5 def get(self):
6 self.response.out.write('Hello world!')
7
8 application = webapp.WSGIApplication([
9 ('/', MainHandler),
10], debug=True)
11
12 def main():
13 run_wsgi_app(application)
14
15 if __name__ == '__main__':
16 main()

ptg7615500

626 Chapter 12 • Cloud Computing: Google App Engine

2. Because we’re only using one function from webapp.util, we
can simplify the import by just bringing in that one name to
(barely) speed up (lookup to) the call to run_wsgi_app(). Call-
ing util.run_wsgi_app() versus run_wsgi_app() doesn’t mat-
ter if you’re doing it once or twice, but it can add up over
millions of requests to your application.

3. Having the handlers pairs on separate line(s) makes it easier
to add new handlers; for example:
('/', MainHandler),
('/this', DoThis),
('/that', DoThat),
. . .

Okay, that’s all we could think of at this time. It gives it more of “Djangish”
kind of feel, if there’s such a word.

12.5 Python 2.7 Support
The original Python release of Google App Engine supported version 2.5
(specifically 2.5.2 on the server). Google recently released a new version 2.7
runtime (specifically 2.7.2 on the server). Support for version 2.7 is still
experimental at the time of this writing, so we’re going to leave all the
remaining code examples in version 2.5—you can use version 2.6 or 2.7 for
development, however. But, with this new runtime, there are a few
changes that you need to be aware of. We’ll also show you some code dif-
ferences so that you can tweak the code in the rest of the chapter to version 2.7,
should you prefer that runtime instead of version 2.5.

12.5.1 General Differences

The first and one of the more critical of the differences is that the version 2.7
runtime supports concurrency. With App Engine’s pricing model, you’re
charged based on the number of instances of your application that are
serving traffic. Because the version 2.5 runtime is not concurrent, new
instances must be spawned if your running instances aren’t able to cope
with the traffic that you’re getting. This can lead to increased costs. With
concurrency, your application can respond in an asynchronous manner
and significantly reduce the need for additional instances.

2.7

ptg7615500

12.5 Python 2.7 Support 627

Next, highly desired and previously forbidden C libraries are now
available. These include PIL, lxml, NumPy, and simplejson (named as json).
Version 2.7 support also comes with Jinja2 templating system along with
Django templates. To see all of the differences between the version 2.5 and 2.7
runtimes, check out the official documentation at http://code.google.com/
appengine/docs/python/python27/newin27.html.

12.5.2 Variations in the Code

There are also some slight code differences, so let’s take a look at them
because these are the changes you’ll be making with your code in this
chapter to execute your application on the version 2.7 runtime. The
app.yaml file sees a change to the runtime field. In addition, you will prob-
ably want to turn on concurrency via the threadsafe directive. The other
major change is moving to pure WSGI—rather than specifying a script to
execute, you’ll point to an object (the application object), instead. All the
necessary differences are shown in italics in Example 12-4.

The version 2.7 runtime features a new and improved webapp frame-
work named webapp2. Because we’re using WSGI instead of CGI, we can
remove the previously superfluous “main()” at the bottom. All changes to
main.py are reflected in Example 12-5, which, as you can see, is shorter and
easier to read.

Example 12-4 Sample Python 2.7 Configuration file (app.yaml)

1 application: APP_ID
2 version: 1
3 runtime: python27
4 api_version: 1
5 threadsafe: true
6
7 handlers:
8 - url: .*
9 script: main.application

http://code.google.com/appengine/docs/python/python27/newin27.html
http://code.google.com/appengine/docs/python/python27/newin27.html

ptg7615500

628 Chapter 12 • Cloud Computing: Google App Engine

Note that the application object in main.py is the main.application
that is referred to in the app.yaml file. You can find more about the differ-
ences between the main.py used with versions 2.5 and 2.7 at http://
code.google.com/appengine/docs/python/tools/webapp/overview.html.

To read more about using the version 2.7 runtime time and see more
information about the changes just shown, check the documentation at
http://code.google.com/appengine/docs/python/python27/using27.html.

12.6 Comparisons to Django
App Engine does not structure a Web site as a project made up of one or
more applications. Instead, everything combined is a single application.
We mentioned that the app.yaml file bears some similarity to Django’s
project-level urls.py because it maps URLs to handlers. It also has ele-
ments of settings.py because it is a configuration file.

The main.py file serves as a combination of a Django app’s urls.py plus
views.py. When creating the WSGI application, you have one or more han-
dlers that designate the class whose instance will handle those requests.
The class definitions as well as their corresponding get() or post() han-
dlers are created in this file, as well. Those handlers would be the closest
thing to a view function.

Throughout Chapter 11, we were able to test our application by using
the development server. App Engine has its own development server, and
we’ll be using it as we progress.

12.6.1 Starting “Hello World”

There are two ways to start up an application on the development server.
If you’re in the Launcher, select the application’s row, and then click the

Example 12-5 Sample Python 2.7 Main Application file (main.py)

1 from google.appengine.ext import webapp2
2
3 class MainHandler(webapp2.RequestHandler):
4 def get(self):
5 self.response.out.write('Hello world!')
6
7 application = webapp2.WSGIApplication([
8 ('/', MainHandler),
9])

http://code.google.com/appengine/docs/python/tools/webapp/overview.html
http://code.google.com/appengine/docs/python/tools/webapp/overview.html
http://code.google.com/appengine/docs/python/python27/using27.html

ptg7615500

12.6 Comparisons to Django 629

Run button. After a few seconds, you’ll see the icon turn green. You can
then click the Browse button to start a Web browser that opens to your
application.

To start your application via the command-line, ensure that the
dev_appserver.py file is in your path, and then issue the following command:

$ dev_appserver.py DIR.

DIR is the application’s folder name (that contains the app.yaml and
main.py files). And yes, if you’re in the same directory as both files, you
can just use the following:

$ dev_appserver.py.

It’s a little bit different from Django, which uses a project-based command-
line tool (manage.py) versus a common command installed for all App
Engine applications. Another minor difference is that Django’s develop-
ment server starts on port 8080, whereas App Engine uses 8000. This just
means your URL must change to http://localhost:8080/ or http://127.0.0.1:8080.
If using one of the Launchers, when you create a new application, it will
automatically assign it a unique port number, so you might need to use
that, as well, or you can change it.

12.6.2 Creating “Hello World” Manually

(Zip File Users)

If you aren’t using the Launcher, then you probably do not need any assis-
tance in typing in the code shown earlier. Because the index.yaml file is
optional at this time, you really only need a skeletal app.yaml and main.py
file. You can type them in manually or go to this book’s Web site and
download them from the Chapter 12 folder. Once you have both files
there, you can start up the development server by using the same com-
mand that was just described (dev_appserver.py).

*Uploading Your Application Live to Google

It might be somewhat premature, but if you want, you can choose to go
beyond running your application on the development server. You can also
upload it to Google and run it live in production, making your simple
“Hello World” application available to… well, the world (except for places
in which Google service is not available). This is completely optional, so if
this isn’t of interest to you, then skip to the next section to continue build-
ing your blog.

ptg7615500

630 Chapter 12 • Cloud Computing: Google App Engine

App Engine provides a free service tier, in which you can develop simple
low-trafficked applications without any cost to you. You’ll need a mobile
phone that supports SMS as well as a Google Account, but a credit card
isn’t necessary unless you plan on exceeding the free quota available to all
applications. Visit http://appengine.google.com and sign-in to create your
App Engine account.

To upload your application (and its static files, if any), you can either
use one of the Launchers (Windows or Mac only), or you can use the
command-line tool, appcfg.py. You’ll send the update command as well as
pass in the top-level directory where your app.yaml file is located. The
following is an example execution of appcfg.py in the current directory.
Note that you’ll need to enter the credentials (valid e-mail address and
password) of a developer for that application, as demonstrated in the
following:

$ appcfg.py update .
Application: APP_ID; version: 1.
Server: appengine.google.com.
Scanning files on local disk.
Initiating update.
Email: YOUR_EMAIL
Password for YOUR_EMAIL: *****
Cloning 2 static files.
Cloning 3 application files.
Uploading 2 files and blobs.
Uploaded 2 files and blobs
Precompilation starting.
Precompilation completed.
Deploying new version.
Checking if new version is ready to serve.
Will check again in 1 seconds.
Checking if new version is ready to serve.
Will check again in 2 seconds.
Checking if new version is ready to serve.
Closing update: new version is ready to start serving.
Uploading index definitions.

It can take up to a minute to upload your application (generally not
more than that). The preceding example uploaded in just over 3 seconds.

Give it another few seconds after the upload has completed, and then
you (and everyone else on the planet) should be able to visit http://12-X.
appspot.com to see your “Hello World!” output—how exciting!

http://appengine.google.com
http://12-X.appspot.com
http://12-X.appspot.com

ptg7615500

12.7 Morphing “Hello World” into a Simple Blog 631

CORE TIP: Choose your application name carefully

Before you upload the source and static files for your application, be sure
to choose a unique name (specified in app.yaml) that hasn’t already been
used—application names are permanent and cannot be reused or transferred,
even if the application is disabled and/or deleted.

12.7 Morphing “Hello World” into a
Simple Blog

Now that you’ve been able to successfully create and run a simple “Hello
World” application, you should be able to bring up a browser and go to
your Web site. From the Launcher, you can just click the Browse button,
and if you’re not using it, just point any Web browser at http://localhost:8080.
You should see something similar to that shown in Figure 12-6.

Figure 12-6 Hello World from Google App Engine.

ptg7615500

632 Chapter 12 • Cloud Computing: Google App Engine

The next step is to start modifying the application into something more
desirable. We’re going to replicate our Django example by turning this
simple “Hello World” into a blog. The reason why we’re doing this is to
give you the opportunity to compare and contrast developing in Django
and App Engine’s webapp framework.

12.7.1 Seeing Changes Quickly: Plain Text to

HTML in 30 Seconds

First, confirm that you only need to update your code to see the changes
reflected in the application on the development server. To do so, add an
<H1> tag to the output line and close it off. Change the text to something
like “The Greatest Blog” if you have no better ideas; thus, <h1>The Greatest
Blog</h1>. Again, you save your change (or after any modifications to
your source), confirm that you can go back to your browser, refresh the
page, and then confirm the changes, which are displayed in Figure 12-7.

Figure 12-7 The changes to “Hello World 2,” reflected immediately in the updated browser page.

ptg7615500

12.7 Morphing “Hello World” into a Simple Blog 633

12.7.2 Adding a Form

Now let’s take a more significant step in your application’s development:
add the ability to accept user input. We’ll insert a form with fields with
which users can create new blog posts. The two fields are the post title and
the post contents or body. Your modified MainHandler.get() method
should now look similar to this:

class MainHandler(webapp.RequestHandler):
 def get(self):
 self.response.out.write('''
 <h1>The Greatest Blog</h1>
 <form action="/post" method=post>
 Title:

<input type=text name=title>

Body:

<textarea name=body rows=3 cols=60></textarea>

<input type=submit value="Post">
 </form>
 <hr>
 ''')

The entire method consists of the Web form. Yes, if this were a real
application, all of the HTML would be in a template.

Figure 12-8 shows the refreshed screen and the new input fields.

Figure 12-8 Adding form fields to the Blog application.

ptg7615500

634 Chapter 12 • Cloud Computing: Google App Engine

Now you can fill in the fields as desired, as illustrated in Figure 12-9.

Like our Django example earlier, we’re not quite able to process this
data yet. When the user fills out and submits the form at this point, our
controller has no way of handling that data, so if you to try to submit,
you’ll either prompt an error or see a blank screen. We need to add a POST
handler to deal with new blog posts, so let’s do that now by creating a new
BlogEntry class and a post() method:

class BlogEntry(webapp.RequestHandler):
 def post(self):
 self.response.out.write('%s
<hr>%s' % (
 self.request.get('title'),
 self.request.get('body'))
)

Note that the name of our method is post() (as opposed to get()). This
is because the form submits a POST request. If you also want to support
GET, you’ll need another method named get(). So the class and its
method are great, but your application cannot reach the handler if it (the
URL-class pair) has not been specified when creating the application
object. Here is what it should look like:

application = webapp.WSGIApplication([
 ('/', MainHandler),
 ('/post', BlogEntry),
], debug=True)

Figure 12-9 Filling in the blog application form fields.

ptg7615500

12.7 Morphing “Hello World” into a Simple Blog 635

With this addition, you are now able to fill in the form fields and submit
it to your application. The output you see (Figure 12-10) matches exactly
what our post() handler specifies; it displays the BlogPost title followed
by its contents:

12.7.3 Adding Datastore Service

Seeing output is great, but this application is totally useless as a blog—you’re
not saving anything. This is one place where we’ve taken a departure from
Django. In Django, we had to set up a database, and the first bit of code we
wrote was the data model. App Engine takes more of an application
approach—we started creating our application before we even had a data
model. In fact, you don’t even need a database; you can just use a cache, store
your data in the Blobstore, or somewhere else in the cloud.

App Engine’s data storage mechanism is its datastore. Google clearly
wanted to distinguish it from a database, which explains the slightly dif-
ferent terminology. It’s to help drive the point that this is no relational
database management system (RDBMS); it is built on top of Google’s
Bigtable3 and provides distributed, scalable, non-relational persistent data

3. http://labs.google.com/papers/bigtable.html

Figure 12-10 The form submission results.

http://labs.google.com/papers/bigtable.html

ptg7615500

636 Chapter 12 • Cloud Computing: Google App Engine

storage. It also uses Google’s Megastore4 technology to provide strong
consistency and high availability.

Keep in mind that this datastore is only used when you deploy your
application live to App Engine’s production environment. When running
the development server, you can store your data in a binary format (the
default) or request storage in SQLite by using the --use_sqlite flag when
running dev_appserver.py.

Now it’s time to create our data model. Analyze and compare the model
class in Django versus App Engine and notice the extreme similarities
here:

Django
class BlogPost(models.Model):
 title = models.CharField(max_length=150)
 body = models.TextField()
 timestamp = models.DateTimeField()

App Engine
class BlogPost(db.Model):
 title = db.StringProperty()
 body = db.TextProperty()
 timestamp = db.DateTimeProperty(auto_now_add=True)

For App Engine applications, you would add this model to your exist-
ing main.py file: there’s no equivalent models.py file unless you create it
explicitly for yourself. Don’t forget to add the datastore service by using
the following import:

from google.appengine.ext import db

If you are a Django-nonrel user, meaning that you prefer to run your
Django app on App Engine, you would leave your class the way it was
defined originally (for Django) instead of using the App Engine data models.

Regardless of which classes you choose or whether live or in develop-
ment, you can now request to persist your data with the underlying per-
sistent storage mechanism. Creating the class is the first step. Storing
actual data requires the same steps as those we did in Django: create
instances, fill in the user data, and then save. For our application, we’ll
need to replace the code in the post() method. The way it stands now, all
it does is output the input, which is neither very useful nor persistent.

The title and body are simple: after creating the instance, extract them
from the submitted form data and assign them as attributes. The time-
stamp is optional because we selected to have it be set automatically when

4. http://research.google.com/pubs/pub36971.html

http://research.google.com/pubs/pub36971.html

ptg7615500

12.7 Morphing “Hello World” into a Simple Blog 637

the instance was created. Once the object is “complete,” we save it to the
App Engine Datastore by calling the data instance’s put() method, and
then redirect the user to the main page for our application, just like in the
Django version we did earlier.

The following is the new BlogEntry.post() method, which embodies all
of the changes just discussed:

class BlogEntry(webapp.RequestHandler):
 def post(self):
 post = BlogPost()
 post.title = self.request.get('title')
 post.body = self.request.get('body')
 post.put()
 self.redirect('/')

Note that we have completely replaced our original post() method
which just regurgitated what the user entered. In that earlier example, no
data was saved to persistent storage. This completely changed with the
preceding modifications, saving all post information to the datastore. Like-
wise, we need to make a similar corresponding change to our GET handler.

Specifically, we should display earlier blog posts to show that yes, we
have started to persist user data. In our simple example, we’ll choose to
display the form followed by a dump of any existing BlogPost objects.
Make the following changes to our MainHandler.get() method:

class MainHandler(webapp.RequestHandler):
 def get(self):
 self.response.out.write('''
 <h1>The Greatest Blog</h1>
 <form action="/post" method=post>
 Title:

<input type=text name=title>

Body:

<textarea name=body rows=3 cols=60></textarea>

<input type=submit value="Post">
 </form>
 <hr>
 ''')

 #posts = db.GqlQuery("SELECT * FROM BlogEntry")
 posts = BlogPost.all()
 for post in posts:
 self.response.out.write('''<hr>
 %s
%s
 <blockquote>%s</blockquote>''' % (
 post.title, post.timestamp, post.body)
)

ptg7615500

638 Chapter 12 • Cloud Computing: Google App Engine

The code emitting the HTML form to the client stays as is. Below it, we
add the code to fetch the results from the datastore to display to the user.
App Engine provides two ways to query your data.

Doing things the “object” way is the closest to Django’s query mechanism,
requesting BlogPost.all() (as opposed to Django’s BlogPost.objects.all()).
App Engine also provides an alternative to those more comfortable with
SQL: a stripped down query-language syntax known as GQL.

Because you don’t have all of SQL at your disposal (nor JOINs) and it’s
less Pythonic, we strongly recommend that you use the native object
approach. However, if you absolutely can’t live without it, the commented
out line right above our BlogPost.all() call provides the equivalent in
GQL. Finally, the loop at the end just cycles through each entity and dis-
plays the appropriate data per post.

With these changes made, re-entering the same blog entry, we now see
something different, as depicted in Figure 12-11.

Figure 12-12 and Figure 12-13 demonstrate that we can continue to add
blog entries now that we’re confident we’re storing user data.

Figure 12-11 Form submission results (saved to datastore).

ptg7615500

12.7 Morphing “Hello World” into a Simple Blog 639

Figure 12-12 Filling out the form for a second BlogPost.

Figure 12-13 Second BlogPost object, saved and displayed.

ptg7615500

640 Chapter 12 • Cloud Computing: Google App Engine

12.7.4 Iterative Improvements

Similar to our Django example, let’s make our blog more useful by revers-
ing all the entries chronologically and also only show the 10 most recent of
them. Here are the changes we need to make to the query line (and the
equivalent GQL tweaks):

 #post = db.GqlQuery("SELECT * FROM BlogEntry ORDER BY timestamp
 DESC LIMIT 10")
 posts = BlogPost.all().order('-timestamp').fetch(10)

Compare the query to Django’s to see the similarities:
 posts = BlogPost.objects.all().order_by('-timestamp')[:10]

Everything else remains the same. To read more about making queries
in Google App Engine, go to the documentation page at http://code. google.
com/appengine/docs/python/datastore/creatinggettinganddeletingdata.html

12.7.5 The Development/SDK Console

The Datastore Viewer

While it pales in comparison to Django’s admin application, App Engine
does come with a development console. You can bring it up in the Launcher
by clicking the SDK Console button. If you don’t have the Launcher, you
will need to manually enter the special URL, http://localhost:8080/_ah/
admin/datastore. When you arrive, you’ll be at the Datastore Viewer, as
shown in Figure 12-14.

Here you can create a new instance of any of the entities that you’ve
defined for your application. In our case, we only have BlogPost. You can
also view the contents of objects in the datastore, as well. Figure 12-15
shows the original two posts that we created earlier.

The Interactive Console

We saw earlier how Django provides access to a Python shell during
development. Although App Engine doesn’t have this exact feature, you
do get similar access. Click the Interactive Console link located on the left
in the navigation links in the SDK Console; you’ll be brought to a Web
page that has a coding pane to the left and output to the right. From here,
you can enter arbitrary Python commands and watch them execute. An
example execution is provided in Figure 12-16.

http://code.google.com/appengine/docs/python/datastore/creatinggettinganddeletingdata.html
http://code.google.com/appengine/docs/python/datastore/creatinggettinganddeletingdata.html

ptg7615500

12.7 Morphing “Hello World” into a Simple Blog 641

Figure 12-14 The Datastore Viewer in App Engine’s SDK Console.

Figure 12-15 Viewing the existing BlogPost objects.

ptg7615500

642 Chapter 12 • Cloud Computing: Google App Engine

The code it runs is quite simple, as shown in the following script:
from main import BlogPost

print '#posts: ', BlogPost.all(keys_only=True).count()
posts = BlogPost.all()
for post in posts:
 print post.title

This snippet is fairly simple. What might be of particular interest to you,
however, is the initial print statement, which displays the current total
number of BlogPost objects in the (local) datastore. You might have
thought to use BlogPost.all(), but it returns a Query object which is not a
sequence, and it doesn’t override __len__(), so you cannot call len() on it.
The only option for you is the count() method, which you can obtain at
the following:

http://code.google.com/appengine/docs/python/datastore/
queryclass.html#Query_count

A simple click of the Run Program button is all it takes to get some
instant gratification.

Figure 12-16 Executing code in the Interactive Console.

http://code.google.com/appengine/docs/python/datastore/queryclass.html#Query_count
http://code.google.com/appengine/docs/python/datastore/queryclass.html#Query_count

ptg7615500

12.7 Morphing “Hello World” into a Simple Blog 643

CORE NOTE: Counting (or the lack thereof)

Even though counting using Django and a relational database is fairly straightfor-
ward, App Engine admittedly doesn’t count well because it’s really meant for
large-scale distributed storage. There aren’t any tables, and there is no SQL, which
means that you can’t execute a command like, SELECT COUNT(*) from BlogPost.
Many developers who do require a count for their application create a transac-
tional counter, or if you have many transactions, you can create a “sharded counter.”
For more information, go to the following sites:

http://code.google.com/appengine/articles/sharding_counters.html

http://code.google.com/appengine/docs/python/datastore/
queriesandindexes.html#Query_Cursors

http://googleappengine.blogspot.com/2010/08/multi-tenancy-
support-high-performance_17.html

Counting has been worse in the past than it is today, so be happy with that.
There used to be a 1,000 entity limit on fetches and counting, which was restric-
tive. With the addition of cursors in the 1.3.1 release, this limitation was
removed so that whether you’re performing a fetch, iterating, or using a cursor,
there are no limits on the number of results. However, that restriction was still
in effect for counting and offsets, meaning that you still had to use cursors to
iterate through your dataset in order to count your entities. It wasn’t until
release 1.3.6 that this barrier was removed.

Now, a call to count() on Query objects will either give you the exact number
of entities or time out doing so. As specified in the documentation for count(),
you shouldn’t be using it to count a large number of entities: “It’s best to only
use count() in cases where the count is expected to be small, or specify a limit.
count() has no maximum limit. If you don’t specify a limit, the datastore con-
tinues counting until it finishes counting or times out.” Again, it might not be
everything that you want, but it is certainly a remarkable improvement over
what was available to App Engine developers before early 2010.

Again, as far as best practices go, don’t get into the habit of wanting to count
things, and if you do, maintain a counter. You just have to tweak your way of
thinking when it comes to the App Engine datastore. In exchange for some
functionality which you might have been used to, you’re getting replication
and scalability, two very expensive features to build.

One additional tip if you do need to count: go for “keys-only” counting. In
other words, when you create your query object, pass in the key_only flag set

http://code.google.com/appengine/articles/sharding_counters.html
http://code.google.com/appengine/docs/python/datastore/queriesandindexes.html#Query_Cursors
http://code.google.com/appengine/docs/python/datastore/queriesandindexes.html#Query_Cursors
http://googleappengine.blogspot.com/2010/08/multi-tenancy-support-high-performance_17.html
http://googleappengine.blogspot.com/2010/08/multi-tenancy-support-high-performance_17.html

ptg7615500

644 Chapter 12 • Cloud Computing: Google App Engine

to True so that you’re not having to fetch full entities from the datastore, such
as BlogPost.all(keys_only=True). The following are some links to help you
with this:

http://code.google.com/appengine/docs/python/datastore/
queryclass.html#Query

http://code.google.com/appengine/docs/python/datastore/
modelclass.html#Model_all

http://code.google.com/appengine/docs/python/datastore/
queriesandindexes.html#Queries_on_Keys

Finally, the App Engine team has created a series of articles to help you master
the datastore. You can find them at:

http://code.google.com/appengine/articles/datastore/overview.html

Another thing to be aware of is that the code you execute within the
interactive console has direct access to your local datastore. Like our
Django blog example, you can use a snippet of Python to autogenerate
more entities, as you can see in the following code for Figure 12-17:

from datetime import datetime
from main import BlogPost

for i in xrange(10):
 BlogPost(
 title='post #%d' % i,
 body='body of post #%d' % i,
 timestamp=datetime.now()
).put()
 print 'created post #%d' % i

Figure 12-18 demonstrates that now we can sort in reverse order by
timestamp and see the original two BlogPost objects as well as the ten we
just generated in Figure 12-17.

from main import BlogPost

print '#posts: ', BlogPost.all(
 keys_only=True).count()
posts = BlogPost.all().order(
 '-timestamp')
for post in posts:
 print post.title

You can even flip back to the Datastore Viewer to see more specifics
about each entity, as shown in Figure 12-19.

http://code.google.com/appengine/docs/python/datastore/queryclass.html#Query
http://code.google.com/appengine/docs/python/datastore/queryclass.html#Query
http://code.google.com/appengine/docs/python/datastore/modelclass.html#Model_all
http://code.google.com/appengine/docs/python/datastore/modelclass.html#Model_all
http://code.google.com/appengine/docs/python/datastore/queriesandindexes.html#Queries_on_Keys
http://code.google.com/appengine/docs/python/datastore/queriesandindexes.html#Queries_on_Keys
http://code.google.com/appengine/articles/datastore/overview.html

ptg7615500

12.7 Morphing “Hello World” into a Simple Blog 645

Figure 12-17 Creating more entities by using Python.

Figure 12-18 The new and old entities together.

ptg7615500

646 Chapter 12 • Cloud Computing: Google App Engine

If you don’t wish to pollute your data with these fake BlogPost entries,
you can just as easily remove them with this snippet, shown executed in
Figure 12-20 (after going back to the Interactive Console):

from google.appengine.ext import db
from main import BlogPost

posts = BlogPost.all(keys_only=True
).order('-timestamp').fetch(10)
db.delete(posts)
print 'DELETED newest 10 posts'

If you cut and paste the “data dump” snippet, you can then confirm that
the deletion did work.

Okay, that’s all well and good that we can do this in development. At
some point, you’ll want similar functionality in a live application and pro-
duction datastore. There are two similar tools you can use there.

Figure 12-19 Changing the entity display order by using the interactive console.

ptg7615500

12.8 Adding Memcache Service 647

In the live production environment, you can get a shell to your applica-
tion by using the remote API (you’ll find out more in the section “Remote
API Shell”). You can also achieve bulk deletes or bulk copying of entities
to another App Engine application if you enable the Datastore Admin for
your Admin Console.

Okay, so that was a quick introduction to the SDK console. It’s certainly
not as fully-featured as its cousin the (live) Admin Console, but it is a use-
ful development tool. We’ll come back to it again soon. First, let’s add
another service to our application: caching.

12.8 Adding Memcache Service
New users to App Engine often remark that its database access is slow.
Well, that is a relative term, but you will contend that you’re experiencing
a decline in performance compared to using a standard relational data-
base. However, keep in mind that you’re making a significant trade off: in
exchange for distributed, scalable, replicated storage in the cloud, you take
a slight hit because as we all know, you can’t get something for nothing.
One of the ways to improve the speed of queries is to bring the data
“closer” to your application by caching instead of going to the datastore.

Figure 12-20 Deleting BlogPosts.

ptg7615500

648 Chapter 12 • Cloud Computing: Google App Engine

High-traffic sites are rarely limited in their performance by how fast the
Web server can send data to the client. The bottleneck is almost always in
the generation of that data; the database might not be able to answer que-
ries quickly enough, or the server’s CPU might be bogged down executing
the same code over and over for every request. It’s also a waste of
resources to retrieve or compute the same data payloads for multiple
requests.

By placing the data at a higher-level and closer to the request, less effort
is required by the database or code that generates returned results. An
intermediary cache is a great place to temporarily store retrieved data.
That way, for identical requests, clients can be sent the same data over and
over without the need to refetch or recompute for the purposes of serving
to different users. This is especially important for App Engine users if you
find your application fetching the same entities over and over again for
different queries.

The general pattern for object caching (in App Engine or otherwise) is
represented by the following: check if the cache contains the desired data.
If yes, return it; otherwise, perform the retrieval and cache it

If you were to write the above in pseudocode, it would look something
like the following snippet for some constant KEY which we use to store the
cached data:

data = cache.get(KEY)
if not data:
 data = QUERY()
 cache.set(KEY, data)
return data

Not surprisingly, this is pretty much the solution in Python. We’re only
missing a value for the KEY, a database QUERY, and this import of App
Engine’s low-level Memcache-compatible API:

from google.appengine.api import memcache

In our application code, we add a few lines to our MainHandler.get()
method that surrounds the fetching of the data, only going to the datastore
if we have not cached the dataset:

Before:
. . .
posts = BlogPost.all().order('-timestamp').fetch(10)
for post in posts:
. . .

ptg7615500

12.8 Adding Memcache Service 649

After:
. . .
posts = memcache.get(KEY) # check cache first
if not posts:
 posts = BlogPost.all().order('-timestamp').fetch(10)
 memcache.add(KEY, posts) # cache this object
for post in posts:
. . .

Don’t forget to set the key for your cache, that is, KEY = 'posts'.
With the add() call, we’ve effectively cached the object until we either

explicitly delete it (see below), or it is evicted to make room for more
recently-accessed data Just as a point of interest, the Memcache API
employs an LRU (least recently used) algorithm. A third alternative is to
cache an object with an expiration. For example, if we wanted to cache this
object for one minute, we’d change our call to:

 memcache.add(KEY, posts, 60)

The final piece of the puzzle is to invalidate the cache when a new blog
post entry comes in. To make this happen, we flush the cache whenever a
new entry is sent to the datastore in our code for BlogEntry.post():

. . .
post.put()
memcache.delete(KEY)
self.redirect('/')

Once these changes are made, you are certainly welcome to try it out in
your browser, but because of our small dataset, it’s difficult to determine
whether you’re getting your data from memcache or the datastore. The
easiest way to do it is to take a look at the Memcache Viewer in the SDK
Console (see Figure 12-21).

To see it in action, you’ll need a pair of browser windows, one open to
your application, and the other to the Memcache Viewer in the SDK Con-
sole. Ensure that you have some BlogPost objects in your application, and
then refresh the main page of the application several times. Now refresh
the Memcache Viewer page to see memcache utilization. I did this myself
so you can see my usage results, which are shown in Figure 12-22.

You should have registered one cache miss but an increasing number of
hits each successive pass, meaning that the datastore was only accessed
the first time, helping to improve the performance for users after the initial
data acquisition. To read more about using App Engine’s Memcache API,
read the documentation page at http://code.google.com/appengine/docs/
python/memcache.

http://code.google.com/appengine/docs/python/memcache
http://code.google.com/appengine/docs/python/memcache

ptg7615500

650 Chapter 12 • Cloud Computing: Google App Engine

In Chapter 11, we did not get a chance to talk about caching. Django has
many levels of caching service, including object caching, as we’ve just
done here, plus QuerySet caching, which helps push lower-level object
caching further under the covers. You can find out more about the various
types of caching Django has to offer in Chapter 12 of Python Web Development
with Django.

Figure 12-21 The Memcache Viewer, which here is showing empty.

Figure 12-22 The Memcache Viewer now registers some usage.

ptg7615500

12.9 Static Files 651

Object-level caching is just one way to prevent the server from having to
do extra work to get your data to you. Data doesn’t always come from the
database, however. Serving Web pages usually includes many static files,
as well. App Engine provides various optimizations for developers there,
too, such as requesting upstream caching by using HTTP Cache-Control
headers in appropriate places. If you can cache on the edge or via proxies,
this will allow some of your assets to be served directly to clients without
even using your App Engine application.

12.9 Static Files
Web pages often include static elements that go along with any dynamic
data. This includes images, CSS, text (XML, JSON, or other markup), and
JavaScript files. Rather than requiring that the developer come up with
handlers to serve that data, you can specify a static file directory in your
app.yaml configuration to direct App Engine to return that data as is. What
you need to do is to add a specific handler in the handlers section of your
app.yaml. It will look something like this:

handlers:
- url: /static
 static_dir: static

- url: .*
 script: main.py

We place our static handler first so that matches of /static path
requests will be processed first. All other paths will be taken care of by the
handlers in main.py. This means that you don’t need to execute application
code in order to serve up static files.

In fact, why don’t you just find some random .js, .css, or whatever
static content you have, let’s say it’s main.css, create a folder named
“static” right at the top-level directory (where your app.yaml and main.py
file are located), update your app.yaml as described above, start your
development server, and then point a browser to http://localhost:8080/
static/main.css. This will work in production in the same way it does in
development. App Engine serves your static data without requiring assis-
tance from your application’s handlers.

ptg7615500

652 Chapter 12 • Cloud Computing: Google App Engine

12.10 Adding Users Service
In Chapter 11, for our Django blog, we didn’t add any authentication
(users, passwords, accounts, etc.), but we did use Django’s own authenti-
cation system in the TweetApprove application. Similarly, let’s do authen-
tication in this blog by using Google Accounts. This sure beats giving any
user who visits your page the ability to add new blog posts; if we did, it
would then be a guestbook right? Having authentication here shouldn’t be
a shocker. Let’s assume that you wanted to create the next industry blog,
like TechCrunch, Engadget, etc. The blog needs to support multiple
authors, and you want them to be the only ones who can post to the blog,
not just any ’ol John or Jane.

12.10.1 Google Accounts Authentication

When you create your App Engine application, the authentication that’s
used by default is Google Accounts. However, if you don’t add any
authentication mechanism, either in the configuration settings or in the
actual application code, it’s the same as not having authentication at all:
anyone can post to your blog. Let’s add in authentication checking by
inserting a couple of lines at the very beginning of MainHandler.get() so
that it looks like this:

. . .
from google.appengine.api import users
. . .
class MainHandler(webapp.RequestHandler):
 def get(self):
 user = users.get_current_user()
 if user:
 self.response.out.write('Hello %s' % user.nickname())
 else:
 self.response.out.write('Hello World! [sign
in]' % (
 users.create_login_url(self.request.uri)))
 self.response.out.write('<h1>The Greatest Blog</h1>')

 if user:
 self.response.out.write('''
 <form action="/post" method=post>
 Title:

<input type=text name=title>

Body:

<textarea name=body rows=3 cols=60></textarea>

ptg7615500

12.10 Adding Users Service 653

<input type=submit value="Post">
 </form>
 <hr>
 ''')

 posts = memcache.get(KEY)
 if not posts:
 posts = BlogPost.all().order('-timestamp').fetch(10)
 memcache.add(KEY, posts)
 for post in posts:
 self.response.out.write(
 '<hr>%s
%s
 <blockquote>%s</blockquote>' % (
 post.title, post.timestamp, post.body
))

If you don’t want to add specific code to ask users to login like we’ve
just done, you can force it at the app.yaml configuration level. Just add a
login: required directive; any URL that accesses that handler will force
the user to login before she can access your application or its content.
Here’s an example of how to use that directive to block out all access to our
main handler without a valid Google accounts login:

- url: .*
 script: main.py
 login: required

Another alternative is login: admin which requires a logged-in adminis-
trator of the application to access this handler, such as for critical user,
app, or data access or manipulation. Users who are not administrators will
get an error page which states that administrator access is required. You
can read more about these directives at http://code.google.com/appengine/
docs/python/config/appconfig.html#Requiring_Login_or_Administrator_
Status.

12.10.2 Federated Authentication

If you’re uncomfortable with either creating your own authentication or
do not wish to require that all of your users have a Google Account, you
will probably want federated login with OpenID. With OpenID, you can
allow users to sign in to your application by using accounts they created at
a variety of providers, including (but not limited to) Yahoo!, Flickr, Word-
Press, Blogger, LiveJournal, AOL, MyOpenID, MySpace, and even Google.

http://code.google.com/appengine/docs/python/config/appconfig.html#Requiring_Login_or_Administrator_Status
http://code.google.com/appengine/docs/python/config/appconfig.html#Requiring_Login_or_Administrator_Status
http://code.google.com/appengine/docs/python/config/appconfig.html#Requiring_Login_or_Administrator_Status

ptg7615500

654 Chapter 12 • Cloud Computing: Google App Engine

If you’re using federated login, you’ll need to make a minor adjustment to
your call that creates login links by adding a federated_identity parameter
such as users.create_login_url(federated_identity=URL), where URL is any
of the OpenID vendors (gmail.com [Google], yahoo.com, myspace.com,
aol.com, etc). Future support for federated authentication will be inte-
grated with the new Google Identity Toolkit (GIT).

For more on users, the GIT, and OpenID, go to the following links:
• http://code.google.com/appengine/docs/python/users/

overview.html

• http://code.google.com/appengine/articles/openid.html

• http://openid.net

• http://code.google.com/apis/identitytoolkit/

12.11 Remote API Shell
To use the remote API shell, you need to add the following entry into your
app.yaml file, just above the handlers to your application, as shown in the
following:

- url: /remote_api
 script: $PYTHON_LIB/google/appengine/ext/remote_api/handler.py
 login: admin

- url: .*
 script: main.py

If you have another section in there for static files as we did in the previ-
ous section, it doesn’t matter what the ordering is when creating the han-
dler setup for the remote API. The important thing is that they’re both
above the main handler. In the preceding example, we’ve left out the static
file stuff and added an explicit administrator login, because we’re pretty
sure you wouldn’t want any other user to access your production datastore.

You’ll need a local version of your application’s data model(s). When you’re
in the right directory, issue the following command (substituting in the ID for
your live production application) and provide the proper credentials:

$ remote_api_shell.py APP_ID
Email: YOUR_EMAIL
Password: *****
App Engine remote_api shell
Python 2.5.1 (r251:54863, Feb 9 2009, 18:49:36)
[GCC 4.0.1 (Apple Inc. build 5465)]

http://code.google.com/appengine/docs/python/users/overview.html
http://code.google.com/appengine/docs/python/users/overview.html
http://code.google.com/appengine/articles/openid.html
http://openid.net
http://code.google.com/apis/identitytoolkit/

ptg7615500

12.11 Remote API Shell 655

The db, users, urlfetch, and memcache modules are imported.
APP_ID> import sys
APP_ID> sys.path.append('.')
APP_ID> from main import *
APP_ID> print Greeting.all(keys_only=True).count()
24

The remote API shell just gives you a Python interactive interpreter to
your live running application. There are many other uses of the remote API
itself, most notably, the mass uploading and downloading of data to and
from your application’s datastore. For more on using the remote API, check
out the official documentation at http://code.google.com/appengine/articles/
remote_api.html.

12.11.1 The Datastore Admin

The datastore admin is a recent feature that adds a component to your live
application’s administration console (not the SDK development server
console). It gives you the ability to mass delete specific types of entities (or
all of them) as well as the ability to copy entities to another live applica-
tion. The one caveat is that your application must be in read-only mode
during the copy. To enable the datastore admin, add the following section
to your app.yaml file:

builtins:
- datastore_admin: on

You don’t have to necessarily memorize this because all you need to do
is to click the Datastore Admin link in your Admin Console. If you haven’t
enabled it yet, it’ll alert you that you’re missing this configuration in your
app.yaml file.

Once you turn it on, clicking it will prompt you with a login screen
(or two), and then you should see something such as that illustrated in
Figure 12-23.

Figure 12-23 An example of an App Engine Datastore Admin screen.

http://code.google.com/appengine/articles/remote_api.html
http://code.google.com/appengine/articles/remote_api.html

ptg7615500

656 Chapter 12 • Cloud Computing: Google App Engine

To see an example app.yaml file with the datastore admin turned on as
well as the appengine_config.py file necessary to allow another applica-
tion to copy entities to the current application, visit the code sample repos-
itory at http://code.google.com/p/google-app-engine-samples/source/browse/
#svn%2Ftrunk%2Fdatastore_admin.

You can read more about the datastore admin and its features at:
• http://code.google.com/appengine/docs/adminconsole/

datastoreadmin.html
• http://googleappengine.blogspot.com/2010/10/new-app-engine-

sdk-138-includes-new.html

12.12 Lightning Round (with Python Code)
Given all the features and scope of the entire App Engine platform, it’s not
a surprise that you can write an entire book on the subject. But as our goal
is to give you a high-level introduction and then let you take the wheel,
we’ll end it here. Before we leave, though, the “lightning round” that fol-
lows is meant to give you some quick code samples that you can use right
away without necessarily integrating those features into our blog applica-
tion. Of course, these will be featured in the chapter exercises coming up.

12.12.1 Sending E-Mail

In our Twitter/Django application from Chapter 11, you saw how to use
Django’s e-mail service. Sending e-mail in App Engine is just as easy. All
you need to do is import the mail.send_mail() function and use it. Its basic
usage is very straightforward: mail.send_mail(FROM, TO, SUBJECT, BODY)
where:

FROM is a string representing the e-mail address of the sender
(more on this field later).

TO is either a string or an iterable of strings representing the
recipient(s).

SUBJECT is the string that is set as part of the Subject: line.
BODY is a string representing the plaintext content of the

message.

http://code.google.com/p/google-app-engine-samples/source/browse/#svn%2Ftrunk%2Fdatastore_admin
http://code.google.com/p/google-app-engine-samples/source/browse/#svn%2Ftrunk%2Fdatastore_admin
http://code.google.com/appengine/docs/adminconsole/datastoreadmin.html
http://code.google.com/appengine/docs/adminconsole/datastoreadmin.html
http://googleappengine.blogspot.com/2010/10/new-app-engine-sdk-138-includes-new.html
http://googleappengine.blogspot.com/2010/10/new-app-engine-sdk-138-includes-new.html

ptg7615500

12.12 Lightning Round (with Python Code) 657

There are other message fields that you can pass to send_mail(); you
can find out more about them at http://code.google.com/appengine/docs/
python/mail/emailmessagefields.html.

To continue discouraging the sending of unsolicited e-mail, the From:
address is restricted. It must be one of the following:

• The e-mail address of a registered administrator (developer)
of the application

• The current user, if they are logged in

• Any valid receiving e-mail address for the application (of the
form xxx@APP_ID.appspotmail.com)

Following is a snippet of code that includes the import and one possible
call to send_mail():

from google.appengine.api import mail
. . .
mail.send_mail(
 user and user.email() or 'admin@APP_ID.appspotmail.com', # from
 'corepython@yahoo.com', # to
 'Erratum for Core Python 3rd edition!' # subject
 "Hi, I found a typo recently. It's...", # body
)

The mail API also features additional functions to send e-mail only to
the administrator(s) of the application, to validate e-mail addresses, etc.,
plus an EmailMessage class. You can also have attachments in outbound
e-mail, but the attachment file types are limited to only the most popular
formats that are recognized as not insecure, these include .doc, .pdf, .rss,
.css, .xls, .ppt, .mp3/.mp4/.m4a, .gif, .jpg/.jpeg, .png, .tif/.tiff, .htm/.html, .txt,
etc. You can find the latest group of valid attachment types at http://
code.google.com/appengine/docs/python/mail/overview.html#Attachments.

Finally, inbound or outbound messages have a size limitation (at the
time of this writing) of 10MB. You can read the latest about the quotas and
limitations of the e-mail service at:

http://code.google.com/appengine/docs/quotas.html#Mail
http://code.google.com/appengine/docs/python/mail/
overview.html#Quotas_and_Limits

More general information about sending e-mail at:
http://code.google.com/appengine/docs/python/mail/
overview.html#Sending_Mail_in_Python

http://code.google.com/appengine/docs/python/mail/emailmessagefields.html
http://code.google.com/appengine/docs/python/mail/emailmessagefields.html
http://code.google.com/appengine/docs/python/mail/overview.html#Attachments
http://code.google.com/appengine/docs/python/mail/overview.html#Attachments
http://code.google.com/appengine/docs/quotas.html#Mail
http://code.google.com/appengine/docs/python/mail/overview.html#Quotas_and_Limits
http://code.google.com/appengine/docs/python/mail/overview.html#Quotas_and_Limits
http://code.google.com/appengine/docs/python/mail/overview.html#Sending_Mail_in_Python
http://code.google.com/appengine/docs/python/mail/overview.html#Sending_Mail_in_Python

ptg7615500

658 Chapter 12 • Cloud Computing: Google App Engine

http://code.google.com/appengine/docs/python/mail/
overview.html#Sending_Mail
http://code.google.com/appengine/docs/python/mail/
sendingmail.html

12.12.2 Receiving E-Mail

What’s sending without receiving? Yes, your application can handle incom-
ing e-mail, as well. It’s slightly more complicated than sending e-mail but
it’s not that much additional work.

Setup

In addition to writing code to handle inbound e-mail, you need to add a cou-
ple of things to your app.yaml configuration file, with the most important
being enabling the service. By default, the receipt of inbound e-mail is dis-
abled. To turn it on, you’ll need to enable it in the inbound_services: sec-
tion of the app.yaml (or add one if that section doesn’t exist).

Also, earlier we mentioned that one of the valid addresses from which
you can send email is a valid receiving e-mail address for the application,
meaning of the form xxx@APP_ID.appspotmail.com. You can have one
handler for all possible e-mail addresses or different handlers for specific
ones. This is done by creating one or more additional handlers in your
app.yaml file. To figure out how to create the handlers, we need to tell you
that all inbound e-mail will be POSTed to a URL of this form: /_ah/mail/
EMAIL_ADDRESS.

Here are the relevant sections of the app.yaml that we need to add:
inbound_services:
- mail

handlers:
. . .
- url: /_ah/mail/.+
 script: handle_incoming_email.py
 login: admin
. . .

The first two lines enable incoming e-mail. The inbound_services: sec-
tion is also the place to enable receiving XMPP messages (more on this in
Section 12.13), Warming Requests, and other future services that you can
read about in the official documents page for application configuration
and the app.yaml file at http://code.google.com/appengine/docs/python/
config/appconfig.html# Inbound_Services.

http://code.google.com/appengine/docs/python/mail/overview.html#Sending_Mail
http://code.google.com/appengine/docs/python/mail/overview.html#Sending_Mail
http://code.google.com/appengine/docs/python/mail/sendingmail.html
http://code.google.com/appengine/docs/python/mail/sendingmail.html
http://code.google.com/appengine/docs/python/config/appconfig.html#Inbound_Services
http://code.google.com/appengine/docs/python/config/appconfig.html#Inbound_Services

ptg7615500

12.12 Lightning Round (with Python Code) 659

The second set of lines comprise an inbound e-mail handler that goes
in the handlers: section. The regular expression /_ah/mail/.+ matches all
e-mail addresses; however, there’s nothing wrong with creating separate
handlers for different e-mail addresses:

- url: /_ah/mail/sales@.+
 script: handle_sales_email.py
 login: admin
- url: /_ah/mail/support@.+
 script: handle_support_email.py
 login: admin
- url: /_ah/mail/.+
 script: handle_other_email.py
 login: admin

You can block malicious applications and users from accessing your e-mail
handler by using the login: admin directive. When App Engine receives an
e-mail message, it generates requests and POSTs them to your application,
resulting in a call to your handler as an “admin.”

Handling Inbound E-Mail

You can handle e-mail by using the default method, which involves writ-
ing your handler in much the same way you create a standard Web han-
dler and have an instance of mail.InboundEmailMessage:

from google.appengine.api import mail
. . .
class EmailHandler(webapp.RequestHandler):
 def post(self):
 . . .
 message = mail.InboundEmailMessage(self.request.body)
 . . .

Of course, you would still have to install this handler when creating your
WSGIApplication:

application = webapp.WSGIApplication([
 . . .
 ('/_ah/email/+.', EmailHandler),
 . . .
], debug=True)

An alternative is to use the predefined helper class, InboundMailHandler,
found in google.appengine.ext.webapp.mail_handlers:

from google.appengine.ext.webapp import mail_handlers
. . .
class EmailHandler(mail_handlers.InboundMailHandler):
 def receive(self, msg):
 . . .

ptg7615500

660 Chapter 12 • Cloud Computing: Google App Engine

Instead of having to extract the e-mail message from the request, this is
handled automatically, so all you need to do is implement a receive()
method which is called with the message. You also get a shortcut map-
ping() class method that autogenerates the 2-tuple which directs mail to
your handler. You would use it like this:

application = webapp.WSGIApplication([
 . . .
 EmailHandler.mapping(),
 . . .
], debug=True)

Once you have the message, you’re welcome to check out the main body
of the e-mail, whether it is in plain text or HTML (or both), and you can
also access any attachments or other message fields, such as the sender,
subject, etc. You can find more general information about receiving e-mail
found at:

http://code.google.com/appengine/docs/python/mail/
overview.html#Receiving_Mail_in_Python
http://code.google.com/appengine/docs/python/mail/
overview.html#Receiving_Mail
http://code.google.com/appengine/docs/python/mail/
receivingmail.html

12.13 Sending Instant Messages by
Using XMPP

Similar to sending e-mail, your application can also send instant messages
(IMs) with App Engine’s XMPP API. XMPP stands for eXtensible Messaging
and Presence Protocol, but it was originally called the Jabber protocol,
named after its open-source community and created in the late 1990s.
With App Engine’s XMPP API, in addition to sending, you can also receive
an IM, check to see if a user is available to chat, or you can send a user a
chat invitation. Your application cannot communicate with a user unless
she has received and accepted an invitation from it.

Below is a snippet of pseudocode that sends a chat invitation to a user,
assuming that you’ve correctly filled in a valid IM username (or Jabber ID)
for USER_JID:

from google.appengine.api import xmpp
. . .

http://code.google.com/appengine/docs/python/mail/overview.html#Receiving_Mail_in_Python
http://code.google.com/appengine/docs/python/mail/overview.html#Receiving_Mail_in_Python
http://code.google.com/appengine/docs/python/mail/overview.html#Receiving_Mail
http://code.google.com/appengine/docs/python/mail/overview.html#Receiving_Mail
http://code.google.com/appengine/docs/python/mail/receivingmail.html
http://code.google.com/appengine/docs/python/mail/receivingmail.html

ptg7615500

12.13 Sending Instant Messages by Using XMPP 661

 xmpp.send_invite(USER_JID)
 self.response.out.write('invite sent')
. . .

Here’s another piece of sample code that sends an IM (the MESSAGE
string) to a user once he has accepted your invitation. Again, replace
USER_JID with the user’s Jabber ID:

 . . .
 if xmpp.get_presence(USER_JID):
 xmpp.send_message(USER_JID, MESSAGE)
 self.response.out.write('IM sent')
 . . .

The third XMPP function is get_presence(), function which returns
True if the user is online and available, and False if the user is away, not
online, or she has not accepted your application’s invitation yet. You can
read more about these three functions as well as the XMPP API at:

http://code.google.com/appengine/docs/python/xmpp/
overview.html
http://code.google.com/appengine/docs/python/xmpp/
functions.html

12.13.1 Receiving Instant Messages

Receiving IMs is set up just like e-mail, that is, in the inbound_services:
section of your app.yaml file:

inbound_services:
- xmpp_message

Also like receiving e-mail, messages that come to the system are POSTed
by App Engine to your application. The URL path used is /_ah/xmpp/
message/chat. Here is an example of how to receive chat messages in your
application:

class XMPPHandler(webapp.RequestHandler):
 def post(self):
 . . .
 msg_obj = xmpp.Message(self.request.POST)
 msg_obj.reply("Thanks for your msg: '%s'" % msg_obj.body)
 . . .

http://code.google.com/appengine/docs/python/xmpp/overview.html
http://code.google.com/appengine/docs/python/xmpp/overview.html
http://code.google.com/appengine/docs/python/xmpp/functions.html
http://code.google.com/appengine/docs/python/xmpp/functions.html

ptg7615500

662 Chapter 12 • Cloud Computing: Google App Engine

Of course, we have to register our handler:
application = webapp.WSGIApplication([
 . . .
 ('/_ah/xmpp/message/chat/', XMPPHandler),
 . . .
], debug=True)

12.14 Processing Images
App Engine has an Images API with which you can manipulate an image
by performing simple transformations such as rotate, flip, resize, and crop.
The images can be POSTed by a user or extracted from the datastore or
Blobstore.

Here’s a snippet of HTML with which users can upload an image file:
<form action="/pic" method=post enctype="multipart/form-data">
Upload an image:
<input type=file name=pic>
<input type=submit>
</form>

The following sample piece of code creates a thumbnail for the image
by calling the Image API’s resize() function and returns it back to the
browser:

from google.appengine.api import images

class Thumbnailer(webapp.RequestHandler):
 def post(self):
 thumb = images.resize(self.request.get('pic'), width=100)
 self.response.headers['Content-Type'] = 'image/png'
 self.response.out.write(thumb)

Here is the corresponding handler entry:
application = webapp.WSGIApplication([
 . . .
 ('/pic', Thumbnailer),
 . . .
], debug=True)

You can read all about the images API at http://code.google.com/appengine/
docs/python/images/usingimages.html.

http://code.google.com/appengine/docs/python/images/usingimages.html
http://code.google.com/appengine/docs/python/images/usingimages.html

ptg7615500

12.15 Task Queues (Unscheduled Tasks) 663

12.15 Task Queues (Unscheduled Tasks)
Tasks in App Engine are used for additional work which might need to be
done as part of your application but that is not required in generating the
response that is sent back to the user. This ancillary work can include
actions such as logging, creating or updating datastore entities, sending
notifications, etc.

App Engine supports two different types of tasks. The first are called
Push Queues, which are jobs that your application creates to be executed as
quickly and concurrently as possible. They do not allow for external influ-
ence. The second type are Pull Queues, which are a bit more flexible.
They’re created by your App Engine application, as well; however, they
can be consumed or “leased” by your App Engine or an external applica-
tion via a representational state transfer application programmers inter-
face (REST API). We’ll spend most of the upcoming section discussing
Push Queues, and then conclude with a brief word on Pull Queues.

12.15.1 Creating Tasks

Tasks can be started by the handler of a user-facing request, or they can be
created by another task. An example of the latter is when all the work
managed by the first task was not able to be completed in a timely fashion
(think of a 30-second or 10-minute deadline), so the work the first task was
created to do has not been completed yet.

Tasks are added to task queues. Queues are named and can have differ-
ent execution rates, replenishment or burstiness rates, and retry parameters.
Users get one default queue but must specify others if more are desired
(more on this later). Adding a task to the default queue is straightforward
and requires only one simple call once you’ve imported the taskqueue
API:

from google.appengine.api import taskqueue
taskqueue.add()

All queue requests will be POSTed to URL, and thus a handler. If a cus-
tom URL is not created by the user, requests will go to a default URL
based on the name of the queue: /_ah/queue/QUEUE_NAME. So for the default

ptg7615500

664 Chapter 12 • Cloud Computing: Google App Engine

queue, that would be /_ah/queue/default. This means that you should
provide a handler setting for it when creating your WSGIApplication:

def main():
 run_wsgi_app(webapp.WSGIApplication([
 . . .
 ('/_ah/queue/default', DoSomething),
 . . .
]))

Of course, you need the code for the actual task, too; for example, the
DoSomething handler we just defined:

class DoSomething(webapp.RequestHandler):
 def post(self):
 # do the task here
 . . .
 logging.info('completed task')

We added a quick log entry at the end to confirm the task had actually
executed. Obviously, you don’t have to log anything if you don’t want to,
but it can also be a great way to confirm that the task did complete. In fact,
you can even use the log entry as a placeholder if you haven’t completed
the code to perform the actual task’s work. (Of course, if you do choose to
log something, ensure that you have an import logging statement some-
where up above.)

Configuring app.yaml

With regard to configuration, you could leave your app.yaml alone with a
default handler for all URLs:

handlers:
- url: .*
 script: main.py

This setting will direct normal application URLs to main.py but the pat-
tern also matches /_ah/queue/default, meaning task queue requests will
be sent there, as well, which might be what you want. However, the prob-
lem with this setup is that anyone can go to your /_ah/queue/default
URL externally, even if they were not created as a task.

The best practice is to lock down this URL to task-only requests by add-
ing a login: admin directive as we did earlier when configuring your
application to receive e-mail. You will have to split off this special URL
from all the others, like this modified app.yaml:

handlers:
- url: /_ah/queue/default
 script: main.py

ptg7615500

12.15 Task Queues (Unscheduled Tasks) 665

 login: admin

- url: .*
 script: main.py

Additional Task Creation and Configuration Options

Earlier we showed you the simplest way of creating a task by using task-
queue.add(). Of course, there are plenty more options to let you create a
task destined for a different (not default) queue, time delay till execution
desired, the ability to pass in parameters to the task, etc. The list that fol-
lows shows a few of these options, of which a user can choose one or
more:

1. taskqueue.add(url='/task')

2. taskqueue.add(countdown=300)
3. taskqueue.add(url='/send_email', params={'groupID': 1})
4. taskqueue.add(url='/send_email?groupID=1', method='GET')
5. taskqueue.add(queue_name='send-newsletter')

In the first call, a specific URL is passed in. This is for times when you
prefer to use a custom URL, as opposed to the default one. In the second
case, a countdown parameter is given to delay execution of the task until
at least a certain number of seconds have passed. The third call shows an
example of both a custom URL as well as passing in task handler parame-
ters. The fourth example is the same as the third, except that the user has
asked for a GET request rather than the default POST. The final example
we’re going to look at is when you’ve defined a custom task queue instead
of using the default.

These are just a few of the parameters that taskqueue.add() supports.
You can read about the rest at http://code.google.com/appengine/docs/
python/taskqueue/functions.html.

So far, all of our previous examples have been using the default queue.
You can create other queues, too; as of this writing, you can have up to ten
additional queues for free applications and a hundred for those with bill-
ing enabled (subject to change, however). To do so, you’ll configure them
in a file named queue.yaml in a format that looks like the following:

queue:
- name: default
 rate: 1/s
 bucket_size: 10

- name: send-newsletter
 rate: 1/d

http://code.google.com/appengine/docs/python/taskqueue/functions.html
http://code.google.com/appengine/docs/python/taskqueue/functions.html

ptg7615500

666 Chapter 12 • Cloud Computing: Google App Engine

The default is normally created on its own, but if you want to choose
different parameters for it, you can specify those in queue.yaml, as we just
did, overriding the default rate of 5/s and bucket_size of 5. (The rate is
how fast tasks are processed, and the bucket_size controls how quickly a
queue can process succeeding tasks.) The send-newsletter queue is for a
once-a-day, opt-in e-mail newsletter. You can read more about all the con-
figuration parameters for queues at http://code.google.com/appengine/
docs/python/config/queue.html.

The final word on tasks is that there is another kind of queue that gives
developers more flexibility in terms of how and when tasks are created as
well as consumed and completed. The types of task queues discussed in
this section are Push Queues, which means that your application gener-
ates tasks on demand, pushing the work to queues as necessary.

We mentioned that App Engine has an alternative task interface by
which jobs can be created in Pull Queues. These queues can be accessed
directly by App Engine (creating or consuming work) or accessed from
external applications via a REST interface. This means that work can originate
from an App Engine application and be executed or processed elsewhere,
if desired. Because of this, there is a more flexible execution timeline. More
information on pull queues is available in the documentation at http://
code.google.com/appengine/docs/python/taskqueue/overviewpull.html.

Sending E-Mail as a Task

In an earlier example, we presented an example of how to send e-mail
from your application. If you’re only sending a single message, perhaps to
the administrator of your application whenever someone makes a blog
post entry, it’s not that big of a deal to also send the e-mail as part of the
handling of that request. However, if you need to send e-mail to thousands
of customers, it’s probably less of a good idea.

Instead, the work of sending all this e-mail is a great candidate for a task.
Rather than sending the e-mail, the handler will create the task, pass in the
parameters (such as all the e-mail addresses or a group ID of the group of
users to receive the message), and then return the response back to the user
while the task sends the e-mail on its own time (not that of the users).

Suppose that we have a Web template that lets a user configure an e-mail
message and recipient group. When users submit the form to the /submit
URL, it’s handled by the FormHandler class, for which part of it might look
like this:

http://code.google.com/appengine/docs/python/config/queue.html
http://code.google.com/appengine/docs/python/config/queue.html
http://code.google.com/appengine/docs/python/taskqueue/overviewpull.html
http://code.google.com/appengine/docs/python/taskqueue/overviewpull.html

ptg7615500

12.15 Task Queues (Unscheduled Tasks) 667

class FormHandler(webapp.RequestHandler):
 def post(self): # should run at most 1/s
 groupID = self.request.get('group')
 taskqueue.add(params={'groupID': groupID})
 . . .

The FormHandler.post() method makes a call to taskqueue.add(), which
adds a task on the default queue, passing in the ID of the group that will
be receiving the e-mail newsletter. When the task is executed by App
Engine, it issues a POST to /_ah/queue/default for which we need to define
another handler class for the task.

Because we’re using the default queue here, we’ll take the app.yaml as
defined in the previous subsection with the additional security lock of
login: admin. Now our main handler (main.py), can specify the handlers
for the form (in the previous example) as well as for the upcoming task
handler we’re going to create:

def main():
 run_wsgi_app(webapp.WSGIApplication([
 . . .
 ('/submit', FormHandler),
 ('/_ah/queue/default', SendNewsletter),
 . . .
]))

Now let’s define the task handler, SendNewsletter, which will receive an
inbound request along with the group ID, as sent from form handler. We’ll
then forward it to a generalized function to carry out the distribution of the
newsletter e-mail messages. Here’s one way you can create the SendNewsletter
class:

class SendNewsletter(webapp.RequestHandler):
 def post(self): # should run at most 1/s
 groupID = self.request.get('group')
 send_group_email(groupID)
 . . .

This, of course, presumes that you’ve created a nice send_group_email()
function to handle the task of taking a group ID, pulling in all the member
e-mail addresses (possibly extracting them from the datastore), construct-
ing the message body (from the datastore, auto-generated, pulled from
another server, etc.), and of course, making the actual call to mail.
send_mail(). Here’s what some of that code might look like:

from datetime import date
from google.appengine.api import mail
. . .

def send_group_email(groupID):

ptg7615500

668 Chapter 12 • Cloud Computing: Google App Engine

 group_emails = . . . # get addresses for groupID members
 msg_body = . . . # get custom msg for groupID members
 mail.send_mail('noreply@APP_ID.appspotmail.com', group_emails,
 '%s Newsletter' % date.today().strftime("%B %Y"), msg_body)

Why did we create a separate send_group_email() function? Couldn’t
we have just rolled these lines of code into our handler to avoid an addi-
tional function call? This is a valid argument; however, we feel that code
reuse is an even nobler goal. A separate function gives you the option to
use the same function elsewhere, perhaps a command-line tool, a special
administrator screen/function, or even another application. If you roll this
code into our handler here, you’d have to cut and paste it out or eventually
split it up into two functions anyway, so we might as well do it now.

It’s clear that it’s not too difficult to create tasks to perform non-user-
facing application work. Tasks are very popular with App Engine users;
we invite you to give them a try. But before you do, we also recommend
that you consider a convenience package if your needs are simpler than
those of others: the deferred library.

The deferred Package

As you read in the previous subsection, App Engine’s tasks queues are a
great way to delegate additional work. This work is typically not user-fac-
ing, and typically, developers don’t want such activities to impact the time
it takes to respond back to their users. However, although tasks offer the
App Engine developer flexibility in terms of customizing the creation and
execution of tasks, it still seems like a bit of work required to just run some
simple tasks. This is where deferred comes in.

The deferred package is a convenience tool that hides much of the effort
in setting up and executing tasks: you have to adjust your form handler to
create tasks, you have to extract and provide the appropriate task parame-
ters and execution guidelines, you have to create and configure separate
task handlers, etc. Why can’t I just delegate that to a task? That’s pretty much
exactly what deferred offers.

You’re only presented with a single function, deferred.defer(), that
you’ll use to create a deferred task. It can be as simple as a logging call,
such as the following:

from google.appengine.ext import deferred
deferred.defer(logging.info, "Called a deferred task")

Other than configuring your application to use the deferred library,
there’s nothing else for you to do. Deferred tasks run (by default) on the
default queue, and as you read earlier, you don’t need to do anything

ptg7615500

12.15 Task Queues (Unscheduled Tasks) 669

special to set that up, unless you want to change the default characteristics
of the default queue. You also don’t need to specify a handler in your
application to handle the deferred task—the deferred library implements
all of this. As you can see from the preceding short example, you only
need to pass deferred.defer() a Python callable and any arguments and/
or keyword arguments.

In addition, you can also pass in task arguments, too (such as the ones
described in the last section), but you need to disguise them somewhat to
prevent them from being mixed up with the arguments to your deferred
callable. To do so, you need to prepend them with a single underscore,
which precludes mistaking them for the parameters for your executable.
For example, to make the same call as above, but delayed by (at least) 5 sec-
onds, you would use this, instead:

deferred.defer(logging.info,
 "Called a delayed deferred task", _countdown=5)

We can easily convert out e-mail distribution example to this equivalent
code:

class SendNewsletter(webapp.RequestHandler):
 def post(self):
 groupID = self.request.get('group')
 deferred.defer(send_group_email, groupID)
 . . .

Deferred tasks can call functions, methods, and generally any object
that is callable or that have __call__ defined. From the documentation in
the code, these are the callables that can be used as deferred tasks:

1. Functions defined in the top level of a module
2. Classes defined in the top level of a module

a. Instances of those classes that implement __call__
b. Instance methods of objects of those classes
c. Class methods of those classes

3. Built-in functions
4. Built-in methods

However, the following are not permitted (also documented in the code):
• Nested functions or closures

• Nested classes or objects of them

• Lambda functions

• Static methods

ptg7615500

670 Chapter 12 • Cloud Computing: Google App Engine

Furthermore, all the parameters of the callable used must be “pickle-
able,” meaning just your basic Python objects, such as constants, numbers,
strings, sequences, and hashing types. For a full list, you can consult the
official Python documentation at http://docs.python.org/release/2.5.4/lib/
node317.html (Python 2.5) or http://docs.python.org/library/pickle.html#
what-can-be-pickled-and-unpickled (latest Python version).

The only other restriction with our example is that send_group_email()
needs to be in a different module and an import added to our main han-
dler. The reason for this is because at the time you “defer” your task and
it’s “serialized,” it records that your code belongs to the __main__ module,
but when the deferred package executes your callable after receiving it
from the POST request that is created by the task, the deferred module is
what is executing (hence it’s [also] __main__, which means it won’t be able
to find your code). You’ll receive an error that looks like the following if
your deferred function were called foo():

Traceback (most recent call last):
 File "/usr/local/google_appengine/google/appengine/ext/deferred/
deferred.py", line 258, in post
 run(self.request.body)
 File "/usr/local/google_appengine/google/appengine/ext/deferred/
deferred.py", line 122, in run
 raise PermanentTaskFailure(e)
PermanentTaskFailure: 'module' object has no attribute 'foo'

However, by placing it outside of main.py (or whatever Python module
contains your main handler), you will avoid this confusion and have your
code be imported and execute properly. If you would like a quick refresher
on __main__, read the chapter on modules in Core Python. To find more
about deferred, check out the original article at http://code.google. com/
appengine/articles/deferred.html.

12.16 Profiling with Appstats
Being able to profile how well your application performs is important in
App Engine. To help you do that, you can use Appstats, which is a tool in
the SDK with which users can optimize the performance of their applica-
tions. Beyond just a normal “code profiler,” Appstats traces the various
API calls made by your application, measures the time it takes to complete
roundtrips to back-end services via remote procedure calls (RPCs), and pro-
vides a web-based interface for you to observe your application’s behavior.

http://docs.python.org/release/2.5.4/lib/node317.html
http://docs.python.org/release/2.5.4/lib/node317.html
http://code.google.com/appengine/articles/deferred.html
http://code.google.com/appengine/articles/deferred.html
http://code.google.com/appengine/articles/deferred.html
http://docs.python.org/library/pickle.html#what-can-be-pickled-and-unpickled
http://docs.python.org/library/pickle.html#what-can-be-pickled-and-unpickled

ptg7615500

12.16 Profiling with Appstats 671

Configuring Appstats to record events is straightforward. You simply
create an appengine_config.py file in the root directory of your application
(or append to it if it already exists) by using the following function:

def webapp_add_wsgi_middleware(app):
 from google.appengine.ext.appstats import recording
 app = recording.appstats_wsgi_middleware(app)
 return app

There are additional features that you can install here, which you can
read about in the documentation. Once you’ve installed this code, App-
stats will begin to record events from your application’s activity. The
recorder is fairly lightweight, so you should not experience any apprecia-
ble degradation in performance.

The final step is to set up the administrative interface through which
you can access the metrics that Appstats records. You can you do this in
one of three ways:

1. Add a standard handler in app.yaml
2. Add a custom Admin Console page
3. Enable the interface as a built-in

12.16.1 Adding a Standard Handler in app.yaml

To add a standard handler in app.yaml (in the handlers: section naturally),
use the following:

- url: /stats.*
 script: $PYTHON_LIB/google/appengine/ext/appstats/ui.py

12.16.2 Adding a Custom Admin Console page

If you want to add the Appstats UI as a custom Admin Console page, you
can do so in the admin_console: section of app.yaml, as shown here:

admin_console:
 pages:
 - name: Appstats UI
 url: /stats

ptg7615500

672 Chapter 12 • Cloud Computing: Google App Engine

12.16.3 Enabling the Interface as a Built-In

You can enable the Appstats UI as a built-in by turning it on in the builtins:
section of app.yaml, as demonstrated here:

builtins:
- appstats: on

Enabling it this way configures the UI to default to the /_ah/stats path.
You can see all the magic that Appstats provides for you at the follow-

ing links:
http://code.google.com/appengine/docs/python/tools/appstats.html
http://googleappengine.blogspot.com/2010/03/easy-performance-profiling-
with.html
http://www.youtube.com/watch?v=bvp7CuBWVgA

12.17 The URLfetch Service
One restriction that you need to take into consideration when working
with App Engine is that you cannot create network sockets. This can prac-
tically render most applications useless; however, the SDK does provide
for higher-level functionality as a proxy. One of the main use cases of
being able to create and use sockets is to communicate with other applica-
tions on the Internet. To this end, App Engine provides a URLfetch service
whereby your application can make HTTP requests (GET, POST, HEAD, PUT,
DELETE) to other servers online. Here’s a short example of how to use it:

from google.appengine.api import urlfetch
. . .
 res = urlfetch.fetch('http://google.com')
 if res.status_code == 200:
 self.response.out.write(
 'First 100 bytes of google.com:<p>%s</p>' %
res.content[:100])
. . .

In addition to App Engine’s urlfetch module, you can also use the stan-
dard library urllib, urllib2, and httplib modules, modified to communi-
cate through App Engine’s URL fetch service (which naturally runs on
Google’s scalable infrastructure).

There are some caveats about which you should be aware, however,
such as communicating to servers via HTTPS as well as request headers
that cannot be modified or set. You can read more about these restrictions

http://code.google.com/appengine/docs/python/tools/appstats.html
http://googleappengine.blogspot.com/2010/03/easy-performance-profiling-with.html
http://googleappengine.blogspot.com/2010/03/easy-performance-profiling-with.html
http://www.youtube.com/watch?v=bvp7CuBWVgA

ptg7615500

12.18 Lightning Round (without Python Code) 673

as well as find an overview of how to use the URLfetch service in the doc-
umentation at http://code.google.com/appengine/docs/python/urlfetch/
overview.html.

Finally, because some payloads have a high latency, an asynchronous
URLfetch service is also available. You also have the option of polling to
see if the request has completed or provide a callback. You can read more
about asynchronous URLfetch at http://code.google.com/appengine/docs/
python/urlfetch/asynchronousrequests.html.

12.18 Lightning Round (without Python Code)
This is another “lightning round” section in which we will introduce fea-
tures that are configured. This section does not feature source code.

12.18.1 Cron Service (Scheduled Tasks/Jobs)

A cronjob is a task that is executed at scheduled times and originated on
POSIX computers. App Engine provides a cron-type service for its users.
There is actually no Python code involved, except for the handler that is
executed at the appropriate time.

To use the cron service, you need to create a cron.yaml file that contains
contents such as the following:

cron:
- url: /task/roll_logs
 schedule: every day
- url: /task/weekly_report
 schedule: every friday 17:00

You can also specify description: and timezone: fields, as appropriate.
The schedule format is fairly flexible. You can read more about cron jobs in
App Engine from the documentation at http://code.google.com/appengine/
docs/python/config/cron.html.

12.18.2 Warming Requests

The goal of warming requests is to reduce the latency that users of your
application experience when new instances need to be “spun up” to serve
yet more users. Let’s assume that you’re doing a good job of serving your

http://code.google.com/appengine/docs/python/urlfetch/overview.html
http://code.google.com/appengine/docs/python/urlfetch/overview.html
http://code.google.com/appengine/docs/python/urlfetch/asynchronousrequests.html
http://code.google.com/appengine/docs/python/urlfetch/asynchronousrequests.html
http://code.google.com/appengine/docs/python/config/cron.html
http://code.google.com/appengine/docs/python/config/cron.html

ptg7615500

674 Chapter 12 • Cloud Computing: Google App Engine

application from a single instance. But if it is suddenly Slashdotted or
Tweeted, it can experience a sudden rush of traffic. When the running
instance can no longer support this load, new instances must be brought
online to serve all the requests.

Without the warming feature, the first user to access your application on
the new instance would have to wait longer for a response than it would if
he accessed the already-running instance. The additional delay is caused by
the need to wait for the new instance to be loaded before it can service the
user’s request. Now if we could just “warm up” the new instance by pre-
loading your application before it gets any traffic, then users wouldn’t have
to suffer this delay. That’s exactly what warming requests do.

Similar to other App Engine features, warming requests are not enabled
by default. To turn them on, add a line in the inbound_services: section of
your app.yaml file:

inbound_services:
- warmup

Furthermore, when a new instance comes online, App Engine will issue
a GET request to /_ah/warmup. If you create a handler for this, you can pre-
load any data in your application, as well. Just keep in mind that if your
application isn’t getting any traffic and all, and there are no instances of it
running, the very first request will still trigger a loading request for that
unfortunate user (even if warming is enabled).

If you think about it, the reason is quite obvious: a warming request
won’t do any good, and in fact, would actually add to the latency because
the loading request must already happen. You don’t want to pay the pen-
alty of issuing a warming request in addition to the loading request before
your application can respond to this first user. Warming requests are really
only useful if there are already servers handling traffic to your application
so that App Engine can warm up new instances.

This feature is a configuration which also doesn’t require any Python
code. You can read more about warming requests at:

http://code.google.com/appengine/docs/adminconsole/
instances.html#Warming_Requests
http://code.google.com/appengine/docs/python/config/
appconfig.html#Inbound_Services

http://code.google.com/appengine/docs/adminconsole/instances.html#Warming_Requests
http://code.google.com/appengine/docs/adminconsole/instances.html#Warming_Requests
http://code.google.com/appengine/docs/python/config/appconfig.html#Inbound_Services
http://code.google.com/appengine/docs/python/config/appconfig.html#Inbound_Services

ptg7615500

12.19 Vendor Lock-In 675

12.18.3 Denial-of-Service Protection

App Engine offers a simplistic form of protection against systematic Denial-
of-Service (DoS) abuse against your application. It requires you to create a
dos.yaml file with a blacklist: section, as in this short example:

blacklist:
- subnet: 89.212.115.11
 description: block DoS offender
- subnet: 72.14.194.1/15
 description: block offending subnet

You can blacklist individual IP addresses or subnets for both IPv4 and
IPv6. Once you upload the dos.yaml file, requests coming from the speci-
fied addresses and subnets will be filtered from reaching your application
code. You will not be charged for any resources incurred from blocking
computers sending traffic from these blacklisted addresses and networks.

The official documentation for the DoS protect can be found at http://
code.google.com/appengine/docs/python/config/dos.html.

12.19 Vendor Lock-In
The last discussion we’ll have before we let you take flight to the clouds is
about vendor lock-in. Lock-in generally refers to systems that inherently
make it very difficult or impossible to migrate data and/or logic to other simi-
lar or competitive systems. Throughout its short lifetime, App Engine has
been consistently dogged by the reputation that it “forces users” to use
Google’s API to access App Engine with no easy way to port applications
away from the platform.

While Google does strongly recommend you use their APIs to take full
advantage of the system, users must understand that there is a tradeoff. It
seems to be fair that in exchange for being able to take advantage of
Google’s scalable infrastructure (whose management is solely the com-
pany’s), that you should be using their APIs to write your code. Again,
you can’t get something for nothing, right? And building such scalability
is one of the most difficult and expensive things to do. However, Google
does try to fight lock-in as much as it can while still allowing users to take
advantage of App Engine.

http://code.google.com/appengine/docs/python/config/dos.html
http://code.google.com/appengine/docs/python/config/dos.html

ptg7615500

676 Chapter 12 • Cloud Computing: Google App Engine

For example, while App Engine does come with the webapp (or
webapp2) framework, you’re free to use others that are open source and
compatible with App Engine. Some of these include Django, web2py, Tipfy,
Flask, or Bottle. With regard to the Datastore API, you can completely
bypass it if you use the Django-non-rel system along with djangoappengine.
These libraries allow you to run pure Django apps directly on top of App
Engine, so you’re free to move your apps between App Engine and any
traditional hosting that supports Django. Furthermore, this isn’t limited to
Python as on the Java side; the App Engine team has tried hard to make its
APIs as compliant with the Java Specification Request (JSR) standards as
possible. If you know how to write a Java servlet, your knowledge is easily
transferred to App Engine.

Finally, there are two open-source back-end systems that claim to be com-
patible with the App Engine client: AppScale and TyphoonAE. The latter is
maintained as a more traditional open-source project, whereas the former is
actively developed at the University of California, Santa Barbara. You can
find out more about both projects at their respective home pages at http://
appscale.cs.ucsb.edu and http://code.google.com/p/typhoonae. If you want
full control of your application and don’t want to run it within a Google
datacenter, you can host your own platform with either of these systems.

12.20 Resources
You can write an entire book on App Engine (and people have); unfortu-
nately, we have no choice but to leave many details out of this chapter.
However, if you would like to delve deeper into it, the following are some
features and references that you might find useful.

• Blobstore Lets users serve data objects (blobs) which are too
large for the Datastore, (e.g., media files)

http://code.google.com/appengine/docs/python/blobstore/
overview.html

• Capabilities

http://www.slideshare.net/jasonacooper/strategies-for-
maintaining-app-engine-availability-during-read-only-
periods

http://code.google.com/appengine/docs/python/howto/
maintenance.html

http://appscale.cs.ucsb.edu
http://appscale.cs.ucsb.edu
http://code.google.com/p/typhoonae
http://code.google.com/appengine/docs/python/blobstore/overview.html
http://code.google.com/appengine/docs/python/blobstore/overview.html
http://www.slideshare.net/jasonacooper/strategies-for-maintaining-app-engine-availability-during-read-only-periods
http://www.slideshare.net/jasonacooper/strategies-for-maintaining-app-engine-availability-during-read-only-periods
http://www.slideshare.net/jasonacooper/strategies-for-maintaining-app-engine-availability-during-read-only-periods
http://code.google.com/appengine/docs/python/howto/maintenance.html
http://code.google.com/appengine/docs/python/howto/maintenance.html

ptg7615500

12.20 Resources 677

• Channel Service that lets your application push data directly
to the browser, a.k.a. Reverse Ajax, browser push, Comet

http://googleappengine.blogspot.com/2010/12/
happy-holidays-from-app-engine-team-140.html

http://blog.myblive.com/2010/12/multiuser-chatroom-
with-app-engine.html

http://code.google.com/p/channel-tac-toe/

http://arstechnica.com/web/news/2010/12/app-engine-
gets-streaming-api-and-longer-background-tasks.ars

• High-replication datastore

http://googleappengine.blogspot.com/2011/01/announcing-
high-replication-datastore.html

http://code.google.com/appengine/docs/python/datastore/hr/
overview.html

• Mapper First segment of a MapReduce service lets users
iterate over user-persistent data

http://googleappengine.blogspot.com/2010/07/introducing-
mapper-api.html

http://code.google.com/p/appengine-mapreduce/

• Matcher Highly scalable real-time matching infrastructure:
register queries to match against an object stream

http://www.onebigfluke.com/2010/10/magical-api-from-
future-app-engines.html

http://groups.google.com/group/google-appengine/
browse_thread/thread/5462e14c31f44bef

http://code.google.com/p/google-app-engine-samples/wiki/
AppEngineMatcherService

• Namespaces Lets you create multi-tenant applications by
compartmentalizing your Google App Engine data

http://googleappengine.blogspot.com/2010/08/multi-tenancy-
support-high-performance_17.html

http://googleappengine.blogspot.com/2010/12/happy-holidays-from-app-engine-team-140.html
http://googleappengine.blogspot.com/2010/12/happy-holidays-from-app-engine-team-140.html
http://blog.myblive.com/2010/12/multiuser-chatroom-with-app-engine.html
http://blog.myblive.com/2010/12/multiuser-chatroom-with-app-engine.html
http://googleappengine.blogspot.com/2011/01/announcing-high-replication-datastore.html
http://googleappengine.blogspot.com/2011/01/announcing-high-replication-datastore.html
http://code.google.com/appengine/docs/python/datastore/hr/overview.html
http://code.google.com/appengine/docs/python/datastore/hr/overview.html
http://googleappengine.blogspot.com/2010/07/introducing-mapper-api.html
http://googleappengine.blogspot.com/2010/07/introducing-mapper-api.html
http://code.google.com/p/appengine-mapreduce/
http://www.onebigfluke.com/2010/10/magical-api-from-future-app-engines.html
http://www.onebigfluke.com/2010/10/magical-api-from-future-app-engines.html
http://groups.google.com/group/google-appengine/browse_thread/thread/5462e14c31f44bef
http://groups.google.com/group/google-appengine/browse_thread/thread/5462e14c31f44bef
http://code.google.com/p/google-app-engine-samples/wiki/AppEngineMatcherService
http://code.google.com/p/google-app-engine-samples/wiki/AppEngineMatcherService
http://googleappengine.blogspot.com/2010/08/multi-tenancy-support-high-performance_17.html
http://googleappengine.blogspot.com/2010/08/multi-tenancy-support-high-performance_17.html
http://code.google.com/p/channel-tac-toe/
http://arstechnica.com/web/news/2010/12/app-engine-gets-streaming-api-and-longer-background-tasks.ars
http://arstechnica.com/web/news/2010/12/app-engine-gets-streaming-api-and-longer-background-tasks.ars

ptg7615500

678 Chapter 12 • Cloud Computing: Google App Engine

http://code.google.com/appengine/docs/python/
multitenancy/overview.html

http://code.google.com/appengine/docs/python/
multitenancy/multitenancy.html

• OAuth Federated authorization service that allows third-
party access to applications and data without credential
exchange

http://code.google.com/appengine/docs/python/oauth/
overview.html

http://oauth.net

• Pipeline Manage multiple long-running tasks/workflows
and collate their results (See also Fantasm, another simpler
workflow manager written by a third-party)

http://code.google.com/p/appengine-pipeline/wiki/
GettingStarted

http://code.google.com/p/appengine-pipeline/

http://news.ycombinator.com/item?id=2013133

http://googleappengine.blogspot.com/2011/03/implementing-
workflows-on-app-engine.html

Table 12-3 lists Web addresses for many of the development frame-
works presented in this chapter.

Table 12-3 Frameworks for Development with Google App Engine

Project URL(s)

Google App Engine http://code.google.com/appengine

Bigtable http://labs.google.com/papers/bigtable.html

Megastore http://research.google.com/pubs/pub36971.html

webapp http://code.google.com/appengine/docs/python/
gettingstarted/usingwebapp.html
http://code.google.com/appengine/docs/python/tools/
webapp

http://code.google.com/appengine/docs/python/multitenancy/overview.html
http://code.google.com/appengine/docs/python/multitenancy/overview.html
http://code.google.com/appengine/docs/python/multitenancy/multitenancy.html
http://code.google.com/appengine/docs/python/multitenancy/multitenancy.html
http://code.google.com/appengine/docs/python/oauth/overview.html
http://code.google.com/appengine/docs/python/oauth/overview.html
http://oauth.net
http://code.google.com/p/appengine-pipeline/wiki/GettingStarted
http://code.google.com/p/appengine-pipeline/wiki/GettingStarted
http://googleappengine.blogspot.com/2011/03/implementing-workflows-on-app-engine.html
http://googleappengine.blogspot.com/2011/03/implementing-workflows-on-app-engine.html
http://code.google.com/appengine
http://labs.google.com/papers/bigtable.html
http://research.google.com/pubs/pub36971.html
http://code.google.com/appengine/docs/python/gettingstarted/usingwebapp.html
http://code.google.com/appengine/docs/python/gettingstarted/usingwebapp.html
http://code.google.com/appengine/docs/python/tools/webapp
http://code.google.com/appengine/docs/python/tools/webapp
http://code.google.com/p/appengine-pipeline/
http://news.ycombinator.com/item?id=2013133

ptg7615500

12.21 Conclusion 679

12.21 Conclusion
As we’ve seen from all the rich material in this chapter and Chapter 11,
Django and Google App Engine are two of the most powerful and flexible
Web frameworks in the Python community today. Add in all the others
(TurboGears, Pyramid, web2py, web.py, etc.), which are quite formidable
themselves, and you’ve got a great ecosphere of frameworks and an ample
number of choices for anyone writing Web applications in Python. Even
more important, all of the Python Web frameworks have a dedicated set of
developers and devoted followers.

Programmers who are jacks-of-all-trades might even switch between
frameworks from time-to-time, depending on whether they’re the right
tool for the job. It’s good that the community has rallied around some of
these larger, more well-known frameworks, because although the quote at
the beginning of the chapter is a bit tongue-in-cheek, there is a grain of
truth behind it, and the world would be much worse off if everyone had to
write their own Web framework.

Project URL(s)

Webapp2 http://code.google.com/appengine/docs/python/
gettingstartedpython27/usingwebapp.html
http://code.google.com/appengine/docs/python/tools/
webapp
http://webapp-improved.appspot.com/

Django http://djangoproject.com

Django-nonrel http://www.allbuttonspressed.com/projects/django-
nonrel

djangoappengine http://www.allbuttonspressed.com/projects/
djangoappengine

Bottle http://bottlepy.org

Flask http://flask.pocoo.org/

tipfy http://tipfy.org

web2py http://web2py.com

AppScale http://appscale.cs.ucsb.edu

TyphoonAE http://code.google.com/p/typhoonae

http://code.google.com/appengine/docs/python/gettingstartedpython27/usingwebapp.html
http://code.google.com/appengine/docs/python/gettingstartedpython27/usingwebapp.html
http://code.google.com/appengine/docs/python/tools/webapp
http://code.google.com/appengine/docs/python/tools/webapp
http://webapp-improved.appspot.com/
http://djangoproject.com
http://www.allbuttonspressed.com/projects/django-nonrel
http://www.allbuttonspressed.com/projects/django-nonrel
http://bottlepy.org
http://flask.pocoo.org/
http://tipfy.org
http://web2py.com
http://appscale.cs.ucsb.edu
http://code.google.com/p/typhoonae
http://www.allbuttonspressed.com/projects/djangoappengine
http://www.allbuttonspressed.com/projects/djangoappengine

ptg7615500

680 Chapter 12 • Cloud Computing: Google App Engine

One final note: none of the examples in this chapter are available in
Python 3 because neither framework supports it yet. Rest assured that
when that time arrives, we’ll provide that source for you online as well as
in future editions of this book.

12.22 Exercises

Google App Engine

12-1. Background. What does Python have to do with Google App
Engine?

12-2. Background. What makes Google App Engine different from
other development environments?

12-3. Configuration. What are some differences between Django
and App Engine configuration files?

12-4. Configuration. Name the places where Django applications
perform URL-to-handler mapping. Do the same for App
Engine applications.

12-5. Configuration. How do you get Django applications to run
(mostly) unmodified on Google App Engine?

12-6. Configuration. For this exercise, go to http://code.google.com/
appengine, and then download and install the latest Google
App Engine SDK for your platform.
a) Use the Launcher application if on a Windows-based PC

or Mac and create an application called “helloworld.” On
other platforms, create the following pair of files, with the
following content:
i. The first file is: app.yaml
application: helloworld
version: 1
runtime: python
api_version: 1

handlers:
 - url: .*
 script: main.py
ii. The second file is: main.py

from google.appengine.ext import webapp
from google.appengine.ext.webapp.util import run_wsgi_app

http://code.google.com/appengine
http://code.google.com/appengine

ptg7615500

12.22 Exercises 681

class MainHandler(webapp.RequestHandler):
 def get(self):
 self.response.out.write('Hello world!')

application = webapp.WSGIApplication([
 ('/', MainHandler),
], debug=True)

def main():
 run_wsgi_app(application)

if __name__ == '__main__':
 main()

b) Start your application by using the Launcher or executing
‘dev_appserver.py DIR’, where DIR is the directory in
which both app.yaml and main.py are located, and then
visit http://localhost:8080 (or the appropriate port num-
ber) to confirm your code works and “Hello world!” does
show up on your browser. Change the output to some-
thing other than “Hello world!”.

12-7. Tutorial. Complete the entire Getting Started tutorial found
at http://code.google.com/appengine/docs/python/
gettingstarted. Warning: do not simply copy the code you
find there. I expect to see you modify the application to do
something slightly different than what’s offered, and/or add
new functionality that isn’t present.

12-8. Communication. E-mail is a critical application feature. In an
earlier exercise, you added e-mail distribution when a new
blog entry is made. Do the same with your App Engine blog
application.

12-9. Images. Allow users to submit one photo or picture per blog
entry and create a suitably tasteful display of blog posts.

12-10. Cursors and Pagination. Like the Django blog application,
showing the ten most recent posts is good, but letting users
paginate through older posts is even better. Use cursors and
add pagination to your application.

12-11. Communication. Allow users to communicate with your
application by using IMs. Create a menu of commands to
post blog entries, retrieve the most recent entries and any
other feature that you think would be “cool.”

http://code.google.com/appengine/docs/python/gettingstarted
http://code.google.com/appengine/docs/python/gettingstarted

ptg7615500

682 Chapter 12 • Cloud Computing: Google App Engine

Development with Django or App Engine

12-12. User Cloud Data Management System. Build a weather moni-
toring system. Allow multiple users in your system, using
whichever form of authentication you prefer. Every user
should have a set of locations (postal or ZIP code, airport
code, [city, state], [city, country], etc.). The user should be
presented a grid of all the locations they’re interested in,
along with the current forecast and an extended
3–5 day forecast. There are various online weather APIs
you can use.

12-13. Financial Management System. Create a stock/equity portfolio
management system. This includes normal stocks (on any
exchange), mutual funds, exchange-traded funds (ETFs),
American depositary receipts (ADRs), stock exchange indi-
ces, or anything that has a ticker symbol by which you can
perform lookups. If you do not live in the United States,
adopt your solution to the trading vehicles used in your
country.

12-14. Sports Statistics Application. You’re an avid participant in the
global sport of bowling. Sure, it’s easy to make an application
that manages your scores, gives you averages, etc., but you
should do more than that. Show trending, moving-day aver-
ages, and also allow users to enter the number of open
frames along with the scores. This way they can verify
whether they really had a good game or whether they got
lucky by hitting Brooklyns all evening long. Also, include a
check box that can be selected to indicate whether a game is
sanctioned or not, and allow links to video clips be tied to
specific games. Live and breathe your sport—away from
your bowling alley. Create a network server that allows you
to access this data over the Internet when you’re out of town
or from your mobile phone.

12-15. Course Logistics and Social Management System. Implement a
secondary or collegiate course management system. It
should support users being able to login, have a chat room
for live conversation, forums for offline Out-of-Band (OoB)
communication, and a place to submit homework and get
grades. Similarly for teachers, they should be able to add
new and grade existing assignments, participate in chats and
forums along with students, post course announcements,

ptg7615500

12.22 Exercises 683

static files, and send messages to students. Choose either
Django or Google App Engine to implement your solution,
or better yet, use Django-non-rel to create a Django app that
can run in a traditional hosted environment or by Google on
App Engine.

12-16. Recipe Manager. Develop an application to manage a virtual
collection of cooking recipes. This is slightly different from
managing, for instance, a music collection for which you
have all your MP3 or other sound files locally. These food
recipes only exist online. When users enter recipe URLs,
your application should allow them to be placed in multiple
categories (but the actual URL should only be saved once).
Also, the user should be alerted when a link no longer
works by e-mail, IM/XMPP, or even by SMS if you can
find an appropriate e-mail-to-SMS gateway (see http://
en.wikipedia.org/wiki/List_of_SMS_gateways) if you are not
running your own SMS service. Create a mini-crawler so that
when listing recipes, you’ll also display a thumbnail of an
image found on the same page as the recipe URL (if one is
available). You should also allow your users to browse by
category/cuisine.

http://en.wikipedia.org/wiki/List_of_SMS_gateways
http://en.wikipedia.org/wiki/List_of_SMS_gateways

ptg7615500

684

CHAPTER

Web Services

I’m not addicted to Twitter. I only tweet when I have time:
lunch time, break time, off time, this time, that time,

any time, all the time.
—(unknown), earlier than May 2010

In this chapter...

• Introduction
• The Yahoo! Finance Stock Quote Server
• Microblogging with Twitter

ptg7615500

13.2 The Yahoo! Finance Stock Quote Server 685

n this chapter, we give brief introductions on how to use a couple of
Web services available today; an “old” service, Yahoo’s stock quote
server, and a new one, Twitter.

13.1 Introduction
There are many Web services and applications on the Internet, providing a
wide variety of services. You will find application programming interfaces
(APIs) from most of the big players, such as Yahoo!, Google, Twitter, and
Amazon, to name just a few. In the past, APIs have been used just to
access data by using these services; however, today’s APIs are different.
They are rich and fully featured, and you are able to actually integrate ser-
vices into your own personal Web sites and Web pages, commonly known
as mash-ups.

This is an area of active interest that we will continue to explore (REST,
XML, JSON, RSS, Atom, etc.), but for now, we are going to take a trip back
in time to play around with an older interface that is still useful and has
displayed tremendous longevity: the stock quote server from Yahoo! at
http://finance.yahoo.com.

13.2 The Yahoo! Finance Stock Quote
Server

If you visit the Yahoo! Finance Web site and pull up a quotation for any
stock, you will find a URL link under the basic quote data labeled Down-
load Data in the Toolbox section, toward the page bottom. This lets users
download a .csv file suitable for importing into Microsoft Excel or Intuit
Quicken. The URL would look similar to the following if you were on the
page for GOOG:

http://quote.yahoo.com/d/quotes.csv?s=GOOG&f=sl1d1t1c1ohgv&e=.csv
If your browser’s MIME settings are set correctly, it will actually launch

software on your system configured to handle CSV data, usually spread-
sheet applications such as Excel or LibreOffice Calc. This is due primarily
to the final variable (key-value) pair found in the link, e=.csv. This variable
is actually not used by the server because it always sends back data in CSV
format, anyway.

I

http://finance.yahoo.com
http://quote.yahoo.com/d/quotes.csv?s=GOOG&f=sl1d1t1c1ohgv&e=.csv

ptg7615500

686 Chapter 13 • Web Services

If we use our friend urllib2.urlopen(), we see that for any stock ticker
symbol, one CSV string is returned:

>>> from urllib2 import urlopen
>>> url = 'http://quote.yahoo.com/d/quotes.csv?s=goog&f=sl1d1c1p2'
>>> u = urlopen(url, 'r')
>>> for row in u:
... print row
...
"GOOG",600.14,"10/28/2011",+1.47,"+0.25%"

>>> u.close()

The string would then need to be manually parsed (by stripping the
trailing whitespace and splitting on the comma delimiter). As an alterna-
tive to parsing the data string ourselves, we can use the csv module, intro-
duced in Python 2.3, which does both the string split and the whitespace
strip. Using csv, we can replace the for loop in the previous example with
the following, assuming that all other lines are left intact:

>>> import csv
>>> for row in csv.reader(u):
... print row
...
['GOOG', '600.14', '10/28/2011', '+1.47', '+0.25%']

By analyzing the argument field f passed to the server via the URL
string and from reading Yahoo!’s online help for this service, you will see
that the symbols (sl1d1c1p2) correspond to: ticker symbol, last price, date,
change, and percentage change.

You can get more information by checking the Yahoo! Finance Help
pages—just search for “download data” or “download spreadsheet for-
mat.” Further analysis of the API reveals a few more options such as the
previous closing price, the percentage change of the current price to the
previous close, the 52-week high and low, etc. The options are summa-
rized in Table 13-1 along with the formats of the returned components.
(Don’t be shocked at the stock price of Yahoo! from the last decade; that’s
what it really was back then.)

2.3

ptg7615500

13.2 The Yahoo! Finance Stock Quote Server 687

The server presents the field names in the order that you specify. Just
concatenate them as a single argument to the field parameter f, as part of
the requesting URL. As mentioned in the footnote b., of Table 13-1, some
of the components returned are quoted separately. It’s up to the parser to
properly extract the data. Observe the resulting (sub)strings when parsed
manually versus using the csv module in our previous example. If a value
is not available, the quote server returns “N/A” as shown in the code that
follows.

Table 13-1 Yahoo! Finance Stock Quote Server Parameters

Stock Quotation Data

Field

Namea Format Returnedb

Stock ticker symbol s "YHOO"

Price of last trade l1 328

Last trade date d1 "2/2/2000"

Time of last trade t1 "4:00pm"

Change from previous close c1 +10.625

Percentage change from previous close p2 "+3.35%"

Previous closing price p 317.375

Last opening price o 321.484375

Daily high price h 337

Daily low price g 317

52-week range w "110 - 500.125"

Volume for the day v 6703300

Market capitalization j1 86.343B

Earnings per share e 0.20

Price-to-earnings ratio r 1586.88

Company name n "YAHOO INC"

a. The first character of the field name is alphabetic; the second, if any, is numeric.
b. Some values come back (additionally) quoted, although all are returned as part of a

single CSV string from the server.

ptg7615500

688 Chapter 13 • Web Services

For example, if we give the server a field request of f=sl1d1c1p2, we
get back a string such as the following for a valid stock ticker (back in 2000
when I really ran this query):

"YHOO",166.203125,"2/23/2000",+12.390625,"+8.06%"

For cases for which the stock is no longer publicly traded, we get some-
thing like this, instead (note again how fields that come back quoted still
do, even if N/A):

"PBLS.OB",0.00,"N/A",N/A,"N/A"

You can also specify multiple stock ticker symbols, such as
s=YHOO,GOOG,EBAY,AMZN. You will get back one row of data such as the
preceding for each company. Just keep in mind that “[any] redistribution of
quotes data displayed on Yahoo! is strictly prohibited,” as quoted in the Yahoo!
Finance Help pages, so you should use this data for your personal use
only. Also be aware that all of the quotes you download are delayed.

Using what we know now, let’s build an example application that reads
and displays some stock quote data for some of our favorite Internet com-
panies, as shown in Example 13-1.

Example 13-1 Yahoo! Finance Stock Quote Example (stock.py)

This script downloads and displays stock prices from the Yahoo! quote server.

1 #!/usr/bin/env python
2
3 from time import ctime
4 from urllib2 import urlopen
5
6 TICKs = ('yhoo', 'dell', 'cost', 'adbe', 'intc')
7 URL = 'http://quote.yahoo.com/d/quotes.csv?s=%s&f=sl1c1p2'
8
9 print '\nPrices quoted as of:%s PDT\n' % ctime()
10 print 'TICKER', 'PRICE', 'CHANGE', '%AGE'
11 print '------', '-----', '------', '----'
12 u = urlopen(URL % ','.join(TICKs))
13
14 for row in u:
15 tick, price, chg, per = row.split(',')
16 print tick, '%.2f' % float(price), chg, per,
17
18 u.close()

ptg7615500

13.2 The Yahoo! Finance Stock Quote Server 689

When we run this script, we see the following output:
$ stock.py

Prices quoted as of: Sat Oct 29 02:06:24 2011 PDT

TICKER PRICE CHANGE %AGE
------ ----- ------ ----
"YHOO" 16.56 -0.07 "-0.42%"
"DELL" 16.31 -0.01 "-0.06%"
"COST" 84.93 -0.29 "-0.34%"
"ADBE" 29.02 +0.68 "+2.40%"
"INTC" 24.98 -0.15 "-0.60%"

Line-by-Line Explanation

Lines 1–7
This Python 2 script uses time.ctime() to display the current time at which
stock information was downloaded from Yahoo!, and urllib2.urlopen() to
connect to Yahoo!’s service to get the stock data. Following the import
statements are the stock ticker symbols as well as the fixed URL that
retrieves all the data.

Lines 9–12
This short block of code displays the stock information download time-
stamp as well as uses urllib2.urlopen() to request the data. (If you read
earlier editions of this book, you will note that we’ve simplified output
code quite a bit, thanks to the sharp-eyed readers out there!)

Lines 14–18
Once we have an open file-like object to the data downloaded from the
Web, we iterate through each returned row, split the comma-delimited list,
and then display them to the screen.

Similar to reading lines in from a text file, the trailing line termination
character is also retained, so we need to add a trailing comma to the end of
the print statement to suppress its NEWLINE; otherwise, the output will
all be double-spaced.

Lastly, note that some of the fields returned come enclosed in quotes.
There are several exercises at the end of this chapter that will give you the
opportunity to improve upon the default output.

ptg7615500

690 Chapter 13 • Web Services

13.3 Microblogging with Twitter
In this section, we will explore the world of microblogging with the Twitter
service. We’ll start with a brief introduction to social networking, describe
where Twitter fits in, introduce the various interfaces available in Python,
and finally, show you both a simple and an intermediate example.

13.3.1 Social Networking

Social media has developed significantly in the past five-plus years. It
started with a very simple concept, such as Web logging, or blogging for
short. This type of service hosts user accounts on which you can post
essays or some other form of written communication. Think of it as a pub-
lic online journal or diary whereby people can report on current events,
give some opinion or diatribe, or anything else you would like to commu-
nicate to others.

However, being online means that you are sharing your communica-
tions with entire world. Users could not target specific individuals or
organizations, much less their friends or family. Thus came the social net-
works, with MySpace, Facebook, Twitter, and Google+ being the most
well-known brand names. With these systems, users can connect with
their friends, family, colleagues, and other people in their social circles.
Although each of these services let users approach the same audience
from the user’s perspective, they’re unique in their own way. Their meth-
ods of interaction differ; thus, they generally do not compete directly with
each other. Let’s briefly describe each, and then dive deeper into Twitter.

MySpace is mostly for young people (junior high and high school level)
with a focus on music; Facebook originally targeted college students but is
now open to all. It is more of a general platform than MySpace, offering
the ability to host applications on its network—this was widely seen as
one of the features that brought it mainstream. Twitter is a microblogging
service, through which users set a status, usually an opinion, thus the
comparison to blogging. Google+ is the Internet giant’s recent foray into
the field, attempting to provide features similar to the others, but it also
includes new features to differentiate it from the others.

Of the common social media applications, the most basic is Twitter. You
use Twitter to publish short status messages called tweets. Others can “fol-
low” you; that is, they can subscribe to your tweets. By the same token,
you can follow the tweets of other users you find interesting.

ptg7615500

13.3 Microblogging with Twitter 691

Twitter is referred to as a microblogging service because, unlike a stan-
dard blog that allows users to create posts of any length, tweets are limited
to a maximum of 140 characters per update. The size restriction is due
mainly to the fact that the service originally targeted the web and text mes-
sages on mobile phones via the Short Message Service (SMS), which them-
selves have a cap of 160 ASCII characters. Users benefit by not being
flooded with too much to read, plus it forces posters to be expressive
enough to capture their thoughts in 140 characters or less.

13.3.2 Twitter and Python

There are several Twitter API libraries for Python. They are posted on
Twitter’s developer documentation at https://dev.twitter.com/docs/twitter-
libraries#python. They are all similar and different in their own way, so we
recommend that you try several to find one that suits your style. So that we
don’t limit ourselves too much, we’ll use Twython and Tweepy in this
chapter. You can find them at http://github.com/ryanmcgrath/twython
and http://tweepy.github.com, respectively.

As with most Python packages, you can use either easy_install or pip
to get either or both of these Twitter libraries on your system. If you want
to play with the code more, the source trees for both are available on GitHub.
Alternatively, you can just download the latest .tgz or .zip from GitHub and
call the typical setup.py install command:

$ sudo python setup.py install
Password:
running install
running bdist_egg
running egg_info
creating twython.egg-info
. . .
Finished processing dependencies for twython==1.4.4

Libraries like Twython will need some additional help to be able to
communicate with Twitter. It depends on httplib2, oauth2, and simplejson.
(The last is the external version of the json library that is available in the
standard library starting with version 2.6.)

http://github.com/ryanmcgrath/twython
http://tweepy.github.com
https://dev.twitter.com/docs/twitter-libraries#python
https://dev.twitter.com/docs/twitter-libraries#python

ptg7615500

692 Chapter 13 • Web Services

Getting Started

To get you going, here’s a quick example of how to use the Tweepy library
to do a search on Twitter:

tweepy-example.py
import tweepy
results = tweepy.api.search(q='twython3k')
for tweet in results:
 print ' User: @%s' % tweet.from_user
 print ' Date: %s' % tweet.created_at
 print ' Tweet: %s' % tweet.text

If you execute this Python 2 snippet—at the time of this writing,
Tweepy is not available for Python 3—with the exact query shown, you’ll
notice that the search term was specifically chosen for its few results,
meaning you’ll see just a couple of tweets (mostly from yours truly at this
time) returned by Twitter regarding the Python 3 version of the Twython
library:

$ python twython-example.py
 User: @wescpy
 Date: Tue, 04 Oct 2011 21:09:41 +0000
 Tweet: Testing posting to Twitter using Twython3k (another story of
life on the bleeding edge)

 User: @wescpy
 Date: Tue, 04 Oct 2011 17:18:38 +0000
 Tweet: @ryanmcgrath cool... thx! i also have a "real"
twython3k bug i need to file... will do it officially on github. just
giving you a heads-up!

 User: @wescpy
 Date: Tue, 04 Oct 2011 08:01:09 +0000
 Tweet: @ryanmcgrath Hey ryan, good work on Twython thus far!
Can you pls drop twitter_endpoints.py into twython3k? It's out-of-
date. .. thx! :-)

The Tweepy library’s search() call retrieves the results in a list. The
code iterates over the tweets and displays the various attributes of interest.
Twython is a similar Python library to the Twitter API.

Twython is similar yet different from Tweepy. It’s available for both
Python 2 and 3, but it also uses pure Python dictionaries instead of objects
to hold resulting data. Contrast tweepy-example.py with this script, twython-
example.py, which also happens to be compatible with Python 2 and 3:

ptg7615500

13.3 Microblogging with Twitter 693

twython-example.py
from distutils.log import warn as printf
try:
 import twython
except ImportError:
 import twython3k as twython

TMPL = '''\
 User: @%(from_user)s
 Date: %(created_at)s
 Tweet: %(text)s
'''

twitter = twython.Twython()
data = twitter.searchTwitter(q='twython3k')
for tweet in data['results']:
 printf(TMPL % tweet)

The distutils.log.warn() function serves as our proxy for the print
statement (in Python 2) and function (in Python 3). We also attempt imports
of both (Python 2 and 3) Twython libraries, hoping that one will succeed.

In terms of output, yes, Twython.searchTwitter() results in a dictionary,
and the object located at the results key is a list of dicts, each of which rep-
resent a resulting tweet. This lets us simplify the display because results are
dictionaries—a simpler call indeed. (The penalty is paid in the string tem-
plate where we need to expand the key variables within.)

The other change made here is that instead of pure single-lines of out-
put, we put all the strings together into one larger string template, and
then passed in the output dictionary to it. The reason for this is that in
practice, it’s more likely that you would be using some sort of template
(whether string or Web), anyway.

The output, as you would expect, is identical to that of the Tweepy ver-
sion, so we won’t duplicate it here.

13.3.3 A Longer Combination API Example

Those simple little snippets are great in terms of getting a quick introduc-
tion that you can use right away. However, in practice, you’re more likely to
come across a scenario in which using or integrating with multiple, similar
APIs might be necessary. Let’s go for a longer example that helps us practice
this. We’ll write a compatibility library that supports a set of basic Twitter
commands by using both Tweepy and Twython. This exercise will help you
learn both libraries as well as familiarize you more with Twitter’s API.

ptg7615500

694 Chapter 13 • Web Services

Authentication

To move forward with this exercise, you’ll need a Twitter account. Go to http://
twitter.com and register if you haven’t already. Authentication comes in the
form of a username and password. (More modern solutions also include bio-
metric authentication via fingerprinting or retina-scanning.) These credentials
serve the purpose of authenticating who you are. Data access is another matter.

Authorization

Just because you’re authenticated doesn’t mean you have access to the
data (yours or anyone else’s). You need to have the correct authorization for
that. You need to be authorized to be able to access your data or that of
others, or you must authorize a third party to access data on your behalf,
such as allowing an external application to download your Twitter stream
or to post a status update to your Twitter account.

To obtain your authorization credentials with Twitter, you need to cre-
ate an application. You can accomplish this at http://dev.twitter.com. Once
you have at least one application, click the one whose credentials you
want to use. The URL will look similar to https://dev.twitter.com/apps/
APP-ID/show. Here you’ll find four important pieces that you’ll need to
access data on Twitter: your OAuth settings include your consumer key and
consumer secret. It will also give you your access token and access token secret,
giving you access to your Twitter data.

Grab those four valuable pieces of data and stick them somewhere
safe—which means not your source code! In this example, I stored them as
four global variables in a module called tweet_auth.py, which I will
import from our eventual application. In practice, you’d likely either only
distribute a bytecode-compiled .pyc (not plain text!) or have it available via a
database or elsewhere on the network, probably encrypted. Now that we’re
all set up, let me describe the application before showing you the code.

A Hybrid Twitter API Application

This application performs four operations: first it runs a search on Twitter
and prints out the results; next, it retrieves some details about the current
user and prints them out; it then acquires the current user’s timeline of sta-
tus messages and prints them out; and then finally it posts a tweet on
behalf of the current user. All four of these operations are performed
twice: once using the Tweepy library, and once using the Twython library.
To carry this out, we’re going to support four Twitter API commands, as
shown in Table 13-2.

http://twitter.com
http://twitter.com
http://dev.twitter.com
https://dev.twitter.com/apps/APP-ID/show
https://dev.twitter.com/apps/APP-ID/show

ptg7615500

13.3 Microblogging with Twitter 695

Next, this application will support both Twython and Tweepy. Finally, it
will run under both Python 2 and 3. The code will consist of the sup-
ported commands, steps to initiate both libraries, and then contain code
that supports each of the commands. Ready? Let’s take a look at twapi.py in
Example 13-2:

Table 13-2 The Four Commands of the Hybrid Twitter API Application

Command Description

search Take a search query and perform a search on Twitter for
the most recent tweets that match. This is an unauthen-
ticated call (the only one in our application), meaning
anyone can do it at any time.

verify_credentials Ask Twitter for the current information on the authenti-
cated user.

user_timeline Get the most recent tweets from the authenticated user.

update_status Perform a status update from the authenticated
user—yes, this will create a new tweet on your behalf.

Example 13-2 Twitter API Combination Library Example (twapi.py)

A demonstration of interfacing with Twitter by using the Twython and Tweepy
libraries.

1 #!/usr/bin/env python
2
3 from distutils.log import warn as printf
4 from unittest import TestCase, main
5 from tweet_auth import *
6
7 # set up supported APIs
8 CMDs = {
9 'twython': {
10 'search': 'searchTwitter',
11 'verify_credentials': None,
12 'user_timeline': 'getUserTimeline',
13 'update_status': None,
14 },
15 'tweepy': dict.fromkeys((
16 'search',
17 'verify_credentials',
18 'user_timeline',
19 'update_status',
20)),

(Continued)

ptg7615500

696 Chapter 13 • Web Services

Example 13-2 Twitter API Combination Library Example (twapi.py)
(Continued)

21 }
22 APIs = set(CMDs)
23
24 # remove unavailable APIs
25 remove = set()
26 for api in APIs:
27 try:
28 __import__(api)
29 except ImportError:
30 try:
31 __import__('%s3k' % api)
32 except ImportError:
33 remove.add(api)
34
35 APIs.difference_update(remove)
36 if not APIs:
37 raise NotImplementedError(
38 'No Twitter API found; install one & add to CMDs!')
39
40 class Twitter(object):
41 'Twitter -- Use available APIs to talk to Twitter'
42 def __init__(self, api, auth=True):
43 if api not in APIs:
44 raise NotImplementedError(
45 '%r unsupported; try one of: %r' % (api, APIs))
46
47 self.api = api
48 if api == 'twython':
49 try:
50 import twython
51 except ImportError:
52 import twython3k as twython
53 if auth:
54 self.twitter = twython.Twython(
55 twitter_token=consumer_key,
56 twitter_secret=consumer_secret,
57 oauth_token=access_token,
58 oauth_token_secret=access_token_secret,
59)
60 else:
61 self.twitter = twython.Twython()
62 elif api == 'tweepy':
63 import tweepy
64 if auth:
65 auth = tweepy.OAuthHandler(consumer_key,
66 consumer_secret)
67 auth.set_access_token(access_token,
68 access_token_secret)

ptg7615500

13.3 Microblogging with Twitter 697

69 self.twitter = tweepy.API(auth)
70 else:
71 self.twitter = tweepy.api
72
73 def _get_meth(self, cmd):
74 api = self.api
75 meth_name = CMDs[api][cmd]
76 if not meth_name:
77 meth_name = cmd
78 if api == 'twython' and '_' in meth_name:
79 cmds = cmd.split('_')
80 meth_name = '%s%s' % (cmds[0], cmds[1].title())
81 return getattr(self.twitter, meth_name)
82
83 def search(self, q):
84 api = self.api
85 if api == 'twython':
86 res = self._get_meth('search')(q=q)['results']
87 return (ResultsWrapper(tweet) for tweet in res)
88 elif api == 'tweepy':
89 return (ResultsWrapper(tweet)
90 for tweet in self._get_meth('search')(q=q))
91
92 def verify_credentials(self):
93 return ResultsWrapper(
94 self._get_meth('verify_credentials')())
95
96 def user_timeline(self):
97 return (ResultsWrapper(tweet)
98 for tweet in self._get_meth('user_timeline')())
99
100 def update_status(self, s):
101 return ResultsWrapper(
102 self._get_meth('update_status')(status=s))
103
104 class ResultsWrapper(object):
105 "ResultsWrapper -- makes foo.bar the same as foo['bar']"
106 def __init__(self, obj):
107 self.obj = obj
108
109 def __str__(self):
110 return str(self.obj)
111
112 def __repr__(self):
113 return repr(self.obj)
114
115 def __getattr__(self, attr):
116 if hasattr(self.obj, attr):
117 return getattr(self.obj, attr)

(Continued)

ptg7615500

698 Chapter 13 • Web Services

Example 13-2 Twitter API Combination Library Example (twapi.py)
(Continued)

118 elif hasattr(self.obj, '__contains__') and attr in self.obj:
119 return self.obj[attr]
120 else:
121 raise AttributeError(
122 '%r has no attribute %r' % (self.obj, attr))
123
124 __getitem__ = __getattr__
125
126 def _demo_search():
127 for api in APIs:
128 printf(api.upper())
129 t = Twitter(api, auth=False)
130 tweets = t.search('twython3k')
131 for tweet in tweets:
132 printf('----' * 10)
133 printf('@%s' % tweet.from_user)
134 printf('Status: %s' % tweet.text)
135 printf('Posted at: %s' % tweet.created_at)
136 printf('----' * 10)
137
138 def _demo_ver_creds():
139 for api in APIs:
140 t = Twitter(api)
141 res = t.verify_credentials()
142 status = ResultsWrapper(res.status)
143 printf('@%s' % res.screen_name)
144 printf('Status: %s' % status.text)
145 printf('Posted at: %s' % status.created_at)
146 printf('----' * 10)
147
148 def _demo_user_timeline():
149 for api in APIs:
150 printf(api.upper())
151 t = Twitter(api)
152 tweets = t.user_timeline()
153 for tweet in tweets:
154 printf('----' * 10)
155 printf('Status: %s' % tweet.text)
156 printf('Posted at: %s' % tweet.created_at)
157 printf('----' * 10)
158
159 def _demo_update_status():
160 for api in APIs:
161 t = Twitter(api)
162 res = t.update_status(
163 'Test tweet posted to Twitter using %s' % api.title())
164 printf('Posted at: %s' % res.created_at)
165 printf('----' * 10)
166

ptg7615500

13.3 Microblogging with Twitter 699

Before we take this script apart, let’s run it and see the output. Be sure to
first create a tweet_auth.py file with these variables (and correct corre-
sponding values for your Twitter application):

tweet_auth.py
consumer_key = 'SOME_CONSUMER_KEY'
consumer_secret = 'SOME_CONSUMER_SECRET'
access_token = 'SOME_ACCESS_TOKEN'
access_token_secret = 'SOME_ACCESS_TOKEN_SECRET'

Now you’re ready to go. Naturally, the following output was produced
during this one execution performed at the time of this writing. Yours will
definitely differ from mine. Here’s what happened when we ran it (the “. . .”
means we truncated the output to keep it shorter):

$ twapi.py

*** SEARCH
TWYTHON
--

167 # object wrapper unit tests
168 def _unit_dict_wrap():
169 d = {'foo': 'bar'}
170 wrapped = ResultsWrapper(d)
171 return wrapped['foo'], wrapped.foo
172
173 def _unit_attr_wrap():
174 class C(object):
175 foo = 'bar'
176 wrapped = ResultsWrapper(C)
177 return wrapped['foo'], wrapped.foo
178
179 class TestSequenceFunctions(TestCase):
180 def test_dict_wrap(self):
181 self.assertEqual(_unit_dict_wrap(), ('bar', 'bar'))
182
183 def test_attr_wrap(self):
184 self.assertEqual(_unit_attr_wrap(), ('bar', 'bar'))
185
186 if __name__ == '__main__':
187 printf('\n*** SEARCH')
188 _demo_search()
189 printf('\n*** VERIFY CREDENTIALS')
190 _demo_ver_creds()
191 printf('\n*** USER TIMELINE')
192 _demo_user_timeline()
193 printf('\n*** UPDATE STATUS')
194 _demo_update_status()
195 printf('\n*** RESULTS WRAPPER')
196 main()

ptg7615500

700 Chapter 13 • Web Services

@ryanmcgrath
Status: #twython is now version 1.4.4; should fix some utf-8 decoding
issues, twython3k should be caught up, etc: http://t.co/s6fTVh0P /cc
@wescpy
Posted at: Thu, 06 Oct 2011 20:25:17 +0000
--
@wescpy
Status: Testing posting to Twitter using Twython3k (another story of
life on the bleeding edge)
Posted at: Tue, 04 Oct 2011 21:09:41 +0000
--
@wescpy
Status: @ryanmcgrath cool... thx! i also have a "real"
twython3k bug i need to file... will do it officially on github. just
giving you a heads-up!
Posted at: Tue, 04 Oct 2011 17:18:38 +0000
--
@wescpy
Status: @ryanmcgrath Hey ryan, good work on Twython thus far! Can you
pls drop twitter_endpoints.py into twython3k? It's out-of-date. ..
thx! :-)
Posted at: Tue, 04 Oct 2011 08:01:09 +0000
--
TWEEPY
--
@ryanmcgrath
Status: #twython is now version 1.4.4; should fix some utf-8 decoding
issues, twython3k should be caught up, etc: http://t.co/s6fTVh0P /cc
@wescpy
Posted at: 2011-10-06 20:25:17
. . .

--

*** VERIFY CREDENTIALS
@wescpy
Status: .@imusicmash That's great that you're enjoying corepython.com!
Note: there will be lots of cookies at #SVCC: yfrog.com/kh1azqznj
Posted at: Fri Oct 07 22:37:37 +0000 2011
--
@wescpy
Status: .@imusicmash That's great that you're enjoying corepython.com!
Note: there will be lots of cookies at #SVCC: yfrog.com/kh1azqznj
Posted at: 2011-10-07 22:37:37
--

*** USER TIMELINE
TWYTHON
--
Status: .@imusicmash That's great that you're enjoying corepython.com!
Note: there will be lots of cookies at #SVCC: yfrog.com/kh1azqznj
Posted at: Fri Oct 07 22:37:37 +0000 2011
--

ptg7615500

13.3 Microblogging with Twitter 701

Status: SFBayArea: free technical conference w/free
food+drinks+parking this wknd! I'm doing #Python & @App_Engine http://
t.co/spvVjYUA
Posted at: Fri Oct 07 15:20:46 +0000 2011
--
Status: RT @GoogleCode @Google Cloud SQL: your database in the cloud
http://t.co/4wt2cjpH @app_engine #mysql
Posted at: Thu Oct 06 20:12:26 +0000 2011
--
. . .
Status: Watch this: http://t.co/pm2QCLtW Read this: http://t.co/
0m5TtLZP Note the 2 paragraphs that start w/"No one wants to die"
Posted at: Thu Oct 06 00:36:27 +0000 2011
--
Status: I'm wondering: will future Apple products visually be designed
as well & have as much impact on the market? What do you think?
Posted at: Thu Oct 06 00:02:16 +0000 2011
--
. . .
--
TWEEPY
--
Status: .@imusicmash That's great that you're enjoying corepython.com!
Note: there will be lots of cookies at #SVCC: yfrog.com/kh1azqznj
Posted at: 2011-10-07 22:37:37
. . .
--

*** UPDATE STATUS
Posted at: Sat Oct 08 05:18:51 +0000 2011
--
Posted at: 2011-10-08 05:18:51
--

*** RESULTS WRAPPER
..

-
Ran 2 tests in 0.000s

OK
$

You can see that we run through all four functions, executing them with
each library. Executing this script on Windows-based PCs has the same
results if everything is installed correctly. Because our code is also compat-
ible with Python 3, you should also achieve similar output; however, you
should only see output from Twython because Tweepy has not been ported
(at the time of this writing). Now let’s take a closer look at the source.

ptg7615500

702 Chapter 13 • Web Services

Line-by-Line Explanation

Lines 1–5
The set of imports includes a pair from the standard library (using
distutils.log.warn() as a proxy for the print statement or function,
depending on whether you’re running in Python 2 or 3, plus the basic attri-
butes to run unit tests in Python) and our Twitter authorization credentials.

We also want to remind you that in general, the use of from module
import * (line 5) is discouraged because standard library or third-party
packages might use the same variable names as your modules, thus poten-
tially being an issue. In this case, we have full control over tweet_auth.py
and know about all (four) of its variables. Its sole purpose is to hide user
credentials. In practice, such a file would only be installed in production
as a byte-compiled (.pyc) or optimized (.pyo) file, which are not human-
readable, or they will come from a database or otherwise be a network call
away.

Lines 7–38
The first real body of code does exactly one thing: it determines what Twit-
ter client libraries are available for the Python interpreter that’s running
your code. That’s really it.

CMDs is a dictionary that has one entry per supported library. In our case,
we have Twython (twython) and Tweepy (tweepy). In one of the exercises
at the end of the chapter, you’ll add support for a third library.

For each library, we provide the method names representing the corre-
sponding Twitter API commands that should be called for the four func-
tions mentioned earlier that we want to support. If the value is None, this
means that the method name is an exact match; thus, any “real” (meaning
not None) value represents an exception to the rule.

Tweepy makes things easy for us because its method names match the
commands. Because of this, we use dict.fromkeys() to create a dictionary
with all None values for its keys. Twython is trickier because it uses names
that employ camel capitalization and there are exceptions to the rule. See
lines 71–80 for a description of how the names are derived and methods
chosen.

On line 22, we collate all supported APIs into a set. This data structure
is the fastest membership check in the language. We will also loop over
each of the APIs using this variable. So far, we’ve only created the possible
APIs; now we need to see what is really available and remove those which
are not.

ptg7615500

13.3 Microblogging with Twitter 703

The code on lines 25–33 attempts to import each of the libraries and
removes those that cannot be found by collecting the non-existent APIs in
another set called remove. After this loop is complete, we know what we
don’t have and subtract them all (on line 35) from the overall set of APIs. If
there are no reachable libraries, we raise a NotImplementedError on lines
36–38.

Lines 40–71
The Twitter class is the primary object in this application. We define the
initializer, which takes the api (in our case, either “twython” or “tweepy”),
and an optional auth flag. This flag defaults to True because most of the
time, we need (authenticated and) authorized access to a user’s data.
(Search is the only function that does not require authentication.) We
cache the chosen API into self.api.

The remainder of this section (lines 48–71) instantiates the Twitter end-
point based on the chosen API and the authentication setting. The instance
is then assigned to self.twitter. That object is our handle to executing
Twitter API commands.

Lines 73–81
The _get_meth() method handles the magic in putting together the correct
method name to call for each API. Note that we prepended the single
underscore character (_) to the function name. This notation indicates that
this routine should not be called by users. Instead, it is an internal method
that should be called by one of the other methods in our class.

We could use self.api through this method, but a well-known best
practice is to assign frequently-used instance attributes to a local variable
for quick access. The use of self.api requires two lookups, whereas “api”
needs only one. One extra lookup doesn’t cost much in terms of CPU time,
but if this were in a type loop and/or executed with frequency, all that time
does add up. This is pretty much the reason for the local assignment on
line 74.

On the next line, the appropriate command from the requested API is
looked up and assigned to meth_name. If it is None, the default action is that
the method name is the same as the command name. For Tweepy, it’s easy;
we already mentioned that its methods are named the exact same as the
commands. The next set of lines handle special cases for which we have to
derive the correct name.

As mentioned earlier, Twython uses camel capitalization for its “words”
instead of being divided by an underscore (_). This means that we must

ptg7615500

704 Chapter 13 • Web Services

break up each word on the underscore, capitalize the second word, then
append it to the first word (lines 79–80). The final act is to use that name
and retrieve the method object from the requested API; it is a first-class
object and returned directly to the caller.

Lines 83–102
The four supported Twitter commands are realized in these four functions:
search(), verify_credentials(), user_timeline(), update_status(). Aside
from search(), the others are fairly simplistic and nearly identical between
the pair of supported libraries. Let’s look at these first, and then wrap up
with a closer look at search().

Verifying an authenticated user’s credentials is just one thing you can
do with the verify_credentials command. It’s also the quickest way for
you to programmatically access your most recent tweet. Your user infor-
mation comes back and is wrapped by using the ResultsWrapper (more on
this soon), and then returned back to the caller. You can find more information
on using this command in the Twitter documentation at http://dev.twit-
ter.com/docs/api/1/get/account/verify_credentials.

A user’s timeline is made up of his most recent tweets (and retweets).
The user_timeline Twitter command by default returns the most recent
20, but you can request up to 200 by using the count parameter,
which we don’t use in this example, but you’ll be adding it in another
exercise at the end of the chapter. You can find more information on this
function at http://dev.twitter.com/docs/api/1/get/statuses/user_timeline.
Unlike verify_credentials(), we wrap each individual tweet returned
rather than the entire result coming from Twitter and return a generator
expression iterable of tweets.

Twitter’s most basic functionality comes in the form of users updating
their statuses, a.k.a. tweeting. You can argue that without this functional-
ity, there would be no Twitter. You can see the update_status() takes an
additional parameter, s, which is the text of the tweet. The returned value
is the tweet itself (also wrapped by ResultsWrapper), with the most impor-
tant characteristic being the created_at field, which acknowledges that
the tweet was indeed created and now flowing to the masses. You’ll see
created_at in the following code, which demonstrates this functionality.
You can find more information on using it at http://dev.twitter.com/docs/
api/1/post/statuses/update.

Now back to search. The two APIs differ here, which is why there’s more
code than normal. Twython tries to be honest and interpret the results from
Twitter nearly verbatim, turning the JavaScript Object Notation (JSON) into

http://dev.twitter.com/docs/api/1/get/account/verify_credentials
http://dev.twitter.com/docs/api/1/get/account/verify_credentials
http://dev.twitter.com/docs/api/1/get/statuses/user_timeline
http://dev.twitter.com/docs/api/1/post/statuses/update
http://dev.twitter.com/docs/api/1/post/statuses/update

ptg7615500

13.3 Microblogging with Twitter 705

a Python dictionary, a close cousin. This data structure contains various
metadata as well as the “real goods” you’re looking for under the results
key (which is why we need to do that lookup on line 86).

Tweepy, on the other hand, is more realistic and returns those search
results directly in a list-like object—actually, ResultsSet is a subclass of
list—because its developer knows that’s really what you want. This makes
it more convenient and saves you from any further lookup. What about all
that extra metadata? They’re just attributes of the returned ResultsSet.

Lines 104–124
This next chunk of code is a general-purpose class that you can use any-
where, outside of this application. There is no relationship to the Twitter
libraries or anything because it’s only used as a convenience for our users
in that it provides a common interface to the objects returned from those
libraries.

Have you ever been frustrated by objects that are either dictionary-like
or object-like? What I mean is that with the first, you need to do the equiv-
alent of a __getitem__() call in order to retrieve a value, i.e. foo['bar'],
and with the second, you have to deal with objects that have an attribute
interface, i.e., foo.bar? Wouldn’t it be great to be able to use either for all
objects and not have to worry about it again? That’s exactly what the
ResultsWrapper class does.

I just came up with this while writing, so it might not be perfect yet, but
the idea is to take any Python object and wrap it up in an object that dele-
gates the lookup (via __getitem__() or __getattr__()) to the wrapped
object. (For a review on delegation, see the Object-Oriented Programming
chapter of Core Python Programming or Core Python Language Fundamentals.)

In the initializer (lines 106–107), we wrap the object. All its string repre-
sentations come next (lines 109–113). Most of the magic happens in
__getattr__(). When a request for an attribute comes in that’s not recog-
nized, __getattr__() checks to see if that attribute exists in the wrapped
object (lines 116–117). If it’s not available there, perhaps it’s a dictionary-
like object, so let’s check if it’s a “key” (lines 118–119). Naturally, before
using the in operator, we need to check whether the object supports that
type of check or access—this is done by seeing if the object has a
__contains__ attribute first. If all else fails, just give the bad news to the
user (lines 120–122).

ptg7615500

706 Chapter 13 • Web Services

The last line to look at (124) is for when a user tries to access an attribute
in a dictionary-like way, by using the attribute name as a key. Because of
this, we want the exact same behavior as __getattr__(). This way, no mat-
ter what type of object is wrapped, we’re able to pull out and return what
the user wants.

Lines 126–165
The purpose of the _demo_*() functions is to do exactly what they’re
named: _demo_search() demonstrates searching for the term “twython3k”
using all available APIs, and then displays the resulting tweets’ data;
_demo_ver_creds() executes the verify_credentials command and dis-
plays the authenticated user’s most recent tweet; _demo_user_timeline()
brings up the 20 most recent tweets, displaying each tweet’s text and time-
stamp. Finally, _demo_update_status() posts new tweets, describing the
API that was used to do so.

Lines 167–184
This section of code is dedicated to testing the ResultsWrapper class. The
unit*_wrap() functions each test wrapping dictionaries (or dictionary-
like objects) as well as objects with an attribute interface. Both forms of
attribute access, whether by obj['foo'] or obj.foo should result in the
same result: “bar”. This validation is carried out by the unittest class,
TestSequenceFunctions (lines 179–184).

Lines 186–196
The lines of main() display which function is being tested and calls the
specific _demo_*() functions, which display their own output. The final
call, is to the unittest.main() function, which executes the unit tests.

13.3.4 Summary

With the material in this section, we hope that you’ve received a solid
introduction to interfacing with a couple of services currently available on
the Web: Yahoo!’s stock quote server, and Twitter. It’s important to realize
that Yahoo’s interface is completely URL-driven and unauthenticated,
whereas Twitter provides a full REST API and OAuth authorization for
secure data access. We were able to take advantage of the power of both by
using Python code that was digestable and got the job done.

ptg7615500

13.4 Exercises 707

We just looked at a pair of Web services; there are plenty more out there.
We will revisit both of these in Chapter 14, “Text Processing.”

13.3.5 Additional Online Resources

Yahoo! Finance

• http://gummy-stuff.org/Yahoo-data.htm

• http://gummy-stuff.org/forex.htm

Twitter

• http://dev.twitter.com/docs/twitter-libraries#python.

• http://github.com/ryanmcgrath/twython

• http://tweepy.github.com

13.4 Exercises

Web Services

13-1. Web Services. In your own words, describe what Web services
are. Find some of these services online and describe how
they work. What is their API and how do you access such
data? Is authentication or authorization required?

13-2. REST and Web Services. Study how REST and XML or JSON
are used in more contemporary Web services APIs and appli-
cations. Describe the additional functionality they afford you
over older systems such as the Yahoo! quote server, which
uses URL parameters.

13-3. REST and Web Services. Build an application framework by
using Python’s support for REST and XML that will allow
you to share and reuse this code when writing applications
that use any of the newer Web services and APIs available

http://gummy-stuff.org/Yahoo-data.htm
http://gummy-stuff.org/forex.htm
http://dev.twitter.com/docs/twitter-libraries#python
http://github.com/ryanmcgrath/twython
http://tweepy.github.com

ptg7615500

708 Chapter 13 • Web Services

today. Display your code by using APIs from Yahoo!,
Google, eBay, and/or Amazon.

Exercises 13-4 to 13-11 involve updating the Yahoo! stock quote example
(stock.py) presented earlier in the chapter.

13-4. Web Services. Update stock.py to download other stock
quote data, given the additional parameters listed in
Table 13-1. You can just take stock.py as shown earlier
in the chapter and add the new functionality.

13-5. String Processing. You’ve noticed that some of the fields that
are returned contain quotes, cluttering the output. Remove
the quotes. Is there another way to remove the quotes
besides the solution you chose?

13-6. String Processing. Not all stock tickers are four letters in
length. Similarly, not all stock prices (per share) are between
ten dollars and $99.99. The same goes for the daily change in
price and change percentage. Make the necessary changes to
your script so that even if the output fields are strings of dif-
ferent lengths, the output is still formatted evenly, justified,
and consistent for all stocks. Here’s an example:
C:\py>python stock.py

Prices quoted as of: Sat Oct 29 02:38:53 2011

TICKER PRICE CHANGE %AGE
------ ----- ------ ----
YHOO 16.56 -0.07 -0.42%
GOOG 600.14 +1.47 +0.25%
T 29.74 +0.60 +2.06%
AMZN 217.32 +10.54 +5.10%
BAC 7.35 +0.30 +4.26%
BRK-B 79.96 +0.065 +0.08%

13-7. Files. Update the application to save the quote data to a file
instead of displaying it to the screen. Extra Credit: You can
change the script so that users can choose to display the
quote data or save it to a file.

13-8. Web Services and the csv Module. Convert stock.py from using
a normal for loop and parsing the data manually to using
the csv module to parse the incoming data, like we did in the
example code snippet.

13-9. Robustness. Yahoo! tends to change the download hostname
from time to time. It might be quote.yahoo.com one day then

ptg7615500

13.4 Exercises 709

finance.yahoo.com the next. Today’s “hostname du jour” is
download.finance.yahoo.com. Sometimes the names revert
to older ones. Build robustness into your application(s) by
maintaining a list of these hostnames and ping the Web servers
at those hosts to see if they are good before fetching quotes.
You can also periodically screenscrape any Yahoo! quote
page and grab the hostname from the Download Data link
in the Toolbox section at the bottom of the page.

13-10. Extending the API. There are plenty more commands available
in the Yahoo! quote server. To see a more comprehensive list,
go to http://gummy-stuff.org/Yahoo-data.htm. Select several
new data points and integrate them into your stock.py
script.

13-11. Python 3. Port stock.py to Python 3 and call it stock3.py.
Extra Credit: Create a solution that runs on both versions 2.x
and 3.x and describe any special technique(s) you used.

13-12. Foreign Exchange. The Yahoo! quote server can also pull up
foreign currency exchange rates. Take a peek at http://
gummy-stuff.org/forex.htm and create a new forex.py script
that performs these lookups.

13-13. Stock Charts. Yahoo! also provides a way to autogenerate
charts. Here are some example URLs to give you an idea of
the service:
Small chart:
1 day: http://chart.yahoo.com/t?s=GOOG
5 days: http://chart.yahoo.com/v?s=GOOG
1 year: http://chart.yahoo.com/c/bb/m/GOOG
Large chart:
1 day: http://chart.yahoo.com/b?s=GOOG
5 days: http://chart.yahoo.com/w?s=GOOG
3 months: http://chart.yahoo.com/c/3m/GOOG
6 months: http://chart.yahoo.com/c/6m/GOOG
1 year: http://chart.yahoo.com/c/1y/GOOG
2 years: http://chart.yahoo.com/c/2y/GOOG
5 years: http://chart.yahoo.com/c/5y/GOOG

http://gummy-stuff.org/Yahoo-data.htm
http://gummy-stuff.org/forex.htm
http://gummy-stuff.org/forex.htm
http://chart.yahoo.com/t?s=GOOG
http://chart.yahoo.com/v?s=GOOG
http://chart.yahoo.com/c/bb/m/GOOG
http://chart.yahoo.com/b?s=GOOG
http://chart.yahoo.com/w?s=GOOG
http://chart.yahoo.com/c/3m/GOOG
http://chart.yahoo.com/c/6m/GOOG
http://chart.yahoo.com/c/1y/GOOG
http://chart.yahoo.com/c/2y/GOOG
http://chart.yahoo.com/c/5y/GOOG

ptg7615500

710 Chapter 13 • Web Services

Max: http://chart.yahoo.com/c/my/GOOG
Similar to our robustness Exercise 13-9, chart.yahoo.com,
ichart.yahoo.com, and ichart.finance.yahoo.com are cur-
rently all interchangeable, so use them all to check for data.
Create an application to allow users to generate graphs for
their stock portfolio. Also offer the ability to launch a Web
browser directly to a page showing the chart. Hint: See the
webbrowser module.

13-14. Historical Data. It appears that ichart.financial.yahoo.com
also provides historical lookups. Use this example URL to
find out how it works and create an application that per-
forms historical stock price queries: http://chart.yahoo.com/
table.csv?s=GOOG&a=06&b=12&c=2006&d=10&e=2&f=2007.

Twitter

13-15. Twitter Service. Describe the Twitter service in your own
words. Define what tweets are, and point out some of its
limitations.

13-16. Twitter Libraries. Discuss the similarities and differences
between Twython and Tweepy Python libraries.

13-17. Twitter Libraries. Take a look at other Python libraries you
know which among them you would use to access Twitter’s
API. How do they compare with the ones we looked at in
this chapter?

13-18. Twitter Libraries. You don’t like either Twython and Tweepy
Python libraries; write one of your own that communicates
with Twitter in a safe and RESTful way. Start by going to
https://dev.twitter.com/docs.

The following exercises require that you augment the twapi.py example
from this chapter.

13-19. User Queries. Add functionality to query a user’s Twitter
screen name and return her corresponding ID. Note that
some user screen names are actually integers, so ensure that
you allow users to enter them as potential screen names. Use
that ID to fetch that user’s most recent tweet.

13-20. Retweeting. Augment the search functionality by not only let-
ting users query for tweets, but also give them the ability to

http://chart.yahoo.com/c/my/GOOG
http://chart.yahoo.com/table.csv?s=GOOG&a=06&b=12&c=2006&d=10&e=2&f=2007
http://chart.yahoo.com/table.csv?s=GOOG&a=06&b=12&c=2006&d=10&e=2&f=2007
https://dev.twitter.com/docs

ptg7615500

13.4 Exercises 711

retweet selected tweets. You can provide either a command-
line, Web, or GUI interface to support this functionality.

13-21. Tweet Deletion. Similar to Exercise 13-20, provide the user
with a way to delete his own posts. Be aware that this
just removes those tweets from Twitter. The contents of
the tweets contents might already have been distributed
elsewhere.

13-22. Follows. Add support that lets you look up a user’s followers
(IDs) as well as the IDs of users whom a user is following.

13-23. Twitter Libraries. Add support for a different Python/Twitter
client library to twapi.py. For example, you can try doing this
exercise with python-twitter, found at http://code.
google.com/p/python-twitter. Other libraries can be found at
http://dev.twitter.com/docs/twitter-libraries#python.

13-24. Profile Editing. Configure so that a user can update his profile
and/or to upload a new profile picture. Extra Credit: Allow
users to update their profile colors or background image.

13-25. Count. The user_timeline() Twitter function also supports a
count variable. By default, Twitter returns the most recent 20
tweets in a user’s timeline, but users can request up to 200.
Add support for count and other optional parameters to
twapi.py.

13-26. Direct Messages. Support direct messages (DMs), sending
them to a specific user, getting a list of DMs sent, retrieving a
list of current DMs, and removing DMs.

In our twapi.py example, we were able to examine and modify our Twitter
stream because we had all the credentials necessary from Twitter for our
application. However, it’s another matter when you want to write an appli-
cation that tweets on your behalf or that of your registered users. In these
cases, you’ll need to go through the entire OAuth flow in order to get the
access token and secret so that your application can act upon the behalf of
that user.
This last exercise will be time consuming because you have to learn all about
OAuth. Start by reading these two documents: https://dev.twitter.com/docs/
auth/oauth and https://dev.twitter.com/docs/auth/moving-from-basic-auth-
to-oauth.

13-27. Tweet Archive. Create a Twitter archival service for yourself
(or others). Since Twitter saves only up to the 200 most recent
tweets, you start losing your history fairly quickly. Build a
Twitter archival service that preserves a registered users’

http://code.google.com/p/python-twitter
http://code.google.com/p/python-twitter
http://dev.twitter.com/docs/twitter-libraries#python
https://dev.twitter.com/docs/auth/oauth
https://dev.twitter.com/docs/auth/oauth
https://dev.twitter.com/docs/auth/moving-from-basic-auth-to-oauth
https://dev.twitter.com/docs/auth/moving-from-basic-auth-to-oauth

ptg7615500

712 Chapter 13 • Web Services

tweets. If you search the Web for “twitter archive” or “twitter
research tools,” you’ll come up with a slew of them. Hope-
fully with this exercise, you’ll be breaking ground for the
next generation Twitter analysis tool!

13-28. Shortlinking, Feed Polling. Augment your blogging career.
Create a periodic scanner (RSS or other) of your personal or
work blog. When a new blogpost is made, autotweet a short
link and the first N words from the blogpost title.

13-29. Other Web Services. Read about Google’s Prediction API at
http://code.google.com/apis/predict and try its “Hello World”
tutorial. Once you’re up to speed, develop your own model
that scans various Tweets (yours or tweets from the public
timeline). Create and train a prediction model that deter-
mines whether the contents of a tweet are positive, negative,
or neutral. Once trained, use your tool to determine the
sentiments of new tweets by using the same query. To do
this exercise, you’ll need to create a project at Google’s API
console—http://code.google.com/apis/console—and enable
both Google Prediction and Google Storage. If you don’t
want to create a Google account, you’re welcome to use any
similar API.

http://code.google.com/apis/predict
http://code.google.com/apis/console

ptg7615500

PAR T

Supplemental/
Experimental

ptg7615500

714

CHAPTER

Text Processing

As a developer, I prefer editing in plain text. XML doesn’t count.
—Wesley Chun, July 2009

(verbally at OSCON conference)

In this chapter...

• Comma-Separated Values
• JavaScript Object Notation
• Extensible Markup Language
• Related Modules

ptg7615500

14.1 Comma-Separated Values 715

egardless of what type of applications you create, inevitably, you
will need to process human-readable data, which is referred to
generally as text. Python’s standard library provides three text pro-

cessing modules and packages to help you get this job done: csv, json, and
xml. We’ll explore these briefly in that order in this chapter.

At the end, we’ll merge together XML along with some of the client-
server knowledge you acquired from Chapter 2, “Network Programming,”
and show you how to create XML-RPC services using Python. Because
this style of programming isn’t considered text processing, and you’re not
manipulating the XML itself, which is just the data transport format, just
consider this last section as bonus material.

14.1 Comma-Separated Values
In the first section of this chapter, we’ll look at comma-separated values
(CSV). We begin with a quick introduction then move to a code sample of
how to use Python to read and write CSV files. Finally we revisit an old
friend.

14.1.1 Introduction to Comma-Separated Values

Using CSVs is a common way to move data into and out of spreadsheet
applications in plain text, as opposed to a proprietary binary file format. In
fact, CSV doesn’t even represent true structured data; the contents of CSV
files are just rows of string values delimited by commas. There are some
subtleties with CSV formats, but in general, they’re fairly minor. In many
cases, you actually don’t need the power of a CSV-oriented module.

Sounds pretty easy to parse, doesn’t it? Offhand, I’d say just do a
str.split(',') and call it a day. However, we can’t do that because indi-
vidual field values might contain embedded commas, hence the need for
CSV-parsing and generating a library like Python’s csv module.

Let’s look at a quick example of taking data, writing CSV out to a file, and
then reading the same data back. We’ll also have individual fields that include
commas, as well, just to make things a bit more difficult. Example 14-1 pres-
ents csvex.py, a script that takes 3-tuples and writes each corresponding
record to disk as a CSV file. Then, it reads and parses the previously-
written CSV data.

R

ptg7615500

716 Chapter 14 • Text Processing

Following is another example of writing scripts that are compatible
with both Python 2 and 3. Regardless of which version you use, you get
the following identical output:

$ python csvex.py
*** WRITING CSV DATA
*** REVIEW OF SAVED DATA
Chapter 9: 'Web Clients and Servers' (featuring base64, urllib)
Chapter 10: 'Web Programming: CGI & WSGI' (featuring cgi, time, wsgiref)
Chapter 13: 'Web Services' (featuring urllib, twython)

Line-by-Line Explanation

Lines 1–10
We first import the csv module as well as distutils.log.warn() as a
proxy for the print statement or function. (It’s not really compatible except
for a single string, but it gets the job done, provided you can work with its
limitation.) Following the import statements is our data set. This is made

Example 14-1 CSV Python 2 and Python 3-Compatible Example (csvex.py)

This simple script demonstrates writing out CSV data and reading it back in.

1 #!/usr/bin/env python
2
3 import csv
4 from distutils.log import warn as printf
5
6 DATA = (
7 (9, 'Web Clients and Servers', 'base64, urllib'),
8 (10, 'Web Programming: CGI & WSGI', 'cgi, time, wsgiref'),
9 (13, 'Web Services', 'urllib, twython'),
10)
11
12 printf('*** WRITING CSV DATA')
13 f = open('bookdata.csv', 'w')
14 writer = csv.writer(f)
15 for record in DATA:
16 writer.writerow(record)
17 f.close()
18
19 printf('*** REVIEW OF SAVED DATA')
20 f = open('bookdata.csv', 'r')
21 reader = csv.reader(f)
22 for chap, title, modpkgs in reader:
23 printf('Chapter %s: %r (featuring %s)' % (
24 chap, title, modpkgs))
25 f.close()

ptg7615500

14.1 Comma-Separated Values 717

up of 3-tuples that have columns representing chapter numbers, chapter
titles, and modules and packages that are used in the code samples of their
respective chapters.

Lines 12–17
These six lines are fairly self-explanatory. csv.writer() is a function that
takes an open file (or file-like) object and returns a writer object. The
writer features a writerow() method, which you use to output lines or
rows of comma-separated data to the open file. After it has done its job,
the file is closed.

Lines 19–25
In this section, csv.reader() is the opposing function which returns an iter-
able object that you can use to read in and parse each row of CSV data. Like
csv.writer(), csv.reader() also takes an open file handle and returns a
reader object. When you iterate through each row of data, the CSVs are
automatically parsed and returned to you (line 22). We display the output
then close the file when all rows have been processed.

In addition to csv.reader() and csv.writer(), the csv module also fea-
tures the csv.DictReader and csv.DictWriter classes which read CSV data
into a dictionary (with given field names provided or the first row if not)
and write dictionary fields to a CSV file.

14.1.2 Stock Portfolio Example Reprise

Before moving on to another text processing format, take a look at another
example. We’ll rewind a bit and re-examine the stock portfolio script,
stock.py, from Chapter 13, “Web Services.” Rather than doing a
str.split(','), we’ll port that application so that it uses the csv module,
instead.

Also, instead of showing you all of the code, most of which is identical
to stock.py, we’re going to focus only on the differences, or diffs, as engi-
neers abbreviate it. Below is a quick review of the entire (Python 2)
stock.py script (feel free to flip back to Chapter 13 for the line-by-line
explanation):

#!/usr/bin/env python

from time import ctime
from urllib2 import urlopen

ptg7615500

718 Chapter 14 • Text Processing

TICKs = ('yhoo', 'dell', 'cost', 'adbe', 'intc')
URL = 'http://quote.yahoo.com/d/quotes.csv?s=%s&f=sl1c1p2'

print '\nPrices quoted as of: %s PDT\n' % ctime()
print 'TICKER', 'PRICE', 'CHANGE', '%AGE'
print '------', '-----', '------', '----'
u = urlopen(URL % ','.join(TICKs))

for row in u:
 tick, price, chg, per = row.split(',')
 print tick, '%.2f' % float(price), chg, per,

u.close()

The output of both the original version as well as our modified version
will be similar. Here’s one example execution as a reminder:

Prices quoted as of: Sat Oct 29 02:06:24 2011 PDT

TICKER PRICE CHANGE %AGE
------ ----- ------ ----
"YHOO" 16.56 -0.07 "-0.42%"
"DELL" 16.31 -0.01 "-0.06%"
"COST" 84.93 -0.29 "-0.34%"
"ADBE" 29.02 +0.68 "+2.40%"
"INTC" 24.98 -0.15 "-0.60%"

All we’re going to do is to copy the code from stock.py into a new script
named stockcsv.py and make the changes necessary to use csv instead.
Let’s see what the differences are, focusing on the code that follows the call
to urlopen(). As soon as we have this open file, we assign it to csv.reader(),
as shown here:

reader = csv.reader(u)
for tick, price, chg, pct in reader:
 print tick.ljust(7), ('%.2f' % round(float(price), 2)).rjust(6), \
 chg.rjust(6), pct.rstrip().rjust(6)

u.close()

The for loop is mostly still the same, except that now we do not read in
an entire row and split it on the comma. Instead, the csv module parses
the data naturally for us and lets users specify the target field names as
loop variables. Note the output is close but isn’t an exact match. Can you
tell the difference (other than the timestamp)? Take a look:

Prices quoted as of: Sun Oct 30 23:19:04 2011 PDT

TICKER PRICE CHANGE %AGE
------ ----- ------ ----
YHOO 16.56 -0.07 -0.42%
DELL 16.31 -0.01 -0.06%

ptg7615500

14.2 JavaScript Object Notation 719

COST 84.93 -0.29 -0.34%
ADBE 29.02 +0.68 +2.40%
INTC 24.98 -0.15 -0.60%

The difference is subtle. There appears to be quotes around some of the
fields in the str.split() version but not in the csv-processed version.
Why is this happening? Recall from Chapter 13 that some values come
back quoted and that there is an exercise at the end of that chapter for you
to manually remove the extra quotes.

This isn’t an issue here as the csv module helps us process the CSV data,
including finding and scrubbing the superfluous quotes that come from
the Yahoo! server. Here’s a code snippet and output to confirm those extra
quotes:

>>> from urllib2 import urlopen
>>> URL = 'http://quote.yahoo.com/d/quotes.csv?s=goog&f=sl1c1p2'
>>> u = urlopen(URL, 'r')
>>> line = u.read()
>>> u.close()
>>> line
'"GOOG",598.67,+12.36,"+2.11%"\r\n'

The quotes are an extra hassle that developers don’t need to deal with;
csv takes care of that for us, making the code a bit easier to read without
the required extra string processing.

To improve on the data management, it would be even nicer if the data
was structured in a more hierarchical fashion. For example, it would be
good to have each row that comes back be part of a single object where the
price, change, and percentage are attributes of that object. With a 4-value
CSV row, there’s no indication which is the “primary key,” as it were,
unless you use the first value or similar convention. This is where JSON
might be a more appropriate tool for your applications.

14.2 JavaScript Object Notation
As you can gather from its name, JavaScript Object Notation, or JSON,
comes from the world of JavaScript—it’s a subset of the language used
specifically to pass around structured data. It is based on the ECMA-262
standard and is meant to be a lightweight data interchange alternative to
the Extensible Markup Language (XML) which we’ll look at in the final
section of this chapter. JSON is considered to be a more human-readable
way of transporting structured data. You can learn more about JSON at
http://json.org.

http://json.org

ptg7615500

720 Chapter 14 • Text Processing

Support for JSON was officially added to the standard library in Python 2.6
via the json module. It is basically the now-integrated version of the exter-
nal simplejson library, whose developers have maintained backward com-
patibility to 2.5. For more information, go to http://github.com/simplejson/
simplejson.

Furthermore, json (thus also simplejson) provides an interface similar
to those found in pickle and marshal, that is, dump()/load() and dumps()/
loads(). In addition to the basic parameters, those functions also include
various JSON-only options. The module also includes encoder and decoder
classes, from which you can derive or use directly.

A JSON object is extremely similar to a Python dictionary, as demon-
strated in the following code snippets, in which we use a dict to transfer
data to a JSON object and then back again:

>>> dict(zip('abcde', range(5)))
{'a': 0, 'c': 2, 'b': 1, 'e': 4, 'd': 3}
>>> json.dumps(dict(zip('abcde', range(5))))
'{"a": 0, "c": 2, "b": 1, "e": 4, "d": 3}'
>>> json.loads(json.dumps(dict(zip('abcde', range(5)))))
{u'a': 0, u'c': 2, u'b': 1, u'e': 4, u'd': 3}

Notice that JSON only understands Unicode strings, so when translat-
ing back to Python, the last of the preceding examples (all Python 2) turns
the keys into Unicode strings. Running the exact same line of code in
Python 3 appears more normal without the Unicode string operator (the u
designator in that precedes the opening quote):

>>> json.loads(json.dumps(dict(zip('abcde', range(5)))))
{'a': 0, 'c': 2, 'b': 1, 'e': 4, 'd': 3}

Python dicts are converted to JSON objects. Similarly, Python lists or
tuples are considered JSON arrays:

>>> list('abcde')
['a', 'b', 'c', 'd', 'e']
>>> json.dumps(list('abcde'))
'["a", "b", "c", "d", "e"]'
>>> json.loads(json.dumps(list('abcde')))
[u'a', u'b', u'c', u'd', u'e']
>>> # ['a', 'b', 'c', 'd', 'e'] in Python 3
>>> json.loads(json.dumps(range(5)))
[0, 1, 2, 3, 4]

What are the other differences between Python and JSON data types
and values? Table 14-1 highlights some of the key differences.

2.5-2.6

http://github.com/simplejson/simplejson
http://github.com/simplejson/simplejson

ptg7615500

14.2 JavaScript Object Notation 721

Another subtle difference not shown in Table 14-1 is that JSON does not
use single quotes/apostrophes; every string is delimited by using double
quotes. Also, there are no extra trailing commas that Python programmers
casually place at the end of each sequence or mapping element for
convenience.

To helps us further visualize some of these differences, Example 14-2 pres-
ents dict2json.py, which is a script that is compatible with Python 2 and 3
that dumps the content of a dictionary out in four different ways, twice as
a Python dict and twice as a JSON object.

Table 14-1 Differences Between JSON and Python Types

JSON Python 2 Python 3

object dict dict

array list, tuple list, tuple

string unicode str

number (int) int, long int

number (real) float float

true True True

false False False

null None None

Example 14-2 Python dict to JSON Example (dict2json.py)

This script converts a Python dict to JSON and displays it in multiple formats.

1 #!/usr/bin/env python
2
3 from distutils.log import warn as printf
4 from json import dumps
5 from pprint import pprint
6

(Continued)

ptg7615500

722 Chapter 14 • Text Processing

Line-by-Line Explanation

Lines 1–5
We import three functions to use in this script: 1) distutils.log.warn() as
a substitute for the print statement in Python 2 and print() function
in Python 3; 2) json.dumps() to return a JSON string representation of a
Python object; and 3) pprint.pprint() that does simple pretty-printing
of Python objects.

Lines 7–22
The BOOKs data structure is a Python dictionary representing books identi-
fied by their International Standard Book Numbers (ISBNs). Each book
can have additional information such as title, author, publication year, etc.
Instead of using a more “flat” data structure such as a list, we chose a dict
because it lets us build a structured hierarchy of attributes. Note all the
extra commas that will be removed in its equivalent JSON representation.

Example 14-2 Python dict to JSON Example (dict2json.py) (Continued)

7 BOOKs = {
8 '0132269937': {
9 'title': 'Core Python Programming',
10 'edition': 2,
11 'year': 2007,
12 },
13 '0132356139': {
14 'title': 'Python Web Development with Django',
15 'authors': ['Jeff Forcier', 'Paul Bissex', 'Wesley Chun'],
16 'year': 2009,
17 },
18 '0137143419': {
19 'title': 'Python Fundamentals',
20 'year': 2009,
21 },
22 }
23
24 printf('*** RAW DICT ***')
25 printf(BOOKs)
26
27 printf('\n*** PRETTY_PRINTED DICT ***')
28 pprint(BOOKs)
29
30 printf('\n*** RAW JSON ***')
31 printf(dumps(BOOKs))
32
33 printf('\n*** PRETTY_PRINTED JSON ***')
34 printf(dumps(BOOKs, indent=4))

ptg7615500

14.2 JavaScript Object Notation 723

Lines 24–34
The remainder of this script performs all the output. The first is just a
dump of the Python dict; nothing special here. Note our extra commas are
also removed here. It’s mostly for human convenience that we use them in
the source code. The second example is the same Python dict but seen
through the eyes of a pretty-printer.

The last two outputs are in JSON format. The first is a plain JSON dump
after conversion. The second is the additional pretty-printing functionality
built into json.dumps(). You only need to pass in the indentation level to
turn on this feature.

Executing this script in either Python 2 or 3 results in the following output:
$ python dict2json.py
*** RAW DICT ***
{'0132269937': {'edition': 2, 'year': 2007, 'title': 'Core Python
 Programming'}, '0137143419': {'year': 2009, 'title': 'Python
 Fundamentals'}, '0132356139': {'authors': ['Jeff Forcier',
 'Paul Bissex', 'Wesley Chun'], 'year': 2009, 'title': 'Python
 Web Development with Django'}}

*** PRETTY_PRINTED DICT ***
{'0132269937': {'edition': 2,
 'title': 'Core Python Programming',
 'year': 2007},
 '0132356139': {'authors': ['Jeff Forcier', 'Paul Bissex', 'Wesley
 Chun'],
 'title': 'Python Web Development with Django',
 'year': 2009},
 '0137143419': {'title': 'Python Fundamentals', 'year': 2009}}

*** RAW JSON ***
{"0132269937": {"edition": 2, "year": 2007, "title": "Core Python
 Programming"}, "0137143419": {"year": 2009, "title": "Python
 Fundamentals"}, "0132356139": {"authors": ["Jeff Forcier",
 "Paul Bissex", "Wesley Chun"], "year": 2009, "title": "Python
 Web Development with Django"}}

*** PRETTY_PRINTED JSON ***
{
 "0132269937": {
 "edition": 2,
 "year": 2007,
 "title": "Core Python Programming"
 },
 "0137143419": {
 "year": 2009,
 "title": "Python Fundamentals"
 },

ptg7615500

724 Chapter 14 • Text Processing

 "0132356139": {
 "authors": [
 "Jeff Forcier",
 "Paul Bissex",
 "Wesley Chun"
],
 "year": 2009,
 "title": "Python Web Development with Django"
 }
}

This example demonstrates moving from dicts to JSON. You can also
move data between lists or tuples and JSON arrays. The json module
also provides classes for encoding and decoding of other Python data
types to and from JSON. While we don’t cover all of these here, you can
see that there is plenty to explore with JSON, other than the light introduc-
tion provided here.

Now let’s take a look at the 800-pound text formatting gorilla in the
room, XML.

14.3 Extensible Markup Language
The third topic in data processing that we’re covering in this chapter is
Extensible Markup Language (XML). Similar to our earlier exploration of
CSV, we’ll have a brief introduction followed by a tutorial of how to pro-
cess XML data by using Python. After a short code sample, we’ll parse
some real data coming from the Google News service.

14.3.1 Introduction to XML

In the final section of this chapter, we’ll take a look at XML, an older struc-
tured data format which also claims to be a “plain text” format used to
represent structured data. Although XML data is plain text, many argue
that XML is not human-readable—and for good reason. It can be near
illegible without the assistance of a parser. However, XML has been
around longer and is still more widespread than JSON. There are XML
parsers in nearly every programming language today.

XML is a restricted form of Standard Generalized Markup Language
(SGML), itself an ISO standard (ISO 8879). XML traces its origins back to
1996, when the World Wide Web Consortium (W3C) formed a working
group to design it. The first XML specification was published in 1998; the
most recent update was released in 2008. You can think of XML as a subset
of SGML. You can also consider HTML as an even smaller subset of SGML.

ptg7615500

14.3 Extensible Markup Language 725

14.3.2 Python and XML

Python’s original support for XML occurred with the release of version 1.5
and the xmllib module. Since then, it has evolved into the xml package,
which provides a variety of ways to both parse as well as construct XML
documents.

Python supports both document object model (DOM) tree-structured as
well as event-based Simple API for XML (SAX) processing of XML docu-
ments. The current version of the SAX specification is 2.0.1, so Python’s
support generally refers to this as SAX2. The DOM standard is older and
has been around for almost as long as XML itself. Both SAX and DOM
support was added to Python in the 2.0 release.

SAX is a streaming interface, meaning that the documents are parsed
and processed one line at a time via a continuous bytestream. This means
that you can neither backtrack nor perform random access within an XML
document. You can guess the tradeoff is event-based processors that are
faster and more memory efficient, whereas tree-based parsers give you
full access to the entire document in memory at any time.

We note for you here that the xml package depends on the availability of
at least one SAX-compliant XML parser. At that time, this meant that users
needed to find and download third-party modules or packages to help
them meet this requirement. Fortunately starting in version 2.3, the Expat
streaming parser became bundled in the standard library under the
xml.parsers.expat name.

Expat came before SAX and is SAX-incompliant. However, you can use
Expat to create SAX or DOM parsers. Also note that Expat exists for speed.
It is quick because it is non-validating, meaning that it does not check for
fully-compliant markup. As you can imagine, validating parsers are slower
because of the required additional processing.

Python support for XML matured further in version 2.5 with the addi-
tion of ElementTree—a highly-popular, quick, and Pythonic XML docu-
ment parser and generator—added to the standard library as xml.etree.
ElementTree. We’ll be using ElementTree for all of our raw XML examples
(with a bit of help from xml.dom.minidom) then show you some examples
of writing client/server applications using Python’s XML-RPC support.

In Example 14-3 (dict2xml.py), we take structured data in a Python dic-
tionary, use ElementTree to build up a valid XML document representing
that data structure, use xml.dom.minidom to pretty-print it, and then finally,
utilize various ElementTree iterators to parse and display relevant content
from it.

2.0

2.3

2.5

ptg7615500

726 Chapter 14 • Text Processing

Example 14-3 Converting a Python dict to XML (dict2xml.py)

This Python 2 script converts a dict to XML and displays it in multiple formats.

1 #!/usr/bin/env python
2
3 from xml.etree.ElementTree import Element, SubElement, tostring
4 from xml.dom.minidom import parseString
5
6 BOOKs = {
7 '0132269937': {
8 'title': 'Core Python Programming',
9 'edition': 2,
10 'year': 2006,
11 },
12 '0132356139': {
13 'title': 'Python Web Development with Django',
14 'authors': 'Jeff Forcier:Paul Bissex:Wesley Chun',
15 'year': 2009,
16 },
17 '0137143419': {
18 'title': 'Python Fundamentals',
19 'year': 2009,
20 },
21 }
22
23 books = Element('books')
24 for isbn, info in BOOKs.iteritems():
25 book = SubElement(books, 'book')
26 info.setdefault('authors', 'Wesley Chun')
27 info.setdefault('edition', 1)
28 for key, val in info.iteritems():
29 SubElement(book, key).text = ', '.join(str(val) .split(':'))
30
31 xml = tostring(books)
32 print '*** RAW XML ***'
33 print xml
34
35 print '\n*** PRETTY-PRINTED XML ***'
36 dom = parseString(xml)
37 print dom.toprettyxml(' ')
38
39 print '*** FLAT STRUCTURE ***'
40 for elmt in books.getiterator():
41 print elmt.tag, '-', elmt.text
42
43 print '\n*** TITLES ONLY ***'
44 for book in books.findall('.//title'):
45 print book.text

ptg7615500

14.3 Extensible Markup Language 727

Running this script, which is easily portable to Python 3, results in the
following output:

$ dict2xml.py
*** RAW XML ***
<books><book><edition>2</edition><authors>Wesley Chun</
authors><year>2006</year><title>Core Python Programming</title></
book><book><edition>1</edition><authors>Wesley Chun</
authors><year>2009</year><title>Python Fundamentals</title></
book><book><edition>1</edition><authors>Jeff Forcier, Paul Bissex,
Wesley Chun</authors><year>2009</year><title>Python Web Development
with Django</title></book></books>

*** PRETTY-PRINTED XML ***
<?xml version="1.0" ?>
<books>
 <book>
 <edition>
 2
 </edition>
 <authors>
 Wesley Chun
 </authors>
 <year>
 2006
 </year>
 <title>
 Core Python Programming
 </title>
 </book>
 <book>
 <edition>
 1
 </edition>
 <authors>
 Wesley Chun
 </authors>
 <year>
 2009
 </year>
 <title>
 Python Fundamentals
 </title>
 </book>
 <book>
 <edition>
 1
 </edition>
 <authors>
 Jeff Forcier, Paul Bissex, Wesley Chun
 </authors>

ptg7615500

728 Chapter 14 • Text Processing

 <year>
 2009
 </year>
 <title>
 Python Web Development with Django
 </title>
 </book>
</books>

*** FLAT STRUCTURE ***
books - None
book - None
edition - 2
authors - Wesley Chun
year - 2006
title - Core Python Programming
book - None
edition - 1
authors - Wesley Chun
year - 2009
title - Python Fundamentals
book - None
edition - 1
authors - Jeff Forcier, Paul Bissex, Wesley Chun
year - 2009
title - Python Web Development with Django

*** TITLES ONLY ***
Core Python Programming
Python Fundamentals
Python Web Development with Django

Line-by-Line Explanation

Lines 1–21
The first half of this script is quite similar to that of dict2json.py that we
presented in the previous section. Obvious changes include the imports of
ElementTree and minidom. We are aware that you know what you need to
do to make your code work for both Python 2 and 3, so we’ll leave out all
the complexity and focus solely on a Python 2 solution.

Finally, the most subtle difference is that rather than being a list as it
was in dict2json.py, the 'authors' field is a single colon-delimited string.
This change is optional, however, and it can remain a list if desired.

ptg7615500

14.3 Extensible Markup Language 729

The reason for changing it is to help simplify the data processing. One
of the key places this is evident is in line 29. Another difference is that in
the JSON example, we did not set a default author value if one was not
provided and here we do. It’s easier to check for a colon (:) and not have to
do an additional check if our data value is a string or a list.

Lines 23–29
The real work of this script happens here. We create a top-level object,
books, and then attach everything else under that node. For each book, a
book subnode is added, taking default values of authors and edition if not
provided for in the original dictionary definition above. That’s followed by
iterating over all key-value pairs and adding them as further subnodes of
each book.

Lines 31–45
The final block of code dumps out the data in a variety of formats: raw
XML, pretty-printed XML (with the help of the MiniDOM), iterating over
all nodes as one large flat structure, and finally, demonstrating a simple
search over an XML document.

14.3.3 XML In Practice

While the previous example shows the various things you can do to create
and parse XML documents, it’s without a doubt that most applications are
trying to do the latter rather than the former, so let’s look at another short
application that parses data to produce useful information.

In Example 14-4, goognewsrss.py grabs the “Top Stories” feed from the
Google News service and extracts the titles of the top five (by default)
news stories as well as referral links to the actual stories themselves. The
solution, goognewsrss.topnews() is a generator, easily identified by a
yield expression. This means that individual pairs of (title, link) are emit-
ted by the generator in an iterative fashion. Take a look at the code and see
if you can figure out what is going on and guess the output (because as we
won’t show any here). Why? That’s coming up next after the source.

ptg7615500

730 Chapter 14 • Text Processing

Example 14-4 Parsing an Actual XML Stream (goognewsrss.py)

This script, which is compatible with Python 2 and 3, displays the top news
stories (default is five) and their corresponding links from the Google News
service.

1 #!/usr/bin/env python
2
3 try:
4 from io import BytesIO as StringIO
5 except ImportError:
6 try:
7 from cStringIO import StringIO
8 except ImportError:
9 from StringIO import StringIO
10
11 try:
12 from itertools import izip as zip
13 except ImportError:
14 pass
15
16 try:
17 from urllib2 import urlopen
18 except ImportError:
19 from urllib.request import urlopen
20
21 from pprint import pprint
22 from xml.etree import ElementTree
23
24 g = urlopen('http://news.google.com/news?topic=h&output=rss')
25 f = StringIO(g.read())
26 g.close()
27 tree = ElementTree.parse(f)
28 f.close()
29
30 def topnews(count=5):
31 pair = [None, None]
32 for elmt in tree.getiterator():
33 if elmt.tag == 'title':
34 skip = elmt.text.startswith('Top Stories')
35 if skip:
36 continue
37 pair[0] = elmt.text
38 if elmt.tag == 'link':
39 if skip:
40 continue
41 pair[1] = elmt.text
42 if pair[0] and pair[1]:
43 count -= 1
44 yield(tuple(pair))
45 if not count:
46 return
47 pair = [None, None]
48
49 for news in topnews():
50 pprint(news)

ptg7615500

14.3 Extensible Markup Language 731

Before you execute the code, be sure to review the Terms of Service (ToS)
found at the following page: http://news.google.com/intl/en_us/terms_
google_news.html. It outlines the conditions under which you can use this
Google service. The key is this phrase, “You may only display the content of the
Service for your own personal use (i.e., non-commercial use) and may not other-
wise copy, reproduce, alter, modify, create derivative works, or publicly display
any content.”

What this means, of course, is that because this book is available to the
public, I can’t actually paste a sample execution here, nor can I try to mask
actual output as this would be modifying the contents, but you can do it
privately on your own.

You will see a set of the top five news story titles and their links as 2-tuples.
Note that because this is a live service with ever-changing content, running
the script again at another time will most likely yield different results.

Line-by-Line Explanation

Lines 1–22
Yes, we’re aware that purists will note this is some ugly chunk of code due
to the imports that make the code difficult to read, and I’d agree they have
a point. However, in practice, when you have multiple versions of a lan-
guage around executing production code, especially with Python 3 getting
into the picture, there are going to be those “ifdef”-type of statements, and
this is no exception. Let’s take them apart so that you can at least see
what’s going on.

We are going to need a large string buffer with the interface of a file. In
other words, this is one large string in-memory that supports the file inter-
face; that is, it has file methods like write(). This would be the StringIO
class. Data that comes off the network is usually in ASCII or pure bytes,
not Unicode. So if we’re running Python 3, we need to use the io.BytesIO
class as StringIO.

If we are using Python 2, Unicode isn’t part of the picture, so we would
want to try to use the faster C-compiled cStringIO.StringIO class, if avail-
able. If not, our fallback is the original StringIO.StringIO class.

Next, we want this to be good for memory; thus, we would prefer the
iterator version of the built-in zip() function, itertools.izip(). If izip()
is available in the itertools module, we know we’re in Python 2; there-
fore, import it as zip(). Otherwise, we know we’re in Python 3 because
izip() replaces and is renamed to zip(), meaning that we should just

http://news.google.com/intl/en_us/terms_google_news.html
http://news.google.com/intl/en_us/terms_google_news.html

ptg7615500

732 Chapter 14 • Text Processing

ignore the ImportError if not found. Note this code doesn’t use either
zip() or izip(); for more information on this, see the Hacker’s Corner
sidebar that’s coming up in just a bit.

The final special case is for the Python 2 urllib2 module, which has
merged with a few others into Python 3’s urllib.request submodule.
Whichever one comes back donates its urlopen() function for us to use.

Lastly, we’ll be using ElementTree as well as the pretty-printing
pprint.pprint() function. The output generally wraps in this example, so
we prefer this as an alternative to disutils.log.warn() for our output.

Lines 24–28
The data gathering in this application happens here. We start by opening
up a connection to the Google News server and requesting the RSS output,
which is in XML format. We read the entire feed and write that directly to
our in-memory StringIO-equivalent file.

The topic requested is the headlining top stories, which is specified via
the topic=h key-value pair. Other options include: ir for spotlight stories,
w for world stories, n for USA stories, b for business, tc for technology, e
for entertainment, s for sports, snc for science, and m for health.

The file to the Web connection is closed, and we pass the file-like object
to the ElementTree.parse() function, which parses the XML document
and returns an instance of the ElementTree class. Note that you can instan-
tiate it yourself, because calling ElementTree.parse(f) is equivalent to
ElementTree.ElementTree(file=f) in this example. Finally, we close the
in-memory file.

Lines 30–50
The topnews() function does all the work in collating the output for the
caller. We only want to return properly formatted news items, so we create
a 2-tuple in the form of the pair list, with the first element for the title and
the second, the link. Only when we have both do we yield the data item, at
which point we either quit if we’ve returned the count requested (or the
default of 5 if not provided) or just reset this 2-tuple.

We need special code for the first title, which isn’t really a story title as it
is the news-type title. In our case, because we requested the headlines, we
get back in the “title” field something that’s not a title to a news story, but
rather, a title “category” with its contents as the exact string of “Top
Stories”. We ignore these.

The final pair of lines in this script output the 2-tuples emitted by
topnews().

ptg7615500

14.3 Extensible Markup Language 733

CORE TIP (HACKER’S CORNER): Reducing topnews() down to one

(long) line of Python

It is possible to reduce topnews() to just a nasty-looking one-liner:
topnews = lambda count=5: [(x.text, y.text) for x, y in zip
(tree.getiterator('title'), tree.getiterator('link')) if not
x.text.startswith('Top Stories')][:count]

Hope that doesn’t hurt your eyes too much. The secret sauce to making this
possible is the ElementTree.getiterator() function and the assumption that
all story data is formatted properly. Neither zip() nor itertools.izip() are
used at all in the standard version of topnews(), but it is used here to pair up
the titles and their corresponding links.

Text processing isn’t the only thing that XML can do. While the next sec-
tion is clearly XML-related, you’ll find little or no XML at all. XML is a
building block with which developers who provide online services can
code at a higher-level of client/server computing. To put it simply, you’re
not creating a service as much as you’re giving clients the ability to call
functions, or more specifically, remote procedure calls (RPCs).

14.3.4 *Client-Server Services Using XML-RPC

XML-RPC was created in the late 1990s as a way to give developers a
means to create a remote procedure call (RPC) service by using the Hyper-
Text Transfer Protocol (HTTP) as the transport mechanism, with the payload
being an XML document.

This document contains both the name of the RPC as well as any parame-
ters being sent to it for execution. XML-RPC then led to the creation of SOAP
but is certainly not as complex as SOAP is. Since JSON is more human-
readable than XML, it’s no surprise that there is a JSON-RPC as well, includ-
ing a SOAP version named SOAPjr.

Python’s XML-RPC support comes in three packages: xmlrpclib on the
client side, plus SimpleXMLRPCServer and DocXMLRPCServer on the server side.
Logically, these three are reorganized into xmlrpc.client and xmlrpc.server
in Python 3.x.

Example 14-5 presents is xmlrpcsrvr.py, which is a Python 2 script con-
taining a single XML-RPC service with a wide variety of RPC calls. We’ll
first show you the code then describe each of the services provided by the
RPCs.

ptg7615500

734 Chapter 14 • Text Processing

Example 14-5 XML-RPC Server Code (xmlrpcsrvr.py)

This is an example XML-RPC server that contains a variety of RPC functions.

1 #!/usr/bin/env python
2
3 import SimpleXMLRPCServer
4 import csv
5 import operator
6 import time
7 import urllib2
8 import twapi # twapi.py from the "Web Services" chapter
9
10 server = SimpleXMLRPCServer.SimpleXMLRPCServer(("localhost", 8888))
11 server.register_introspection_functions()
12
13 FUNCs = ('add', 'sub', 'mul', 'div', 'mod')
14 for f in FUNCs:
15 server.register_function(getattr(operator, f))
16 server.register_function(pow)
17
18 class SpecialServices(object):
19 def now_int(self):
20 return time.time()
21
22 def now_str(self):
23 return time.ctime()
24
25 def timestamp(self, s):
26 return '[%s] %s' % (time.ctime(), s)
27
28 def stock(self, s):
29 url = 'http://quote.yahoo.com/d/quotes.csv?s=%s&f=l1c1p2d1t1'
30 u = urllib2.urlopen(url % s)
31 res = csv.reader(u).next()
32 u.close()
33 return res
34
35 def forex(self, s='usd', t='eur'):
36 url = 'http://quote.yahoo.com/d/quotes.csv?s=%s%s=X&f=nl1d1t1'
37 u = urllib2.urlopen(url % (s, t))
38 res = csv.reader(u).next()
39 u.close()
40 return res
41

ptg7615500

14.3 Extensible Markup Language 735

Line-by-Line Explanation

Lines 1–8
The various import statements include the most important one first,
SimpleXMLRPCServer, as well as auxiliary statements that are used for the
services provided. The services even include use of the Yahoo! stock quote
server and Twitter code that is covered in Chapter 13.

We import all the standard library modules/packages first, followed by
a user-level module, twapi, which we wrote to talk to the Twitter service.
The order of the import statements follows the best practice guidelines:
standard library, third-party, and then user-defined.

Lines 10–11
Once all the imports are out of the way, SimpleXMLRPCServer, establishes
our service with the given hostname or IP address and port number. In
this case, we just use localhost or 127.0.0.1. That is followed by the registra-
tion of the generally accepted XML-RPC introspection functions.

These functions allow clients to query the server to determine its capabili-
ties. They assist the client in establishing what methods the server supports,
how it can call a specific RPC, and whether there is any documentation for
a specific RPC. The calls which resolve those questions are named
system.listMethods, system.methodSignature, and system.methodHelp.

42 def status(self):
43 t = twapi.Twitter('twython')
44 res = t.verify_credentials()
45 status = twapi.ResultsWrapper(res.status)
46 return status.text
47
48 def tweet(self, s):
49 t = twapi.Twitter('twython')
50 res = t.update_status(s)
51 return res.created_at
52
53 server.register_instance(SpecialServices())
54
55 try:
56 print 'Welcome to PotpourriServ v0.1\n(Use ^C to exit)'
57 server.serve_forever()
58 except KeyboardInterrupt:
59 print 'Exiting'

ptg7615500

736 Chapter 14 • Text Processing

You can find the specifications for these introspection functions at http://
scripts.incutio.com/xmlrpc/introspection.html. For an example of how to
implement these explicitly, go to http://www.doughellmann.com/PyMOTW/
SimpleXMLRPCServer/#introspection-api.

Lines 13–16
These four lines of code represent standard arithmetic functions that we
want to make available via RPC. We use the pow() built-in function (BIF)
and grab the others from the operator module. The server.register_
func-tion() function just makes them available for RPC client requests.

Lines 18–26
The next set of functions we want to add to our service are time-related. They
also come in the form of a SpecialServices() class that we made up.
There’s no real difference having the code outside or inside of a class, and
we wanted to demonstrate that with the arithmetic functions and these
three: now_int(), which returns the current time in seconds after the
epoch; now_str(), which returns a Unix-friendly timestamp representing
the current time in the local time zone; and the timestamp() utility function,
which takes a string as input and returns a timestamp prepended to it.

Lines 28–40
Here, we borrow code liberally from Chapter 13, starting with the code
that interfaces with the Yahoo! quote server. The stock() function takes
the ticket symbol of a company, and then fetches the latest price, last
change, change percentage, and the date and time of last trade. The
forex() function does something similar but for currency exchange rates.

Using the code from Chapter 13 is optional, so if you haven’t covered
that material yet, you can skip implementing either of these functions, as
neither are necessary for learning XML-RPC concepts.

Lines 42–53
The last RPCs we’ll register utilize the Twitter code that we developed in
Chapter 13 by using the Twython library. The status() function retrieves
the current status of the current user, and tweet() posts a status update on
behalf of that user. In the final line of this block, we register all functions in
the SpecialServices class by using the register_-instance() function.

http://scripts.incutio.com/xmlrpc/introspection.html
http://scripts.incutio.com/xmlrpc/introspection.html
http://www.doughellmann.com/PyMOTW/SimpleXMLRPCServer/#introspection-api
http://www.doughellmann.com/PyMOTW/SimpleXMLRPCServer/#introspection-api

ptg7615500

14.3 Extensible Markup Language 737

Lines 55–59
The final five lines launch the service (via its infinite loop) as well as detect
when the user wants to quit (via Ctrl+C from the keyboard).

Now that we have a server, what good does it do us if there’s no client
code to take advantage of this functionality? In Example 14-6, we take a
look at one possible client application, xmlrpcclnt.py. Naturally, you can
execute this on any computer that can reach the server with the appropri-
ate host/port address pair.

There isn’t much to the client piece here, but let’s take a look anyway.

Line-by-Line Explanation

Lines 1–6
To reach an XML-RPC server, you need the xmlrpclib module in Python 2.
As mentioned earlier, in Python 3 you would use xmlrpc.client, instead.
We also grab the π constant from the math module. In the first line of real
code, we connect to the XML-RPC server, passing in our host/port pair as a
URL.

Example 14-6 Python 2 XML-RPC Client Code (xmlrpcclnt.py)

This is one possible client that makes calls to our XML-RPC server.

1 #!/usr/bin/env python
2
3 from math import pi
4 import xmlrpclib
5
6 server = xmlrpclib.ServerProxy('http://localhost:8888')
7 print 'Current time in seconds after epoch:', server.now_int()
8 print 'Current time as a string:', server.now_str()
9 print 'Area of circle of radius 5:', server.mul(pi, server.pow(5, 2))
10 stock = server.stock('goog')
11 print 'Latest Google stock price: %s (%s / %s) as of %s at %s' %

tuple(stock)
12 forex = server.forex()
13 print 'Latest foreign exchange rate from %s: %s as of %s at %s' %

tuple(forex)
14 forex = server.forex('eur', 'usd')
15 print 'Latest foreign exchange rate from %s: %s as of %s at %s' %

tuple(forex)
16 print 'Latest Twitter status:', server.status()

ptg7615500

738 Chapter 14 • Text Processing

Lines 7–16
Each of the remaining lines of code make one RPC request out to the XML-
RPC server which returns the desired results. The only function not tested
by this client is the tweet() function, which we’ll leave as an exercise for
the reader. Making this many calls to the server might seem redundant,
and it is, so that’s why at the end of the chapter you’ll find an exercise to
address this issue.

With the server up, we can now run the client and see some input (your
output will differ):

$ python xmlrpcclnt.py
Current time in seconds after epoch: 1322167988.29
Current time as a string: Thu Nov 24 12:53:08 2011
Area of circle of radius 5: 78.5398163397
Latest Google stock price: 570.11 (-9.89 / -1.71%) as of 11/23/2011 at
4:00pm
Latest foreign exchange rate from USD to EUR: 0.7491 as of 11/24/2011
at 3:51pm
Latest foreign exchange rate from EUR to USD: 1.3349 as of 11/24/2011
at 3:51pm
Latest Twitter status: @KatEller same to you!!! :-) we need a
celebration meal... this coming monday or friday? have a great
thanksgiving!!

Although we have reached the end of this chapter, we have only just
scratched the surface of XML-RPC and JSON-RPC programming. For fur-
ther reading, we suggest you take a look at self-documenting XML-RPC
servers via the DocXMLRPCServer class, the various types of data structures
you can return from an XML-RPC server (see the xmlrpclib/xmlrpc.client
documentation), etc.

14.4 References

14.4.1 Additional Resources

There are plenty of online documents pertaining to all the material cov-
ered in this chapter. The following list, although not exhaustive, provides
a considerable number of resources for you to explore:

• http://docs.python.org/library/csv

• http://json.org/

http://docs.python.org/library/csv
http://json.org/

ptg7615500

14.4 References 739

• http://simplejson.readthedocs.org/en/latest/

• http://pypi.python.org/pypi/simplejson

• http://github.com/simplejson/simplejson

• http://docs.python.org/library/json

• http://en.wikipedia.org/wiki/JSON

• http://en.wikipedia.org/wiki/XML

• http://docs.python.org/library/xmlrpclib

• http://docs.python.org/library/simplexmlrpcserver

• http://docs.python.org/library/docxmlrpcserver

• http://www.saxproject.org

• http://en.wikipedia.org/wiki/Expat_(XML)

• http://en.wikipedia.org/wiki/Xml-rpc

• http://scripts.incutio.com/xmlrpc/introspection.html

• http://en.wikipedia.org/wiki/JSON-RPC

• http://json-rpc.org/

• http://www.doughellmann.com/PyMOTW/
SimpleXMLRPCServer/#introspection-api

For a deeper treatment on this subject, we recommend that you take a
look at Text Processing in Python (Addison-Wesley, 2003), the classic Python
treatise on this topic. There is another book on text processing called
Python 2.6 Text Processing (Pact, 2010). Despite the title, the information
found there can be used with most current Python releases.

http://simplejson.readthedocs.org/en/latest/
http://pypi.python.org/pypi/simplejson
http://github.com/simplejson/simplejson
http://docs.python.org/library/json
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/XML
http://docs.python.org/library/xmlrpclib
http://docs.python.org/library/simplexmlrpcserver
http://docs.python.org/library/docxmlrpcserver
http://www.saxproject.org
http://en.wikipedia.org/wiki/Expat_(XML)
http://en.wikipedia.org/wiki/Xml-rpc
http://scripts.incutio.com/xmlrpc/introspection.html
http://en.wikipedia.org/wiki/JSON-RPC
http://json-rpc.org/
http://www.doughellmann.com/PyMOTW/SimpleXMLRPCServer/#introspection-api
http://www.doughellmann.com/PyMOTW/SimpleXMLRPCServer/#introspection-api

ptg7615500

740 Chapter 14 • Text Processing

14.5 Related Modules

14.6 Exercises

CSV

14-1. CSV. What is the CSV format, and for what types of applica-
tions is it usually suited?

14-2. CSV vs. str.split(). Come up with some examples of data
for which str.split(',') does not suffice, and where use of
the csv module is really the only way to go.

14-3. CSV vs. str.split(). In Chapter 13, for Exercise 13-16, you
were asked to make the output of stock.py more flexible,
making all columns line up as much as possible, despite the

Table 14-2 Text-Processing-Related Modules

Module/Package Description

csva Comma-separated values processing

SimpleXMLRPCServer XML-RPC server (merged into xmlrpc.server in
Python 3)

DocXMLRPCServer Self-documenting XML-RPC server (merged into
xmlrpc.server in Python 3)

xmlrpclib XML-RPC client (renamed to xmlrpc.client in
Python 3)

jsonb JSON encoding and decoding (externally known
as simplejson, usually pre-version 2.6)

xml.parsers.expatc Fast, non-validating XML parser

xml.domb Tree/DOM-based XML parsing

xml.saxb Event/Stream-based XML parsing

xml.etree.ElementTreec ElementTree XML parser and tree-builder

a. New in Python 2.3.
b. New in Python 2.6.
c. New in Python 2.0.
d. New in Python 2.5

ptg7615500

14.6 Exercises 741

varying length of stock ticker symbols, different stock prices
and change in prices. Further update that modified script by
switching from using str.split(',') to csv.reader().

14-4. Alternative CSV Formats. There are alternative delimiters
used besides commas. For example, POSIX-compliant pass-
word files are colon (:) delimited, whereas e-mail addresses
in Outlook are semi-colon (;) delimited. Create functions
that can read or write documents using these alternative
delimiters.

JSON

14-5. JSON. What are the differences in syntax between JSON for-
mat and Python dictionaries and lists?

14-6. JSON Arrays. The dict2json.py example only demonstrates
converting from Python dicts to JSON objects. Create a sister
script named lort2json.py to show moving from lists or
tuples to JSON arrays.

14-7. Backward Compatibility. Running Example 14-2, dict2json.py,
using Python 2.5 and older fails:
$ python2.5 dict2json.py
Traceback (most recent call last):
 File "dict2json.py", line 12, in <module>
 from json import dumps
ImportError: No module named json

a) What do you need to do to get this to run in older Python
releases?

b) Modify the code in dict2json.py that imports JSON
functionality to work with older versions of Python (for
example, versions 2.4 and 2.5) as well as version 2.6 and
newer.

14-8. JSON. Add new code to your stock.py example from
Chapter 13 that retrieves stock quotes from Yahoo! Finance
Service so that it returns a JSON string representing all of the
stock data in a hierarchical data structure format, as opposed
to just dumping the results on-screen.

14-9. JSON and Types/Classes. Write some script that encodes and
decodes any type of Python object, such as numbers, classes,
instances, etc.

ptg7615500

742 Chapter 14 • Text Processing

XML and XML-RPC

14-10. Web Programming. Enhance the goognewsrss.py script to out-
put formatted HTML representing anchors/links that can be
piped directly to a flat .html file for browser rendering. The
links should be correct/valid and ready for users to click and
launch the corresponding Web pages.

14-11. Robustness. In xmlrpcsrvr.py, add support for the >, >=, <, <=,
==, != operations as well as true and floor division.

14-12. Twitter. In xmlrpcclnt.py, we did not test the SpecialServices.
tweet() method. Add this functionality to your script.

14-13. CGIXMLRPCRequestHandler. By default, SimpleXMLRPCServer
uses the SimpleXMLRPCRequestHandler handler class. What’s the
difference between this handler and CGIXMLRPCRequestHandler?
Create a new server that uses the CGIXMLRPCRequestHandler,
instead.

14-14. DocXMLRPCServer. Investigate self-documenting XML-RPC
servers, and then answer the following:
a) What are the differences between the SimpleXMLRPCServer

and DocXMLRPCServer objects? Beyond that, what are the
lower-level differences (over the network)?

b) Convert both your standard XML-RPC client and server
to be self-documenting.

c) Also convert your CGI version from the previous prob-
lem to using the DocCGIXMLRPCRequestHandler class.

14-15. XML-RPC Multicalls. In xmlrpcclnt.py, we make individual
requests to the server. Clients making multiple calls to the
server will experience a performance improvement by being
able to make a multicall, meaning multiple RPC calls with
one service request to the server. Investigate the register_
multicall_functions() function, and then add this functional-
ity to your server. Finally, modify your client to use multicall.

14-16. XML and XML-RPC. How is any of the XML-RPC material
covered in this chapter related to XML at all? The material in
the last section was quite different from the rest of the chapter;
how does it tie together?

14-17. JSON-RPC vs. XML-RPC. What is JSON-RPC and how does
it relate to XML-RPC?

14-18. JSON-RPC. Port both your XML-RPC client and server code
to their equivalent jsonrpcsrvr.py and jsonrpcclnt.py.

ptg7615500

743

CHAPTER

Miscellaneous

At Google, Python is one of the three “official languages”
alongside with C++ and Java.

—Greg Stein, March 2005
(verbally at SDForum meeting)

In this chapter...

• Jython
• Google+

ptg7615500

744 Chapter 15 • Miscellaneous

s with Chapter 14, “Text Processing,” this chapter provides brief
preview introductions to miscellaneous areas of Python program-
ming that we did not have time to explore more fully. We hope to

eventually develop these into full chapters for future editions of this book.
We start with Java and Jython programming, followed by a discussion of
the Google+ API, afterwards.

15.1 Jython

In the first part of this chapter, we’ll take a look at how to run Python on
the JVM using Jython. We’ll first introduce what Jython is and describe
how it works like Python (or perhaps doesn’t). This is followed by a GUI
code sample using Swing. While this is not usually what people use Java
for, it does make for a nice example where we show you the Java code fol-
lowed by its equivalent in Python and executed by Jython. We hope to
develop more Java examples in future editions.

15.1.1 Introduction to Jython

Jython is one of those tools that has the ability to unite two diverse pro-
gramming populations. For one, it caters to Python programmers embed-
ded in a Java development environment and gives them the ability to
rapidly prototype solutions that seamlessly integrate into an existing Java
platform. Another reason is that it helps simplify the lives of millions of
Java programmers by giving Java a scripting language environment. No
longer do Java programmers have to write a test harness or driver applica-
tion to simply test a class they wrote.

Jython gives you most of what Python has to offer along with the ability
to instantiate and interact with Java classes, too! Jython code is dynami-
cally compiled into Java bytecode, plus you can extend Java classes in
Jython. You can also extend Python by using Java. It is quite easy to write a
class in Python and then use it as a Java class. You can always statically
compile a Jython script into Java bytecode.

Jython can be downloaded from the book’s Web site or at http://
jython.org. When you run the Jython interactive interpreter for the first
time, it displays notices informing you that new .jar files are being pro-
cessed, as shown in the following:

A

http://jython.org
http://jython.org

ptg7615500

15.1 Jython 745

$ jython
sys-package-mgr: processing new jar, '/usr/local/jython2.5.2/
jython.jar'
sys-package-mgr: processing new jar, '/System/Library/Java/
JavaVirtualMachines/1.6.0.jdk/Contents/Classes/classes.jar'
 . . .
sys-package-mgr: processing new jar, '/System/Library/Java/
JavaVirtualMachines/1.6.0.jdk/Contents/Home/lib/ext/sunpkcs11.jar'
Jython 2.5.2 (Release_2_5_2:7206, Mar 2 2011, 23:12:06)
[Java HotSpot(TM) 64-Bit Server VM (Apple Inc.)] on java1.6.0_26
Type "help", "copyright", "credits" or "license" for more information.
>>>

Each successive invocation looks eerily like you’re using Python. And
yes, Virginia, you can still do the same old “Hello World!” in Python:

$ jython
Jython 2.5.2 (Release_2_5_2:7206, Mar 2 2011, 23:12:06)
[Java HotSpot(TM) 64-Bit Server VM (Apple Inc.)] on java1.6.0_26
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello World!'
Hello World!

The more interesting thing about the Jython interactive interpreter is
that now you can do “Hello World!” by using Java:

>>> from java.lang import System
>>> System.out.write('Hello World!\n')
Hello World!

Java gives Python users the added bonuses of native exception handling
(not available in standard Python, or CPython as it is called, when being
referred to among other implementations) and the use of Java’s own gar-
bage collector (so Python’s did not have to be [re]implemented for Java).

15.1.2 GUI Example with Swing

By having access to all Java classes, we have a much broader universe of
what is possible. One example is GUI development. In Python, we have
the default GUI of Tk via the Tkinter module, but Tk is not a native
Python toolkit. However, Java does have Swing, and it is native. With Jython,
we can actually write a GUI application by using Swing components; not
with Java, but using Python.

Example 15-1 presents a simple “Hello World!” GUI written in Java
followed by Example 15-2, which shows its equivalent in Python, both of
which mimic the Tk examples tkhello3.py found in Chapter 5, “GUI
Programming.” These programs are called swhello.java and swhello.py,
respectively.

ptg7615500

746 Chapter 15 • Miscellaneous

Example 15-1 Swing “Hello World” in Java (swhello.java)

This program creates a GUI just like tkhello3.py but uses Swing instead of Tk.
It is written in Java.

1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4 import java.lang.*;
5
6 public class swhello extends JFrame {
7 JPanel box;
8 JLabel hello;
9 JButton quit;
10
11 public swhello() {
12 super("JSwing");
13 JPanel box = new JPanel(new BorderLayout());
14 JLabel hello = new JLabel("Hello World!");
15 JButton quit = new JButton("QUIT");
16
17 ActionListener quitAction = new ActionListener() {
18 public void actionPerformed(ActionEvent e) {
19 System.exit(0);
20 }
21 };
22 quit.setBackground(Color.red);
23 quit.setForeground(Color.white);
24 quit.addActionListener(quitAction);
25 box.add(hello, BorderLayout.NORTH);
26 box.add(quit, BorderLayout.SOUTH);
27
28 addWindowListener(new WindowAdapter() {
29 public void windowClosing(WindowEvent e) {
30 System.exit(0);
31 }
32 });
33 getContentPane().add(box);
34 pack();
35 setVisible(true);
36 }
37
38 public static void main(String args[]) {
39 swhello app = new swhello();
40 }
41 }

ptg7615500

15.1 Jython 747

The code for both matches that of tkhello3.py, except that they use
Swing instead of Tk. We will describe both at the same time.

Block-by-Block Combined Code Explanation

Both swhello.java and swhello.py start by importing the proper modules,
libraries, and packages. The next blocks of code in each script use the
Swing primitives. The quit callback is done within the Java block of code,
whereas the Python code defines this function before getting into the core
part of the application.

After the widgets are defined, the next blocks of code place them in
their proper locations in the overall UI. The final action places everything
into the content pane, packs all the widgets, and then makes the entire
interface user-visible.

The hallmark of the Python version is the significant reduction in the
number of lines of code necessary to do the same thing in Java. The Python
code is more expressive, with each line of code having more significance.
In short, there is less “white noise.” Java code tends to have a lot more
boilerplate code to get work done; with Python, you can concentrate on
the important parts of your application: the solution to the problem you
are trying to solve.

Example 15-2 Swing “Hello World” in Python (swhello.py)

This is an equivalent Python script to the previous Java program and executed
with the Jython interpreter.

1 #!/usr/bin/env jython
2
3 from pawt import swing
4 import sys
5 from java.awt import Color, BorderLayout
6
7 def quit(e):
8 sys.exit()
9
10 top = swing.JFrame("PySwing")
11 box = swing.JPanel()
12 hello = swing.JLabel("Hello World!")
13 quit = swing.JButton("QUIT", actionPerformed=quit,
14 background=Color.red, foreground=Color.white)
15
16 box.add("North", hello)
17 box.add("South", quit)
18 top.contentPane.add(box)
19 top.pack()
20 top.visible = 1 # or True for Jython 2.2+

ptg7615500

748 Chapter 15 • Miscellaneous

Whereas both applications are compiled to Java bytecode, it is no sur-
prise that they look exactly alike when executing on the same platform
(see Figure 15-1).

Jython is a great development tool because you get the expressiveness
of Python plus the rich API in the Java libraries. If you are a Java devel-
oper, we hope that we have whet your appetite for what you can now do
with the power of Python behind you. If you are new to Java, Jython can
ease you in gently. You can prototype in Jython, and then easily port your
work to Java, as necessary. It’s also a great scripting environment to com-
plement everyday Java development.

15.2 Google+

The second half of this experimental chapter pertains to Google’s social
platform, Google+. We first introduce what it is, and then discuss how to
connect to it from Python. Finally, we have a brief code sample to show a
few things that you can do with it. Since the product is always adding new
features, we hope to have more to show you in the future.

15.2.1 Introduction to the Google+ Platform

One way of looking at Google+ is that it’s another social platform with an
API. Another way of looking at it, from more of the corporate perspective,
is that it weaves in a Google+ interface for most of its products, serving as
an augmentation of its existing feature set, hence the name, Google+.

MacOS X

Win32

Java Python

Figure 15-1 The Swing Hello World demonstration scripts. (swhello.{java,py})

ptg7615500

15.2 Google+ 749

Regardless of your take on what it is, there is definitely a social aspect,
and as with most things Google, there’s an API for it. With Google+, users
can post messages and pictures. They can also follow the activity of others
as well as show that they like a message by clicking the “+1” button associ-
ated with it. Users can comment on a message and/or reshare it to one or
more circles, Google+’s reference to subgroups in your networks, or pub-
licly with the world.

As just mentioned, Google+ has an API. At the time of this writing,
developers can use the API to access and search for Google+ users and
Google+ users’ activity streams, including comments to those activities.
Developers can also write applications integrating Google+ Hangouts
because it has an API, as well. Such APIs enable developers to write appli-
cations that can search public posts and pull up user’s profiles. Let’s look
at an example.

15.2.2 Python and the Google+ API

Accessing this functionality from Python is simple. However, in this brief
overview, we’re not even going to touch the authenticated stuff (there is
plenty more you can do once your application has proper authorization to
access Google+ data), so bear in mind that this example is going to be even
easier than normal.

Before we get started, you must first install Google’s APIs Client Library
for Python, if you haven’t done so already. You can do this easily with a
tool like pip or easy_install. (You need Python 2.4 or newer because
the library isn’t available for version 3.x yet.) If using easy_install, the
update/install command would look like this:

$ sudo easy_install --upgrade google-api-python-client

Note that this library can be used to access many Google services, not just
the Google+ API. You can find a complete list of supported APIs at http://
code.google.com/p/google-api-python-client/wiki/SupportedApis

Next we need an access key. Go to http://code.google.com/apis/console
and create a new project. Select to the Services tab in the newly created
project, and then enable Google+ API. Next, select the API Access tab,
copy the API key, and then paste it into the following code; or better yet,
refactor privileged data such as credentials out to a separate file. With that,
we’re ready to begin.

2.4

http://code.google.com/p/google-api-python-client/wiki/SupportedApis
http://code.google.com/p/google-api-python-client/wiki/SupportedApis
http://code.google.com/apis/console

ptg7615500

750 Chapter 15 • Miscellaneous

15.2.3 A Simple Social Media Analysis Tool

Example 15-3 presents we’ve created a simple social media analysis tool.
Using this tool, you can see what people are saying on Google+ about a
particular topic. But not all posts are created equal. Some are seen by very
few people, but others are commented on and reshared many times.

In this application, we focus on these popular posts. It ranks the posts
by popularity and lists the top five posts over the past week, either on
Python or a search term of the user’s choice. The other minor piece of func-
tionality in this script is the ability to look up and display the profile of a
Google+ user.

Our script is named plus_top_posts.py, but before we look at the code,
let’s look at the following sample execution of this menu-driven program
so that you can get an idea of how it works:

$ python plus_top_posts.py

--
 Google+ Command-Line Tool v0.3
--
(p) Top 5 Python posts in past 7 days
(u) Fetch user profile (by ID)
(t) Top 5 posts in past 7 days query

Enter choice [QUIT]: p

*** Searching for the top 5 posts matching 'python' over the past 7
days...

From: Gretta Bartels (110414482530984269464)
Date: Fri Nov 25 02:01:16 2011
Chatter score: 19
Post: Seven years old. Time to learn python. And maybe spelling.
Link: https://plus.google.com/110414482530984269464/posts/MHSdkdxEyE7

--

From: Steven Van Bael (106898588952511738977)
Date: Fri Nov 25 11:00:50 2011
Chatter score: 14
Post: Everytime I open a file in python I realize how awesome the
language actually is for doing utility scripts. f =
open('test.txt','w') f.write('hello world') f.close() Try doing that
in java
Link: https://plus.google.com/106898588952511738977/posts/cBRko81uYX2

--

ptg7615500

15.2 Google+ 751

From: Estevan Carlos Benson (115832511083802586044)
Date: Fri Nov 25 20:02:11 2011
Chatter score: 11
Post: Can anyone recommend some online Python resources for a
beginner. Also, for any python developers, your thoughts on the
language?
Link: https://plus.google.com/115832511083802586044/posts/9GNWa9TXHzt

--

From: Michael Dorsey Jr (103222958721998092839)
Date: Tue Nov 22 11:31:56 2011
Chatter score: 11
Post: I slowly but surely see python becoming my language of choice.
Programming language talk at the gym. Must be cardio time.
Link: https://plus.google.com/103222958721998092839/posts/jRuPPDpfndv

--

From: Gabor Szabo (102810219707784087582)
Date: Fri Nov 25 17:59:14 2011
Chatter score: 9
Post: In http://learnpythonthehardway.org/ Zed A. Shaw suggest to read
code backwards. Any idea why would that help? Anyone practicing
anything like that?
Link: https://plus.google.com/102810219707784087582/posts/QEC5TQ1qoQU

--

--
 Google+ Command-Line Tool v0.3
--
(p) Top 5 Python posts in past 7 days
(u) Fetch user profile (by ID)
(t) Top 5 posts in past 7 days query

Enter choice [QUIT]: u
Enter user ID [102108625619739868700]:
Name: wesley chun
URL: https://plus.google.com/102108625619739868700
Pic: https://lh3.googleusercontent.com/-T_wVWLlmg7w/AAAAAAAAAAI/
AAAAAAAAAAA/zeVf2azgGYI/photo.jpg?sz=50
About: WESLEY J. CHUN, MSCS, is the author of Prentice Hall's
bestseller, <i>Core Python
Programming</i>, its video
 . . .

ptg7615500

752 Chapter 15 • Miscellaneous

--
 Google+ Command-Line Tool v0.3
--
(p) Top 5 Python posts in past 7 days
(u) Fetch user profile (by ID)
(t) Top 5 posts in past 7 days query

Enter choice [QUIT]:
$

Now let’s check out the source.

Example 15-3 Simple Social Media Tool (plus_top_posts.py)

This Python 2 script searches Google+ for matching queries and user profiles.

1 #!/usr/bin/env python
2
3 import datetime as dt
4 from apiclient.discovery import build
5
6 WIDTH = 40
7 MAX_DEF = 5
8 MAX_RES = 20
9 MAX_TOT = 60
10 UID = '102108625619739868700'
11 HR = '\n%s' % ('-' * WIDTH)
12 API_KEY = 'YOUR_KEY_FROM_CONSOLE_API_ACCESS_PAGE'
13
14 class PlusService(object):
15 def __init__(self):
16 self.service = build("plus", "v1",
17 developerKey=API_KEY)
18
19 def get_posts(self, q, oldest, maxp=MAX_TOT):
20 posts = []
21 cap = min(maxp, MAX_RES)
22 cxn = self.service.activities()
23 handle = cxn.search(maxResults=cap, query=q)
24 while handle:
25 feed = handle.execute()
26 if 'items' in feed:
27 for activity in feed['items']:
28 if oldest > activity['published']:
29 return posts
30 if q not in activity['title']:
31 continue
32 posts.append(PlusPost(activity))
33 if len(posts) >= maxp:
34 return posts
35 handle = cxn.search_next(handle, feed)
36 else:
37 return posts
38 else:
39 return posts
40

ptg7615500

15.2 Google+ 753

41 def get_user(self, uid):
42 return self.service.people().get(userId=uid).execute()
43
44 scrub = lambda x: ' '.join(x.strip().split())
45
46 class PlusPost(object):
47 def __init__(self, record):
48 self.title = scrub(record['title'])
49 self.post = scrub(record['object'].get(
50 'originalContent', ''))
51 self.link = record['url']
52 self.when = dt.datetime.strptime(
53 record['published'],
54 "%Y-%m-%dT%H:%M:%S.%fZ")
55 actor = record['actor']
56 self.author = '%s (%s)' % (
57 actor['displayName'], actor['id'])
58 obj = record['object']
59 cols = ('replies', 'plusoners', 'resharers')
60 self.chatter = \
61 sum(obj[col]['totalItems'] for col in cols)
62
63 def top_posts(query, maxp=MAX_DEF, ndays=7):
64 print '''
65 *** Searching for the top %d posts matching \
66 %r over the past %d days...''' % (maxp, query, ndays)
67 oldest = (dt.datetime.now()-dt.timedelta(ndays)).isoformat()
68 posts = service.get_posts(query, oldest, maxp)
69 if not posts:
70 print '*** no results found... try again ***'
71 return
72 sorted_posts = sorted(posts, reverse=True,
73 key=lambda post: post.chatter)
74 for i, post in enumerate(sorted_posts):
75 print '\n%d)' % (i+1)
76 print 'From:', post.author
77 print 'Date:', post.when.ctime()
78 print 'Chatter score:', post.chatter
79 print 'Post:', post.post if len(post.post) > \
80 len(post.title) else post.title
81 print 'Link:', post.link
82 print HR
83
84 def find_top_posts(query=None, maxp=MAX_DEF):
85 if not query:
86 query = raw_input('Enter search term [python]: ')
87 if not query:
88 query = 'python'
89 top_posts(query, maxp)
90 py_top_posts = lambda: find_top_posts('python')
91

(Continued)

ptg7615500

754 Chapter 15 • Miscellaneous

Line-by-Line Explanation

Lines 1–12
Interestingly enough, even though this script is one of the longer ones in
this book, there are only two imports. One is the standard library datetime
package; the other is from the Google APIs Client Library for Python. With
respect to the latter, we’re only interested in the build() function. Actually,
one of the reasons why this part is so simple is that we’re leaving out secu-
rity (authorization). You’ll have your chance at it in one of the exercises at
the end of the chapter.

In the last part of this code block are the constants we’re going to use.
The WIDTH and HR variables are only relevant for the user display. The

Example 15-3 Simple Social Media Tool (plus_top_posts.py) (Continued)

92 def find_user():
93 uid = raw_input('Enter user ID [%s]: ' % UID).strip()
94 if not uid:
95 uid = UID
96 if not uid.isdigit():
97 print '*** ERROR: Must enter a numeric user ID'
98 return
99 user = service.get_user(uid)
100 print 'Name:', user['displayName']
101 print 'URL:', user['url']
102 print 'Pic:', user['image']['url']
103 print 'About:', user.get('aboutMe', '')
104
105 def _main():
106 menu = {
107 't': ('Top 5 posts in past 7 days query', find_top_posts),
108 'p': ('Top 5 Python posts in past 7 days', py_top_posts),
109 'u': ('Fetch user profile (by ID)', find_user),
110 }
111 prompt = ['(%s) %s' % (item, menu[item][0]) for item in menu]
112 prompt.insert(0, '%s\n%s%s' % (HR,
113 'Google+ Command-Line Tool v0.3'.center(WIDTH), HR))
114 prompt.append('\nEnter choice [QUIT]: ')
115 prompt = '\n'.join(prompt)
116 while True:
117 ch = raw_input(prompt).strip().lower()
118 if not ch or ch not in menu:
119 break
120 menu[ch][1]()
121
122 if __name__ == '__main__':
123 service = PlusService()
124 _main()

ptg7615500

15.2 Google+ 755

API_KEY is how you authenticate to Google and gain access to the Google+
(public data) API. We strongly recommend that you move this value outside
of your logic to another file such as secret.py to keep it more secure; you
should only provide a secret.pyc if your files are accessible by other
users. (A .pyc isn’t foolproof, but it does require that intruders know the
Python VM internals in order to reverse engineer it.) If you missed it, you
can find instructions on how to get the API key earlier in the chapter.

MAX_DEF is the default number of results to display, MAX_RES is the maxi-
mum number of search results that you can (currently) request from the
Google+ API, MAX_TOT is the current maximum we’re allowing users of this
script to be able to request, and UID is the default user ID (which is that of
yours truly).

Lines 14–17
The PlusService class provides the main interface of our tool to the
Google+ API. In the __init__() initializer, we connect to the API by call-
ing apiclient.discovery.build(), passing in the desired API (Google+ is
represented by "plus" and its version number) and your API key.

Lines 19–39
The get_posts() method does the heavy lifting. It does the setup and filter-
ing, plus makes the primary call to get the data from Google. It starts with
initialization of the results list (posts), setting the maximum number of
results to request from Google (which must be less than or equal to
MAX_RES), caching the API connection, and making the initial call to the
Google+ API, returning a handle if the request succeeded. The while loop
ensures that we run indefinitely until there are no more results coming back
from the API. There are additional ways to get out of this loop, as we’ll
soon see.

Using the connection handle, we execute the query and receive a feed
from Google+. It comes over the wire as a JSON structure and is converted
into a Python dictionary. If there are items in the feed (meaning there is a
key named 'items'), we loop through it, grabbing and saving data; other-
wise there is no more data, so we break out and return any intermediate
results. Within the loop, we can also exit due to age. Because the API
returns results in reverse chronological order, once we’ve passed one
week’s time, we know all remaining posts will be older; hence, we can
safely exit and return the dataset.

ptg7615500

756 Chapter 15 • Miscellaneous

The age comparison is made by comparing the ISO 8601/RFC 3339 time-
stamps directly. All Google+ posts are sent to us natively in this format,
whereas our timestamp had to be converted from a datetime.datetime
object to its ISO-equivalent—see this conversion in the description for
top_posts(), which is coming up in a little bit.

The next filter skips all posts that do not feature the search term in the
post title. This is probably not the most accurate search because the search
term might appear in an attachment or in the full content body. You will
have the chance to fix this in the exercises at the end of the chapter. This is
the last test or filter featured in our solution; any others you develop can
be added here.

Once we’ve passed these tests, we create a new PlusPost object, passing
its initializer the entire post’s object and have it filter out only those fields
that are relevant to us.

Next, we check to see if we’ve achieved the maximum number of
results. If so, we exit. Otherwise, we call the Google+ API’s search_next()
method passing in the current connection handle and feed so it knows
where we last left off (yes, acting like a cursor).

The final else clause returns if the search itself came up empty to begin with.

Lines 41–44
The final method in our class is get_user(). Because this is considered
“people” functionality and not an “activity,” we use self.service.people()
instead of self.service.activity(). The specific action we want is for
get() to retrieve information on a specific Google+ user by ID.

The final line of code in this section features a utility function (scrub()),
which takes a multiline body of text and reduces it to a single-line string
by replacing all whitespace (even consecutive) with a single space charac-
ter. This helps control the output in a command-line script but isn’t as nec-
essary for equivalent Web applications.

Lines 46–61
The purpose of the PlusPost object is to create a stripped down and sani-
tized equivalent of a post’s data that contains only the stuff we care about.
This object represents a single Google+ post made by a user. The Google+
API returns a highly nested data structure of JavaScript Object Notation
(JSON) objects and arrays converted to Python dicts and lists, which can
be tricky to navigate. This class transforms that data structure to a flat
object with the most important properties exposed as instance variables.

ptg7615500

15.2 Google+ 757

The title and post contents are scrubbed, the URL is taken verbatim, and
a more human-readable timestamp is employed. The original poster’s
saved information includes the display name and the ID, the latter of
which you can use to look up more information for that user. The post’s
timestamp is parsed then converted from ISO 8601/RFC 3339 to a native
Python datetime.datetime object, and then assigned.

The “chatter score” helps measure a post’s impact and relevancy. Chatter
is defined here as the sum of “+1”s, comments, and reshares of a post. The
higher the chatter score is, the more important the post is for our (and any
other) social media analysis tool. All of these signals are delivered in the
'object' data structure and filed under the totalItems field for each of
these metrics. The code uses sum() to tally all these columnar values via a
generator expression to arrive at the assigned chatter score.

A more obvious way of writing this summation code if you’re newer to
Python is the following:

 self.chatter = api_record['object']['replies']['totalItems']\
 + api_record['object']['plusoners']['totalItems']\
 + api_record['object']['resharers']['totalItems']

We made a variety of changes to code like this to arrive at the preceding
source. What changes did we make and why?

1. There is a repeated lookup of api_record['object']. If we
only ran this code several times, this isn’t a big deal. However
if we’re executing searches millions of times daily in a server,
it eventually eats into performance. A common Python best
practice is to assign a local variable to cache such references,
as in obj = record['object'].

2. We seem to be fetching a column of the same name
(totalItems), so why not reuse that too?

3. Instead of adding the values manually by using plus (+), I
often like to defer to BIFs such as sum() because they’re usu-
ally written in C, which performs faster than pure Python.

4. If we can enhance our chatter score with additional metrics,
this involves adding another long line of code such as
“+api_record['object'][SOMETHING_ELSE]['totalItems']”
when we could just add a single word to our columns field
such as cols = ('replies', 'plusoners', 'resharers',
SOMETHING_ELSE).

ptg7615500

758 Chapter 15 • Miscellaneous

Given that one of the most important goals in making code Pythonic is
to keep things readable, simple, and elegant, either solution would work
fine in this case. However, this is different matter if the chatter score
required the summation of, say, ten values.

Getting back on topic again, while similar to Google+ Ripples, chatter is
not exactly the same because Ripples is more of a tool that provides visual
insight of a post’s chatter score. (You can find out more about Ripples at http://
googleblog.blogspot.com/2011/10/google-popular-posts-eye-catching.html
and http://google.com/support/plus/bin/answer.py?answer=1713320.)

Lines 63–82
The top_posts() function represents the user interface for searching posts.
It displays a message indicating the start of the query, collates and sorts
the results, and then displays them one at a time to the user. The function
sorts in descending order of the chatter score, as per the call to the
sorted() BIF.

By default, the application displays the top five matching and most rele-
vant posts. This can be altered by the caller, and the final if statement
ensures this. Another point of control is the overall set of posts that make
up the entire dataset.

Lines 84–90
The find_top_posts() function is the user interface that prompts the user
for the search term, and then calls top_posts() with that query, defaulting
to 'python' if the user doesn’t provide one. py_top_posts() is a customiza-
tion that calls find_top_posts() directly with the python search term.

Lines 92–103
The find_user() function works similar to find_top_posts(), except that
its job is to get a user ID and call get_user() to do its work. It will also
ensure that the user entered a numeric ID and displays the results to the
screen.

Lines 105–124
The final code block features _main(), which displays a menu of options to
the user. It first parses the functionality dict, menu, and then inserts the
boilerplate text around it. The user is prompted for her choice, which if
valid, is then executed. Otherwise, the script quits by default.

http://googleblog.blogspot.com/2011/10/google-popular-posts-eye-catching.html
http://googleblog.blogspot.com/2011/10/google-popular-posts-eye-catching.html
http://google.com/support/plus/bin/answer.py?answer=1713320

ptg7615500

15.3 Exercises 759

Google+ is still a fairly new system at this time, and many things are
likely to be changed or enhanced during the lifetime of this text, so be pre-
pared for changes. Like the previous section in this chapter, we’ve just
barely touched upon the potential of the entire Google+ platform and its
API. As with Jython, we hope that this bit of dialog along with some sam-
ple code has you excited about both technologies and given you an idea as
to what is possible. I look forward to expanding both of these sections in
future editions of this book!

15.3 Exercises

Java, Python, Jython

15-1. Jython. What is the difference between Jython and CPython?
15-2. Java and Python. Take an existing Java application and port it

to Python. Write down your experience in a journal. When
complete, give an executive summary of what has to be
accomplished, what some of the important steps are, and
what common operations you have to perform to make it
happen.

15-3. Java and Python. Study the Jython source code. Describe how
some of Python standard types are implemented in Java.

15-4. Java and Python. Extend Python by writing an extension in
Java. What are the necessary steps? Demonstrate your work-
ing solution by showing how it works with the Jython inter-
active interpreter.

15-5. Jython and Databases. Find an interesting exercise in Chapter 6,
“Database Programming,” and port it to Jython. One of the
best things about Jython is that starting in version 2.1, it
comes with a JDBC database module called zxJDBC that is
nearly Python DB-API 2.0-compliant.

15-6. Python and Jython. Find a Python module not available in
Jython (yet) and port it. Consider submitting it as a patch to
the Jython distribution.

ptg7615500

760 Chapter 15 • Miscellaneous

Google+

15-7. Number of Results. In plus_top_posts.py, we limited the num-
ber of results displayed to the “top 5” while clearly the code
supports plenty more. Add another menu option that lets
users choose how many results to return (up to a reasonable
number).

15-8. Timeline. In top_posts(), there is a ndays variable which
defaults the script to retrieving the most popular posts
within the past seven days. Broaden the scope by supporting
a variable timeline (any number of days).

15-9. Object-Oriented Programming and Global Variables. In plus_
top_posts.py, we put all the core functionality into the
PlusService class. All of the user-facing code (raw_input()s
and print statements) are in functions outside of the class.
a) This forced us to make service a global variable. Why

are those bad again?
b) Refactor the code so that service is no longer used as a

global variable access from those external functions. You
can consider the following: integrate external functions as
methods of PlusService (including _main()), pass it
around as a local variable, etc.

15-10. Python 3. The Google APIs Client Library for Python isn’t
available in Python 3 yet, but in anticipation, port plus_top_
posts.py to an equivalent in Python 3 or create a hybrid
that runs under both Python 2 or 3. You’ll be able to test it
once Python 3 availability occurs, but it’s good to practice
anyway.

15-11. Progress “Bar.” While the “Searching for...” message is help-
ful so that users can see and prepare to wait momentarily
while their results are being collated, it’s more informative to
get clues as this is happening. To do this, add an import of
the sys module to plus_top_posts.py. Then, in PlusService.
get_posts(), add a call that writes out a single dot or period
to the screen—right after a new PlusPost object is appended
to the results set.

ptg7615500

15.3 Exercises 761

We recommend that you use stderr instead of stdout
because the former is unbuffered and will flush immediately
to the screen. When you execute another search, you’ll get a
better idea of the intermediate work required to pull together
the results before you see them.

15-12. Google+. Users can respond to posts by making comments.
In plus_top_posts.py, we only list the posts. Augment its
functionality to also show the comments for each post. You
can find out more at https://developers.google.com/+/api/
latest/comments.

15-13. Authorization. None of the searches performed in plus_top_
posts.py were authorized, meaning that the application can
only search public data. Add support for OAuth2 to gain
access to user and private data. You can learn more at https:/
/developers.google.com/+/api/oauth and http://code.google.
com/p/google-api-python-client/wiki/OAuth2Client.

15-14. Accuracy. In the search code, our plus_top_posts.py script,
specifically the get_posts() method, we filter out irrelevant
content. We do this by ensuring that the search term appears
in the title of the post. This is somewhat of a blunt measure
because the title is only part of an overall message. Improve
the accuracy of our filtering by also checking if the content
contains the search term as well, and if either one is a match
for any particular post, we should save it. To see how to get
the content, take a look at the initializer for PlusPost objects.
Try to minimize duplication of code where possible. Extra
Credit: Also check attachment content for the search term.

15-15. Time vs. Relevance. The default Google+ search order is by
the most recent posts first. In the call to self.service.
activities().search(), there is an implied orderBy='recent'
parameter. More on orderBy can be found in the developer
documentation at https://developers.google.com/+/api/latest/
activities/search.
a) This ordering can be altered from the most recent to the

most relevant posts by changing that parameter to 'best',
instead. Make this change.

http://code.google.com/p/google-api-python-client/wiki/OAuth2Client
http://code.google.com/p/google-api-python-client/wiki/OAuth2Client
https://developers.google.com/+/api/latest/comments
https://developers.google.com/+/api/latest/comments
https://developers.google.com/+/api/oauth
https://developers.google.com/+/api/oauth
https://developers.google.com/+/api/latest/activities/search
https://developers.google.com/+/api/latest/activities/search

ptg7615500

762 Chapter 15 • Miscellaneous

b) How does this affect the code in the get_posts() method,
which returns once we’ve reached a post older than our
threshold?

c) What should be done to address this (if anything)? If so,
make that change.

15-16. People Search. Add support for people search via the Google+
API by creating a function called find_people(). The current
activity search uses the self.service.activities().search()
method. You will use the equivalent for user search, that is,
self.service.people().search(). For more information, go
to http://developers. google.com/+/api/latest/people/search.

15-17. Attachments. Our plus_top_posts.py script does not do any-
thing about attachments, which are sometimes the key rea-
son behind posts. In the sample output executing this script
showing the top five Python-related posts (at the time of this
writing), at least one post featured a link to the relevant Web
page, and at least another featured a picture. Add support
for attachments to your version of this script.

15-18. Command-line Arguments. The version of plus_top_posts.py
featured in this chapter is a command-line menu-driven pro-
gram. However in reality, you might prefer a non-interactive
interface, especially for scripting, cron jobs, etc. Augment the
application by integrating a command-line argument pars-
ing interface (and equivalent functionality). We recommend
that you use argparse,1 but optparse2 or even the old getopt
module will suffice.

15-19. Web Programming. The plus_top_posts.py script works fine
as a command-line tool, however you might not always be in
front of a terminal and possibly in a place where online
access might be the only option. Develop a completely sepa-
rate Web application version of this tool. Use any tools at
your disposal.

1. New in Python 2.7.
2. New in Python 2.3.

http://developers.google.com/+/api/latest/people/search

ptg7615500

763

APPENDIX

Answers to
Selected Exercises

The Answer to the Great Question... Of Life, the Universe
and Everything... Is... Forty-two, said Deep Thought,

with infinite majesty and calm.
—Douglas Adams, October 1979
(from The Hitchhiker’s Guide to the

Galaxy, 1979, Pan Books)

Chapter 1

Regular Expressions

1-1. Matching strings
bat, hat, bit, etc.
[bh][aiu]t

1-2. First name last
[A-Za-z-]+ [A-Za-z-]+

(Any pair of words separated by a single space, that is, first
and last names, hyphens allowed)

ptg7615500

764 Appendix A • Answers to Selected Exercises

1-3. Last name first
[A-Za-z-]+, [A-Za-z]
(Any word and single letter separated by a comma and single
space, as in, last name, first initial)
[A-Za-z-]+, [A-Za-z-]+
(Any pair of words separated by a comma and single space, such
as, last, first names, hyphens allowed)

1-8. Python longs
\d+[lL]

(Decimal [base 10] integers only)

1-9. Python floats
[0-9]+(\.[0-9]*)?

(Describes a simple floating-point number, that is, any number of
digits followed optionally by a single decimal point and zero or
more numeric digits, as in “0.004,” “2,” “75.,” etc.)

Chapter 2

2-3. Sockets
 TCP

2-6. Daytime service
>>> import socket
>>> socket.getservbyname('daytime', 'udp')
13

Chapter 3

3-20. Identifiers
pass is a keyword, so it cannot be used as an identifier. The common
idiom in all such cases is to append an underscore (_) to the name of the
offending variable.

Chapter 4

4-2. Python threads
I/O-bound... why?

ptg7615500

Appendix A • Answers to Selected Exercises 765

Chapter 5

5-1. Client/server architecture
Window(ing) clients are GUI events generated usually by users
which must be processed by the window(ing) system that acts as
the server; it is responsible for making timely updates to the dis-
play as to be apparent to the user.

Chapter 6

6-1. Extending Python

• Performance improvement

• Protecting source code

• New or desired change of functionality

• And more!

Chapter 7

7-16. Improving title slide designation. (partial solution)
The main problem in our code is that it calls str.title() for both
a talk title as well as individual slide titles. Line 43 really needs to
be improved:
s.Shapes[0].TextFrame.TextRange.Text = line.title()

We can make a quick change so that the code only applies title
case to the title (which is currently in all capital letters), leaving
non-title slide titles alone:
s.Shapes[0].TextFrame.TextRange.Text = title and
line.title() or line
We can do better, however. This exercises asks what to do with
TCP/IP and how to avoid changing it to “Tcp/Ip.” Suppose that
we make a new eachWord variable. My suggestion there is to
check if eachWord == eachWord.upper(). If it’s an acronym, then
leave it alone; otherwise, we can apply title case. Yes, there are
exceptions, but if we cover for the 80 percent, then that’s good
enough for now.

ptg7615500

766 Appendix A • Answers to Selected Exercises

Chapter 8

8-1. DB-API
The DB-API is a common interface specification for all Python
database adapters. It is good in that it forces all adapter writers to
code to the same specification so that end-user programmers can
write consistent code that can be (more) easily ported to other
databases with the minimum amount of effort.

Chapter 10

10-6. CGI errors
The Web server returns either no data or error text, which results
in an HTTP 500 or Internal Server Error in your browser because
that (returned data) is not valid HTTP or HTML data. The cgitb
module captures the Python traceback and returns it as valid data
through CGI, which is displayed to the user—a great debugging
tool.

Chapter 13

13-8. Web services and the csv module
Replace the for loop in stock.py with the following:
import csv
for tick, price, chg, per in csv.reader(f):
 print tick.ljust(7), ('%.2f' % round(float(price),
 2)).rjust(6), chg.rjust(6), per.rjust(6)

Chapter 14

14-2. CSV versus str.split().
Obviously, the comma is really not the best delimiter to use when
parsing data that uses a different delimiter; that goes without say-
ing. Beyond that, using commas is also fraught with danger if the
fields (individual “column” values) can contain quotes. Compli-
cations can also manifest if fields can contain quotes, not just
because commas can go inside as string values, but also parsing
literature in which commas can appear either to the left or right of
a quotation mark.

ptg7615500

Appendix A • Answers to Selected Exercises 767

Quotes themselves cause problems—how would you parse a
string that contains quoted strings when you want all words of
that quoted string to be treated as a single entity? (Hint: see
http://docs.python.org/library/shlex)

14-11. Robustness.
In xmlrpcsrvr.py, change line 13
FUNCs = ('add', 'sub', 'mul', 'div', 'mod')
by adding all the required functions:
FUNCs = ('add', 'sub', 'mul', 'div', 'mod',
 'gt', 'ge', 'lt', 'le', 'eq', 'ne',
 truediv', 'floordiv',
)

These are all available in the operator module, so no additional
work beyond this change is necessary. Now you should have
enough knowledge to be able to add unary -, **, and the bitwise
operators &, |, ^, and ~.

Chapter 15

15-1. Jython.
Jython is the Java implementation of (most of) the standard
Python interpreter, which is written in C, hence it’s name,
CPython. It’s byte-compiled to run on a Java Virtual Machine
(JVM). Rather than a direct port, the creator of Jython recognized
that Java had its own memory management and exception han-
dling frameworks, so those language features did not require
porting. The Jython versions are numbered to specific compatibil-
ity, that is, Jython 2.5 is compatible to CPython 2.5. The original
version of Jython was named JPython, but it was superseded by
Jython. You can find more information in the Jython online FAQ
at http://wiki.python.org/jython/JythonFaq/GeneralInfo.

http://docs.python.org/library/shlex
http://wiki.python.org/jython/JythonFaq/GeneralInfo

ptg7615500

768

APPENDIX

Reference Tables

Anybody else on the list got an opinion?
Should I change the language or not?

—Guido van Rossum, December 1991

Python Keywords

Table B.1 lists Python’s keywords.

Table B-1 Python Reserved Wordsa

and asb assertc break

class continue def del

elif else except execd

finally for from global

if import in is

lambda nonlocale not or

ptg7615500

Appendix B • Reference Tables 769

Python Standard Operators and Functions

Table B-2 represents the operators and functions (built-in and factory) that
can be used with most standard Python objects as well as user-defined
objects in which you have implemented their corresponding special methods.

pass printd raise return

try while withb yieldf

a. None became a constant in Python 2.4; None, True, False became keywords in
version 3.0.

b. New in Python 2.6.
c. New in Python 1.5.
d. Became built-in function and removed as keyword in Python 3.0.
e. New in Python 3.0.
f. New in Python 2.3.

Table B-2 Standard Type Operators and Functions

Operator/function Description Resulta

String representation

‘‘b A string representation that can be
evaluated

str

Built-in and factory functions

cmp(obj1, obj2) Compares two objects int

repr(obj) A string representation that can be
evaluated

str

str(obj) Printable string representation str

type(obj) Object type type

Value comparisons

< Less than bool

> Greater than bool

(Continued)

ptg7615500

770 Appendix B • Reference Tables

Numeric Type Operators and Functions

Table B-3 represents the operators and functions (built-in and factory) that
apply to Python’s numeric objects.

Table B-2 Standard Type Operators and Functions (Continued)

Operator/function Description Resulta

Value comparisons

<= Less than or equal to bool

>= Greater than or equal to bool

== Equal to bool

!= Not equal to bool

<>b Not equal to bool

Object comparisons

is The same as bool

is not Not the same as bool

Boolean operators

not Logical negation bool

and Logical conjunction bool

or Logical disjunction bool

a. Boolean comparisons return either True or False.
b. Removed in Python 3.0; use !=, instead.

Table B-3 Operators and Built-In Functions for All Numeric Types

Operator/

Built-In Description int longa float complex Resulta

abs() Absolute value • • • • numbera

bin() Binary string • • • • str

chr() Character • • str

ptg7615500

Appendix B • Reference Tables 771

Operator/

built-in Description int longa float complex Resulta

coerce() Numeric
coercion

• • • • tuple

complex() Complex fac-
tory function

• • • • complex

divmod() Division/
modulo

• • • • tuple

float() Float factory
function

• • • • float

hex() Hexadecimal
string

• • str

int() Int factory
function

• • • • int

long()a Long factory
function

• • • • long

oct() Octal string • • str

ord() Ordinal (string) int

pow() Exponentiation • • • • number

round() Float rounding • float

sum()c Summation • • • float

**d Exponentiation • • • • number

+e No change • • • • number

-d Negation • • • • number

~d Bit inversion • • int/long

**c Exponentiation • • • • number

* Multiplication • • • • number

/ Classic or true
division

• • • • number

(Continued)

ptg7615500

772 Appendix B • Reference Tables

Sequence Type Operators and Functions

Table B-4 contains the set of operators, functions (built-in and factory), and
built-in methods that can be used with sequence types.

Table B-3 Operators and Built-In Functions for All Numeric Types (Continued)

Operator/

Built-In Description int longa float complex Resulta

// Floor division • • • • number

% Modulo/
remainder

• • • • number

+ Addition • • • • number

- Subtraction • • • • number

<< Bit left shift • • int/long

>> Bit right shift • • int/long

& Bitwise AND • • int/long

^ Bitwise XOR • • int/long

| Bitwise OR • • int/long

a. The long type was removed in Python 3.0; use int, instead.
b. A result of “number” indicates any of the numeric types, perhaps the same

as the operands.
c. New in Python 2.3.
d. ** has a unique relationship with unary operators.
e. Unary operator.

Table B-4 Sequence Type Operators, Functions, and Built-In Methods

Operator, Built-In Function or

Method str list tuple

[] (list creation) •

() •

"" •

append() •

ptg7615500

Appendix B • Reference Tables 773

Operator, Built-In Function or

Method str list tuple

capitalize() •

center() •

chr() •

cmp() • • •

count() • • •a

decode() •

encode() •

endswith() •

expandtabs() •

extend() •

find() •

format() •a

hex() •

index() • • •a

insert() •

isalnum() •

isalpha() •

isdecimal() •b

isdigit() •

islower() •

isnumeric() •b

isspace() •

istitle() •

(Continued)

ptg7615500

774 Appendix B • Reference Tables

Table B-4 Sequence Type Operators, Built-in Functions, and Methods
(Continued)

Operator, Built-In Function or

Method str list tuple

isupper() •

join() •

len() • • •

list() • • •

ljust() •

lower() •

lstrip() •

max() • • •

min() • • •

oct() •

ord() •

partition() •c

pop() •

raw_input() •

remove() •

replace() •

repr() • • •

reverse() •

rfind() •

rindex() •

rjust() •

rpartition() •c

ptg7615500

Appendix B • Reference Tables 775

Operator, Built-In Function or

Method str list tuple

rsplit() •d

rstrip() •

sort() •

split() •

splitlines() •

startswith() •

str() • • •

strip() •

swapcase() •

title() •

translate() •

tuple() • • •

type() • • •

upper() •

zfill() •e

. (attributes) • •

[] (slice) • • •

[:] • • •

* • • •

% •

+ • • •

(Continued)

ptg7615500

776 Appendix B • Reference Tables

String Format Operator Conversion Symbols

Table B-5 lists the formatting symbols that can be used with the string
format operator (%).

Table B-4 Sequence Type Operators, Built-in Functions, and Methods
(Continued)

Operator, Built-In Function or

Method str list tuple

in • • •

not in • • •

a. New in Python 2.6 (first methods for tuples ever).
b. Only for Unicode strings in Python 2.x; “new” in Python 3.0.
c. New in Python 2.5.
d. New in Python 2.4.
e. New in Python 2.2.2.

Table B-5 String Format Operator Conversion Symbols

Format Symbol Conversion

%c Character (integer [ASCII value] or string of length 1)

%ra String conversion via repr() prior to formatting

%s String conversion via str() prior to formatting

%d / %i Signed decimal integer

%ub Unsigned decimal integer

%ob (Unsigned) octal integer

%xb / %Xb (Unsigned) hexadecimal integer (lower/UPPERcase letters)

%e / %E Exponential notation (with lowercase e/UPPERcase E)

ptg7615500

Appendix B • Reference Tables 777

String Format Operator Directives

When using the string format operator (see Table B-5), you can enhance or
fine-tune the object display with the directives shown in Table B-6.

Format Symbol Conversion

%f / %F Floating point real number (fraction truncates naturally)

%g / %G The shorter of %e and %f/%E% and %F%

%% Percent character (%) unescaped

a. New in Python 2.0; likely unique only to Python.
b. %u/%o/%x/%X of negative int will return a signed string in Python 2.4+.

Table B-6 Format Operator Auxiliary Directives

Symbol Functionality

* Argument specifies width or precision

- Use left justification

+ Use a plus sign (+) for positive numbers

<sp> Use space-padding for positive numbers

Add the octal leading zero (0) or hexadecimal leading
0x or 0X, depending on whether x or X was used

0 Use zero-padding (instead of spaces) when formatting
numbers

% %% leaves you with a single literal %

(var) Mapping variable (dictionary arguments)

m.n m is the minimum total width and n is the number of
digits to display after the decimal point (if applicable)

ptg7615500

778 Appendix B • Reference Tables

String Type Built-In Methods

The descriptions for the string built-in methods in Table B-4 are given in
Table B-7.

Table B-7 String Type Built-In Methods

Method Name Description

string.capitalize() Capitalizes first letter of string

string.center(width) Returns a space-padded string with the
original string centered to a total of width
columns

string.count(str, beg=0,
end=len(string))

Counts how many times str occurs in
string, or in a substring of string if start-
ing index beg and ending index end are
given

string.decode(encoding=
'UTF-8', errors='strict')e

Returns decoded string version of string;
on error, default is to raise a ValueError
unless errors is given with ignore or
replace

string.encode(encoding=
'UTF-8', errors='strict')a

Returns encoded string version of string;
on error, default is to raise a ValueError
unless errors is given with ignore or
replace

string.endswith(str, beg=0,
end=len(string))b

Determines if string or a substring of
string (if starting index beg and ending
index end are given) ends with str;
returns True if so, and False otherwise

string.expandtabs(tabsize=8) Expands tabs in string to multiple spaces;
defaults to eight spaces per tab if tabsize
not provided

string.find(str, beg=0
end=len(string))

Determines if str occurs in string, or in a
substring of string if starting index beg
and ending index end are given; returns
index if found, and −1 otherwise

string.format(*args, **kwargs) Perform string formatting based on args
and/or kwargs passed in

string.index(str, beg=0,
end=len(string))

Same as find(), but raises an exception if
str not found

ptg7615500

Appendix B • Reference Tables 779

Method Name Description

string.isalnum()a,b,c Returns True if string has at least 1 char-
acter and all characters are alphanumeric,
and False otherwise

string.isalpha()a,b,c Returns True if string has at least 1 char-
acter and all characters are alphabetic, and
False otherwise

string.isdecimal()a,b,d Returns True if string contains only deci-
mal digits, and False otherwise

string.isdigit()b,c Returns True if string contains only dig-
its, and False otherwise

string.islower()b,c Returns True if string has at least 1 cased
character and all cased characters are in
lowercase, and False otherwise

string.isnumeric()b,c,d Returns True if string contains only
numeric characters and, False otherwise

string.isspace()b,c Returns True if string contains only
whitespace characters, and False
otherwise

string.istitle()b,c Returns True if string is properly “title-
cased” (see title()), and False otherwise

string.isupper()b,c Returns True if string has at least one
cased character and all cased characters
are in uppercase, and False otherwise

string.join(seq) Merges (concatenates) the string represen-
tations of elements in sequence seq into a
string, with separator string

string.ljust(width) Returns a space-padded string with the
original string left-justified to a total of
width columns

string.lower() Converts all uppercase letters in string to
lowercase

string.lstrip() Removes all leading whitespace in string

(Continued)

ptg7615500

780 Appendix B • Reference Tables

Table B-7 String Type Built-In Methods (Continued)

Method Name Description

string.replace(str1, str2,
num=string.count(str1))

Replaces all occurrences of str1 in string
with str2, or at most num occurrences if
num given

string.rfind(str, beg=0,
end=len(string))

Same as find(), but search backwards in
string

string.rindex(str, beg=0,
end=len(string))

Same as index(), but search backwards in
string

string.rjust(width) Returns a space-padded string with the
original string right-justified to a total of
width columns

string.rstrip() Removes all trailing whitespace of string

string.split(str="",
num=string.count(str))

Splits string according to delimiter str
(space if not provided) and returns list of
substrings; split into at most num sub-
strings if given

string.splitlines(
num=string.count('\n'))b,c

Splits string at all (or num) NEWLINEs
and returns a list of each line with
NEWLINEs removed

string.startswith(str, beg=0,
end=len(string))b

Determines if string or a substring of
string (if starting index beg and ending
index end are given) starts with substring
str; returns True if so, and False otherwise

string.strip([obj]) Performs both lstrip() and rstrip() on
string

string.swapcase() Inverts case for all letters in string

string.title()b,c Returns “titlecased” version of string,
that is, all words begin with uppercase,
and the rest are lowercase (also see
istitle())

ptg7615500

Appendix B • Reference Tables 781

List Type Built-In Methods

In Table B-8, we present full descriptions and usage syntax for the list
built-in methods given in Table B-4.

Method Name Description

string.translate(str, del="") Translates string according to translation
table str (256 chars), removing those in
the del string

string.upper() Converts lowercase letters in string to
uppercase

string.zfill(width) Returns original string left-padded with
zeros to a total of width characters;
intended for numbers, zfill() retains any
sign given (less one zero)

a. Applicable to Unicode strings only in version 1.6, but to all string types in version 2.0.
b. Not available as a string module function in version 1.5.2.
c. New in Python 2.1.
d. Applicable to Unicode strings only.
e. New in Python 2.2.

Table B-8 List Type Built-In Methods

List Method Operation

list.append(obj) Adds obj to the end of list

list.count(obj) Returns count of how many times obj occurs
in list

list.extend(seq)a Appends contents of seq to list

list.index(obj, i=0,
j=len(list))

Returns lowest index k where list[k] == obj
and i <= k < j; otherwise ValueError raised

list.insert(index, obj) Inserts obj into list at offset index

(Continued)

ptg7615500

782 Appendix B • Reference Tables

Dictionary Type Built-In Methods

In Table B-9, we list the full description and usage syntax for the dictionary
built-in methods.

Table B-8 List Type Built-In Methods (Continued)

List Method Operation

list.pop(index=-1)a Removes and returns obj at given or last
index from list

list.remove(obj) Removes object obj from list

list.reverse() Reverses objects of list in place

list.sort(func=None,
key=None, reverse=False)

Sorts list members with optional comparison
function; key is a callback when extracting
elements for sorting, and if reverse flag is
True, then list is sorted in reverse order

a. New in Python 1.5.2.

Table B-9 Dictionary Type Methods

Method Name Operation

dict.cleara() Removes all elements of dict

dict.copya() Returns a (shallowb) copy of dict

dict.fromkeysb(seq,
val=None)

Creates and returns a new dictionary with the
elements of seq as the keys and val as the initial
value (defaults to None if not given) for all keys

dict.get(key,
default=None)a For key key, returns value or default if key not in

dict (note that default’s default is None)

dict.has_key(key)e Returns True if key is in dict, False otherwise; par-
tially deprecated by the in and not in operators in
version 2.2 but still provides a functional interface

dict.items() Returns an iterableg of the (key, value) tuple pairs of
dict

ptg7615500

Appendix B • Reference Tables 783

Set Types Operators and Built-In Functions

Table B-10 outlines the various operators, functions (built-in and factory), and
built-in methods that apply to both set types (set [mutable] and frozenset
[immutable]).

Method Name Operation

dict.iter*c() iteritems(), iterkeys(), itervalues() are all
methods that behave the same as their non-iterator
counterparts but return an iterator instead of a list

dict.keys() Returns an iterablef of the keys of dict

dict.popb(key[,
default])

Similar to get() but removes and returns
dict[key] if key present and raises KeyError if key
not in dict and default not given

dict.setdefault(key,
default=None)d

Similar to get() but sets dict[key]=default if key is
not already in dict

dict.update(dict2)a Adds the key-value pairs of dict2 to dict

dict.values() Returns an iterablef of the values of dict

a. New in Python 1.5.
b. New in Python 2.3.
c. New in Python 2.2.
d. New in Python 2.0.
e. Deprecated in Python 2.2 and removed in Python 3.0; use in, instead.
f. The iterable is a set view starting in Python 3.0 and a list in all previous versions.

Table B-10 Set Type Operators, Functions, and Built-In Methods

Function/Method

Name

Operator

Equivalent Description

All Set Types

len(s) Set cardinality: number of elements in s

set([obj]) Mutable set factory function; if obj
given, it must be iterable, new set ele-
ments taken from obj; if not, creates an
empty set

(Continued)

ptg7615500

784 Appendix B • Reference Tables

Table B-10 Set Type Operators, Functions, and Methods (Continued)

Function/Method

Name

Operator

Equivalent Description

All Set Types

frozenset ([obj]) Immutable set factory function; oper-
ates the same as set() except returns
immutable set

obj in s Membership test: is obj an element of s?

obj not in s Non-membership test: is obj not an
element of s?

s == t Equality test: do s and t have exactly
the same elements?

s != t Inequality test: opposite of ==

s < t (Strict) subset test; s != t and all ele-
ments of s are members of t

s.issubset(t) s <= t Subset test (allows improper subsets):
all elements of s are members of t

s > t (Strict) superset test: s != t and all ele-
ments of t are members of s

s.issuperset(t) s >= t Superset test (allows improper super-
sets): all elements of t are members
of s

s.union(t) s | t Union operation: elements in s or t

s.intersection(t) s & t Intersection operation: elements in
s and t

s.difference(t) s - t Difference operation: elements in
s that are not elements of t

s.symmetric_differe
nce(t)

s ^ t Symmetric difference operation: ele-
ments of either s or t but not both

s.copy() Copy operation: return (shallow) copy
of s

ptg7615500

Appendix B • Reference Tables 785

Function/Method

Name

Operator

Equivalent Description

Mutable Sets Only

s.update(t) s |= t (Union) update operation: members of
t added to s

s.intersection_
update(t)

s &= t Intersection update operation: s only
contains members of the original s
and t

s.difference_
update(t)

s -= t Difference update operation: s only
contains original members who are not
in t

s.symmetric_
difference_
update(t)

s ^= t Symmetric difference update opera-
tion: s only contains members of s or t
but not both

s.add(obj) Add operation: add obj to s

s.remove(obj) Remove operation: remove obj from s;
Key- Error raised if obj not in s

s.discard(obj) Discard operation: friendlier version
of remove()—remove obj from s if
obj in s

s.pop() Pop operation: remove and return an
arbitrary element of s

s.clear() Clear operation: remove all elements
of s

ptg7615500

786 Appendix B • Reference Tables

File Object Methods and Data Attributes

Table B-11 lists the built-in methods and data attributes of file objects.

Table B-11 Methods for File Objects

File Object Attribute Description

file.close() Closes file

file.fileno() Returns integer file descriptor (FD) for file

file.flush() Flushes internal buffer for file

file.isatty() Returns True if file is a tty-like device, and
False otherwise

file.nexta() Returns the next line in the file [similar to
file.readline()] or raises StopIteration if no
more lines are available

file.read(size=-1) Reads size bytes of file, or all remaining bytes if
size not given or is negative, as a string and
return it

file.readintob(buf, size) Reads size bytes from file into buffer buf
(unsupported)

file.readline(size=-1) Reads and returns one line from file (includes
line-ending characters), either one full line or a
maximum of size characters

file.readlines(sizhint=0) Reads and returns all lines from file as a list
(includes all line termination characters); if
sizhint given and > 0, whole lines are returned
consisting of approximately sizhint bytes
(could be rounded up to next buffer’s worth)

file.xreadlinesc() Meant for iteration, returns lines in file
read as chunks in a more efficient way than
readlines()

ptg7615500

Appendix B • Reference Tables 787

File Object Attribute Description

file.seek(off, whence=0) Moves to a location within file, off bytes offset
from whence (0 == beginning of file, 1 == current
location, or 2 == end of file)

file.tell() Returns current location within file

file.truncate(
size=file.tell())

Truncates file to at most size bytes, the default
being the current file location

file.write(str) Writes string str to file

file.writelines(seq) Writes seq of strings to file; seq should be an
iterable producing strings; prior to version 2.2, it
was just a list of strings

file.closed True if file is closed, and False otherwise

file.encodingd Encoding that this file uses—when Unicode
strings are written to file, they will be converted
to byte strings using file.encoding; a value of
None indicates that the system default encoding
for converting Unicode strings should be used

file.mode Access mode with which file was opened

file.name Name of file

file.newlinesd None if no line separators have been read, a
string consisting of one type of line separator, or
a tuple containing all types of line termination
characters read so far

file.softspace 0 if space explicitly required with print, 1 other-
wise; rarely used by the programmer—generally
for internal use only

a. New in Python 2.2.
b. New in Python 1.5.2 but unsupported.
c. New in Python 2.1 but deprecated in Python 2.3.
d. New in Python 2.3.

ptg7615500

788 Appendix B • Reference Tables

Python Exceptions

Table B-12 lists exceptions in Python.

Table B-12 Python Built-In Exceptions

Exception Name Description

BaseExceptiona Root class for all exceptions

SystemExitb Request termination of Python interpreter

KeyboardInterruptc User interrupted execution (usually by
pressing Ctrl+C)

Exceptiond Root class for regular exceptions

StopIteratione Iteration has no further values

GeneratorExita Exception sent to generator to tell it
to quit

SystemExitf Request termination of Python
interpreter

StandardErrord Base class for all standard built-in
exceptions

ArithmeticErrord Base class for all numeric calculation
errors

FloatingPointErrord Error in floating point calculation

OverflowError Calculation exceeded maximum limit for
numerical type

ZeroDivisionError Division (or modulus) by zero error
(all numeric types)

AssertionErrord Failure of assert statement

AttributeError No such object attribute

EOFError End-of-file marker reached without input
from built-in

EnvironmentError Base class for operating system
environment errors

ptg7615500

Appendix B • Reference Tables 789

Exception Name Description

IOError Failure of input/output operation

OSError Operating system error

WindowsError MS Windows system call failure

ImportError Failure to import module or object

KeyboardInterruptf User interrupted execution (usually by
pressing Ctrl+C)

LookupErrord Base class for invalid data lookup errors

IndexError No such index in sequence

KeyError No such key in mapping

MemoryError Out-of-memory error (non-fatal to
Python interpreter)

NameError Undeclared/uninitialized object
(non-attribute)

UnboundLocalError Access of an uninitialized local variable

ReferenceError Weak reference tried to access a garbage-
collected object

RuntimeError Generic default error during execution

NotImplementedError Unimplemented method

SyntaxError Error in Python syntax

IndentationError Improper indentation

TabErrorg Improper mixture of TABs and spaces

SystemError Generic interpreter system error

TypeError Invalid operation for type

(Continued)

ptg7615500

790 Appendix B • Reference Tables

Table B-12 Python Built-In Exceptions (Continued)

Exception Name Description

ValueError Invalid argument given

UnicodeErrorh Unicode-related error

UnicodeDecodeError Unicode error during decoding

UnicodeEncodeError Unicode error during encoding

UnicodeTranslate Errori Unicode error during translation

Warningj Root class for all warnings

DeprecationWarningj Warning about deprecated features

FutureWarningi Warning about constructs that will
change semantically in the future

OverflowWarningk Old warning for auto-long upgrade

PendingDeprecation Warningi Warning about features that will be dep-
recated in the future

RuntimeWarningj Warning about dubious runtime behavior

SyntaxWarningj Warning about dubious syntax

UserWarningj Warning generated by user code

a. New in Python 2.5.
b. Prior to Python 2.5, SystemExit subclassed Exception.
c. Prior to Python 2.5, KeyboardInterrupt subclassed StandardError.
d. New in Python 1.5, the release when class-based exceptions replaced strings.
e. New in Python 2.2.
f. Only for Python 1.5 through 2.4.x.
g. New in Python 2.0.
h. New in Python 1.6.
i. New in Python 2.3.
j. New in Python 2.1.
k. New in Python 2.2 but removed in Python 2.4.

ptg7615500

Appendix B • Reference Tables 791

Special Methods for Classes

Table B-13 represents the set of special methods that can be implemented
to allow user-defined objects to take on behaviors and functionality of
Python standard types.

Table B-13 Special Methods for Customizing Classes

Special Method Description

Basic Customization

C.__init__(self[, arg1, ...]) Constructor (with any optional
arguments)

C.__new__(self[, arg1, ...])a Constructor (with any optional argu-
ments); usually used for setting up
subclassing of immutable data types

C.__del__(self) Destructor

C.__str__(self) Printable string representation; str()
built-in and print statement

C.__repr__(self) Evaluatable string representation;
repr() built-in and '' operator

C.__unicode__(self)b Unicode string representation;
unicode() built-in

C.__call__(self, *args) Denote callable instances

C.__nonzero__(self) Define False value for object; bool()
built-in (as of version 2.2)

C.__len__(self) “Length” (appropriate for class); len()
built-in

(Continued)

ptg7615500

792 Appendix B • Reference Tables

Table B-13 Special Methods for Customizing Classes (Continued)

Special Method Description

Object (Value) Comparisonc

C.__cmp__(self, obj) Object comparison; cmp() built-in

C.__lt__(self, obj) and
C.__le__(self, obj)

Less than/less than or equal to;
< and <= operators

C.__gt__(self, obj) and
C.__ge__(self, obj)

Greater than/greater than or equal to;
> and >= operators

C.__eq__(self, obj) and
C.__ne__(self, obj)

Equal/not equal to;
==,!= and <> operators

Attributes

C.__getattr__(self, attr) Get attribute; getattr() built-in

C.__setattr__(self, attr, val) Set attribute; setattr() built-in

C.__delattr__(self, attr) Delete attribute; del statement

C.__getattribute__(self, attr)a Get attribute; getattr() built-in

C.__get__(self, attr) Get attribute; getattr() built-in

C.__set__(self, attr, val) Set attribute; setattr() built-in

C.__delete__(self, attr) Delete attribute; del statement

Customizing Classes/Emulating Types

Numeric Types: binary operatorsd

C.__*add__(self, obj) Addition; + operator

C.__*sub__(self, obj) Subtraction; - operator

C.__*mul__(self, obj) Multiplication; * operator

C.__*div__(self, obj) Division; / operator

C.__*truediv__(self, obj)f True division; / operator

C.__*floordiv__(self, obj)e Floor division; // operator

ptg7615500

Appendix B • Reference Tables 793

Special Method Description

Customizing Classes/Emulating Types

Numeric Types: binary operatorsd

C.__*mod__(self, obj) Modulo/remainder; % operator

C.__*divmod__(self, obj) Division and modulo; divmod() built-in

C.__*pow__(self, obj[, mod]) Exponentiation; pow() built-in;
** operator

C.__*lshift__(self, obj) Left shift; << operator

C.__*rshift__(self, obj) Right shift; >> operator

C.__*and__(self, obj) Bitwise AND; & operator

C.__*or__(self, obj) Bitwise OR; | operator

C.__*xor__(self, obj) Bitwise XOR; ^ operator

Numeric Types: unary operators

C.__neg__(self) Unary negation

C.__pos__(self) Unary no-change

Numeric Types: unary operators

C.__abs__(self) Absolute value; abs() built-in

C.__invert__(self) Bit inversion; ~ operator

Numeric Types: numeric conversion

C.__complex__(self, com) Convert to complex; complex() built-in

C.__int__(self) Convert to int; int() built-in

C.__long__(self) Convert to long; long() built-in

C.__float__(self) Convert to float; float() built-in

(Continued)

ptg7615500

794 Appendix B • Reference Tables

Table B-13 Special Methods for Customizing Classes (Continued)

Special Method Description

Customizing Classes/Emulating Types

Numeric Types: base representation (string)

C.__oct__(self) Octal representation; oct() built-in

C.__hex__(self) Hexadecimal representation; hex()
built-in

Numeric Types: numeric coercion

C.__coerce__(self, num) Coerce to same numeric type; coerce()
built-in

Sequence Typesd

C.__len__(self) Number of items in sequence

C.__getitem__(self, ind) Get single sequence element

C.__setitem__(self, ind, val) Set single sequence element

C.__delitem__(self, ind) Delete single sequence element

C.__getslice__(self, ind1, ind2) Get sequence slice

C.__setslice__(self, i1, i2, val) Get sequence slice

C.__delslice__(self, ind1, ind2) Delete sequence slice

C.__contains__(self, val)f Test sequence membership; in
keyword

C.__*add__(self, obj) Concatenation; + operator

C.__*mul__(self, obj) Repetition; * operator

C.__iter__(self)e Create iterator class; iter() built-in

Mapping Types

C.__len__(self) Number of items in mapping

C.__hash__(self) Hash function value

ptg7615500

Appendix B • Reference Tables 795

Python Operator Summary

Table B-14 represents the complete set of Python operators and to which
standard types they apply. The operators are sorted from highest-to-lowest
precedence, with those sharing the same shaded group having the same
priority.

Special Method Description

Customizing Classes/Emulating Types

Mapping Types

C.__getitem__(self, key) Get value with given key

C.__setitem__(self, key, val) Set value with given key

C.__delitem__(self, key) Delete value with given key

a. New in Python 2.2; for use with new-style classes only.
b. New in Python 2.3.
c. All except cmp() new in Python 2.1.
d. “*” either nothing (self OP obj), “r” (obj OP self), or “i” for in-place operation

(new in Python 2.0), i.e., __add__, __radd__, or __iadd__.
e. New in Python 2.2.
f. New in Python 1.6.

Table B-14 Python Operators († - unary)

Operatora
intb long float complex str list tuple dict

set,

frozensetc

[] • • •

[:] • • •

** • • • •

+† • • • •

-† • • • •

(Continued)

ptg7615500

796 Appendix B • Reference Tables

Table B-14 Python Operators († - unary) (Continued)

Operatora
intb long float complex str list tuple dict

set,

frozensetc

~† • •

* • • • • • • •

/ • • • •

// • • • •

% • • • • •

+ • • • • • • •

- • • • • •

<< • •

>> • •

& • • •

^ • • •

| • • •

< • • • • • • • • •

> • • • • • • • • •

<= • • • • • • • • •

>= • • • • • • • • •

== • • • • • • • • •

!= • • • • • • • • •

<> • • • • • • • • •

is • • • • • • • • •

is not • • • • • • • • •

in • • • •

ptg7615500

Appendix B • Reference Tables 797

Operatora
intb long float complex str list tuple dict

set,

frozensetc

not in • • • •

not† • • • • • • • • •

and • • • • • • • • •

or • • • • • • • • •

a. Can also include corresponding augmented assignment operators.
b. Operations involving Boolean types will be performed on the operands as ints.f.
c. (Both) set types new in Python 2.4.

ptg7615500

798

APPENDIX

Python 3: The Evolution of
a Programming Language

Matz (the author of Ruby) has a great quote,
“Open Source needs to move or die.”

—Guido van Rossum, March 2008
(verbally at PyCon conference)

ython 3 represents an evolution of the language such that it will
not execute most older code that was written against the version
2.x interpreters. This doesn’t mean that you won’t recognize the

old code any more, or that extensive porting is required to make old
code work under version 3.x. In fact, the new syntax is quite similar to
that of the past. However, when the print statement no longer exists,
it makes it easy to disrupt the old code. In this appendix, we discuss
print and other version 3.x changes, and we shed some light on the
required evolution that Python must undergo to be better than it was
before. Finally, we present a few migration tools that might help you
to make this transition.

P

ptg7615500

Appendix C • Python 3: The Evolution of a Programming Language 799

C.1 Why Is Python Changing?
Python is currently undergoing its most significant transformation since it
was released in the early 1990s. Even the revision change from 1.x to 2.x in
2000 was relatively mild—Python 2.0 ran 1.5.2 software just fine. One of
the main reasons for Python’s stability over the years has been the stead-
fast determination of the core development team to preserve backward
compatibility. Over the years, however, certain “sticky” flaws (issues that
hang around from release to release) were identified by creator Guido van
Rossum, Andrew Kuchling, and other users (refer to the references section
at the end of this appendix for links to relevant articles). Their persistence
made it clear that a release with hard changes was needed to ensure that
the language evolved. The 3.0 release in 2008 marked the first time that a
Python interpreter has been released that deliberately breaks the tenets of
backward compatibility.

C.2 What Has Changed?
The changes in Python 3 are not mind-boggling—it’s not as if you’ll no
longer recognize Python. The remainder of this appendix provides an
overview of some of the major changes:

• print becomes print().

• Strings are cast into Unicode by default.

• There is a single class type.

• The syntax for exceptions has been updated.

• Integers have been updated.

• Iterables are used everywhere.

C.2.1 print Becomes print()

The switch to print() is the change that breaks the greatest amount of
existing Python code. Why is Python changing from a statement to a built-
in function (BIF)? Having print as a statement is limiting in many regards,
as detailed by Guido in his “Python Regrets” talk, in which he outlined
what he feels are shortcomings of the language. In addition, having print
as a statement limits improvements to it. However, when print() is available
as a function, new keyword parameters can be added, certain standard

ptg7615500

800 Appendix C • Python 3: The Evolution of a Programming Language

behaviors can be overridden with keyword parameters, and print() can
be replaced if desired, just like any other BIF. Here are before-and-after
examples:

Python 2.x

>>> i = 1
>>> print 'Python' 'is', 'number', i
Pythonis number 1

Python 3.x

>>> i = 1
>>> print('Python' 'is', 'number', i)
Pythonis number 1

The omission of a comma between 'Python' and 'is' is deliberate; it
was done to show you that direct string literal concatenation has not
changed. You can see more examples in the “What’s New in Python 3.0”
document (refer to the references section at the end of this appendix). You
can find additional information about this change in PEP 3105.

C.2.2 Strings: Unicode by Default

The next “gotcha” that current Python users face is that strings are now
Unicode by default. This change couldn’t have come soon enough. Not a
day goes by that countless Python developers don’t run into a problem
when dealing with Unicode and regular ASCII strings that looks some-
thing like this:

UnicodeEncodeError: 'ascii' codec can't encode character
u'\xae' in position 0: ordinal not in range(128)

These types of errors will no longer be an everyday occurrence in 3.x.
For more information on using Unicode in Python, see the Unicode
HOWTO document (refer to the References section at the end of this
appendix for the Web address). With the model adopted by the new ver-
sion of Python, users shouldn’t even use the terms Unicode and ASCII/
non-Unicode strings anymore. The “What’s New in Python 3.0” document
sums up this new model pretty explicitly.

Python 3 uses the concepts of text and (binary) data instead of Unicode
strings and 8-bit strings. All text is Unicode; however, encoded Unicode is
represented as binary data. The type used to hold text is str, and the type
used to hold data is bytes.

ptg7615500

Appendix C • Python 3: The Evolution of a Programming Language 801

With regard to syntax, because Unicode is now the default, the leading
u or U is deprecated. Similarly, the new bytes objects require a leading b or
B for its literals (more information can be found in PEP 3112).

Table C-1 compares the various string types, showing how they will
change from version 2.x to 3.x. The table also includes a mention of the
new mutable bytearray type.

C.2.3 Single Class Type

Prior to Python 2.2, Python’s objects didn’t behave like classes in other lan-
guages: classes were “class” objects and instances were “instance” objects.
This is in stark contrast to what people perceive as normal: classes are
types and instances are objects of such types. Because of this “flaw,” you
could not subclass data types and modify them. In Python 2.2, the core
development team came up with new-style classes, which act more like
what people expect. Furthermore, this change meant that regular Python
types could be subclassed—a change described in Guido’s “Unifying
Types and Classes in Python 2.2” essay. Python 3 supports only new-style
classes.

C.2.4 Updated Syntax for Exceptions

Exception Handling

In the past, the syntax to catch an exception and the exception argument/
instance had the following form:

except ValueError, e:

Table C-1 Strings in Python 2 and 3

Python 2 Python 3 Mutable?

str ("") bytes (b"") no

unicode (u"") str ("") no

N/A bytearray yes

ptg7615500

802 Appendix C • Python 3: The Evolution of a Programming Language

To catch multiple exceptions with the same handler, the following syn-
tax was used:

except (ValueError, TypeError), e:

The required parentheses confused some users, who often attempted to
write invalid code looking like this:

except ValueError, TypeError, e:

The (new) as keyword is intended to ensure that you do not become
confused by the comma in the original syntax; however, the parentheses
are still required when you’re trying to catch more than one type of excep-
tion using the same handler. Here are two equivalent examples of the new
syntax that demonstrate this change:

except ValueError as e:

except (ValueError, TypeError) as e:

The remaining version 2.x releases beginning with 2.6 accept both forms
when creating exception handlers, thereby facilitating the porting process.
You can find more information about this change in PEP 3110.

Raising Exceptions

The most popular syntax for raising exceptions in Python 2.x is as follows:
raise ValueError, e

To truly emphasize that you are creating an instance of an exception, the
only syntax supported in Python 3.x is the following:

raise ValueError(e)

This syntax really isn’t new at all. It was introduced over a decade ago
in Python 1.5 (yes, you read that correctly) when exceptions changed from
strings to classes, and we’re sure you’ll agree that the syntax for class
instantiation looks a lot more like the latter than the former.

C.2.5 Updates to Integers

Single Integer Type

Python’s two different integer types, int and long, began their unification
in Python 2.2. That change is now almost complete, with the new int
behaving like a long. As a consequence, OverflowError exceptions no longer

ptg7615500

Appendix C • Python 3: The Evolution of a Programming Language 803

occur when you exceed the native integer size, and the trailing L has been
dropped. This change is outlined in PEP 237. long still exists in Python 2.x
but has disappeared in Python 3.0.

Changes to Division

The current division operator (/) doesn’t give the expected answer for
those users who are new to programming, so it has been changed to do so.
If this change has brought any controversy, it is simply that programmers
are used to the floor division functionality. To see how the confusion
arises, try to convince a programming newbie that 1 divided by 2 is 0 (1 /
2 == 0). The simplest way to describe this change is with examples. Follow-
ing are some excerpted from “Keeping Up with Python: The 2.2 Release,”
found in the July 2002 issue of Linux Journal. You can also find out more
about this update in PEP 238.

Classic Division

The default Python 2.x division operation works this way: given two inte-
ger operands, / performs integer floor division (truncates the fraction as in
the earlier example). If there is at least one float involved, true division
occurs:

>>> 1 / 2 # floor
0
>>> 1.0 / 2.0 # true
0.5

True Division

In Python 3.x, given any two numeric operands, / will always return a
float:

>>> 1 / 2 # true
0.5
>>> 1.0 / 2.0 # true
0.5

ptg7615500

804 Appendix C • Python 3: The Evolution of a Programming Language

To try true division starting in Python 2.2, you can either import division
from __future__ or use the -Qnew switch.

Floor Division

The double-slash division operator (//) was added in Python 2.2 to always
perform floor division, regardless of operand type, and to begin the transi-
tion process:

>>> 1 // 2 # floor
0
>>> 1.0 // 2.0 # floor
0.0

Binary and Octal Literals

The minor integer literal changes were added in Python 2.6+ to make lit-
eral nondecimal (hexadecimal, octal, and new binary) formats consistent.
Hex representation stayed the same, with its leading 0x or 0X (where the
octal had formerly led with a single 0). This format proved confusing to
some users, so it has been changed to 0o for consistency. Instead of 0177,
you must now use 0o177. Finally, the new binary literal lets you provide
the bits of an integer value, prefixed with a leading 0b, as in 0b0110.
Python 3 does not accept 0177. You can find more information on integer
literals updates in PEP 3127.

C.2.6 Iterables Everywhere

Another theme inherent to version 3.x is memory conservation. Using iter-
ators is much more efficient than maintaining entire lists in memory, espe-
cially when the target action on the objects in question is iteration. There’s
no need to waste memory when it’s not necessary. Thus, in Python 3, code
that returned lists in earlier versions of the language no longer does so.

For example, the functions map(), filter(), range(), and zip(), plus the
dictionary methods keys(), items(), and values(), all return some sort of
iterator. Yes, this syntax can be more inconvenient if you want to glance at
your data, but it’s better in terms of resource consumption. The changes
are mostly under the hood—if you only use the functions’ return values to
iterate over, you won’t notice a thing.

ptg7615500

Appendix C • Python 3: The Evolution of a Programming Language 805

C.3 Migration Tools
As you have seen, most of the Python 3.x changes do not represent some
wild mutation of the familiar Python syntax. Instead, the changes are just
enough to break the old code base. Of course, the changes affect users, so a
good transition plan is clearly needed—and most good plans come with
good tools or aids to smooth the way. Such tools include (but are not lim-
ited to) the following: the 2to3 code converter, the latest Python 2.x release
(at least 2.6), and the external (non-standard library) 3to2 tool and six
library. We’ll cover the first two here and let you investigate the latter pair
on your own.

C.3.1 The 2to3 Tool

The 2to3 tool will take Python 2.x code and attempt to generate a working
equivalent in Python 3.x. Here are some of the actions it performs:

• Converts a print statement to a print() function

• Removes the L long suffix

• Replaces <> with !=

• Changes single backquoted strings ('...') to repr(...)

This tool does a lot of the manual labor—but not everything; the rest is up
to you. You can read more about porting suggestions and the 2to3 tool in the
“What’s New in Python 3.0” document as well as at the tool’s Web page (http://
docs.python.org/3.0/library/2to3.html). In Appendix D, “Python 3 Migration
with 2.6+,” we’ll also briefly mention a companion tool named 3to2.

C.3.2 Python 2.6+

Because of the compatibility issue, the releases of Python that lead up to
3.0 play a much more significant role in the transition. Of particular note is
Python 2.6, the first and most pivotal of such releases. For users, it repre-
sents the first time that they can start coding against the version 3.x family
of releases, because many 3.x features have been backported to version 2.x.

Whenever possible, the final version 2.x releases (2.6 and newer) incor-
porate new features and syntax from version 3.x, while remaining compat-
ible with existing code by not removing older features or syntax. Such
features are described in the “What’s New in Python 2.x” document for all
such releases. We detail some of these migration features in Appendix D.

http://docs.python.org/3.0/library/2to3.html
http://docs.python.org/3.0/library/2to3.html

ptg7615500

806 Appendix C • Python 3: The Evolution of a Programming Language

C.4 Conclusion
Overall, the changes outlined in this appendix do have a high impact in
terms of updates required to the interpreter, but they should not radically
change the way programmers write their Python code. It’s simply a matter
of changing old habits, such as using parentheses with print—thus,
print(). Once you’ve gotten these changes under your belt, you’re well on
your way to being able to effectively jump to the new platform. It can be a
bit startling at first, but these changes have been coming for some time.
Don’t panic: Python 2.x will live on for a long time to come. The transition
will be slow, deliberate, pain resistant, and even-keeled. Welcome to the
dawn of the next generation!

C.5 References
Andrew Kuchling, “Python Warts,” July 2003, http://web.archive.org/web/
20070607112039, http://www.amk.ca/python/writing/warts.html
A. M. Kuchling, “What’s New in Python 2.6,” June 2011 (for 2.6.7), http://
docs.python.org/whatsnew/2.6.html.
A. M. Kuchling, “What’s New in Python 2.7,” December 2011 (for 2.7.2),
http://docs.python.org/whatsnew/2.7.html.
Wesley J. Chun, “Keeping Up with Python: The 2.2 Release,” July 2002,
http://www.linuxjournal.com/article/5597.
PEP Index, http://www.python.org/dev/peps.
“Unicode HOWTO,” December 2008, http://docs.python.org/3.0/howto/
unicode.html.
Guido van Rossum, “Python Regrets,” July 2002, http://www.python.org/
doc/essays/ppt/regrets/PythonRegrets.pdf.
Guido van Rossum, “Unifying Types and Classes in Python 2.2,” April 2002,
http://www.python.org/2.2.3/descrintro.html.
Guido van Rossum, “What’s New in Python 3.0,” December 2008, http://
docs.python.org/3.0/whatsnew/3.0.html.

http://web.archive.org/web/20070607112039
http://web.archive.org/web/20070607112039
http://www.amk.ca/python/writing/warts.html
http://docs.python.org/whatsnew/2.6.html
http://docs.python.org/whatsnew/2.6.html
http://docs.python.org/whatsnew/2.7.html
http://www.linuxjournal.com/article/5597
http://www.python.org/dev/peps
http://docs.python.org/3.0/howto/unicode.html
http://docs.python.org/3.0/howto/unicode.html
http://www.python.org/doc/essays/ppt/regrets/PythonRegrets.pdf
http://www.python.org/doc/essays/ppt/regrets/PythonRegrets.pdf
http://www.python.org/2.2.3/descrintro.html
http://docs.python.org/3.0/whatsnew/3.0.html
http://docs.python.org/3.0/whatsnew/3.0.html

ptg7615500

807

APPENDIX

Python 3 Migration with 2.6+

We keep the language evolving... [we] need to move forward or die.
—Yukihiro “Matz” Matsumoto

(), September 2008
(verbally at Lone Star Ruby conference;

the actual quote Guido was referring to)

D.1 Python 3: The Next Generation
Python is currently undergoing its most significant transformation
since it was first released back in the winter of 1991. Python 3 is back-
ward incompatible with all older versions, so porting will be a more
significant issue than in the past.

Unlike other end-of-life efforts, however, Python 2.x will not disap-
pear anytime soon. In fact, the remainder of the version 2.x series will
be developed in parallel with 3.x, thereby ensuring a smooth transi-
tion from the current to next generation. Python 2.6 is the first of these
final version 2.x releases.

まっもとゆきひろ

ptg7615500

808 Appendix D • Python 3 Migration with 2.6+

This document reinforces material covered Appendix C, “Python 3: The
Evolution of a Programming Language,” but goes into more detail when
appropriate.

D.1.1 Hybrid 2.6+ as Transition Tool

Python 2.6 and remaining 2.x releases are hybrid interpreters. This means
that they can run a considerable amount of version 1.x code, all version 2.x
software, and can even run a limited amount of 3.x (code that is native ver-
sion 3.x but made available in 2.6+). Some will argue that Python releases
dating back to version 2.2 have already been mixed interpreters because
they support creation of both classic classes as well as new-style classes,
but that is as far as they go.

The version 2.6 release is the first version with specific version 3.x fea-
tures backported to it. The most significant of these features are summa-
rized here:

• Integers

– Single integer type

– New binary and modified octal literals

– Classic or true division

– The -Q division switch

• Built-in functions

– print or print()

– reduce()

– Other updates

• Object-oriented programming

– Two different class objects

• Strings

– bytes literals

– bytes type

• Exceptions

– Handling exceptions

– Raising exceptions

ptg7615500

Appendix D • Python 3 Migration with 2.6+ 809

• Other transition tools and tips

– Warnings: the -3 switch

– 2to3 tool

This appendix does not discuss other new version 2.x features that are
stand-alone, meaning they do not have any consequences for porting
applications to version 3.x. Thus, without further ado, let’s jump right in.

D.2 Integers
Python integers face several changes in version 3.x and beyond, relating to
their types, literals, and the integer division operation. We describe each of
these changes next, highlighting the role that version 2.6 and newer ver-
sions play in terms of migration.

D.2.1 Single Integer Type

Previous versions of Python featured two integer types, int and long. The
original ints were limited in size to the architecture of the platform on
which the code ran (i.e., 32-bit, 64-bit), whereas longs were unlimited in
size except in terms of how much virtual memory the operating system
provided. The process of unifying these two types into a single int type
began in Python 2.2 and will be complete in version 3.0.1 The new single
int type will be unlimited in size, and the previous L or l designation for
longs is removed. You can read more about this change in PEP 237.

As of version 2.6, there is little trace of long integers, save for the sup-
port of the trailing L. It is included for backward-compatibility purposes,
to support all code that uses longs. Nevertheless, users should be actively
purging long integers from their existing code and should no longer use
longs in any new code written against Python 2.6+.

1. The bool type also might be considered part of this equation, because
bools behave like 0 and 1 in numerical situations rather than having
their natural values of False and True, respectively.

ptg7615500

810 Appendix D • Python 3 Migration with 2.6+

D.2.2 New Binary and Modified Octal Literals

Python 3 features a minor revision to the alternative base format for inte-
gers. It has basically streamlined the syntax to make it consistent with the
existing hexadecimal format, prefixed with a leading 0x (or 0X for capital
letters)—for example, 0x80, 0xffff, 0xDEADBEEF.

A new binary literal lets you provide the bits to an integer number, pre-
fixed with a leading 0b (e.g., 0b0110). The original octal representation
began with a single 0, but this format proved confusing to some users, so it
has been changed to 0o to bring it in line with hexadecimal and binary lit-
erals, as just described. In other words, 0177 is no longer allowed; you
must use 0o177, instead. Here are some examples:

Python 2.x

>>> 0177
127

Python 3 (including 2.6+)

>>> 0o177
127
>>> 0b0110
6

Both the new binary and modified octal literal formats have been back-
ported to version 2.6 to help with migration. In fact, version 2.6 and newer,
in their role as transition tools, accept both octal formats, whereas no ver-
sion 3.x release accepts the old 0177 format. You can find more information
on the updates to integer literals in PEP 3127.

D.2.3 Classic or True Division

A change that has been a long time coming, yet remains controversial to
many, is the change to the division operator (/). The traditional division
operation works in the following way: given two integer operands, / per-
forms integer floor division. If there is at least one float involved, true
division occurs:

Python 2.x: Classic Division

>>> 1 / 2 # floor
0
>>> 1.0 / 2.0 # true
0.5
>>> 1.0 / 2 # true (2 is internally coerced to float)
0.5

ptg7615500

Appendix D • Python 3 Migration with 2.6+ 811

In Python 3, the / operator will always return a float, regardless of oper-
and type.

Python 3.x: True Division

>>> 1 / 2 # true
0.5
>>> 1.0 / 2 # true
0.5

The double-slash division operator (//) was added as a proxy in Python 2.2 to
always perform floor division, regardless of the operand type and to begin
the transition process.

Python 2.2+ and 3.x: Floor Division

>>> 1 // 2 # floor
0
>>> 1.0 // 2 # floor
0.0

Using // will be the only way to obtain floor division functionality in ver-
sion 3.x. To try true division in Python 2.2+, you can add the line from
__future__ import division to your code, or use the -Q command-line
option (discussed next).

Python 2.2+: Division Command-Line Option

If you do not wish to import division from __future__ module in your code,
but you want true division to always prevail, you can use the -Qnew switch.
There are also other options for using -Q, as summarized in Table D-1.

Table D-1 Division Operation -Q Command-Line Options

Option Description

old Always perform classic division

new Always perform true division

warn Warn against int/int and long/long operations

warnall Warn against all use of /

ptg7615500

812 Appendix D • Python 3 Migration with 2.6+

For example, the -Qwarnall option is used in the Tools/scripts/fixdiv.py
script found in the Python source distribution.

As you might have guessed by now, all of the transition efforts have
already been implemented in Python 2.2, and no specific additional func-
tionality as far as this command-line has been added to versions 2.6 or 2.7
with respect to Python 3 migration. Table D-2 summarizes the division
operators and their functionality in the various Python releases.

You can read more about the change to the division operator in PEP 238
as well as in an article titled “Keeping Up with Python: The 2.2 Release”
that I wrote for Linux Journal in July 2002.

D.3 Built-In Functions

D.3.1 The print Statement or print() Function

It’s no secret that one of the most common causes of breakage between
Python 2.x and 3.x applications is the change in the print statement,
which becomes a built-in function (BIF) in version 3.x. This change allows
print() to be more flexible, upgradeable, and swappable, if desired.

Python 2.6 and newer support either the print statement or the print()
BIF. The default is the former usage, as it should be in a version 2.x lan-
guage. To discard the print statement and go with only the function in a
“Python 3 mode” application, you would simply import print_function
from __future__:

>>> print 'foo', 'bar'
foo bar
>>>
>>> from __future__ import print_function

Table D-2 Python Default Division Operator Functionality by Release

Operator 2.1- 2.2+ 3.xa

/ Classic Classic True

// Not applicable Floor Floor

a. The “3.x” column also applies to Python 2.2+ with -Qnew or the __future__.division
import.

ptg7615500

Appendix D • Python 3 Migration with 2.6+ 813

>>> print
<built-in function print>
>>> print('foo', 'bar')
foo bar
>>> print('foo', 'bar', sep='-')
foo-bar

The preceding example demonstrates the power of print() as a func-
tion. Using the print statement, we display the strings foo and bar to the
user, but we cannot change the default delimiter or separator between
strings, which is a space. In contrast, print() makes this functionality
available in its call as the argument sep, which replaces the default—and
allows print to evolve and progress.

Note that this is a one-way import, meaning that there is no way to
revert print() to a statement. Even issuing a "del print_function" will
not have any effect. This major change is detailed in PEP 3105.

D.3.2 reduce() Moved to functools Module

In Python 3.x, the reduce() function has been demoted (much to the chagrin
of many Python functional programmers) from being a BIF to functools
module function, beginning in version 2.6.

>>> from operator import add
>>> reduce(add, range(5))
10
>>>
>>> import functools
>>> functools.reduce(add, range(5))
10

D.3.3 Other Updates

One key theme in Python 3.x is the migration to greater use of iterators,
especially for BIF and methods that have historically returned lists. Still
other iterators are changing because of the updates to integers. The follow-
ing are the most high-profile BIFs, changed in Python 3.x:

• range()

• zip()

• map()

• filter()

• hex()

• oct()

ptg7615500

814 Appendix D • Python 3 Migration with 2.6+

Starting in Python 2.6, programmers can access the new and updated
functions by importing the future_builtins module. Here is an example
that demonstrates both the old and new oct() and zip() functions:

>>> oct(87)
'0127'
>>>
>>> zip(range(4), 'abcd')
[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd')]
>>> dict(zip(range(4), 'abcd'))
{0: 'a', 1: 'b', 2: 'c', 3: 'd'}
>>>
>>> import future_builtins
>>> future_builtins.oct(87)
'0o127'
>>>
>>> future_builtins.zip(range(4), 'abcd')
<itertools.izip object at 0x374080>
>>> dict(future_builtins.zip(range(4), 'abcd'))
{0: 'a', 1: 'b', 2: 'c', 3: 'd'}

If you want to use only the Python 3.x versions of these functions in
your current Python 2.x environment, you can override the old ones by
importing all the new functions into your namespace. The following
example demonstrates this process with oct():

>>> from future_builtins import *
>>> oct(87)
'0o127'

D.4 Object-Oriented Programming: Two
Different Class Objects

Python’s original classes are now called classic classes. They had many
flaws and were eventually replaced by new-style classes. The transition
began in Python 2.2 and continues today.

Classic classes use the following syntax:
class ClassicClass:
 pass

New-style classes use this syntax:
class NewStyleClass(object):
 pass

New-style classes feature so many more advantages than classic classes
that the latter have been preserved only for backward-compatibility
purposes and are eliminated entirely in Python 3. With new-style classes,

ptg7615500

Appendix D • Python 3 Migration with 2.6+ 815

types and classes are finally unified (see Guido’s “Unifying Types and
Classes in Python 2.2” essay as well as PEP 252 and PEP 253).

There are no other changes added in Python 2.6 or newer for migration
purposes, unless you count class decorators as a version 3.x feature. Just
be aware that all 2.2+ versions serve as hybrid interpreters, allowing for
both class objects and instances of those classes. In Python 3, both syntaxes
shown in the preceding examples result only in new-style classes being
created. This behavior does not pose a serious porting issue, but you do
need to be aware that classic classes don’t exist in Python 3.

D.5 Strings
One especially notable change in Python 3.x is that the default string type
is changing. Python 2.x supports both ASCII and Unicode strings, with
ASCII being the default. This support is swapped in Python 3: Unicode
becomes the default, and ASCII strings are now called bytes. The bytes
data structure contains byte values and really shouldn’t be considered a
string (anymore) as much as it is an immutable byte array that contains
data.

Current string literals will now require a leading b or B in Python 3.x,
and current Unicode string literals will drop their leading u or U. The type
and BIF names will change from str to bytes and from unicode to str. In
addition, there is a new mutable “string” type called bytearray that, like
bytes, is also a byte array, only mutable.

You can find out more about using Unicode strings in the HOWTO and
learn about the changes coming to string types in PEP 3137. Refer to Table C-1
for a chart on the various string types in both Python 2 and Python 3.

D.5.1 bytes Literals

To smooth the way for using bytes objects in Python 3.x, you can option-
ally prepend a regular ASCII/binary string in Python 2.6 with a leading b
or B, thereby creating bytes literals (b'' or B'') as synonyms for str liter-
als (''). The leading indicator has no bearing on any str object itself or
any of the object’s operations (it is purely decorative), but it does prepare
you for situations in Python 3 for which you need to create such a literal.
You can find out more about bytes literals in PEP 3112.

ptg7615500

816 Appendix D • Python 3 Migration with 2.6+

bytes is str

It should not require much of a stretch of the imagination to recognize that
if bytes literals are supported, then bytes objects themselves need to exist
in Python 2.6+. Indeed, the bytes type is synonymous with str, as demon-
strated in the following:

>>> bytes is str
True

Thus, you can use bytes or bytes() in Python 2.6+ wherever you use str
or str(). Further information on bytes objects can be found in PEP 358.

D.6 Exceptions
Python 2.6 and newer version 2.x releases have several features that you
can use to port exception handling and raise exceptions in Python 3.x.

D.6.1 Handling Exceptions (Using as)

The syntax in Python 3 for catching and handling a single exception looks
like this:

except ValueError as e:

The e variable contains the instance of the exception that provides the rea-
son why the error was thrown. It is optional, as is the entire as e phrase.
Thus, this change really applies only to those users who save this value.

The equivalent Python 2 syntax uses a comma instead of the as keyword:
except ValueError, e:

This change was made in Python 3.x because of the confusion that occurs
when programmers attempt to handle more than one exception with the
same handler.

To catch multiple exceptions with the same handler, beginners often
write this (invalid) code:

except ValueError, TypeError, e:

In fact, if you are trying to catch more than one exception, you need to
use a tuple that contains the exceptions:

except (ValueError, TypeError), e:

ptg7615500

Appendix D • Python 3 Migration with 2.6+ 817

The as keyword in Python 3.x (and version 2.6+) is intended to ensure
that the comma in the original syntax is no longer a source of confusion.
However, the parentheses are still required when you are trying to catch
more than one type of exception using the same handler:

except (ValueError, TypeError) as e:

For porting efforts, Python 2.6 and newer accept either the comma or as
when defining exception handlers that save the instance. In contrast; only
the idiom with as is permitted in Python 3. You can find more information
about this change in PEP 3110.

D.6.2 Raising Exceptions

The change in raising exceptions found in Python 3.x really isn’t a change
at all; in fact, it doesn’t even have anything to do with the transition efforts
associated with Python 2.6. The Python 3 syntax for raising exceptions
(providing the optional reason for the exception) looks like this:

raise ValueError('Invalid value')

Long-time Python users have probably been using the following idiom
(although both approaches are supported in all version 2.x releases):

raise ValueError, 'Invalid value'

To emphasize that raising exceptions is equivalent to instantiating an
exception class and to provide some additional flexibility, Python 3 sup-
ports only the first idiom. The good news is that you don’t have to wait
until you adopt version 2.6 to start using this technique—as we mentioned
in Appendix C, this syntax has actually been valid since the Python 1.x days.

D.7 Other Transition Tools and Tips
In addition to Python 2.6, developers have access to an array of tools that
can make the transition to Python 3.x go more smoothly—in particular,
the -3 switch (which provides obsolescence warnings) and the 2to3 tool
(you can read more about it at http://docs.python.org/3.0/library/
2to3.html). However, the most important tool that you can “write” is a
good transition plan. In fact, there’s no substitute for planning.

Clearly, the Python 3.x changes do not represent some wild mutation of
the familiar Python syntax. Instead, the variations are just enough to break

http://docs.python.org/3.0/library/2to3.html
http://docs.python.org/3.0/library/2to3.html

ptg7615500

818 Appendix D • Python 3 Migration with 2.6+

the old code base. Of course, the changes will affect users, so a good transi-
tion plan is essential. Most good plans come with tools or aids to help you
out in this regard. The porting recommendations in the “What’s New in
Python 3.0” document specifically state that good testing of code is critical,
in addition to the use of key tools. Without mincing words, here is exactly
what is suggested at http://docs.python.org/3.0/whatsnew/3.0.html#porting-
to-python-3-0:

1. (Prerequisite) Start with excellent test coverage.
2. Port to Python 2.6. This should involve no more work than the

average port from Python 2.x to Python 2.(x+1). Ensure that
all your tests pass.

3. (Still using 2.6) Turn on the -3 command-line switch. It
enables warnings about features that have been removed
(or changed) in Python 3.0. Run your test suite again, and fix
any code that generates warnings. Ensure that all your tests
still pass.

4. Run the 2to3 source-to-source translator over your source
code tree. Run the result of the translation under Python 3.0.
Manually fix any remaining issues, and continue fixing prob-
lems until all tests pass again.

Another alternative to consider is the 3to2 tool. As you can guess from
its name, it does the opposite of 2to3: it takes Python 3 code and attempts
to deliver a working Python 2 equivalent. This library is maintained by an
external developer and isn’t part of the standard library; however, it’s an
interesting alternative because it encourages people to code in Python 3 as
their main development tool, and that can’t be a bad thing. You can learn
more about 3to2 at http://pypi.python.org/pypi/3to2.

The third alternative is to not port at all; instead, write code that runs on
both 2.x and 3.x (with no changes to the source) to begin with. Is this possible?

D.8 Writing Code That is Compatible in
Both Versions 2.x and 3.x

While we’re in the crossroads transitioning from Python 2 to 3, you might
wonder whether it is possible to write code that runs without modification
in both Python 2 and 3. It seems like a reasonable request, but how would
you get started? What breaks the most Python 2 code when executed by a
version 3.x interpreter?

http://docs.python.org/3.0/whatsnew/3.0.html#porting-to-python-3-0
http://docs.python.org/3.0/whatsnew/3.0.html#porting-to-python-3-0
http://pypi.python.org/pypi/3to2

ptg7615500

Appendix D • Python 3 Migration with 2.6+ 819

D.8.1 print vs. print()

If you think like me, you’d say that the answer to the preceding question is
the print statement. That’s as good a place to start as any, so let’s give it a
shot. The tricky part is that in version 2.x, it’s a statement, thus a keyword
or reserved word, whereas in version 3.x, it’s just a BIF. In other words,
because language syntax is involved, you cannot use if statements, and
no, Python still doesn’t have #ifdef macros!

Let’s try just putting parentheses around the arguments to print:
>>> print('Hello World!')
Hello World!

Cool! That works in both Python 2 and Python 3! Are we done? Sorry,
not quite.

>>> print(10, 20) # Python 2
(10, 20)

You’re not going to be as lucky this time because the former is a tuple,
whereas in Python 3, you’re passing in multiple arguments to print():

>>> print(10, 20) # Python 3
10 20

If you think a bit more, perhaps we can check if print is a keyword. You
might recall that there is a keyword module that contains a list of key-
words. Because print won’t be a keyword in version 3.x, you might think
that it can be as simple as this:

>>> import keyword
>>> 'print' in keyword.kwlist
False

As a smart programmer, you’d probably try it in version 2.x, expecting a
True for a response. Although you would be correct, you’d still fail for a
different reason:

>>> import keyword
>>> if 'print' in keyword.kwlist:
... from __future__ import print_function
...
 File "<stdin>", line 2
SyntaxError: from __future__ imports must occur at the beginning of
the file

One workable solution requires that you use a function that has similar
capabilities as print. One of them is sys.stdout.write(); another solution
is distutils.log.warn(). For whatever reason, we decided to use the lat-
ter in many of this book’s chapters. I suppose sys.stderr.write() will also
work, if unbuffered output is your thing.

ptg7615500

820 Appendix D • Python 3 Migration with 2.6+

The “Hello World!” example would then look like this:
Python 2.x
print 'Hello World!'
Python 3.x
print('Hello World!')

The following line would work in both versions:
Python 2.x & 3.x compatible
from distutils.log import warn as printf
printf('Hello World!')

That reminds me of why we didn’t use sys.stdout.write(); we would
need to add a NEWLINE character at the end of the string to match the
behavior:

Python 2.x & 3.x compatible
import sys
sys.stdout.write('Hello World!\n')

The one real problem isn’t this little minor annoyance, but that these
functions are no true proxy for print or print() for that matter; they only
work when you’ve come up with a single string representing your output.
Anything more complex requires more effort on your part.

D.8.2 Import Your Way to a Solution

In other situations, life is a bit easier, and you can just import the correct
solution. In the code that follows, we want to import the urlopen() func-
tion. In Python 2, it resides in urllib and urllib2 (we’ll use the latter), and
in Python 3, it’s been integrated into urllib.request. Your solution, which
works for both versions 2.x and 3.x, is neat and simple in this case:

try:
 from urllib2 import urlopen
except ImportError:
 from urllib.request import urlopen

For memory conservation, perhaps you’re interested in the iterator (Python 3)
version of a well-known built-in such as zip(). In Python 2, the iterator
version is itertools.izip(). This function is renamed to and replaces
zip() in Python 3. In other words, itertools.izip() replaces zip() and
takes on its name. If you insist on this iterator version, your import state-
ment is also fairly straightforward:

try:
 from itertools import izip as zip
except ImportError:
 pass

ptg7615500

Appendix D • Python 3 Migration with 2.6+ 821

One example, which isn’t as elegant looking, is the StringIO class. In
Python 2, the pure Python version is in the StringIO module, meaning you
access it via StringIO.StringIO. There is also a C version for speed, and
that’s located at cStringIO.StringIO. Depending on your Python installa-
tion, you might prefer cStringIO first and fallback to StringIO if cStringIO
is not available.

In Python 3, Unicode is the default string type, but if you’re doing any
kind of networking, it’s likely that you’ll have to manipulate ASCII/bytes
strings instead, so instead of StringIO, you’d want io.BytesIO. To get what
you want, the import is slightly uglier:

try:
 from io import BytesIO as StringIO
except ImportError:
 try:
 from cStringIO import StringIO
 except ImportError:
 from StringIO import StringIO

D.8.3 Putting It All Together

If you’re lucky, these are all the changes you need to make, and the rest of
your code is simpler than the setup at the beginning. If you install the imports
of distutils.log.warn() [as printf()], url*.urlopen(), *.StringIO, and a
normal import of xml.etree.ElementTree (2.5 and newer), you can write a
very short parser to display the top headline stories from the Google News
service with just these roughly eight lines of code:

g = urlopen('http://news.google.com/news?topic=h&output=rss')
f = StringIO(g.read())
g.close()
tree = xml.etree.ElementTree.parse(f)
f.close()
for elmt in tree.getiterator():
 if elmt.tag == 'title' and not \
 elmt.text.startswith('Top Stories'):
 printf('- %s' % elmt.text)

This script runs exactly the same under version 2.x and 3.x with no
changes to the code whatsoever. Of course, if you’re using version 2.4 and
older, you’ll need to download ElementTree separately.

The code snippets in this subsection come from Chapter 14, “Text
Processing,” so take a look at the goognewsrss.py file to see the full ver-
sion in action.

ptg7615500

822 Appendix D • Python 3 Migration with 2.6+

Some will feel that these changes really start to mess up the elegance of
your Python source. After all, readability counts! If you prefer to keep
your code cleaner yet still write code that runs in both versions 2.x and 3.x
without changes, take a look at the six package.

six is a compatibility library who’s primary role is to provide an inter-
face to keep your application code the same while hiding the complexities
described in this appendix subsection from the developer. To find out
more about six, go to http://packages.python.org/six.

Whether you use a library like six or choose to roll your own, we hoped
to show in this short narrative that it is possible to write code that runs in
both versions 2.x and 3.x. The bottom line is that you might need to sacri-
fice some of the elegance and simplicity of Python, trading it off for true 2-
to-3 portability. I’m sure we’ll be revisiting this issue for the next few years
until the whole world has completed the transition to the next generation.

D.9 Conclusion
We know big changes are happening in the next generation of Python,
simply because version 3.x code is backward incompatible with older
releases. The changes, although significant, won’t require entirely new
ways of thinking for programmers—though there is obvious code break-
age. To ease the transition period, current and future releases of the
remainder of the version 2.x interpreters will contain version 3.x-back-
ported features.

Python 2.6 is the first of the “dual-mode” interpreters with which you
can start programming against the version 3.x code base. Python 2.6 and
newer run all version 2.x software as well as understand some version 3.x
code. (The current goal is for version 2.7 to be the final 2.x release. To find
more information on the fictional Python 2.8 release, go to PEP 404 at
http://www.python.org/dev/peps/pep-0404.) In this way, these final ver-
sion 2.x releases help simplify the porting and migration process and will
ease you gently into the next generation of Python programming.

http://packages.python.org/six
http://www.python.org/dev/peps/pep-0404

ptg7615500

823

INDEX

Symbols
^ (carat) symbol

for matching from start of string, 6, 10
for negation, 12

? (question mark), in regex, 6, 12–13, 24, 47
. (dot) symbol, in regex, 6, 9, 23
(?:...) notation, 32
(?!...) notation, 33
(?=...) notation, 33
{ } (brace operators), 12
{% %} (percent signs and braces), for Django

block tags, 529
{% block ... %} tag, 553
{% extends ... %} tag, 554
* (asterisk), in regex, 6, 12–13
** (exponentiation), 771
/ (division operator), 771, 810

Python 3 changes, 803–804
// (double-slash division operator), 804, 811
// (floor division), 772, 803, 804, 810, 811
\ (backslash) to escape characters to include in

search, 23
\s special character, for whitespace characters,

14
& (ampersand), for key-value pairs, 403
(hash symbol)

for comment, 32
for Django comments, 518

% (percent sign)
for hexadecimal ordinal equivalents, 403
for modulo, 772
in string format operator conversion

symbols, 776
+ (plus sign)

for encoding, 403
in regex, 6, 12–13

| (pipe symbol)
for Django variable tag filters, 528
in regex, 9

~ (bit inversion), 771
$ (dollar sign), for matching end of string, 6, 10
Numerics
2to3 tool, 187, 407, 805, 817
-3 switch, for Python 3 transition, 817
3to2 tool, 805, 818
500 HTTP error, 445
A
\A special character, for matching start of

string, 10
abs() function, 770
__abs__() method, 793
AbstractFormatter object, 415
accept() method, 62, 65
access key, for Google+ API, 749
access token secret, for Twitter, 694
access token, for Twitter, 694
acquire() method (lock object), 165, 169, 190,

193
Active FTP mode, 98, 103
Active Record pattern, 295
active sheet in Excel, 329
activeCount() function (threading module),

179
active_count() function (threading module),

179
ActiveMapper, 295
ActiveX, 326

See also COM (Component Object Model)
programming

adapter for database. See database adapters
add() function (set types), 785

ptg7615500

824 Index

__*add__() method, 792, 794
addition sign (+). See + (plus sign)
address families, 58
Admin Console page, adding Appstats UI

as custom, 671
admin.py file, 559

to register data models, 580
administration app in Django, 518–527

setup, 518–519
ADMIN_MEDIA_PREFIX variable, 570
adodbapi, 317
AdvCGI class, 476
advcgi.py CGI application, 468–478
advertising on cloud services, 135
AF_INET sockets, 58
AF_INET6 sockets, 58
AF_LOCAL sockets, 58
AF_NETLINK sockets, 59
AF_TIPC sockets, 59
AF_UNIX sockets, 58
all() method, 298
allocate_lock() function, 165
alphabet, for regular expressions, 5
alphanumeric character class, \w special class

for, 14
alphanumeric character, matching in regex, 7
alternation (|) operation, in regex, 9
Amazon, 608

“Conditions of Use” guidelines, 182
Amazon Web Services (AWS), 607
ampersand (&), for key-value pairs, 403
anchors, parsing, 418
and operator, 770
__*and__() method, 793
animalGtk.pyw application, 242–244
animalTtk.pyw application, 245
animalTtk3.pyw application, 246
anonymous FTP login, 96, 102
Apache web server, 428, 446, 479

Django and, 497
apiclient.discovery.build() function, 755
API_KEY variable for Google+, 755
apilevel attribute (DB-API), 260
APIs (application programming interfaces),

685
Google App Engine and, 614–616
Twitter libraries, 691

App Engine Blobstore, 613
App Engine. See Google App Engine
App Identity API, 614
app.yaml file, 628

for handling inbound e-mail, 658
for tasks queues, 664
handler for Appstats, 671
inbound_services: section, 661
for remote API shell, 654

append() function, 772
append() method (list), 781
appengine_config.py file, 671

“application/x-www-form-urlencoded”, 466
applications

event-driven, 80
Google hosting of, 605
recording events from, 671
uploading to Google, 629
visibility on desktop, 330

apps in Django, 501
creating, 566

AppScale back-end system, 676
Appstats, 614, 670

handler for, 671
APSW, 317
archive() view function, 543
arguments, default for widgets, 221
ArithmeticError, 788
arraysize attribute (DB-API Cursor object), 265
article() method (NNTP object), 107
as keyword, 802, 816
ASCII strings

regular expression with, 188
vs. Unicode, 800–801, 815

ASCII symbols, vs. regular expression special
characters, 34

assertEqual() method, 555
AssertionError, 788
asterisk (*), in regex, 6, 12–13
async* module, 88
asynchat module, 88
asyncore module, 88
atexit.register() function, 183, 185, 195
_atexit() function, registering, 195
attachment to e-mail, 131
AttributeError exceptions, 21, 788
authentication, 487

in Django, 574, 595
federated, 653
in Google, 755
with Google Accounts, 652
in Google App Engine, 574
SMTP, 118
for Twitter account, 694
urllib2 HTTP example, 405–407
vs. authorization, 569

authentication header, base64-encoded, in
HTTP request, 406

authorization
vs. authentication, 569
with Twitter, 694

auto_now_add feature, in Django, 578
B
\B special character, for word boundary

matches, 10
\b special character, for word boundary

matches, 10
backbone, 395
backend server, 394
Backends service/API, 614

ptg7615500

Index 825

background color of button, argument for, 227
backslash (\) to escape characters to include in

search, 23
backward compatibility, 799
Barrier object (threading module), 170
base (Web) server, 429
base representation, 794
base64 module, 147
base64-encoded authentication header, in

HTTP request, 406
BaseException, 788
BaseHTTPRequestHandler class, 429, 430, 447
BaseHTTPServer class, 430, 432, 489
BaseHTTPServer module, 429, 435
BaseRequestHandler class (SocketServer

module), 79
BaseServer class (SocketServer module), 79
BeautifulSoup package, 185, 418, 421, 422, 424,

435, 489
BeautifulSoup.BeautifulSoup class

importing, 427
Beazley, David, 384
beginning of string, matching from, 10
Berkeley sockets, 58
Bigtable, 610, 635
bin() function, 770
binary literals, 804, 810
binary operators, 792, 793
BINARY type object (DB-API), 267
Binary type object (DB-API), 267
binascii module, 147
bind() method, 62, 67, 74
binding, 233
binhex module, 147
Bissex, Paul, Python Web Development with

Django, 496
bit inversion (~), 771
bitwise operators, 772
blacklist section, in dos.yaml file, 675
blank lines, in newsgroup article, 113
Blobstore, 614

resources, 676
block tags in Django, 529
blocking-oriented socket methods, 63
blog application

admin.py file, 559
code review, 557–563
from Google App Engine, 631–647

adding datastore service, 635–638
adding form, 633–635
iterative improvements, 640
plain text conversion to HTML, 632

manage.py to create, 507
models.py file, 558
reverse-chronological order for, 537
summary, 563
template file, 562
URL pattern creation, 529–533
urls.py file, 557

user interface, 527–537
view function creation, 533–537
views.py file, 560

blog.views.archive() function, 561
blog.views.create_blogpost() function, 561
blog/admin.py file, updating with

BlogPostAdmin class, 525
BlogEntry.post() method, 637
blogging, 690
BlogPostAdmin class, 525
BlogPostForm object, 559
Boa Constructor module, 248
body() method (NNTP object), 107
boilerplate code, 370–377

include Python header file, 371
initModule() modules, initializer function,

376
PyMethodDef ModuleMethods[] array, 376
PyObject* Module_func() wrappers,

371–376
SWIG and, 384

boilerplate, base server as, 429
bookrank.py script, 182–189

adding threading, 186–187
non-threaded version, 182–185
porting to Python 3, 187–189

bookrank3CF.py script, 208–209
bool type, 809
Boolean operators, 770
borrowed reference, 383
bot, 410
bottle framework, App Engine and, 617, 676
BoundedSemaphore class, 199
BoundedSemaphore object (threading module),

170
context manager, 196

BoxSizer widget, 241
bpython, 515
brace operators ({ }), 12
BSD Unix, 58
*BSD, Zip files for App Engine SDK, 620
BSON format, 311
buffer size, for timestamp server, 67
build() function, 754
build_absolute_uri() method, 591
built-in functions in Python 3, 813
__builtins__ module, 285
burstiness rates, for task queues, 663
Button widget, 220, 222

Label and Scale widgets with, 224–225
Label widget with, 223

buy() function, 200
bytecode, 19
bytes literals, 815
bytes objects, and string format operator, 409
bytes type, 800, 815
C
C language

converting data between Python and, 372

ptg7615500

826 Index

C language (continued)
creating application for extension, 368–370
extensions in, 365
memory leak, 375
Python-wrapped version of library, 380–382

caching, 647
key for, 649
Memcache in App Engine for, 647–651
on proxy server, 394

__call__() method, 791
callable classes, for threads, 175–176
callables

as deferred tasks, 669
in Django templates, 528
WSGI applications defined as, 481

callbacks, 217
binding event to, 233

callproc() method (DB-API Cursor object), 265
camel capitalization in Twython, 703
candy.py script, 198–200

porting to Python 3, 201
Canvas widget, 220
Capabilities service/API, 614
capitalize() function, 773
capitalize() method (string), 778
capitalizing name in form, 460
carat (^) symbol

for matching from start of string, 6, 10
for negation, 12

Cascading Style Sheets (CSS), 553
C-compiled modules/packages, whitelist, 613
center() method (string), 773, 778
cformat() function, 285, 288
CGI (common gateway interface)

alternatives, 479–487
external processes, 480
server integration, 479
See also WSGI (Web Server Gateway

Interface)
basics, 442–444
errors, exercise answer, 766
form encodings specifications, 466
scalability limitations, 494

CGI applications, 444
cookies, 466–478
form and results page generation, 452–456
form page creation, 448–450
fully interactive Web sites, 457–463
multivalued fields, 467
results page, 450–452
Unicode with, 464–465
Web server setup, 446–448

cgi module/package, 433, 445, 488
CGI-capable development server, 432
CGIHTTPRequestHandler class, 429, 447
CGIHTTPServer class, 430, 489
CGIHTTPServer module, 432, 435

handlers in, 430
cgitb module, 433, 445–446, 488

Channel service/API, 614
resources, 677

character classes, creating, 24
character sets

negation of matches, 14
special characters for, 14

characters
escaping to include in search, 23
hexadecimal ordinal equivalents of

disallowed, 403
matching any single, 6, 23
non-ASCII, 464
See also special characters

chat invitation, 660
chatter score, for Google+ posts, 757
Checkbutton widget, 220
checkUserCookie() method, 476
Cheeseshop, 311, 418
CherryPy, 494
child threads, main thread need to wait for, 166
child widget, 217
chr() function, 770, 773
CIL (Common Intermediate Language), 387
class type in Python 3, 801
class wrapper, 486
class-based generic views, 553
classes, special methods for, 791–795
classic classes, 814
clear() function (set types), 785
clear() method (dictionary), 782
client/server architecture

exercise answer, 765
hardware, 55
network programming, 56–57
software, 55–56
Web surfing and, 391–392
window system, 216
XML-RPC and, 733–738

clientConnectionFailed() method, 87
clientConnectionLost() method, 87
clients, 54

awareness of server, 57
for NNTP, 108–114
for UDP

creating, 74–76
executing, 76

FTP
example program, 100–102
list of typical, 103

Internet, 95
location on Internet, 394–395
socket methods, 62–63
spawning threads to handle requests, 65
TCP

creating, 68–71
executing, 71–73
executing Twisted, 87
SocketServer execution, 83

ptg7615500

Index 827

SocketServer for creating, 82–83
Twisted for creating, 85–87

client-side COM programming, 326–327
with Excel, 328–330, 338–340
with Outlook, 334–337, 340–347
with PowerPoint, 332–334, 347–356
with Word, 331

close() method, 63, 66
for server, 72
for UDP server, 73

close() method (DB-API Connection object),
264

close() method (DB-API Cursor object), 265
close() method (file object), 786
close() method (IMAP4 object), 129
close() method (urlopen object), 401
closed() method (file object), 787
closing spreadsheet without saving, 330
cloud computing, 605–611

levels of service, 607–609
Web-based SaaS, 135

Cloud SQL service/API, 615
Cloud Storage service/API, 615
clrDir() method, 235
CMDs dictionary, 702
cmp() function, 769, 773
__cmp__() method, 792
coerce() function, 771
__coerce__() method, 794
co-location, 395
columns in database tables, 255
column-stores, 310
COM (Component Object Model) program-

ming, client-side, 326–327
basics, 325
with Excel, 328–330, 338–340
with Outlook, 334–337, 340–347
with PowerPoint, 332–334, 347–356
with Word, 331

ComboBox widget, 236, 238, 241
ComboBoxEntry widget, position of labels, 244
command shell, executing http.server

module from, 447
command-line

FTP clients, 103
to start App Engine application, 629

comma-separated values (CSV), 715–719
Yahoo! Stock Quotes example, 717–719

Comment class, 579
Comment objects, for TweetApprover, 578
comments

hash symbol (#) for, 32
in regex, 8, 16

commit() method (DB-API Connection object),
264, 271

common gateway interface. See CGI (common
gateway interface)

Common Intermediate Language (CIL), 387

communication endpoint, 58
See also sockets

comparisons, 769
compatibility library, for Tweepy and

Twython, 693–706
compilation of regex, decision process, 19
compile() function, 17
compiled languages, vs. interpreted, 367
compiling extensions, 377–379
complex() function, 771
__complex__() method, 793
Concurrence networking framework, 89
concurrency, 626
concurrent.futures module, 207, 210
concurrent.futures.ProcessPool Executor, 207
concurrent.futures.ThreadPoolExecutor, 207
Condition object (threading module), 170

context manager, 196
conditional expressions, 288
conditional regular expression matching, 34
connect() attribute (DB-API), 260
connect() function, 286

for database access, 261–262
connect() method, 62
connect_ex() method, 62
connection attribute (DB-API Cursor object),

265
Connection objects (DB-API), 263–264

database adapters with, 271
connectionless socket, 60
connectionMade() method, 86
connection-oriented sockets, 60
constants

in Outlook, 336
in PowerPoint, 334

constructors (DB-API), 266–268
consumer key, for OAuth, 694
consumer secret, for OAuth, 694
consumer() function, 200
container environments, and Django install,

500
containers, widgets as, 217
__contains__() method, 794
context, for Django template variables, 528
continue statement, 113
Control widget, 236, 238
Conversion package/API, 615
converting data between Python and C/C++,

372
cookie jar, 476
Cookie module/package, 433, 476, 488
cookielib module/package, 433, 476, 488
cookies, 392, 487

CGI for, 466–478
expiration date, 467

copy() function (set types), 784
copy() method (dictionary), 782
costs, cloud computing services and, 606

ptg7615500

828 Index

CouchDB, 318
couchdb-python, 318
count() function, 773
count() method (list), 781
count() method (string), 778
counters

semaphores as, 197, 199
value display for debugging, 201

counting, by App Engine, 643
crawl.py script, 411–418

sample invocation, 417–418
crawler, 410
Crawler class, 416
CREATE DATABASE statement (SQL), 256
CREATE TABLE statement (MySQL), 271
CREATE TABLE statement (SQL), 256
create() function, for database table, 287
create_blogpost() view function, 562
create_connection() function, 77
cron job, 101
cron service, 615, 673
cron.yaml file, 673
cross-site request forgery, 544
cStringIO module/package, 413
cStringIO.StringIO class, 731
CSV (comma-separated values), 715–719

downloading files for importing into Excel
or Quicken, 685

csv module, 740
exercise answer, 766
importing, 716

csv.DictReader class, 717
csv.DictWriter class, 717
csv.reader() function, 717
csv.reader() script, 718
csv.writer() function, 717
csvex.py script, 715–717
current_thread function (threading module),

179
currentThread() function (threading

module), 179
cursor for databases, 255
cursor objects (DB-API), 265–266
cursor() method (DB-API Connection object),

264
custom views, 551
customization of classes, special methods for,

791
cwd Tk string variable, 235
cwd() method (FTP objects), 99
cx_Oracle, 318
Cython, 385
D
\d special character, for decimal digit, 14
daemon attribute (Thread object), 172
daemon threads, 171
data

converting between Python and C/C++, 372

in Python 3, 800
manipulation, 3

data attributes (DB-API), 260–261
“Data Mapper” pattern, 295
data models

admin.py file to register, 580
BlogPostForm object for, 559
file for TweetApprover poster app, 578
for blog application, 558
for TweetApprover, 576–582
in Django, experimenting with, 516–517
repetition vs. DRY, 546

data set, script to generate, 41–43
data strings. See strings
data types, 267
database adapters, 258

basics, 270
example application, 275–288

porting to Python 3, 279–288
examples, 270–275

MySQL, 271–272
PostgreSQL, 272–274
SQLite, 274–275

database application programmer’s interface
(DB-API), 259–288

changes between versions, 268
Connection objects, 263–264
cursor objects, 265–266
exceptions, 263
exercise answer, 766
module attributes, 260–263

data attributes, 260–261
function attributes, 261–262

relational databases, available interfaces,
269–270

type objects and constructors, 266–268
web resources, 268

database servers, 55
Database Source Names (DSNs), 294
DatabaseError exception (DB-API), 263
databases

auto-generating records for testing, 538
basics, 254–257
create() function for tables, 287
creating engine to, 296
Django model for, 509–514

table creation, 512–514
using MySQL, 510–511
using SQLite, 511–512

for Django, 498
list of supported, 270
non-relational, 309–315

MongoDB, 310
PyMongo, 311–315

NoSQL, 498
Python and, 257–258
row insertion, update, and deletion, 297
SQL, 256–257
testing, 556

ptg7615500

Index 829

user interface, 255
Web resources on modules/packages, 316
See also object relational managers (ORMs)

DATABASES variable, for TweetApprover,
570

DataError exception (DB-API), 263
datagram type of socket, 60
DatagramRequest-Handler class (SocketServer

module), 79
dataReceived() method, 86
datastore admin, for App Engine, 655
Datastore service/API, 614, 615
date

converting American style to world format,
29

converting integer to, 43
Date type object (DB-API), 267
DateFromTicks type object (DB-API), 267
datetime package, 754
DATETIME type object (DB-API), 267
days of the week, extracting from timestamp,

44
DB-API. See database application program-

mer’s interface (DB-API)
dbDump() function, 288
dbDump() method, 298, 307, 315
DB_EXC, 285
DCOracle2, 318
debugging, counter value display and, 201
decode() function, 773
decode() method (string), 778
default arguments, widgets with, 221
default radio button, 454
deferred package, in Google App Engine,

668–670
deferred.defer() function, 668
Dejavu, 289
__del__() method, 791
__delattr__() method, 792
dele() method (POP3 object), 125
delegation, for database operations, 298
DELETE FROM statement (MySQL), 272
DELETE FROM statement (SQL), 257
delete() function, for database adapter, 288
__delete__() method, 792
delete() method, 297, 298
delete() method (FTP objects), 99
__delitem__() method, 794, 795
__delslice__() method, 794
_demo_search() function, 706
denial-of-service protection, 675
Denial-of-Service service/API, 615
DeprecationWarning, 790
description attribute (DB-API Cursor object),

265
desktop, application visibility on, 330
detach() method, 63
developer servers, 446–448
development server in Django, 505–507

dict.fromkeys() function, 702
dict() factory function, 314
dict2json.py script, 722–724
dict2xml.py script, 725–729
dictionary type built-in methods, 782–783
Diesel, 496
difference_update() function (set types), 785
difference() function (set types), 784
digits

\d special character for, 14
matching single in regex, 7

dir() method (FTP objects), 99
directory tree traversal tool, 230–236
direct_to_template() generic view, 561
DirList class, defining constructor for, 232
discard() function (set types), 785
dispatch, static vs. dynamic, 329
Dispatch() function, 329
displayFirst20() function, 113
displaying sets, 192
Distribute, 290
distutils package, 377
distutils.log.warn() function, 279, 285, 693,

716, 722, 819, 821
__*div__() method, 792
division from __future__ module, 811
division operator (/), 771, 810

Python 3 changes, 803–804
divmod() function, 771
__*divmod__() method, 793
Django, 428, 494

administration app, 518–527
data manipulation, 522–527
setup, 518–519
trying out, 519–527

App Engine and, 617, 676
authentication in, 574, 595
auto_now_add feature, 578
basics, 496
caching, 650
data model experimenting, 516–517
development server in, 505–507
fixtures, 513
forms, 546–550

defining, 590
model forms, 547
ModelForm data processing, 549
ModelForm to generate HTML form, 548

“Hello World” application, 507
installation, 499–501

prerequisites, 497–499
labor-saving features, 563
look-and-feel improvements, 553
model for database service, 509–514

table creation, 512–514
using MySQL, 510–511
using SQLite, 511–512

non-relational databases and, 618
output improvement, 537–541

ptg7615500

830 Index

Django (continued)
model default ordering, 540
query change, 537–540

projects and apps, 501
basic files, 504
project creation, 502–505

Python application shell, 514–517
resources, 597
sending e-mail from, 567
templates

directory for, 529
specifying location for Web pages, 570

testing blog application code review,
557–563

tutorial, 597
unit testing, 554–557, ??–563
user input, 542–546

cross-site request forgery, 544
template for, 542
URLconf entry, 543
view, 543

user interface for blog, 527–537
template creation, 528–529
URL pattern creation, 529–533
view function creation, 533–537

views, 551–553
generic views, 552–553
semi-generic views, 551

vs. App Engine, 628–630
See also TweetApprover

Django’s Database API, 289
django-admin.py startproject command, 566
django-admin.py utility, 502, 505
Django-nonrel, 498

App Engine and, 617
resources, 597

.dmg file, for App Engine SDK, 620
document object model (DOM) tree-structure,

725
document stores, 310
documentation strings (docstrings), 518

testing, 554
DocXMLRPCServer module/package, 434,

733, 740
do_GET() method, 430, 432
do_HEAD() method, 432
dollar sign ($), for matching end of string, 6, 10
doLS() method, 235
do_POST() method, 432
doResults() method, 477, 478
DOS Command window

Django project creation in, 503
for installing Django, 499

dos.yaml file, blacklist section, 675
dot (.) symbol, in regex, 6, 9, 23
double-slash division operator (//), 804, 811
Download service/API, 615
download() method, 415

downloading
CSV files for importing into Excel or

Quicken, 685
e-mail, Yahoo! Mail Plus account for, 139
file from Web site, 101
Google App Engine SDK, 620
HTML, urlretrieve() for, 402
stock quotes into Excel, 338–340

downloadStatusHook function, 402
DP-API See database application program-

mer’s interface (DB-API)
DROP DATABASE statement (SQL), 256
DROP TABLE statement (SQL), 256
DRY principle, 530, 532, 551, 560

resources on, 591
vs. repetition, 546

DSNs (Database Source Names), 294
Durus, 289
dynamic dispatch, 329, 346
E
East Asian fonts, 464
EasyGUI module, 248
easy_install (Setuptools), for Django, 499
ECMA-262 standard, 719
ehlo() method (SMTP object), 119
Elastic Compute Cloud (EC2), 607
electronic mail. See e-mail
ElementTree XML document parser, 725
ElementTree.getiterator() function, 733
Elixir, 295
e-mail, 114–146

attachment, 131
best practices in security and refactoring,

136–138
composition, 131–134
definition of message, 114
Google App Engine for receiving, 658–660
Google App Engine for sending, 656
Google Gmail service, 144–146
handler for inbound, 659
IMAP, 121–122

Python and, 128
instructing Django to send, 567
multipart alternative messages, 133
parsing, 134
POP, 121–122

interactive example, 123–124
methods, 124–125
Python and, 122

Python modules, 146–147
receiving, 121
sending, 116–117
sending, as task, 666–668
system components and protocols, 115–116
Web-based SaaS cloud computing, 135
Yahoo! Mail, 138–144

ptg7615500

Index 831

Yahoo! Mail Plus account for downloading,
139

See also Outlook
e-mail addresses, regex for, 24–26
Email API, 614
email module/package, 131, 147
email.message_from_string() function, 134
email.mime.multiple.MIMEMultipart class,

133
email.mime.text.MIMEText class, 133
email-examples.py script, 132–134
embedding, extensions vs., 387
employee role database example, 291–309

SQLAlchemy for, 291–304
Empty exception (Queue/queue module), 202
empty() method (queue object), 203
encode() function, 773
encode() method, 464
encode() method (string), 778
encoding() method (file object), 787
end of string, matching from, 6, 10
endswith() function, 773
endswith() method (string), 778
ENGINE setting, for Django database, 510
Entry widget, 220
enumerate() function (threading module), 179
environment variables, 481

Django project shell command setup of, 515
wsgi.*, 483

EnvironmentError, 788
EOFError, 72, 788, 789
__eq__() method, 792
eric module, 249
Error exception (DB-API), 263
error exception (socket module), 77
error page, for Advcgi script, 477
error submodule, 400
errorhandler() method (DB-API Connection

object), 264
escaping characters, in regex, 9
ESMTP, 116
estock.pyw script, 338–340
/etc/services file, 59
Event object (threading module), 170
event-based processors for XML, 725
event-driven applications, 80
event-driven processing, 218
events, 217
Excel

COM programming with, 328–330, 338–340
downloading CSV files for importing into,

685
excel.pyw script, 328–330
Exception, 788
exceptions, 788–790

DB-API, 263
in Python 3, 816–817
Python 3 changes, 801–802

for socket module, 77
syntax for handling in database adapters,

280
exc_info, and start_response(), 482
execute() method (DB-API Cursor object), 265
execute*() method (DB-API Cursor object), 266
executemany() function, 287
executemany() method (DB-API Cursor

object), 265
execution rates, for task queues, 663
executor.map(), 208
executor.submit(), 208
exit() function (thread module), 165
exiting threads, 161
expandtabs() method (string), 773, 778
Expat streaming parser, 725
expiration date of cookies, 467
exponentiation (**), 771
extend() method (list), 773, 781
Extended Passive Mode (FTP), 98
eXtensible Markup Language. See XML

(eXtensible Markup Langauge)
extension notations, for regex, 16, 31–34
extensions

basics, 365
creating

boilerplate wrapper for, 370–377
C application code, 368–370
compilation, 377–379

creating on different platforms, 365–366
disadvantages, 367–368
Global Interpreter Lock and, 384
importing, 379
reasons for, 366–367
reference counting and, 382–383
testing, 379–382
threading and, 384
vs. embedding, 387

external processes, as CGI alternative, 480
Extest2.c C library, 380–382
ExtJS, 495
F
fac() function, 368–370
Facebook, 690

scalability issues, 310
factorial function, thread for, 180–182
fake views, 533
family attribute, for socket object, 64
FastCGI, 480
fasterBS() function, 421, 422
federated authentication, 653
fetch() method (IMAP4 object), 129, 130
fetch*() method (DB-API Cursor object), 266
fetchall() method (DB-API Cursor object),

266, 288
fetching database rows, 255
fetchone() method (DB-API Cursor object), 266
Fibonacci function, 180–182

ptg7615500

832 Index

fields, multivalued in CGI, 467
FieldStorage class (cgi module), 445

instance, 451
file input type, 466
file objects, methods and data attributes,

786–787
file servers, 55
File Transfer Protocol (FTP), 96–98

client example, 100–102
interactive example, 100
miscellaneous notes, 103–104

fileno() method (file object), 786
fileno() method (socket object), 64
fileno() method (urlopen object), 401
file-oriented socket methods, 63
files, 254

uploading, 478
Files service/API, 615
fill parameter, for packer, 224
filter() function, 804
filter() method, 297
filter_by() method, 297
filters, in Django variable tags, 528
find() method (string), 778
findall() function, 33–34
findall() function/method, 17, 27
findAll() method, 421
finditer() function, 17, 28, 33–34
find_top_posts() function, 758
find_user() function, 758
finish() method, 299, 307
Firebird (InterBase), 317
firewalls, 394
first() method, 298
fixtures, 513
flags

for speciallzed regex compilation, 19
in regex, 8, 18

Flask framework, App Engine and, 617
Flask, App Engine and, 676
float type, division and, 810
float() function, 771
__float__() method, 793
FloatingPointError, 788
floor division (//), 772, 803, 804, 810, 811
__*floordiv__() method, 792
flush() method (file object), 786
Foord, Michael, Python Cookbook, 407
Forcier, Jeff, Python Web Development with

Django, 496
foreground color of button, argument for, 227
forex() function, 736
ForgetSQL, 289
ForkingMixIn class (SocketServer module), 79
ForkingTCPServerclass (SocketServer

module), 79
ForkingUDPServer class (SocketServer

module), 79

form variable, 451
format parameter style, for database parame-

ters, 261
format() function, 773
format() method (string), 778
formatter module/package, 413
formatter object, 415
FormHandler class, 666
forms

CGI specifications on encodings, 466
classes to define, 559
“hidden” variable in, 454
hidden variable in, 467
in Django, 546–550

defining, 590
forward proxies, 394
Frame class, 241
Frame object, 224
Frame widget, 220, 233
Friedl, Jeffrey E.F., Mastering Regular

Expressions, 48
friendsA.py script, 450
friendsB.py script, 453–456
friendsC.py script, 457–462
friendsC3.py script, 462–463
from module import *, 702
fromfd() function, 77
from-import module, 42
fromkeys() method (dictionary), 782
frozenset() function (set types), 784
FTP (File Transfer Protocol)

creating client, 98
support for, 399

ftplib module, 98, 148, 400
ftplib.FTP class

instantiating, 98
methods, 99–100

Full exception (Queue/queue module), 202
full() method (queue object), 203
full-stack systems, 494
function attributes (DB-API), 261–262
functions

PFAs for, 226
standard, 769
vs. methods, 19

functools module, reduced() moved to in
Python 3, 813

functools.partial() method, 229
future_builtins module, 814
FutureWarning, 790
FXPy module, 249
G
Gadfly, 275, 286, 316

database, 258
GAE Framework, App Engine and, 617
Gage, John, 608
gaierror exception, for socket module, 77
__ge__() method, 792

ptg7615500

Index 833

gendata.py script, 41–43
GeneratorExit, 788
generic views, 537, 551, 552–553

direct_to_template(), 561
Genshi, 495
geometry managers, 218
GET method,decison to use, 448
GET request

Django development server logging of, 507
for HTTP requests, 400
reading, 430
variables and values in URL, 452

__get__() method, 792
get() method (dictionary), 782
get() method (queue object), 203
get() method, for HTTP GET requests, 624
getaddrinfo() function, 77
__getattr__() method, 299, 705, 792
__getattribute__() method, 792
getCPPCookies() method, 476, 478
get_file() method, 414
getFirstNNTP.py script, 109–114
getfqdn() function, 78
gethostbyaddr() function, 78
gethostbyname() function, 78
gethostbyname_ex() function, 78
gethostname() function, 78
__getitem__() method, 794, 795
getLatestFTP.py script, 101–102
_get_meth() method, 703
getName() method (Thread object), 172
get_nowait() method (queue object), 203
get_object_or_404() shortcut, 584
get_page() method, 416
getpeername() method, 63
get_posts() method, 755
get_presence() function (XMPP), 661
getprotobyname() function, 78
getRanking() function, 182, 184

with statement use by, 208
getResult() method, 178
getservbyname() function, 78
getservbyport() function, 78
__getslice__() method, 794
getsockname() method, 63
getsockopt() method, 63
getSubject() function, 137, 143
gettimeout() method, 63
geturl() method (urlopen object), 401
get_user() method, 756
GIF (Graphics Interchange Format), 401
GitHub, 691
Glade module, 249
Global Interpreter Lock (GIL), 160–163

extensions and, 384
gmail.py script, 144–146
GNOME-Python module, 249
go() method, 416, 477

Google
Account authentication, 652
APIs Client Library for Python, 749
applications hosted by, 605
Terms of Service, 731
uploading application to, 629

Google App Engine, 495
adding users service, 652–654
administration console, 611
authentication options, 574
basics, 605, 609–611
counting by, 643
cron service, 673
datastore admin, 655
Datastore viewer, 640
deferred package, 668–670
denial-of-service protection, 675
documentation, 640
frameworks

choices, 617–626
resources, 678

free service tier, 629
hardware infrastructure, 610
“Hello World” application, 620–626

app.yaml file for configuration settings,
622–624

creating manually, 629–630
index.yaml file, 623
starting, 628

“Hello World” application morphed to blog,
631–647

adding datastore service, 635–638
adding form, 633–635
iterative improvements, 640
plain text conversion to HTML, 632

Images API, 662
interactive console, 640–647
language runtimes, 610
limit to file uploads, 613
Memcache API, 647–651
native datastore, 498
pricing model, 626
Python 2.7 support, 626–628
receiving e-mail, 658–660
remote API shell, 654
resources, 676
sandbox restrictions, 612–616
sending e-mail, 656
sending instant messages, 660
services and APIs, 614–616
static files, 651
System Status page, 612
task queues, 663
URLfetch service, 672
vendor lock-in, 675
vs. Django, 628–630
warming requests, 673
Web-based administration and system

status, 610–611

ptg7615500

834 Index

Google App Engine development servers, 428
Google App Engine Oil (GAEO), 617
Google App Engine SDK, 613

downloading and installing, 620
Google Cloud SQL, 498
Google Gmail service, 135, 144–146
Google News server, connection to, 732
Google Web crawlers, 418
Google+ platform, 690, 748–759

basics, 748
chatter score for posts, 757
Python and, 749
social media analysis tool, 750–759

Google+ Ripples, 758
goognewsrss.py script, 730–733, 821
Gopher, support for, 399
gopherlib module, 400
GQL, 638
greediness, 13, 46
Grid (geometry manager), 219
Groovy, 610
group() method, 18, 20, 25–26, 106
group() method (NNTP objects), 107
groupdict() method, 18
groups in regex, parentheses for, 14–15, 45
groups() method, 18, 20, 25–26
__gt__() method, 792
GTK, importing, 243
GTKapp class, 243
guest downloads with FTP, 96
GUI programming, 216

basics, 217–219
event-driven processing, 218
geometry managers, 218

default arguments, 221
FTP client, 103
related modules, 247–250
Swing example, 745–748
toolkit alternatives, 236–246

GTK+ and PyGTK, 242–244
PMW (Python MegaWidgets), 239
Tile/TtK, 244–246
Tix (Tk Interface eXtensions), 238
wxWidgets and wxPython, 240–242

GUI scripts
Button widget, 222
Label and Button widgets, 223
Label widget, 221–222
Label, Button and Scale widgets, 224–225

H
hacking, 394
Hammond, Mark, 326
handle() method, 81
handler class, 406
handlers, 430

for inbound e-mail, 659
for Google App Engine configuration, 623

handles, for urlopen() function, 400

handle_starttag() method, 423
hardware client/server architecture, 55
Harr, Lee, Python Cookbook, 407
hash symbol (#)

for Django comments, 518
for regex comment, 32

__hash__() method, 794
has_key() method (dictionary), 782
head() method (NNTP object), 107
headers, extracting from newsgroup articles,

112
heavyweight process, 159
“Hello World” application

in Google App Engine, 620–626
morphed to blog, 631–647

in Django, 507
in Java, 746
print statement vs. print() function, 820
in Python, 747

helo() method (SMTP object), 119
herror exception, for socket module, 77
hex() function, 771, 773
__hex__() method, 794
hexadecimal format, 810
hexadecimal ordinal equivalents, of

disallowed characters, 403
hidden variable in form, 454, 467
hops, 115
HOST setting, for Django database, 510
HOST variable, 67

for timestamp client, 70
host-port pairs for socket addresses, 59
howmany variable (Python), 451
HR variable for Google+ program, 754
HSC tool, 462
.htaccess file, 405
HTML (HyperText Markup Language), 401,

442
3rd-party tools for generating, 462
parsing tree format, 423
separating HTTP headers from, 451
separating HTTP MIME header from, 454
urlretrieve() to download, 402

HTML forms
in Django for user input, 542
ModelForm to generate, 548
processing ModelForm data, 549

html5lib package, 185, 418, 423, 489
htmlentitydefs module/package, 433, 488
HTMLgen package, 435, 462
htmllib module/package, 413, 433, 488
HTMLParser class, 415, 418
HTMLparser module/package, 185, 433, 488
htmlparser() function, 422
htonl() function, 78
htons() function, 78
htpasswd command, 405
HTTP (HyperText Transfer Protocol), 96, 392

ptg7615500

Index 835

separating headers from HTML, 451
separating MIME header from HTML body,

454
support for, 399
XML-RPC and, 733

http.cookiejar module, 476
http.cookies module, 476
http.server class, 430, 489
http.server module, 435, 447
HTTP_COOKIE environment variable, 468
httplib module, 148, 400, 404, 414, 433, 489
httplib2 library, 571
HTTPServer server class, 429
hybrid cloud, 606
hypertext, 442
Hyves social network, 89
I
IaaS (Infrastructure-as-a-Service), 607
ident attribute (Thread object), 172
if statement, 819
IIS (Internet Information Server), 428
Images API, 615, 662
IMAP (Internet Message Access Protocol),

121–122
interactive example, 128
Python and, 128
Yahoo! Mail example, 142–144

IMAP4 class, 128
IMAP4_SSL class, 128
IMAP4_stream class, 128
imaplib module, 128, 148
imaplib.IMAP4 class, methods, 129–131
import statement, 532
ImportError exception, 16, 789
importing

csv module, 716
extensions, 379
ordering guidelines for, 421, 561, 735
PyGTK, GTK, and Pango, 243
Tkinter module, 215
to create compatible code for Python 2.x and

3.x, 820–821
inbound e-mail, handler for, 659
InboundMailHandler class, 659
include Python header file, in boilerplate code,

371
include() directive, in Django project, 508
include() function, 530
IndentationError, 789
index() function, 773
index() method (list), 781
index() method (string), 778
IndexError, 789
inet_aton() function, 78
inet_ntoa() function, 78
inet_ntop() function, 78
inet_pton() function, 78
info() method (urlopen object), 401

Infrastructure-as-a-Service (IaaS), 607
ingmod, 318
Ingres, 318
Ingres DBI, 318
__init__ method (Thread object), 172
__init__.py file in Django project, 504, 508
__init__() method, 176, 414, 791
initModule() module initializer function, 376
input() function, 280
INSERT INTO statement (MySQL), 271
INSERT INTO statement (SQL), 257
insert() function, 287, 773
insert() method (list), 781
insert() method, for MongoDB collection, 314
inserting database rows, 255
INSTALLED_APPS variable, 571
installing

Django, 499–501
prerequisites, 497–499

Google App Engine SDK, 620
Tkinter, 215
Twython library, 571–572

instance attributes, local variable for, 703
instant messages

Google App Engine for sending, 660
receiving, 661

int type, 802, 809
int() function, 771
__int__() method, 793
integers

converting to date, 43
Python 3 changes, 802–804
Python 3 migration and, 809–812

IntegrityError exception (DB-API), 263
InterfaceError exception (DB-API), 263
“Internal Server Error” messages, 446
InternalError exception (DB-API), 263
International Standard Book Number (ISBN),

184
Internet, 392–395

protocols, related modules, 148
See also cloud computing

Internet addresses, 59
formatting, 121

Internet clients, 95
and servers location, 394–395
See also e-mail

Internet Protocol (IP), 60
Internet Server Application Programming

Interface (ISAPI), 479
interpreted languages, vs. compiled, 367
intersection() function (set types), 784
intersection_update() function (set types), 785
__invert__() method, 793
io.BytesIO class, 731
ioctl() method, 63
IOError, 789
IP (Internet Protocol), 60

ptg7615500

836 Index

IP address, binding, 62
IPv6 TCP client, creating, 71
IPython, 515

starting and using commands, 516
IronPython, 325
is not operator, 770
is operator, 770
isAlive method (Thread object), 172
is_alive() method (Thread object), 172
isalnum() method (string), 773, 779
isalpha() method (string), 773, 779
isatty() method (file object), 786
ISBN (International Standard Book Number),

184
isDaemon() method (Thread object), 172
isdecimal() method (string), 773, 779
isdigit() method (string), 773, 779
islower() method (string), 773, 779
isnumeric() method (string), 773, 779
ISP (Internet Service Provider), 394
isspace() method (string), 773, 779
issubset() function (set types), 784
issuperset() function (set types), 784
istitle() method (string), 773, 779
isupper() method (string), 774, 779
items() function, 804
items() method (dictionary), 782
__iter__() method, 794
__iter__() method (DB-API Cursor object), 266
iter*() method (dictionary), 783
iterables, Python 3 changes, 804
itertools.izip() function, 731, 820
J
Jabber protocol, 614, 660
Java, 610

“Hello World” application, 746
Jython and, 744
vs. Python, 747

JavaScript, 610
JavaScript Object Notation (JSON), 719–724
join() function, 774
join() method, 298
join() method (queue object), 203
join() method (string), 779
join() method (thread object), 172, 174, 186
JOINs, Web resources on, 298
JPEG (Joint Photographic Experts Group), 401
jQuery, 495
JRuby, 610
JSON (JavaScript Object Notation), 719–724

converting Python dict to, 722–724
objects, 311

Python dists conversion to, 720
JSON arrays, 720
json package, 740
json.dumps() function, 722
Jython, 610, 744–748

basics, 744
GUI example with Swing, 745–748

K
Kantor, Brian, 105
Kay framework, App Engine and, 617
key for cache, 649
KeyboardInterrupt, 72, 788, 789
KeyError, 789
keys() function, 804
keys() method (dictionary), 783
keys-only counting, 643
key-value pairs

in CGI, 445
urlencode() encoding of, 403

key-value stores, 310
keyword module, 819
keywords, 768
KInterbasDB, 317
Klassa, John, 341
Kleene Closure, 12
Kuchling, Andrew, 799
L
Label widget, 220, 238, 241

Button and Scale widgets with, 224–225
Button widget with, 223

LabelFrame widget, 220, 247
LAN (Local Area Network), 394
language runtimes of App Engine, 610
Lapsley, Phil, 105
last() method (NNTP object), 107
lastrowid attribute (DB-API Cursor object), 265
Launcher, 628
__le__() method, 792
len() function, 774
len() function (set types), 783
__len__() method, 791, 794
libevent, 89
LibreOffice, 357
LibreOffice Calc, 685
LifoQueue class, 202
ligHTTPD, 428, 446, 494
lightweight processes, 159
limit() method, 297
line termination characters, 346

for Word documents, 331
links, parsing, 418
Linux

package manager for Django install, 501
Zip file for App Engine SDK, 620

list type built-in methods, 781–782
list() function, 774
list() method (POP3 object), 125
Listbox bind() method, 233
Listbox widget, 220
listdir.py script, 230–236
listen() method, 62, 67
list_tweet() method, 589
list_tweets() method, 587
literals

binary and octal, 804
bytes, 815

ptg7615500

Index 837

LiteSpeed, 428
ljust() function, 774
ljust() method (string), 779
LMTP (Local Mail Transfer Protocol), 117
LMTP class, 118
load-balancing, 394
loc.close() method, 102
Local Mail Transfer Protocol (LMTP), 117
local variables

assigning to cache, 757
for instance attributes, 703

localhost, 64
Lock object (threading module), 164–169

context manager, 196
locked() method, 165
locks for threads, vs. sleep, 167
logical OR, 9

brackets for, 11
login

admin directive, for Google App Engine, 653
anonymous FTP, 96, 102
avoiding plaintext, 136, 142
for database creation, 271
for FTP access, 96
registering password, 405
required directive, 653
for SMTP servers, 133

login.html template, 595
login() method (FTP objects), 99
login() method (IMAP4 object), 129
login() method (SMTP object), 119
logout() method (IMAP4 object), 129
Logs, 615
long type, 802, 809
long() function, 771
__long__() method, 793
lookahead assertions, 8, 33
LookupError, 789
loop() function, 168, 195

lock use in, 193
loseConnection() method, 87
lower() function, 774
lower() method (string), 779
LRU (least recently used) algorithm,

Memcache API use of, 649
__*lshift__() method, 793
lstrip() method (string), 774, 779
__lt__() method, 792
lxml package, 185, 489
M
Mail service/API, 615
mail.send_mail() function, 656
_main() function, 185
mailbox module, 147
mailcap module, 147
mainloop(), starting GUI app, 222, 235
makedirs() function, 414
makefile() method, 64

makefiles, 377
make_img_msg() function, 131, 133
make_mpa_msg() function, 131
Makepy utility, 329
make_server() function, 483
manage.py file in Django project, 504

shell command, 515
manage.py runserver command, 519
map() function, 804
map() method, 207
Mapper, resources, 677
MapReduce service/API, 615
markup parser, 185
Mastering Regular Expressions (Friedl), 48
match objects, 20
match() function/method, 4, 17, 20–21, 26
Matcher service/API, 615

resources, 677
matching

conditional, 34
strings, 44–45
vs. searching, 4, 21–22, 46–48

max() function, 774
MaxDB (SAP), 317
mech.py script, 425–428
Mechanize module, 424, 435
Mechanize.Browser class

importing, 427
Megastore, 636
Memcache API, 614, 615, 647–651

documentation, 649
memory conservation in Python 3, 804
memory leak, 383

in C code, 375
MemoryError, 789
Menu widget, 220
Menubutton widget, 220
message transport agents (MTA), 115–116

well-known, 117
message transport system (MTS), 116
Message widget, 220
message.get_payload() method, 134
message.walk() method, 134
messages attribute (DB-API Cursor object), 266
Meta class, 579
metacharacters, 6
methods

permission to access, 589
vs. functions, 19

mhlib module, 147
microblogging with Twitter, 690–707
Microsoft

Exchange, 122
Internet Server Application Programming

Interface (ISAPI), 479
MFC, 249

middleware onion, 485
middleware, for WSGI, 485

ptg7615500

838 Index

migration to Python 3, 807–822
built-in functions, 813

migration to Python (continued)
exceptions, 816–817
integers and, 809–812
object-oriented programming, 814
print statement vs. print() function, 812
reduced() moved to functools module, 813
strings, 815

migration tools for Python 3, 805
MIME (Mail Interchange Message Extension),

131
MIME (Multipurpose Internet Mail Extension),

headers, 401
mimetools module, 147
mimetypes module, 147
MimeWriter module, 147
mimify module, 147
min() function, 774
MiniFieldStorage, 445
mkd() method (FTP objects), 99
__*mod__() method, 793
mode() method (file object), 787
model forms, in Django, 547
ModelForm

data processing, 549
HTML form generation with, 548

models
classes to define, 559
in Django, setting default ordering, 540

models.py file, 558
for Django app, 508

model-template view (MTV) pattern, 514
model-view controller (MVC) pattern, 514
module initializer function, 376
modules, order for importing, 421
Modules/Setup file, Tkinter and, 215
mod_wsgi Apache module, Django and, 497
MongoDB, 310, 318, 498
mouse move event, 218
msg.get_payload() method, 134
msg.walk() method, 134
.msi file, for App Engine SDK, 620
mtfacfib.py script, 180–182
mtsleepA.py script, 165
mtsleepB.py script, 167–169, 173
mtsleepC.py script, 173
mtsleepD.py script, 175
mtsleepE.py script, 177–178
mtsleepF.py script, 191, 194–196

porting to Python 3, 196–197
__*mul__() method, 792, 794
multipart encoding, 468
“multipart/form-data”, 466
multiprocessing module, 207, 209
multithreaded (MT) programming

basics, 157–158
Python Virtual Machine, 160–163
related modules, 209

thread module, 164–169
threads and processes, 158–159

multivalued fields in CGI, 467
mutex module, 209
MVCEngine, 617
myhttpd.py script, 430
myMail.py script, 126–128
MySpace, 690
MySQL, 255, 271–272, 316, 498
MySQL Connector/Python, 280, 316
MySQL for Django database, 510–511
MySQLdb package, 280, 286, 316
myThread.py script, 178
N
name attribute (Thread object), 172
name identifier, for saving matches, 32
NAME setting, for Django database, 510
name() method (file object), 787
named matches, 20
named parameter style, for database parame-

ters, 261
NameError, 789
names

for Django projects, 502
for Google App Engine application, 631
strategy for Python 2 to Python 3, 408

namespaces for App Engine, resources, 677
Namespaces service/API, 616
NDB (new database) service/API, 616
__ne__() method, 792
__neg__() method, 793
negation

in regex, 12
of character set matches, 14

negative lookahead assertion, 8, 33
.NET, 325
Netscape Server Application Programming In-

terface (NSAPI), 479
Netscape, cookies specification, 468
Network News Transfer Protocol (NNTP)

additional resources, 114
basics, 105
client program example, 108–114
interactive example, 108
Python and, 105

network programming
for client/server architecture, 56–57
related modules, 88–89
socket module for, 61–62
sockets, 58–61
TCP server creation, 64–68
Twisted framework, 84–87

networks, location components, 397
__new__() method, 791
NEWLINE characters, to separate HTTP

header from HTML, 451
newlines() method (file object), 787
newsgroups, 104–114

ptg7615500

Index 839

new-style classes, 814
next() method (DB-API Cursor object), 266
next() method (file object), 786
next() method (NNTP object), 107
nextset() method (DB-API Cursor object), 266
nlst() method (FTP objects), 99
NNTP. See Network News Transfer Protocol

(NNTP)
nntplib class, 105
nntplib module, 148
nntplib.NNTP class, 105

methods, 107
non-ASCII characters, \u escape for, 464
non-blocking sockets, 65
nondeterministic activity, 157
non-relational databases, 309–315, 498

Django and, 618
MongoDB, 310
PyMongo, 311–315
Web resources, 319

non-validating, Expat parser as, 725
__nonzero__() method, 791
noop() method (IMAP4 object), 130
NoSQL, 310
not operator, 770
NotImplementedError, 789
NotSupportedError exception (DB-API), 263
now_int() function, 736
now_str() function, 736
ntohl() function, 78
ntohs() function, 78
NULL objects, 267

check for, 383
NUMBER type object (DB-API), 267
numeric conversion, 793
numeric parameter style, for database

parameters, 261
numeric type operators, 770–772
O
OAuth, 494, 569

credentials for Twitter’s public API, 567
resources, 597, 678
Twitter and, 694

oauth2 library, 571
object comparisons, 770
object-level caching, 651
object-oriented programming, 814
object-relational managers (ORMs), 289–309

employee role database example, 291–309
SQLAlchemy for, 291–304
SQLObject for, 304–309

explicit/“classical” access, 301–304
setup and installation, 290–291

Object-Relational Mapper (ORM)
App Engine and, 618

objects
comparison, 792
creating and caching, 329

oct() function, 771, 774
__oct__() method, 794
octal literals, 804
octothorpe. See hash symbol (#)
offset() method, 298
olook.pyw script, 335–337
one() method, 298
onethr.py script, 162–163
OpenDocument text (ODT) format, 357
OpenID service/API, 616, 653
OpenOffice, 356
OperationalError exception (DB-API), 263
operators, 769

numeric type, 770–772
sequence type, 772–776
summary, 795–797

OR
logical, 9
logical, brackets for, 11

or operator, 770
__*or__() method, 793
Oracle, 317, 498
Oracle Open Office, 357
ord() function, 771, 774
order_by() method, 297, 538
os module, 414

importing, 232
os.makedirs() function, 414
os.popen() command, 37
os.spawnv() function, 346
OSError, 789
Outlook

address book protection in, 336
COM programming with, 334–337, 340–347

outlook_edit.pyw script, 341–347
output() function, 421
OverflowError exception, 788, 802
OverflowWarning, 790
owned reference, 382
P
PaaS (Platform-as-a-Service), 607
package manager, for Django install, 500
packer, 224

fill parameter, 224
Packer (geometry manager), 218
page views, persistent state across multiple,

467
PanedWindow widget, 220, 247
Panel widget, 241
Pango, importing, 243
parallel processing, 157
paramstyle attribute (DB-API), 260, 261
parent widget, 217
parentheses, for regex groups, 14–15
parse() function, 423
parse_links.py script, 419–424
parse_links() method, 415

ptg7615500

840 Index

parsing
data string, csv module for, 686
e-mail, 134

parsing (continued)
tree format for HTML documents, 423
Web content, 418–424

part.get_content_type() method, 134
Partial Function Application (PFA), 226–229
partition() function, 774
pass_() method (POP3 object), 125
Passive FTP mode, 98, 103
PASSWORD setting, for Django database, 510
passwords

for anonymous FTP, 97
See also login

PATH environment variable
django-admin.py in, 502
easy_install and, 500

pattern-matching, 4
patterns() function, 531
PC COM client programming, 325
P_DETACH flag, 346
PDO, 289
PendingDeprecation Warning, 790
PEP 333, 496
PEP 3333, 487
PEP 444, 487
percent sign (%)

for hexadecimal ordinal equivalents, 403
for modulo, 772
in string format operator (%)

conversion symbols, 776
performance, interpreted vs. compiled

languages, 367
period (.) symbol, in regex, 6, 9, 23
permission flags, in Django, 579
@permission_required decorator, 589
permissions, to access method, 589
persistence, in state across multiple page

views, 467
persistent storage, 254, 488

databases and, 255
scalability issues, 310

pfaGUI2.py script, 227–229
PHP, 610
Pinax platform, 501

resources, 597
pip, for Django install, 499
pipe symbol (|)

for Django variable tag filters, 528
in regex, 9

Pipeline, 616
resources, 678

Placer (geometry manager), 218
plaintext

avoiding for login, 136, 142
See also comma-separated values (CSV)

planning for transition to Python 3, 817

platform.python_version() function, 142
Platform-as-a-Service (PaaS), 607
plus sign (+)

for encoding, 403
in regex, 6, 12–13

PlusService class, 755
plus_top_posts.py script, 752–759

sample execution, 750
PMW (Python MegaWidgets), 239, 248
PNG (Portable Network Graphics), 401
P_NOWAIT flag, 346
pop() function, 774
pop() function (set types), 785
pop() method (dictionary), 783
pop() method (list), 782
poplib class, 122
poplib module, 148
poplib.POP3 class, 122

methods, 124–125
poplib.POP3_SSL class, 123
PoPy, 272
PORT setting, for Django database, 510
PORT variable, for timestamp client, 70
port, for Web server, 447
porting Python version 2 to version 3, 408
ports, 397

for Django development server, 506
for SMTP, 118
reserved numbers, 59
well-known numbers, 59

__pos__() method, 793
Positive Closure, 12
positive lookahead assertion, 8, 33
POSIX systems

http.server module on, 447
POSIX-compliant threads, 161
POST handler, for blog posts, 634
Post Office Protocol (POP), 121–122

example, 126–128
interactive example, 123–124
poplib.POP3 class methods, 124–125
Python and, 122
Yahoo! Mail example, 142–144

POST request method, for HTTP requests, 400
post() method (FormHandler), 667
post() method (NNTP object), 107
Postel, Jonathan, 96, 116
PostgreSQL, 272–274, 317, 498
postings on newsgroups, 104
post-processing, 485
post_tweet.html template, 586
post_tweet() method, 584
pound sign (#) Seehash character (#)
P_OVERLAY flag, 346
pow() function, 736, 771
__*pow__() method, 793
PowerPoint, COM programming with,

332–334, 347–356

ptg7615500

Index 841

ppoint.pyw script, 333
pprint.pprint() function, 732
precompiled code objects, performance, 19
preprocessing, 485
prettyprinting, 732
print servers, 55
print statement, 196

proxy for, 716
Python 2 vs. 3 versions, 279
vs. print() function, 799–800, 812, 819

print() function, 38
PriorityQueue class, 202
private cloud, 606
process() function, 424, 455
processes

synchronization, 190
threads and, 158–159

prodcons.py script, 204–206
producer() function, 200
production servers, 446

Apache as, 498
profiling with Appstats, 670
ProgrammingError exception (DB-API), 263
programs, vs. processes, 158
projects

file structure for TweetApprover, 565–571
in Django, 501

basic files, 504
creating, 502–505

proprietary source code, extensions to protect,
367

Prospective Search service/API, 616
proto attribute, for socket object, 64
proxy servers, 394
Psycho, 386
psycopg, 272, 317

Connection object setup code, 273
output, 273

pthreads, 161
public cloud, 606
publish_tweet() method, 592
pull queues, 663, 666
purge() function/method, 18, 19
push queues, 663, 666
put() method (queue object), 203
put_nowait() method (queue object), 203
P_WAIT flag, 346
pwd() method (FTP objects), 99
Py_ Build Value() function, 372
PyArg_Parse*() functions, 372
PyArg_ParseTuple() function, 374
PyCon conference Web site, 425
Py_DECREF() function, 383
PyDO/PyDO2, 289, 318
pyFLTK module, 249
pyformat parameter style, for database

parameters, 261
PyGreSQL, 272, 317

Connection object setup code, 273
output, 273

PyGTK, 242–244
PyGTK module, 248

importing, 243
PyGUI module, 249
Py_INCREF() function, 383
Py_InitModule() function, 376
PyKDE module, 249
Pylons, 494, 495

resources, 597
PyMethodDef ModuleMethods[] array, 376
PyMongo, 311–315, 318
PyMongo3, 318
pymssql, 317
PyObject* Module_func() wrappers, 371–376
PyOpenGL module, 249
PyPgSQL, 272, 317

Connection object setup code, 273
output, 273

PyPy, 386
PyQt module, 249
PyQtGPL module, 249
Pyramid, 495

resources, 597
Pyramid framework, App Engine and, 617
Pyrex, 385
pysqlite, 274, 317
Python, 610

and App Engine, 609
converting data between C/C++ and, 372
“Hello World” application with Swing, 747
obtaining release number as string, 142
supported client libraries, 98
vs. Java, 747
Web servers with, 446
writing code compatible with versions 2.x

and 3.x, 818–822
importing for, 820–821

Python 2.6+, 805
Python 3 changes, 798–806, 807–809

class type, 801
division, 803–804
exceptions, 801–802
integers, 802–804
iterables, 804
migration tools, 805
print statement vs. print() function, 799–800
reasons for, 799
Unicode vs. ASCII, 800–801
See also migration to Python 3

Python application shell in Django, 514–517,
407

Python dict
conversion to JSON, 722–724
converting to XML, 725–729

Python Extensions for Windows, 327
Python interpreter, 655

compilation, enabled threads and, 162
Python MegaWidgets (PMW), 239
Python objects, wrapping in object to delegate

lookup, 705

ptg7615500

842 Index

Python types, vs. JSON types, 721
Python Virtual Machine (PVM), 160–163

extensions and, 384
Python/ceval.c file, 161
PythonCard module, 248
.pyw extension, 237, 327
Q
QLime, 289
qmark parameter style, for database

parameters, 261
-Qnew switch, 811
qsize() method (Queue object), 203
Quercus, 610
queries, 255

change to reverse output order, 537–540
in Google App Engine, documentation, 640
speed of, caching and, 647

Query methods, Web resources on, 298
QuerySet, 537
question mark (?), in regex, 6, 12–13, 24, 47
Queue data structure, 158
Queue module, 163
queue.yaml file, 665
Queue/queue module, 202–206, 209
queues for tasks, 663
Quicken, downloading CSV files for importing

into, 685
quit Button, 238, 241
quit() method (FTP objects), 99
quit() method (NNTP object), 107
quit() method (POP3 object), 125
quit() method (SMTP object), 118, 119
quopri module, 147
quote() function, 404
quote*() functions, 402
quote_plus() function, 404
R
race conditions, 159, 190
radio buttons

default, 454
string to build list, 454

Radiobutton widget, 220
raising exceptions

in Python 3, 817
Python 3 changes, 802

randName() function, 287
random data, script to generate, 41
random.choice() function, 43
random.randint() method, 205
random.randrange() function, 43
range() function, 804
ranges (-) in regex, 12
raw strings, 27, 34, 36, 512

note on use, 35
raw_input() function, 280, 774
rcp command (Unix), 96

RDBMS (relational database management
system), 255

re module, 3, 16–35
character classes creation, 24
core functions and methods, 17–18
match objects, 20
match() function/method, 20–21
matching any single character, 23
matching multiple strings, 22
search() function, 21–22

re.compile() function, 183, 189
re.I/IGNORECASE, 31
re.L/LOCALE flag, 34
re.M/MULTILINE, 31
re.S/DOTALL, 31
re.split() function, 39
re.U/UNICODE flag, 34
re.X/VERBOSE flag, 32
read() method (file object), 786
read() method (urlopen object), 401
reader() function, 205
readinto() method (file object), 786
readline() method, 81
readline() method (file object), 786
readline() method (urlopen object), 401
readlines() method (file object), 786
readlines() method (urlopen object), 401
readQ() function, 205
realm, 405
receiving e-mail, 121

Google App Engine for, 658–660
recording events from application activity, 671
records in database, autogenerating for

testing, 538
recv() method, 63
recvfrom() method, 63
recvfrom_into() method, 63
recv_into() method, 63
redirect_to() generic view, 552
reduced() function, Python 3 move to

functools module, 813
refactoring, 136
reference counting, extensions and, 382–383
reference server, WSGI, 483
ReferenceError, 789
refill() function, 200
regex module, 16
regex. See regular expressions
registering password for login, 405
regsub module, 16
regular expressions, 3, 4

alternation (|) operation, 9
characters, escaping to include, 9
comments, 8, 16
compilation decision, 19
conditional matching, 34
creating first, 5

ptg7615500

Index 843

escaping characters to include, 23
examples, 36–41

in-depth, 41–48
exercise answers, 763
extension notations, 16, 31–34
for e-mail addresses, 24–26
grouping parts without saving, 32
groups, 14–15
matching from start or end of strings or

word boundaries, 10, 26–27
for obtaining current book ranking, 182
ranges (-) and negation (^), 12
repetition, 12–13, 24–26
special characters for character sets, 14
special symbols and characters, 6–16
splitting string based on, 30–31
Unicode string vs. ASCII/bytes string, 188
See also re module

relational databases, available interfaces,
269–270

release() method (lock object), 165, 190, 193
remote API shell, 654
remote procedure calls (RPCs), XML and,

733–738
remove() function, 774
remove() function (set types), 785
remove() method (list), 782
ren command, 188
rename() method (FTP objects), 99
render_to_response() method, 534, 536, 561
repetition, in regex, 12–13
replace() function, 774
replace() method (string), 780
replacing, searching and, 29
replenishment rates, for task queues, 663
ReplyThread, 158
repr() function, 769, 774
__repr__() method, 791
request context instance, 544
Request for Comments (RFCs), for cookies, 468
request in CGI, 444
RequestProcessor, 158
reserved port numbers, 59
reserved words, 768
reshtml variable, 451
resize() function, 225
response in CGI, 444
response submodule, 400
ResultsWrapper class, 705

for Twitter, 704
testing, 706

retasklist.py script, 40
retr() method (POP3 object), 125, 127
retrbinary() method (FTP objects), 99, 102
Retriever class, 414
retrlines() method (FTP objects), 99
retry parameters, for task queues, 663
reverse proxy, 394

reverse() function, 368–370, 375, 774
reverse() method (list), 782
reverse-chronological order

for blog, 537
query change for, 537–540

review_tweet() method, 587, 590
rewho.py script, 38
Reynolds, Joyce, 96
rfind() function, 774
rfind() method (string), 780
Rhino, 610
rich shells for Django, 515
rindex() function, 774
rindex() method (string), 780
rjust() function, 774
rjust() method (string), 780
RLock object (threading module), 170

context manager, 196
rmd() method (FTP objects), 99
road signs, PFA GUI application, 227–229
robotparser module, 400, 433, 489
rollback() method (DB-API Connection ob-

ject), 264
root window, 217
round() function, 771
rowcount attribute (DB-API Cursor object), 265
ROWID type object (DB-API), 267
rownumber attribute (DB-API Cursor object),

266
rows in database table, 255

inserting, 257
insertion, update, and deletion, 297

rpartition() function, 774
RPython, 387
__*rshift__() method, 793
rsplit() function, 775
rstrip() function, 775
rstrip() method, 113, 780
rsync command (Unix), 96
Ruby, 610
run() method (Thread object), 172
run_bare_wsgi_app() function, 484
RuntimeError, 789
RuntimeWarning, 790
run_wsgi_app() function, 624
run_wsgi_app() method, 483
S
SaaS (Software-as-a-Service), 135, 607
Salesforce, 608
sandbox, 611

restrictions, 612–616
sapdb, 317
saving

matches from regex, 32
subgroup from regex, 7

SAX (Simple API for XML), 725
Scala, 610
scalability issues for storage, 310

ptg7615500

844 Index

Scale widget, 220
Label and Button widget with, 224–225

scanf() function, 280, 285
scp command (Unix), 96
scripts, standalone, 102
Scrollbar widget, 220, 233
Scrollbar.config() method, 233
sdb.dbapi, 317
search command (Twitter API), 695
search on Twitter, Tweepy library for, 692
Search service/API, 615
search() function (Twitter), 704
search() function/method, 4, 17, 21–22, 26–27
search() method (IMAP4 object), 130
searching

and replacing, 29
subgroups from, 27
vs. matching, 4, 21–22, 46–48

secret.pyc file, 136
Secure Socket Layer (SSL), 393, 404
security

e-mail and, 136
for Outlook address book, 337

seek() method (file object), 787
SELECT * FROM statement (MySQL), 272
select module, 88
select() function, 88
select() method (IMAP4 object), 130
self.api, 703
self.error variable, 477
self.service.people() function, 756
Semaphore class, 199
Semaphore object (threading module), 170

context manager, 196
semi-generic views in Django, 551
send() method, 63
sendall() method, 63
send_approval_email() method, 591
sendData() method, 86
send_group_email() function, 667
sending e-mail, 116–117

Google App Engine for, 656
sendmail() method (SMTP object), 118, 119
sendMsg() method, 133
SendNewsletter class, 667
send_rejection_email() method, 591
send_review_email() method, 585
sendto() method, 63
sequence type operators, 772–776
sequential program, 157
server integration, as CGI alternative, 479
server.py module, 429
server.register_function() function, 736
servers, 54, 56

for UDP, 76
implementing exit scheme, 66, 72
as Internet providers, 95
location on Internet, 394–395

socket methods, 62
TCP

creating, 64–68
creating Twisted Reactor, 84–85
executing, 71–73
executing Twisted, 87
SocketServer execution, 83

timestamp from, 73
WSGI, 482

session management, 488
set types, operators and functions, 783–785
set() function, 783
__set__() method, 792
__setattr__() method, 792
setblocking() method, 63
“Set-Cookie” header, 468
setCPPCookies() method, 476, 477, 478
setDaemon() method (Thread object), 172
set_debuglevel() method (SMTP object), 119
setdefault() method (dictionary), 783
setDirAndGo() method, 235
setinputsizes() method (DB-API Cursor

object), 266
__setitem__() method, 794, 795
setName() method (Thread object), 172
setoutputsize() method (DB-API Cursor

object), 266
setprofile() function (threading module), 179
sets

displaying, 192
for names of running threads, 192

__setslice__() method, 794
setsockopt() method, 63
settimeout() method, 63
settings file, for TweetApprover, 566–571
settings.py file

in Django project, 504
settings.py file in Django project

INSTALLED_APPS tuple in, 509
settrace() function (threading module), 179
setup.py script, creating, 377–378
SGML (Standard Generalized Markup

Language), 724
sgmllib module/package, 418, 433, 489
sharded counter, 643
sharding, 498
Short Message Service (SMS), 691
showError() function, 459
showForm() function, 454
showForm() method, 477
_showRanking() function, 184, 186
showRanking() function, 182
showResults() method, 478
showwarning message box, 329
shutdown() method, 63
Simple API for XML (SAX), 725
Simple Mail Transfer Protocol (SMTP), 116

authentication, 118

ptg7615500

Index 845

example, 126–128
interactive example, 119–120
Python and, 118
web resources, 120
Yahoo! Mail example, 142–144

Simple Storage System (S3), 607
simpleBS() function, 421, 422
SimpleHTTPRequestHandler class, 429, 447
SimpleHTTPServer class, 430, 489
SimpleHTTPServer module, 432, 435

handlers in, 430
simplejson library, 571, 720
simpletree format, for HTML documents, 423
simple_wsgi_app() app, 483
simple_wsgi_app(), wrapping, 485
SimpleXMLRPCServer package, 434, 733, 740
single-threaded process, 157
six package, 822
Slashdot, and traffic, 674
sleep, 159

vs. thread locks, 167
sleep() function, 166, 181, 354
SMS (Short Message Service), 691
smtpd module, 147
smtplib class, 118
smtplib module, 148
smtplib.SMTP class, 118

methods, 118–119
SMTP_SSL class, 118, 139
SOAP, 733
social media analysis tool, 750–759
social networking, 690

See also Twitter
SOCK_DGRAM socket, 61
Socket, 616
socket module, 61–62, 88, 404

attributes, 76–78
socket.error, 143
socket.socket() function, 61–62, 65, 74, 77
socketpair() function, 77
sockets, 58–61

addresses with host-port pairs, 59
built-in methods, 62–64
connection-oriented vs. connectionless,

60–61
data attributes, 64
for FTP, 97
related modules, 88–89

SocketServer class
TCP client creation, 82–83
TCP server and client execution, 83
TCP server creation, 80–82

SocketServer module, 65, 79–83, 88, 210
classes, 79

SOCK_STREAM socket, 60
softspace() method (file object), 787
software client/server architecture, 55–56
Software-as-a-Service (SaaS), 135, 607

sort() function, 775
sort() method (list), 782
sorted() function, 758
SoupStrainer class, 419, 422
spaces, plus sign (+) for encoding, 403
spam e-mail, 127
special characters

for character sets, 14
regular expressions with, 5, 7

vs. ASCII symbols, 34
spider, 410
spin locks, 174
Spinbox widget, 220, 247
SpinButton widget, 236

position of labels, 244
SpinCtrl widget, 241, 242
split() function, 775
split() function/method, 17
split() method, 30–31
split() method (string), 780
splitlines() function, 775
splitlines() method (string), 780
spreadsheets

closing without saving, 330
processing data from, 328
See also Excel

SQL, 256–257
viewing ORM-generated, 296

SQL Server, 317
SQLAlchemy, 289, 291–304, 318, 495

setup and install, 290
SQLite, 274–275, 317, 498, 510

for Django database, 511–??
loading database adapter and, 286

SQLite for Django database, ??–512
sqlite3 package, 290
sqlite3a, 317
SQLObject, 289, 304–309, 318

setup and install, 290
SQLObject2, 318
ssl() function, 77
standalone script, 102
standalone widgets, 217
Standard Generalized Markup Language

(SGML), 724
StandardError, 788
StarOffice, 357
start of string, matching, 6, 10
_start() function, 356
start() method (Thread object), 172, 174
start_new_thread() function, 165, 166
startproject command, 502, 504
start_response() callable, 481
startswith() function, 775
startswith() method (string), 780
starttls() method (SMTP object), 119
stat() method (NNTP object), 107
stat() method (POP3 object), 125, 127

ptg7615500

846 Index

stateless protocol
HTTP as, 392

states, enumeration and definition, 579
static dispatch, 329
static PyObject* function, 371
status() function, 736
stock quotes

downloading into Excel, 338–340
Yahoo! server for, 685–689

stock.py script, 688
csv module for, 717

stockcsv.py script, 718
StopIteration, 788
storage mechanisms, 254
storbinary() method (FTP objects), 99
storlines() method (FTP objects), 99
Storm, 289, 318
str type, 800
str.format() method, 196, 207
str.__getslice__() method, 138
str.join() method, 137
str.startswith() method, 138
str.title() method, 460
str() function, 769, 775
__str__() method, 192, 296, 306, 791
strdup() function, 375
stream socket, 60
StreamRequestHandler class, 79, 81
string format operator (%)

bytes objects and, 409
directives, 777

STRING type object (DB-API), 267
StringIO class, 475, 731
strings

built-in methods, 778–781
converting to Unicode, 189
in Python 3, 815
in regular expressions, Unicode vs. ASCII/

bytes, 188
matching, 44–45

from start or end, 10
multiple, 22

obtaining Python release number as, 142
parsing, csv module for, 686
raw, 512
script to generate, 41–43
searching for pattern in middle, 21
splitting based on regex, 30–31
“title-case formatter”, 285
Unicode vs. ASCII, 800–801, 815

strip() function, 775
strip() method (string), 780
sub() function/method, 18, 29
__*sub__() method, 792
subclassing Thread(), 177–178
subgroup from regex

matching saved, 7
saving, 7
searches, 27

subn() function/method, 29
subprocess module, 206, 209
sudo command, 500
sum() function, 771
summation function, thread for, 180–182
Sun Microsystems Java/Swing, 249
superuser

creating, 513
login as, 520

swapcase() function, 775
swapcase() method (string), 780
swhello.java program, 746, 747
swhello.py program, 747
SWIG (Simplified Wrapper and Interface

Generator), 384
swing module, 249
Swing, GUI development and, 745–748
sybase, 317
symmetric_ difference_ update() function

(set types), 785
symmetric_difference() function (set types),

784
syncdb command, 512, 579

and database table creation, 518
superuser creation, 513

synchronization of threads, 166, 170
synchronization primitives, 201

shared resources and, 261
synchronization primitives for threads,

190–201
context management, 196
locking example, 190–196
semaphore example, 197–201

SyntaxError, 789
SyntaxWarning, 790
sys module/package, 414
sys.stdout.write() function, 819
SystemError, 789
SystemExit, 161, 788
T
t.timeit() method, 138
TabError, 789
__tablename__ attribute, 296
tables in database, 255

create() function for, 287
creation with Django, 512–514

Task Queue service/API, 616
task queues, 663
task_done() method (queue object), 203
tasklist command, 38, 39

parsing output, 40
taskqueue.add() method, 665
tasks

callables as deferred, 669
in App Engine, creating, 663–666
sending e-mail as, 666–668

Tcl (Tool Command Language), 214
TCP (Transmission Control Protocol), 60

client creation, 68–71

ptg7615500

Index 847

executing server and clients, 71–73
listener setup and start, 62
server creation, 64–68

SocketServer class for, 80–82
SocketServer class for client creation, 82–83
timestamp server, 66–68
Twisted server creation, 84–85

TCP client socket (tcpCliSock), 70
TCP/IP socket, creating, 61
TCPServer class (SocketServer module), 79
tell() method (file object), 787
tempfile module, 345
templates

for blog application, 562
in Django

cross-site request forgery, 544
directory, 529
for user input, 542
for user interface, 528–529
for Web page, 527
for Web pages, 570
inheritance, 553

for TweetApprover
to display post status, 592
login.html, 595
pending tweet form, 595

Terms of Service (ToS)
for Google service, 731

ternary/conditional operator, 229
test-driven development (TDD) model, 528
test_home() method, 556
testing

auto-generating database records for, 538
database, 556
Django blog application code review,

557–563
extensions, 379–382
in Django, 554–557
ResultsWrapper class, 706
user interface, 556
when porting code to Python 3, 818

test_obj_create() method, 555
tests.py file for Django app, 508

auto-generation, 554–557
text editors, for email editing in Outlook, 341
text file, converting to PowerPoint, 347–356
text font size on Label widget, 224
text in Python 3, 800
text processing, 3

comma-separated values (CSV), 715–719
JavaScript Object Notation (JSON), 719–724
related modules, 740
resources, 738
XML (eXtensible Markup Langauge),

724–738
Text widget, 221
tformat() function, 285, 288
thank_you() method, 585

themed widget sets, 244
thread module, 161, 163, 164–169, 209

avoiding use, 164
functions and methods, 165

Thread object (threading module), 170
thread.al-locate_lock() function, 169
ThreadFunc class, 176
ThreadFunc object, 176
Threading MixIn class (SocketServer module),

79
threading module, 161, 163, 169, 209

bookrank.py script, 182–189
functions, 179
synchronization primitives, 201
Thread class, 171–179
vs. thread module, 164

threading.activeCount() method, 196
threading.currentThread() method, 195
threading.current_thread() method, 195
threading.enumerate() method, 195
ThreadingTCPServer class (SocketServer

module), 79
ThreadingUDPServer class (SocketServer

module), 79
threads, 159

alternatives, 206–209
app to spawn random number, 191
creating object instance

passing in callable class instance, 175–176
passing in function, 173–175
subclass instance, 177–178

example without, 162–163
execution of single, 160
exiting, 161
extensions and, 384
for Fibonacci, factorial, summation func-

tions, 180–182
loops executed by single, 162–163
modules supporting, 163
processes and, 158–159
Python access to, 161
set for names of running, 192
spawning to handle client requests, 65
synchronization primitives, 190–201

context management, 196
locking example, 190–196
semaphore example, 197–201

threadsafety attribute (DB-API), 260
thttpd, 428, 446
TIDE + module, 248
Tile/Ttk module, 244–246, 248
time module, 168
Time type object (DB-API), 267
time.ctime() function, 43, 689
time.sleep() function, 162, 232, 354
TimeFromTicks type object (DB-API), 267
timeout exception, for socket module, 77
timeout, for FTP connections, 97

ptg7615500

848 Index

Timer object (threading module), 170
timestamp

extracting days of week from, 44
from server, 73

Timestamp type object (DB-API), 267
timestamp() function, 736
TimestampFromTicks type object (DB-API),

267
TIPC (Transparent Interprocess Communica-

tion) protocol, 59
Tipfy, 617, 618

App Engine and, 676
title() function, 775
title() method (string), 460, 780
“title-case formatter”, 285
Tix (Tk Interface eXtensions), 238
Tix module, 248
Tk GUI toolkit, 214

geometry managers, 218
widgets, 219–221

Tk Interface eXtensions (Tix), 238
Tk library, 244–246
tkhello1.py script, 221–222
tkhello2.py script, 222
tkhello3.py script, 223
tkhello4.py script, 224–225
Tkinter module, 214–215, 248

demo code, 235
examples

Button widget, 222
directory tree traversal tool, 230–236
Label and Button widgets, 223
Label widget, 221–222
Label, Button, and Scale widgets, 224–225

importing, 215
installing, 215
Python programming and, 216–221
Tk for GUI, 745

TkZinc module, 248
TLS (Transport Layer Security), 144, 146
Tool Command Language (Tcl), 214
Toplevel widget, 221
topnews() function, 732
top_posts() function, 758
Tornado, 496
ToscaWidgets, 495
traceback, 445
transactional counter, 643
transition plan, 817
translate() function, 775
translate() method (string), 781
Transmission Control Protocol (TCP), 60

client creation, 68–71
SocketServer server and client execution, 83
timestamp server, 66–68

Transparent Interprocess Communication
(TIPC) protocol, 59

tree format, for HTML documents, parsing,
423

tree-based parsers for XML, 725
troubleshooting Twython library install, 572
__*truediv__() method, 792
truncate() method (file object), 787
try-except statement, while loop inside

except clause, 72
Ts_ci_wrapp class, 486
ts_simple_wsgi_app(), for wrapping apps, 485
tsTcIntV6.py script, 71
tsTclnt.py script, 69–71
tsTclntTW.py script, 85, 86
tsTserv.py script, 66–68
tsTserv3.py script, 67, 68
tsTservSS.py script, 80
tsTservTW.py script, 84
tsUclnt.py script, 75
tsUserv.py script, 73, 74
tuple() function, 775
TurboEntity, 295
TurboGears, 495

resources, 597
twapi module, 735
twapi.py script, 695–696, 698–706
Tweepy, 691

compatibility library for Twython and,
693–706

Tweet class, for TweetApprover, 578
TweetApprover, 564–596

approver app
urls.py URLconf file, 576
views.py file, 587–592

data model, 576–582
DATABASES variable, 570
installing Twython library for, 571–572
poster and approver apps, 565
poster app

data models file, 578
urls.py URLconf file, 575
views.py file, 582

project file structure, 565–571
Project URLconf file, 573–575
reviewing tweets, 587–596
settings file, 566–571
submitting tweets for review, 582–586
templates

for pending tweet form, 595
login.html, 595
to display post status, 592

URL structure, 572–576
user creation, 580
workflow, 565

tweet_auth.py file, 699
TweetForm, definition, 583
tweets, 690
Twisted framework, 84–87

executing TCP server and client, 87
TCP client creation, 85–87
TCP server creation, 84–85
Web site, 89

ptg7615500

Index 849

Twitter, 690–707
authorization with, 694
documentation, 704
hybrid app, 694–706
OAuth credentials for public API, 567
Python and, 691–693
resources, 707
scalability issues, 310
and traffic, 674
Tweepy library for search, 692

Twitter account, authentication, 694
Twitter developers, resources, 597
TWITTER_CONSUMER_KEY setting, 567
TWITTER_CONSUMER_SECRET setting, 567
TWITTER_OAUTH_TOKEN setting, 567
TWITTER_OAUTH_TOKEN_SECRET setting, 567
Twython, 691

camel capitalization, 703
compatibility library for Tweepy and,

693–706
Twython library, 736

installing, 571–572
twython-example.py script, 692
txt2ppt.pyw script, 351–356
txt2ppt() function, 354
type attribute,for socket object, 64
type objects (DB-API), 266–268
type() function, 769, 775
TypeError, 789
types, JSON vs. Python, 721
TyphoonAE back-end system, 676
U
\u escape, for non-ASCII characters, 464
UDP (User Datagram Protocol), 61

client creation, 74–76
executing server and client, 76
server creation, 73–74

UDP/IP socket, creating, 61
UDPServer class (SocketServer module), 79
unary operators, 793
UnboundLocalError, 789
uniCGI.py script, 465
Unicode strings

converting to, 189
in CGI applications, 464–465
regular expression with, 188
vs. ASCII strings, 800–801, 815

__unicode__() method, 579, 791
UnicodeDecodeError, 790
UnicodeEncodeError, 790
UnicodeError, 790
UnicodeTranslateError, 790
union OR, 9
union() function (set types), 784
unit testing in Django, 554–557, ??–563
unit*_wrap() functions, 706
Universal Network Objects (UNO), 357
University of California, Berkeley version of

Unix, 58

Unix sockets, 58
UnixDatagramServer class (SocketServer

module), 79
UnixStreamServer class (SocketServer

module), 79
Unix-to-Unix Copy Protocol (UUCP), 96
unquote() function, 403, 404
unquote_plus() function, 403, 404
UPDATE statement (MySQL), 272
UPDATE statement (SQL), 257
update() function (set types), 785
update() function, for database adapter, 288
update() method, 297, 298, 314
update() method (dictionary), 783
update_status command (Twitter API), 695
update_status() function, 704
updateStatus() method, 592
updating database table rows, 255
uploaded file, retrieving, 468
uploading files, 478

application to Google, 629
upper() function, 775
upper() method (string), 781
URIs (Uniform Resource Identifiers), 396
URL mappings, in urls.py file, 558
URL patterns, for Web pages from Django, 527
URLconf file, 543

for Django app, 531–533
for Django project, 529–531
for TweetApprover, 573–575, 576
for TweetApprover poster app, 575

urlencode() function, 403, 404
URLfetch service/API, 614, 616, 672
urljoin() function, 399, 422
urllib module/package, 103, 396, 399, 414, 434
urllib.error module/package, 434
urllib.parse module/package, 434
urllib.quote() function, 402, 476
urllib.quote_plus() function, 402
urllib.requestg module/package, 434
urllib.unquote() function, 476
urllib2 module, 401, 434, 732

authentication example, 405–407
porting, 407–410

urllib2.urlopen() function, 689
urllib2.urlopen() method, 184, 686
urlopen() function, 400–402, 732

importing, 820
urlopen_auth.py script, 405, 406
urlopen_auth3.py script, 409, 410
urlparse module/package, 398–404, 414, 434
urlparse() function, 398, 399
urlpatterns global variable, 519
urlretrieve() function, 402, 404, 415
URLs (Uniform Resource Locators), 396–398

avoiding hardcoding, 591
breaking into components, 398
encoding data for inclusion in URL string,

402

ptg7615500

850 Index

URLs (Uniform Resource Locators) (continued)
GET request variables and values in, 452
structure for TweetApprover, 572–576
variables in, 392

URLs variable, 421
urls.py file, 531

for Django app, 504, 508
urlunparse() function, 398, 399
URNs (Uniform Resource Names), 396
USE statement (SQL), 256
Usenet News System, 104–114
User Datagram Protocol (UDP), 61
user input

Django and, 542–546
cross-site request forgery, 544
templates, 542
URLconf entry, 543
views, 543

Web services processing of, 442
user interface

for blog, 527–533
for databases, 255
for searching posts, 758
testing, 556

user profile in Google+, 750
USER setting, for Django database, 510
user() method (POP3 object), 125
username for anonymous FTP, 97
UserRequestThread, 158
Users service, 616

adding in App Engine, 652–654
users, creating in TweetApprover, 580
user_timeline command (Twitter API), 695
user_timeline() function, 704
UserWarning, 790
ushuffle_*.py application, porting to use

MongoDB, 312
ushuffle_db.py application, 276–279
ushuffle_mongo.py application, 312–315
ushuffle_sad.py application, 292–301

output, 299–301
vs. ushuffle_sae.py application, 304

ushuffle_sae.py application, 301–304
ushuffle_so.py application, 304–309
UTF-8 encoding, 464
V
validating parsers, 725
value comparisons, 769
ValueError, 790
values() function, 804
values() method (dictionary), 783
van Rossum, Guido, 799
variables

hidden, in form, 454, 467
in URLs, 392
tags in Django templates, 528

vendor lock-in, 675

verify_credentials command (Twitter API),
695

verify_credentials() function (Twitter), 704
view functions, 543

create_blogpost(), 562
for blog application, 533–537
for Web page from Django, 527
in Django app, 532

views
fake, 533
for TweetApprover approver app, 587–592
for TweetApprover poster app, 582
generic, 537
in Django, 551–553

for user input, 543
generic views, 552–553
semi-generic views, 551

views.py file
for blog application, 560
for Django app, 508

virtual circuit, 60
virtualenv, 500

resources, 597
VSTO, 325
W
\W alphanumeric character set, 34
\w alphanumeric character set, 34
\w special character, for alphanumeric charac-

ter class, 14
warming requests, in Google App Engine, 673
WarmUp service/API, 616
Warning, 790
Warning exception (DB-API), 263
Watters, Aaron, 258
Web addresses. See URLs (Uniform Resource

Locators)
Web applications

Google App Engine and, 605
model-view controller (MVC) pattern, 514

Web browsers
as FTP client, 103
cookie management, 476

Web clients, 391–392, 394
parsing Web content, 418–424
programmatic browsing, 424–428
Python tools, 396–410

porting urllib2 HTTP authentication
example, 407–410

urllib module/package, 399
urllib2 HTTP authentication example,

405–407
urlparse module/package, 398–404

simple Web crawler/spider/bot, 410–418
Web connection, opening, 400
Web forms, adding database entry from, 523

ptg7615500

Index 851

Web frameworks, 487, 494–496
App Engine vs., 609
resources on, 597

Web page templates in Django, 527
Web programming

real world development, 487
related modules, 433, 488–489

Web resources
concurrent.futures module, 209
DB-API, 268
list of supported databases, 270
on App Engine, 676
on Appstats, 672
on building extensions, 366
on Cython, 385
on database-related modules/packages, 316
on DRY, 591
on extensions, 387
on FTP, 104
on GUIs, 250
on JOINs, 298
on JSON, 719
on Jython, 744
on MongoDB, 311
on NNTP, 114
on non-relational databases, 319
on NoSQL, 310
on Office applications, 357
on Psyco, 386
on PyPy, 387
on Pyrex, 385
on Python versions, 806
on Query methods, 298
on receiving e-mail, 660
on SMTP, 120
on SWIG, 384
on text processing, 738
on Twitter, 704, 707
on Twitter API libraries, 691
on Web frameworks, 597
on XML-RPC, 736
on Yahoo! Finance Server, 707
on race conditions, 190
on urllib2, 407

Web server farm, 395
Web Server Gateway Interface (WSGI),

480–482
reference server, 483

Web servers, 55, 391–392, 428–433
implementing simple base, 430–431
in Django, 505
scaling, 487
setup for CGI, 446–448
typical modern-day components, 444

Web services
basics, 685

microblogging with Twitter, 690–707
Yahoo! Finance Stock Quotes Server,

685–689
Web sites

CGI for fully interactive, 457–463
downloading latest version of file, 101

Web surfing, 391–392
web.py, 496
web2py, 496, 618

App Engine and, 676
web2py framework, 619
webapp framework, 617, 619
webapp2 framework, 617, 627
Web-based SaaS cloud services, 135
webbrowser module/package, 433, 489
WebWare MiddleKit, 289
well-known port numbers, 59
whitespace characters

\s in regex for, 14
matching in regex, 7
removing, 113

who command (POSIX), regular expression for
output, 36–38

who variable (Python), 451
widgets, 217

default arguments, 221
in top-level window object, 219

WIDTH variable for Google+ program, 754
win32com.client module, 327
win32ui module, 249
windowing object, 216

top-level, 217
defining size, 225
widgets in, 219

Windows Extensions for Python, 326
windows servers, 55
WindowsError, 789
with statement, 38

context manager and, 196
getRanking() use of, 208

withdraw() function, 329
word boundaries

matching and, 7, 10, 26
matching from start or end, 10

Word, COM programming with, 331
word.pyw script, 331
workbook in Excel, 329
wrappers, listing for Python interpreter, 376
wrapping apps, 485
write() function, WSGI standard and, 481
write() method, 81, 102
write() method (file object), 787
writelines() method (file object), 787
writeQ() function, 205
writer() function, 205
writerow() method, 717

ptg7615500

852 Index

WSGI (Web Server Gateway Interface), 496
middleware and wrapping apps, 485
sample apps, 484
servers, 482
updates in Python 3, 486

wsgi.* environment variables, 483
wsgiref module, 435, 489

demonstration app, 484
wsgiref.sim ple_server.demo_app(), 484
wsgiref.simple_server.WSGIServer, 483
wxGlade module, 248
wxPython module, 248
wxWidgets, animalWx.pyw application, 240–242
X
xhdr() method (NNTP object), 107, 112
xist tool, 462
XML (eXtensible Markup Language), 724–738

converting Python dict to, 725–729
vs. JSON, 719
in practice, 729–733

xml package, 434, 725
xml.dom module/package, 434, 740
xml.dom.minidom, 725
xml.etree module/package, 434
xml.etree.ElementTree module/package, 740

importing, 821
xml.parsers.expat package, 434, 740
xml.sax module/package, 434, 740
xmllib module, 434, 725
XML-RPC, 733–738

client code, 737–738
resources, 736

xmlrpc.client package, 733
xmlrpc.server package, 733

xmlrpcclnt.py script, 737–738
xmlrpclib module, 148, 434, 733, 737, 740
xmlrpcsrvr.py script, 734–737
XMPP (eXtensible Messaging and Presence

Protocol), 614
XMPP (eXtensible Messaging and Presence

Protocol) API, 616, 660
__*xor__() method, 793
xreadlines() method (file object), 786
Y
Yahoo! Finance Stock Quotes Server, 685–689

code interface with, 736
csv module for, 717–719
parameters, 687, 695
resources, 707

Yahoo! Mail, 135, 138–144
Yahoo! Mail Plus, 135, 139
YAML (yet another markup language), 622
yielding, 159
ymail.py script, 140–144
Z
\Z special character, for matching from end of

string, 10
ZeroDivisionError, 788
zfill() function, 775
zfill() method (string), 781
Zip files

for App Engine SKD, 620
Google App Engine and, 613

zip() function, 731, 804
iterator version, 820

Zope, 496

	Contents
	Preface
	Acknowledgments
	About the Author
	Part I: General Application Topics
	Chapter 1 Regular Expressions
	1.1 Introduction/Motivation
	1.2 Special Symbols and Characters
	1.3 Regexes and Python
	1.4 Some Regex Examples
	1.5 A Longer Regex Example
	1.6 Exercises

	Chapter 2 Network Programming
	2.1 Introduction
	2.2 What Is Client/Server Architecture?
	2.3 Sockets: Communication Endpoints
	2.4 Network Programming in Python
	2.5 *The SocketServer Module
	2.6 *Introduction to the Twisted Framework
	2.7 Related Modules
	2.8 Exercises

	Chapter 3 Internet Client Programming
	3.1 What Are Internet Clients?
	3.2 Transferring Files
	3.3 Network News
	3.4 E-Mail
	3.5 Related Modules
	3.6 Exercises

	Chapter 4 Multithreaded Programming
	4.1 Introduction/Motivation
	4.2 Threads and Processes
	4.3 Threads and Python
	4.4 The thread Module
	4.5 The threading Module
	4.6 Comparing Single vs. Multithreaded Execution
	4.7 Multithreading in Practice
	4.8 Producer-Consumer Problem and the Queue/queue Module
	4.9 Alternative Considerations to Threads
	4.10 Related Modules
	4.11 Exercises

	Chapter 5 GUI Programming
	5.1 Introduction
	5.2 Tkinter and Python Programming
	5.3 Tkinter Examples
	5.4 A Brief Tour of Other GUIs
	5.5 Related Modules and Other GUIs
	5.6 Exercises

	Chapter 6 Database Programming
	6.1 Introduction
	6.2 The Python DB-API
	6.3 ORMs
	6.4 Non-Relational Databases
	6.5 Related References
	6.6 Exercises

	Chapter 7 *Programming Microsoft Office
	7.1 Introduction
	7.2 COM Client Programming with Python
	7.3 Introductory Examples
	7.4 Intermediate Examples
	7.5 Related Modules/Packages
	7.6 Exercises

	Chapter 8 Extending Python
	8.1 Introduction/Motivation
	8.2 Extending Python by Writing Extensions
	8.3 Related Topics
	8.4 Exercises

	Part II: Web Development
	Chapter 9 Web Clients and Servers
	9.1 Introduction
	9.2 Python Web Client Tools
	9.3 Web Clients
	9.4 Web (HTTP) Servers
	9.5 Related Modules
	9.6 Exercises

	Chapter 10 Web Programming: CGI and WSGI
	10.1 Introduction
	10.2 Helping Web Servers Process Client Data
	10.3 Building CGI Applications
	10.4 Using Unicode with CGI
	10.5 Advanced CGI
	10.6 Introduction to WSGI
	10.7 Real-World Web Development
	10.8 Related Modules
	10.9 Exercises

	Chapter 11 Web Frameworks: Django
	11.1 Introduction
	11.2 Web Frameworks
	11.3 Introduction to Django
	11.4 Projects and Apps
	11.5 Your "Hello World" Application (A Blog)
	11.6 Creating a Model to Add Database Service
	11.7 The Python Application Shell
	11.8 The Django Administration App
	11.9 Creating the Blog's User Interface
	11.10 Improving the Output
	11.11 Working with User Input
	11.12 Forms and Model Forms
	11.13 More About Views
	11.14 *Look-and-Feel Improvements
	11.15 *Unit Testing
	11.16 *An Intermediate Django App: The TweetApprover
	11.17 Resources
	11.18 Conclusion
	11.19 Exercises

	Chapter 12 Cloud Computing: Google App Engine
	12.1 Introduction
	12.2 What Is Cloud Computing?
	12.3 The Sandbox and the App Engine SDK
	12.4 Choosing an App Engine Framework
	12.5 Python 2.7 Support
	12.6 Comparisons to Django
	12.7 Morphing "Hello World" into a Simple Blog
	12.8 Adding Memcache Service
	12.9 Static Files
	12.10 Adding Users Service
	12.11 Remote API Shell
	12.12 Lightning Round (with Python Code)
	12.13 Sending Instant Messages by Using XMPP
	12.14 Processing Images
	12.15 Task Queues (Unscheduled Tasks)
	12.16 Profiling with Appstats
	12.17 The URLfetch Service
	12.18 Lightning Round (without Python Code)
	12.19 Vendor Lock-In
	12.20 Resources
	12.21 Conclusion
	12.22 Exercises

	Chapter 13 Web Services
	13.1 Introduction
	13.2 The Yahoo! Finance Stock Quote Server
	13.3 Microblogging with Twitter
	13.4 Exercises

	Part III: Supplemental/Experimental
	Chapter 14 Text Processing
	14.1 Comma-Separated Values
	14.2 JavaScript Object Notation
	14.3 Extensible Markup Language
	14.4 References
	14.5 Related Modules
	14.6 Exercises

	Chapter 15 Miscellaneous
	15.1 Jython
	15.2 Google+
	15.3 Exercises

	Appendix A: Answers to Selected Exercises
	Appendix B: Reference Tables
	Appendix C: Python 3: The Evolution of a Programming Language
	C.1 Why Is Python Changing?
	C.2 What Has Changed?
	C.3 Migration Tools
	C.4 Conclusion
	C.5 References

	Appendix D: Python 3 Migration with 2.6+
	D.1 Python 3: The Next Generation
	D.2 Integers
	D.3 Built-In Functions
	D.4 Object-Oriented Programming: Two Different Class Objects
	D.5 Strings
	D.6 Exceptions
	D.7 Other Transition Tools and Tips
	D.8 Writing Code That is Compatible in Both Versions 2.x and 3.x
	D.9 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

